New Drug Approvals

Home » BLA

Category Archives: BLA

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,480,167 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,841 other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,841 other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Teprotumumab-trbw


Image result for teprotumumab-trbw

Tepezza (teprotumumab-trbw)

Company: Horizon Therapeutics plc
Date of Approval: January 21, 2020
Treatment for: Thyroid Eye Disease

UNIIY64GQ0KC0A

CAS number1036734-93-6

R-1507 / R1507 / RG-1507 / RG1507 / RO-4858696 / RO-4858696-000 / RO-4858696000 / RO4858696 / RO4858696-000 / RV-001 / RV001

Tepezza (teprotumumab-trbw) is a fully human monoclonal antibody (mAb) and a targeted inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) for the treatment of active thyroid eye disease (TED).

FDA Approves Tepezza (teprotumumab-trbw) for the Treatment of Thyroid Eye Disease (TED) – January 21, 2020

Today, the U.S. Food and Drug Administration (FDA) approved Tepezza (teprotumumab-trbw) for the treatment of adults with thyroid eye disease, a rare condition where the muscles and fatty tissues behind the eye become inflamed, causing the eyes to be pushed forward and bulge outwards (proptosis). Today’s approval represents the first drug approved for the treatment of thyroid eye disease.

“Today’s approval marks an important milestone for the treatment of thyroid eye disease. Currently, there are very limited treatment options for this potentially debilitating disease. This treatment has the potential to alter the course of the disease, potentially sparing patients from needing multiple invasive surgeries by providing an alternative, non surgical treatment option,” said Wiley Chambers, M.D., deputy director of the Division of Transplant and Ophthalmology Products in the FDA’s Center for Drug Evaluation and Research. “Additionally, thyroid eye disease is a rare disease that impacts a small percentage of the population, and for a variety of reasons, treatments for rare diseases are often unavailable. This approval represents important progress in the approval of effective treatments for rare diseases, such as thyroid eye disease.”

Thyroid eye disease is associated with the outward bulging of the eye that can cause a variety of symptoms such as eye pain, double vision, light sensitivity or difficulty closing the eye. This disease impacts a relatively small number of Americans, with more women than men affected. Although this condition impacts relatively few individuals, thyroid eye disease can be incapacitating. For example, the troubling ocular symptoms can lead to the progressive inability of people with thyroid eye disease to perform important daily activities, such as driving or working.

Tepezza was approved based on the results of two studies (Study 1 and 2) consisting of a total of 170 patients with active thyroid eye disease who were randomized to either receive Tepezza or a placebo. Of the patients who were administered Tepezza, 71% in Study 1 and 83% in Study 2 demonstrated a greater than 2 millimeter reduction in proptosis (eye protrusion) as compared to 20% and 10% of subjects who received placebo, respectively.

The most common adverse reactions observed in patients treated with Tepezza are muscle spasm, nausea, alopecia (hair loss), diarrhea, fatigue, hyperglycemia (high blood sugar), hearing loss, dry skin, dysgeusia (altered sense of taste) and headache. Tepezza should not be used if pregnant, and women of child-bearing potential should have their pregnancy status verified prior to beginning treatment and should be counseled on pregnancy prevention during treatment and for 6 months following the last dose of Tepezza.

The FDA granted this application Priority Review, in addition to Fast Track and Breakthrough Therapy Designation. Additionally, Tepezza received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases or conditions. Development of this product was also in part supported by the FDA Orphan Products Grants Program, which provides grants for clinical studies on safety and efficacy of products for use in rare diseases or conditions.

The FDA granted the approval of Tepezza to Horizon Therapeutics Ireland DAC.

