atorvastatin
Atorvastatin (INN) /əˌtɔrvəˈstætən/, marketed by Pfizer as a calcium salt under the trade name Lipitor,[1] is a member of the drug class known as statins, used for lowering blood cholesterol. It also stabilizes plaque and prevents strokes through anti-inflammatory and other mechanisms. Like all statins, atorvastatin works by inhibitingHMG-CoA reductase, an enzyme found in liver tissue that plays a key role in production of cholesterol in the body.
Atorvastatin was first synthesized in 1985 by Bruce Roth of Parke-Davis Warner-Lambert Company (since acquired by Pfizer). The best selling drug in pharmaceutical history, sales of Lipitor since it was approved in 1996 exceed US$125 billion, and the drug has topped the list of best-selling branded pharmaceuticals in the world for nearly a decade.[2] When Pfizer’s patent on Lipitor expired on November 30, 2011,[3] generic atorvastatin became available in the United States, initially manufactured only by generic drugmakers Watson Pharmaceuticals and India’s Ranbaxy Laboratories. Prices for the generic version did not drop to the level of other generics—$10 or less for a month’s supply—until other manufacturers were able to supply the drug in May 2012.[4]
Atorvastatin calcium, YM-548, CI-981, Prevencor, Tahor, Lipibec, Torvast, Sortis, Lipitor | |
(3R,5R)-7-[2-(4-Fluorophenyl)-5-isopropyl-3-phenyl-4-(phenylcarbamoyl)pyrrol-1-yl]-3,5-dihydroxyheptanoic acid calcium salt (2:1) | |
134523-03-8, 134523-00-5 (free acid), 110862-48-1 (free acid (R*,R*)-isomer) | |
2-C33-H34-F-N2-O5.Ca | |
1155.35 | |
Alzheimer’s Dementia, Treatment of , Cardiovascular Drugs, Cognition Disorders, Treatment of, Immunologic Neuromuscular Disorders, Treatment of, Lipoprotein Disorders, Treatment of , Metabolic Drugs, Multiple Sclerosis, Agents for, Neurologic Drugs, Treatment of Disorders of the Coronary Arteries and Atherosclerosis, HMG-CoA Reductase Inhibitors, TNFSF6 Expression Inhibitors | |
Launched-1997 | |
Jouveinal (Originator), Pfizer (Originator), Almirall Prodesfarma (Licensee), Syncro (Licensee), Yamanouchi (Licensee), Stanford University (Codevelopment) |
SYNTHESISTrans-6-[2-(3- or 4-carboxamido-substd. pyrrol-1-yl)alkyl]-4-hydroxypyran-2-one inhibitors of cholesterol synthesis | |
Roth, B.D. (Pfizer Inc.) | |
EP 0247633; US 4681893 | |
![]() |
|
1) The condensation of 2-(1,3-dixolan-2-yl)ethylamine (I) with ethyl 2-bromo-2-(4-fluorophenyl)acetate (II) by means of triethylamine in acetonitrile gives ethyl 2-[2-(1,3-dioxolan-2-yl)ethylamino]-2-(4-fluorophenyl)acetate (III), which is acylated with isobutyryl chloride (IV) and triethylamine in dichloromethane yielding the corresponding amide (V). Saponification of the ester (V) with NaOH in methanol/water affords the free acid (VI), which is cyclized with N,3-diphenylpropynamide (VII) [obtained in the reaction of 3-phenylpropynoic acid (VIII) with aniline (IX) by means of dicyclohexylcarbodiimide (DCC)] by heating at 90 C in acetic anhydride giving 1-[2-(1,3-dioxolan-2-yl)ethyl]-5-(4-fluorophenyl)-2-isopropyl-N,4-diphenylpyrrole-3-carboxamide (X). The hydrolysis of the dioxolane group of (X) with HCl yields the corresponding aldehyde (XI), which is condensed with methyl acetoacetate (XII) by means of NaH in THF affording 7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-(N-phenylcarbamoyl)pyrrol-1-yl]-5-hydroxy-3-oxoheptanoic acid methyl ester (XIII). The reduction of the carbonyl group of (XIII) with tributylborane and NaBH4 in THF gives the (3R*,5R*)-dihydroxy ester (XIV), which is saponified with NaOH in water yielding the corresponding free acid (XV). The lactonization of (XV) by heating in refluxing toluene affords the (R*,R*)-lactone (XVI), which is submitted to optical resolution by reaction with (R)-1-phenylethylamine (XVII) followed by fractional crystallization thus obtaining the amide (XVII) as the pure (R,R,R)-enantiomer. The hydrolysis of the amide (XVIII) with NaOH, followed by heating in refluxing toluene gives the (R,R)-lactone (XIX), which is finally treated first with NaOH in methanol/water, and then with CaCl2 or calcium acetate.![]() |
- “Pfizer product promotion page (Liptor)”. Retrieved 2011-12-05.
- “Lipitor becomes world’s top-selling drug”. Crain’s New York Business. 2011-12-28.
- CNN Wire Staff (November 30, 2011). “Lipitor loses patent, goes generic”. CNN. Retrieved November 18, 2012.
