New Drug Approvals

Home » 2014 » August

Monthly Archives: August 2014


Blog Stats

  • 4,238,529 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,801 other subscribers
Follow New Drug Approvals on



Recent Posts

Flag Counter


Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,801 other subscribers


DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, CLEANCHEM LABS as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries...... , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

Verified Services

View Full Profile →



Flag Counter


 Idoxuridine, NSC-39661, IdUrd, IDUR, IDU, IUDR, Herpid

Idoxuridine is an anti-herpesvirus antiviral drug.

It is a nucleoside analogue, a modified form of deoxyuridine, similar enough to be incorporated into viral DNA replication, but theiodine atom added to the uracil component blocks base pairing. It is used only topically due to cardiotoxicity. It was synthesized byWilliam Prusoff in the late 1950s.[1] Initially developed as an anticancer drug, idoxuridine became the first antiviral agent in 1962.[2]

Clinical use

Idoxuridine is mainly used topically to treat herpes simplex keratitis.[3] Epithelial lesions, especially initial attacks presenting with a dendritic ulcer, are most responsive to therapy, while infection with stromal involvement are less responsive.[4] Idoxuridine is ineffective against herpes simplex virus type 2 and varicella-zoster.[3]

Side effects

Common side effects of the eye drops include irritation, blurred vision and photophobia.[5] Corneal clouding and damage of the corneal epithelium may also occur.[citation needed]

Formulations and dosage

Idoxuridine is available as either a 0.5% ophthalmic ointment or as a 0.1% ophthalmic solution.[3] The dosage of the ointment is every 4 hours during day and once before bedtime.[3] The dosage of the solution is 1 drop in the conjunctival sac hourly during the day and every 2 hours during the night until definitive improvement, then 1 drop every 2 hours during the day and every 4 hours during the night.[3] Therapy is continued for 3-4 days after healing is complete, as demonstrated by fluorescein staining.[3]

UV – spectrum

Conditions : Concentration – 2 mg / 100 ml
Solvent designation schedule Methanol
0.1 M HCl
0.1M NaOH
The absorption maximum 284 nm 288 nm 288 nm 280 nm
227 217 217 164
ε 8040 7680 7680 5810

IR – spectrum

Wavelength (μm)
Wavenumber (cm -1 )

ass Spectrum

The 10 largest peaks:
Peak 28 39 40 43 69 112 127 195 238 254
Meaning 436 291 393 300 295 319 608 570 999 34



Brief background information

Salt ATC Formula MM CAS
C 9 H 11 IN 2 O 5 354.10 g / mol 54-42-2
Idoxuridine - Idoxuridin.svg
Systematic (IUPAC) name
Clinical data
AHFS/ Micromedex Detailed Consumer Information
MedlinePlus a601062
Pregnancy cat. C (US) B1 (topical), B3 (ophthalmologic) [AU]
Legal status Prescription Only (S4) (AU)
Routes topically
CAS number 54-42-2 Yes
ATC code D06BB01 J05AB02,S01AD01
PubChem CID 5905
DrugBank DB00249
ChemSpider 10481938 Yes
UNII LGP81V5245 Yes
KEGG D00342 Yes
NIAID ChemDB 001857
Synonyms Iododeoxyuridine; IUdR
Chemical data
Formula C9H11IN2O5 
Mol. mass 354.099 g/mol


  • antiviral ( Herpes simplex )

Classes of substances

  • Iodine compounds
    • Uridine and deoxyuridine

Synthesis pathway

Synthesis a)

Synthesis of b)