Teprotumumab (RG-1507), sold under the brand name Tepezza, is a medication used for the treatment of adults with thyroid eye disease, a rare condition where the muscles and fatty tissues behind the eye become inflamed, causing the eyes to be pushed forward and bulge outwards (proptosis).[1]

The most common adverse reactions observed in people treated with teprotumumab-trbw are muscle spasm, nausea, alopecia (hair loss), diarrhea, fatigue, hyperglycemia (high blood sugar), hearing loss, dry skin, dysgeusia (altered sense of taste) and headache.[1] Teprotumumab-trbw should not be used if pregnant, and women of child-bearing potential should have their pregnancy status verified prior to beginning treatment and should be counseled on pregnancy prevention during treatment and for six months following the last dose of teprotumumab-trbw.[1]

It is a human monoclonal antibody developed by Genmab and Roche. It binds to IGF-1R.

Teprotumumab was first investigated for the treatment of solid and hematologic tumors, including breast cancer, Hodgkin’s and non-Hodgkin’s lymphomanon-small cell lung cancer and sarcoma.[2][3] Although results of phase I and early phase II trials showed promise, research for these indications were discontinued in 2009 by Roche. Phase II trials still in progress were allowed to complete, as the development was halted due to business prioritization rather than safety concerns.

Teprotumumab was subsequently licensed to River Vision Development Corporation in 2012 for research in the treatment of ophthalmic conditions. Horizon Pharma (now Horizon Therapeutics, from hereon Horizon) acquired RVDC in 2017, and will continue clinical trials.[4] It is in phase III trials for Graves’ ophthalmopathy (also known as thyroid eye disease (TED)) and phase I for diabetic macular edema.[5] It was granted Breakthrough TherapyOrphan Drug Status and Fast Track designations by the FDA for Graves’ ophthalmopathy.[6]

In a multicenter randomized trial in patients with active Graves’ ophthalmopathy Teprotumumab was more effective than placebo in reducing the clinical activity score and proptosis.[7] In February 2019 Horizon announced results from a phase 3 confirmatory trial evaluating teprotumumab for the treatment of active thyroid eye disease (TED). The study met its primary endpoint, showing more patients treated with teprotumumab compared with placebo had a meaningful improvement in proptosis, or bulging of the eye: 82.9 percent of teprotumumab patients compared to 9.5 percent of placebo patients achieved the primary endpoint of a 2 mm or more reduction in proptosis (p<0.001). Proptosis is the main cause of morbidity in TED. All secondary endpoints were also met and the safety profile was consistent with the phase 2 study of teprotumumab in TED.[8] On 10th of July 2019 Horizon submitted a Biologics License Application (BLA) to the FDA for teprotumumab for the Treatment of Active Thyroid Eye Disease (TED). Horizon requested priority review for the application – if so granted (FDA has a 60-day review period to decide) it would result in a max. 6 month review process.[9]

History[edit]

Teprotumumab-trbw was approved for use in the United States in January 2020, for the treatment of adults with thyroid eye disease.[1]

Teprotumumab-trbw was approved based on the results of two studies (Study 1 and 2) consisting of a total of 170 patients with active thyroid eye disease who were randomized to either receive teprotumumab-trbw or a placebo.[1] Of the subjects who were administered Tepezza, 71% in Study 1 and 83% in Study 2 demonstrated a greater than two millimeter reduction in proptosis (eye protrusion) as compared to 20% and 10% of subjects who received placebo, respectively.[1]

The U.S. Food and Drug Administration (FDA) granted the application for teprotumumab-trbw fast track designation, breakthrough therapy designation, priority review designation, and orphan drug designation.[1] The FDA granted the approval of Tepezza to Horizon Therapeutics Ireland DAC.[1]