- NeLM, June 2012: Price to UK National Health Service for 28 tablets from £3.25 (10mg) to £10.00 (80mg).
- “Atorvastatin Calcium”. Drugs.com. Retrieved 3 April 2011.
Further reading
- “Highlights of prescribing information” (pdf). Lipitor (atorvastatin calcium) Tablets for oral administration. Pfizer. 2009-06-01. Retrieved 2011-10-26.
- Maggon K (June 2005). “Best-selling human medicines 2002-2004”. Drug Discov. Today 10 (11): 739–42. doi:10.1016/S1359-6446(05)03468-9. PMID 15922927.
- Roth BD (2002). “The discovery and development of atorvastatin, a potent novel hypolipidemic agent”. Prog Med Chem. Progress in Medicinal Chemistry 40: 1–22. doi:10.1016/S0079-6468(08)70080-8. ISBN 978-0-444-51054-9. PMID 12516521.
- Simons J (2003-01-20). “The $10 Billion Pill Hold the fries, please. Lipitor, the cholesterol-lowering drug, has become the bestselling pharmaceutical in history. Here’s how Pfizer did it”. Fortune. Retrieved 2011-10-26.
- Winslow R (2000-01-24). “The Birth of a Blockbuster: Lipitor’s Route out of the Lab”. The Wall Street Journal. Retrieved 2011-10-26.
- “Ann Arbor chemist wins national award for drug discovery”. ScienceBlog. American Chemical Society. 2003-03-01. Retrieved 2011-10-26.
- Rowe A (2008-08-20). “Meet the Guy Who Invented Lipitor”. Wired Science. Wired.com. Retrieved 2011-10-26.
- Bernstein M (2008-08-16). “Chemical Society To Honor ‘Heroes Of Chemistry’ During National Meeting”. Medical News Today. Retrieved 2011-10-26.
- He L (2003-09-27). “Bruce D. Roth, Pfizer Inc, USA”. Chinese Academy of Sciences·Institute of Process Engineering. Retrieved 2011-10-26.
External links
- Atorvastatin bound to proteins in the PDB
- Lipitor.com – manufacturer’s site
- MedlinePlus Drug information: Atorvastatin (Systemic) – information from USP DI Advice for the Patient
- U.S. National Library of Medicine: Drug Information Portal – Atorvastatin
An improved synthesis of 1,1-dimethylethyl 6-cyanomethyl-2,2-dimethyl-1,3-dioxane-4-acetate, a key intermediate for atorvastatin synthesis | |
Radl, S.; et al. | |
Tetrahedron Lett 2002,43(11),2087 | |
![]() |
|
The 6-cyanohexanoic ester (VII), intermediate in the synthesis of 180072 (see intermediate (XLI) in scheme no. 18007204a) has been obtained as follows: the reaction of 1,6-heptadien-4-ol (I) with BuLi, CO2, and I2 in THF gives the cyclic carbonate (II), which is treated with Ts-OH in acetone to yield the acetonide (III). The reaction of the iodine atom of (III) with KCN in hot DMSO affords the nitrile (IV), which is oxidized at the terminal double bond with OsO4 and NaIO4, or O3 and Me2S, to provide the carbaldehyde (V). The oxidation of (V) with CrO3/H2SO4 in acetone gives the carboxylic acid (VI), which is finally esterified with tert-butanol by means of DCC and DMAP in dichloromethane, yielding the target ester intermediate (VII).![]() |
Lipitor industrial production shown below (TL, 1985, 2951; TL, 1992, 2279; 2283)
Divided into two fragments. Primary amine fragment iso-ascorbic acid as a starting material (stereoisomer of vitamin C) in the system. 1,4 – dione as a starting material isobutyrylacetanilide fragment, obtained by the Stetter reaction, the reaction of benzoin conjugated version Michael addition. Diketone related primary amine with a substituted pyrrole ring obtained five, after deprotection and salt formation Lipitor.
Atorvastatin of IC50-0.025μM, its RR configuration is as high IC50-0.007μM (SS configuration IC50-0.44μM).
Initially synthesized as shown above (JMC, 1991, 357).
Which polysubstituted pyrrole ring by the Munchnone of 1,3-dipolar [3 +2] cycloaddition get.
Reblogged this on MedCheminAustralia.
Reblogged this on MEDCHEMEGYPT.
Reblogged this on MedCheminSingapore by Sushma Wang.
Reblogged this on MariaGairos–DRUGS.
Reblogged this on MedChemHot.Pakistan.
Reblogged this on MED.CHEM in BURMA.
Reblogged this on Vijaya Shastry Ph.D Physical Chemistry.
Reblogged this on My Blog on Medicinal Chemistry.
Reblogged this on Med.Chem in Nepal.
Reblogged this on Srilanka-Chem.
Reblogged this on Med.Chem.in.Iceland.
Reblogged this on Organic Reactions in Medchem.
Reblogged this on GREEN MED CHEMISTRY.
thanks all
Thanks a lot for sharing this with all people you actually recognise what you’re talking about!
Bookmarked. Please additionally seek advice from my site =).
We can have a link change agreement between us