Idoxuridine can be obtained by several related ways: 1) The reaction of 5-iodouracil (I) with refluxing POCl3 and dimethylaniline gives 2,4-dichloro-5-iodopyrimidine (II), which by reaction with NaOCH3 in refluxing methanol, is converted into 2,4-dimethoxy-5-iodopyrimidine (III). The reaction of (III) with 2-deoxy-3,6-di-Op-toluoyl-D-ribofuranosyl chloride (IV) in acetonitrile yields the ribofuranosyl pyridone (V ), which is demethylated with acetic anhydride – dry HCl to afford 2′-deoxy-5-iodo-3 ‘, 6′-di-Op-toluoyluridine (VI) Finally, this compound is hydrolyzed with NaOCH3 in methanol 2).. The acetylation of 5-iodouracil (I) with refluxing acetic anhydride gives 1-acetyl-5-iodouracil (VII), which by reaction with mercuric acetate in refluxing methanol is converted into the corresponding mercurium salt (VIII). The condensation of (VIII ) with the ribofuranosyl chloride (IV) in chloroform affords the protected 2′-deoxy-5-iodouridine (VI), already obtained. 3) The iodination of 2′-deoxyuridine (IX) with iodine, iodic acid, acetic anhydride, CCl4 and water gives 2′-deoxy-5,6-diiodo-5,6-dihydrouridine (X), which is then treated with NaOH to eliminate HI. 4) By direct iodination of 2’-deoxyuridine (IX) with iodine and nitric acid in refluxing chloroform.
Cheong, L .; Rich, MA; Eidinoff, ML; Introduction of the 5-halogenated uracil moiety into deoxyribonucleic acid of mammalian cells in culture J Biol Chem 1960, 235, 5, 1441-7.

Trade Names

Country Trade name Manufacturer
Germany Virunguent Almirall Hermal
France Iduviran Chauvin
United Kingdom Gerpid Astellas
Italy Iduher Farmigea
Idustatin Sanofi-Aventis
Japan IMU Kaken
I.D.U. Senju; Takeda
USA Dendrid Alcon
Gerpleks Allergan
Stokes SmithKline & French
Ukraine No No


  • eye drops 0.1%;
  • eye ointment 0.25%;
  • Ointment 0.2%, 0.5%;
  • solution of 5%, 10%, 40%


  • Chang, PK; Welch, AD: J. Med. Chem. (JMCMAR) 6, 428 (1963).
  • FR 1,336,866 (Roussel-Uclaf; appl. 27.7.1962).
  • GB 1024156 (Roussel-Uclaf; appl. 24.7.1963; F-prior. 27.7.1962).



  1. Jump up^ Prusoff, W.H. (1959) Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim Biophys Acta. March; 32(1): 295–296.
  2. Jump up^ Wilhelmus KR (2010). “Antiviral treatment and other therapeutic interventions for herpes simplex virus epithelial keratitis”. Cochrane Database Syst Rev 12: CD002898. doi:10.1002/14651858.CD002898.pub4. PMID 21154352.
  3. ^ Jump up to:a b c d e f Goodman and Gilman’s The Pharmacological Basis of Therapeutics. Edited by Gilman AG, Rall TW, Nies AS, Taylor P. McGraw-Hill. 8th ed. 1990.
  4. Jump up^ Maxwell E. Treatment of herpes keratitis with 5-iodo-2-deoxyuridine (IDU): a clinical evaluation of 1500 cases. Am. J. Ophthalmol., 1963, 56, 571-573.
  5. Jump up^ Idoxuridine ophthalmic