References

  1. Jump up to:a b c d e f g h “FDA approves first treatment for thyroid eye disease”U.S. Food and Drug Administration (FDA) (Press release). 21 January 2020. Retrieved 21 January 2020.  This article incorporates text from this source, which is in the public domain.
  2. ^ https://clinicaltrials.gov/ct2/show/NCT01868997
  3. ^ http://adisinsight.springer.com/drugs/800015801
  4. ^ http://www.genmab.com/product-pipeline/products-in-development/teprotumumab
  5. ^ http://adisinsight.springer.com/drugs/800015801
  6. ^ http://www.genmab.com/product-pipeline/products-in-development/teprotumumab
  7. ^ Smith, TJ; Kahaly, GJ; Ezra, DG; Fleming, JC; Dailey, RA; Tang, RA; Harris, GJ; Antonelli, A; Salvi, M; Goldberg, RA; Gigantelli, JW; Couch, SM; Shriver, EM; Hayek, BR; Hink, EM; Woodward, RM; Gabriel, K; Magni, G; Douglas, RS (4 May 2017). “Teprotumumab for Thyroid-Associated Ophthalmopathy”The New England Journal of Medicine376 (18): 1748–1761. doi:10.1056/NEJMoa1614949PMC 5718164PMID 28467880.
  8. ^ “Horizon Pharma plc Announces Phase 3 Confirmatory Trial Evaluating Teprotumumab (OPTIC) for the Treatment of Active Thyroid Eye Disease (TED) Met Primary and All Secondary Endpoints”Horizon Pharma plc. Retrieved 22 March 2019.
  9. ^ “Horizon Therapeutics plc Submits Teprotumumab Biologics License Application (BLA) for the Treatment of Active Thyroid Eye Disease (TED)”Horizon Therapeutics plc. Retrieved 27 August 2019.

External links

Teprotumumab
Monoclonal antibody
Type Whole antibody
Source Human
Target IGF-1R
Clinical data
Other names teprotumumab-trbw, RG-1507
ATC code
  • none
Legal status
Legal status
Identifiers
CAS Number
DrugBank
ChemSpider
  • none
UNII
KEGG
ChEMBL
ECHA InfoCard 100.081.384 Edit this at Wikidata
Chemical and physical data
Formula C6476H10012N1748O2000S40
Molar mass 145.6 kg/mol g·mol−1

/////////Teprotumumab-trbw, APPROVALS 2020, FDA 2020, ORPHAN, BLA, fast track designation, breakthrough therapy designation, priority review designation, and orphan drug designation, Tepezza,  Horizon Therapeutics, MONOCLONAL ANTIBODY, 2020 APPROVALS,  active thyroid eye disease, Teprotumumab

https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-thyroid-eye-disease

DRUG SPOTLIGHT- EXENATIDE, BYETTA


EXENATIDE

ACETATE CAS NO 141732-76-5

Exenatide, derived from a compound found in the saliva of the Gila monster, a large lizard native to the southwestern US, is a functional analog of Glucagon-Like Peptide-1 (GLP-1), a naturally occuring peptide.

Exenatide (INN, marketed as ByettaBydureon) is a glucagon-like peptide-1 agonist(GLP-1 agonist) medication approved in April 2005 for the treatment of diabetes mellitus type 2. It belongs to the group of incretin mimetics and is manufactured by Amylin Pharmaceuticals. Exenatide in its Byetta form is administered as a subcutaneous injection (under the skin) of the abdomen, thigh, or arm, any time within the 60 minutes before the first and last meal of the day. A once-weekly injection has been approved as of January 27, 2012 under the trademark Bydureon

Exenatide is a synthetic version of exendin-4, a hormone found in the saliva of the Gila monster that was first isolated by Dr. John Eng in 1992 while working at the Veterans Administration Medical Center in the Bronx, New York. It displays biological properties similar to human glucagon-like peptide-1 (GLP-1), a regulator of glucose metabolism andinsulin secretion. According to the package insert, exenatide enhances glucose-dependent insulin secretion by the pancreatic beta-cell, suppresses inappropriately elevated glucagon secretion, and slows gastric emptying, although the mechanism of action is still under study.

Exenatide is a 39-amino-acid peptide, an insulin secretagogue, with glucoregulatory effects. Exenatide was approved by the FDA on April 28, 2005 for patients whose diabetes was not well-controlled on other oral medication. The medication is injected subcutaneously twice per day using a filled pen-like device. The abdomen is a common injection site, after the area is cleaned with an alcohol pad. A new pen must first be tested to see if the medicine is flowing.

Gila monster

GILA MONSTER

Indication Indicated as adjunctive therapy to improve glycemic control in patients with Type 2 diabetes mellitus who are taking metformin, a sulfonylurea, or a combination of both, but have not achieved adequate glycemic control.
Pharmacodynamics Exenatide is an incretin mimetic, which has glucoregulatory effects. While it is has blood-sugar lowering actions alone, it can also be combined with other medications such as pioglitazone, metformin, sulfonylureas, and/or insulin to improve glucose control. The approved use of exenatide is with either sulfonylureas, metformin and thiazolinediones. The medication is injected twice per day using a pre-filled pen device. Typical human responses to exenatide plus eating include improvements in the initial rapid release of endogenous insulin, suppression of glucagon release by the pancreas, regulation of gastric empyting and reduced appetite; all behaviors more typical of individuals without blood sugar control problems. Exenatide is self-regulating in that in lowers blood sugar when levels are elevated but does not continue to lower blood sugar when levels return to normal, unlike with sulfonylureas or insulins.
Mechanism of action Exenatide is a functional analog of the human incretin Glucagon-Like Peptide-1 (GLP-1). Incretins enhance glucose-dependent insulin secretion and exhibit other antihyperglycemic actions following their release into the circulation from the gut. The GLP-1 system increases insulin secretion only in the presence of elevated plasma glucose levels, avoiding inappropriately high insulin levels during fasting. The drug also moderates peak serum glucagon levels during hyperglycemic periods following meals, but does not interfere with glucagon release in response to hypoglycemia. Secondary effects of drug administration reduces the rate of gastric emptying and decreases food intake, mitigating the potential severity of hyperglycemic events after meal
Following subcutaneous administration to patients with type 2 diabetes, exenatide reaches median peak plasma concentrations in 2.1 hours.

BioMarin Submits Vimizim BLA to the U.S. FDA for the Treatment of MPS IVA


Elosulfase alfa, BMN-110

STRUCTURAL FORMULA
Monomer
APQPPNILLL LMDDMGWGDL GVYGEPSRET PNLDRMAAEG LLFPNFYSAN 50
PLCSPSRAAL LTGRLPIRNG FYTTNAHARN AYTPQEIVGG IPDSEQLLPE 100
LLKKAGYVSK IVGKWHLGHR PQFHPLKHGF DEWFGSPNCH FGPYDNKARP 150
NIPVYRDWEM VGRYYEEFPI NLKTGEANLT QIYLQEALDF IKRQARHHPF 200
FLYWAVDATH APVYASKPFL GTSQRGRYGD AVREIDDSIG KILELLQDLH 250
VADNTFVFFT SDNGAALISA PEQGGSNGPF LCGKQTTFEG GMREPALAWW 300
PGHVTAGQVS HQLGSIMDLF TTSLALAGLT PPSDRAIDGL NLLPTLLQGR 350
LMDRPIFYYR GDTLMAATLG QHKAHFWTWT NSWENFRQGI DFCPGQNVSG 400
VTTHNLEDHT KLPLIFHLGR DPGERFPLSF ASAEYQEALS RITSVVQQHQ 450
EALVPAQPQL NVCNWAVMNW APPGCEKLGK CLTPPESIPK KCLWSH 496
Disulfide bridges
139-139′ 282-393 282′-393′ 463-492 463′-492′ 475-481 475′-481′

Sulfatase, chondroitin,
structure

http://www.ama-assn.org/resources/doc/usan/elosulfase-alfa.pdf

1 APRIL, 2013

BioMarin Pharmaceutical Inc. has submitted a Biologics License Application (BLA) to the U.S. Food and Drug Administration (FDA) for Vimizim (elosulfase alfa), an enzyme replacement therapy under evaluation for the treatment of patients with the rare lysosomal storage disorder mucopolysaccharidosis type IVA (MPS IVA), also called Morquio A syndrome. The company intends to submit an application for registration in the European Union (EU) by the end of April 2013.

“Based on the positive results from our Phase 3 pivotal study, we believe that Vimizim offers a substantial benefit to patients with MPS IVA, a severely debilitating and progressive disease for which there is no current treatment,” said Hank Fuchs, M.D., Chief Medical Officer of BioMarin. “The submission of the BLA represents a significant milestone for BioMarin and is the result of the strong, collaborative effort of many hard working employees, investigators, patients, and their families. With this application, BioMarin continues in its long-standing tradition of developing important therapies for those who are most in need. We look forward to working with the U.S. regulatory authorities to bring this treatment to patients.”

About MPS IVA

Mucopolysaccharidosis IVA (MPS IVA, also known as Morquio A Syndrome) is a disease characterized by deficient activity of N-acetylgalactosamine-6-sulfatase (GALNS) causing excessive lysosomal storage of glycosaminoglycans such as keratan sulfate and chondroitin sulfate. This excessive storage causes a systemic skeletal dysplasia, short stature, and joint abnormalities, which limit mobility and endurance. Malformation of the chest impairs respiratory function, and looseness of joints in the neck cause spinal instability and potentially spinal cord compression. Other symptoms may include hearing loss, corneal clouding, and heart disease. Initial symptoms often become evident in the first five years of life. The disease substantially limits both the quality and length of life of those affected.

The rate of incidence of MPS IVA is as yet unconfirmed and varies among different populations but estimates vary between 1 in 200,000 live births and 1 in 250,000 live births. The estimated prevalence is between 1,000 and 1,500 patients in the U.S., EU and Japan and between 1,500 to 2,000 patients in the rest of the world for a total of 2,500 to 3,000 patients.

About BioMarin

BioMarin develops and commercializes innovative biopharmaceuticals for serious diseases and medical conditions. The company’s product portfolio comprises four approved products and multiple clinical and pre-clinical product candidates. Approved products include Naglazyme® (galsulfase) for mucopolysaccharidosis VI (MPS VI), a product wholly developed and commercialized by BioMarin; Aldurazyme® (laronidase) for mucopolysaccharidosis I (MPS I), a product which BioMarin developed through a 50/50 joint venture with Genzyme Corporation; Kuvan® (sapropterin dihydrochloride) Tablets, for phenylketonuria (PKU), developed in partnership with Merck Serono, a division of Merck KGaA of Darmstadt, Germany; and Firdapse™ (amifampridine), which has been approved by the European Commission for the treatment of Lambert Eaton Myasthenic Syndrome (LEMS). Product candidates include BMN-110 (elosulfase alfa), formally referred to as GALNS, which successfully completed Phase III clinical development for the treatment of MPS IVA, PEG-PAL (PEGylated recombinant phenylalanine ammonia lyase), which is currently in Phase II clinical development for the treatment of PKU, BMN-701, a novel fusion protein of insulin-like growth factor 2 and acid alpha glucosidase (IGF2-GAA), which is currently in Phase I/II clinical development for the treatment of Pompe disease, BMN-673, a poly ADP-ribose polymerase (PARP) inhibitor, which is currently in Phase I/II clinical development for the treatment of genetically-defined cancers, and BMN-111, a modified C-natriuretic peptide, which is currently in Phase I clinical development for the treatment of achondroplasia. For additional information, please visit www.BMRN.com. Information on BioMarin’s website is not incorporated by reference into this press release.

FDA accepts Merck BLA for investigational allergy immunotherapy tablet


Allergen Immunotherapy Tablets

 

28 MAR 2013

The US FDA has accepted Merck’s biologics license application (BLA) for an investigational allergy immunotherapy tablet (AIT), Timothy grass pollen (Phleum pratense).

The application includes safety and efficacy data of the investigational sublingual dissolvable tablet from Phase III trials including a long-term, multi-season trial.

Merck Research Laboratories senior vice president, global scientific strategy, franchise head, infectious diseases and interim franchise head, respiratory & immunology Jeffrey Chodakewitz said, “We are pleased to have achieved this important milestone in the development of our investigational grass pollen AIT, which, if approved, would represent a potential new option for allergy specialists to offer appropriate allergic rhinitis patients.”

The grass pollen (Phleum pratense) AIT is designed to generate an immune response targeting the root cause of allergic rhinitis.

The company has collaborated with ALK-Abello for grass pollen (Phleum pratense) AIT development in North America.