Further Reading

  • Seth A, Misra A, Umrigar D (2004). “Topical liposomal gel of idoxuridine for the treatment of herpes simplex: pharmaceutical and clinical implications”. Pharm Dev Technol 9 (3): 277–289. doi:10.1081/PDT-200031432. PMID 15458233.
  • Otto S (1998). “Radiopharmaceuticals (Strontium 89) and radiosensitizers (idoxuridine)”. J Intraven Nurs 21 (6): 335–7. PMID 10392098.
  • Fauth E, Zankl H (1999). “Comparison of spontaneous and idoxuridine-induced micronuclei by chromosome painting”. Mutat Res 440 (2): 147–56. doi:10.1016/s1383-5718(99)00021-2. PMID 10209337.
Title: Idoxuridine
CAS Registry Number: 54-42-2
CAS Name: 2¢-Deoxy-5-iodouridine
Additional Names: 1-(2-deoxy-b-D-ribofuranosyl)-5-iodouracil; 5-iodo-2¢-deoxyuridine; IdU; IdUR; IUdR; IdUrd
Trademarks: Dendrid (Alcon); Emanil; Herpes-Gel (Master); Herplex (Allergan); Idexur; Idoxene (Spodefell); Idulea; Iduridin (Ferring); Kerecid; Ophthalmadine (SAS); Stoxil (SK & F); Virudox (Bioglan)
Molecular Formula: C9H11IN2O5
Molecular Weight: 354.10
Percent Composition: C 30.53%, H 3.13%, I 35.84%, N 7.91%, O 22.59%
Literature References: Cytotoxic nucleoside with antiviral and antineoplastic activity. Prepn: Prusoff, Biochim. Biophys. Acta 32,295 (1959); Cheong et al., J. Biol. Chem. 235, 1441 (1960); Chang, Welch, J. Med. Chem. 6, 428 (1963); Amiard, Torelli, FR1336866 (1963 to Roussel-UCLAF), C.A. 60, 3082g (1964); GB 1024156; Prystas, Sorm, Collect. Czech. Chem. Commun. 29, 121 (1964). Crystal and molecular structure: Camerman, Trotter, Acta Crystallogr. 18, 203 (1965). Review: W. H. Prusoff et al. inAntibiotics vol. 5 (pt. 2), F. E. Hahn, Ed. (Springer-Verlag, New York, 1979) pp 236-261.
Properties: Crystals from water, triclinic, dec 160° (Prusoff; Chang, Welch), 190-195° (Cheong et al.), 240° (Amiard, Torelli), over 175° (Prystas, Sorm). uv max (water): 288 nm (log e 3.87). [a]D25 +7.4° (c = 0.108 in water); [a]D20 +29° (N soda). Physical properties: Ravin, Gulesich, J. Am. Pharm. Assoc. [NS] 4, 122 (1964). pKa 8.25. pH of 0.1% aq soln, about 6. Soly at 25° in mg/ml: 2.0 in water; 2.0 in 0.2N HCl; 74.0 in 0.2N NaOH; 4.4 in methanol; 2.6 in alc; 0.014 in ether; 0.003 in chloroform; 1.6 in acetone; 1.8 in ethyl acetate; 5.7 in dioxane. LD50 i.p. in mice: 2.5 g/kg (Prusoff, 1979).
pKa: pKa 8.25
Optical Rotation: [a]D25 +7.4° (c = 0.108 in water); [a]D20 +29° (N soda)
Absorption maximum: uv max (water): 288 nm (log e 3.87)
Toxicity data: LD50 i.p. in mice: 2.5 g/kg (Prusoff, 1979)
Derivative Type: a-Anomer
Additional Names: 1-(2-Deoxy-a-D-erythro-pentofuranosyl)-5-iodouracil; 1-(2-deoxy-a-D-ribofuranosyl)-5-iodouracil; a-2¢-deoxy-5-iodouridine
Properties: Crystals from water, dec 170°. [a]D25 +21.8° (c = 0.170). uv max (water): 288 nm (log e 3.88).
Optical Rotation: [a]D25 +21.8° (c = 0.170)
Absorption maximum: uv max (water): 288 nm (log e 3.88)
Therap-Cat: Antiviral.
Keywords: Antiviral; Purines/Pyrimidinones.

Idarubicin hydrochloride



Idarubicin hydrochloride 

NSC-256439, IMI-30, DMDR, Idamycin, Zavedos


Idarubicin /ˌdəˈrbɨsɪn/ or 4-demethoxydaunorubicin is an anthracycline antileukemic drug. It inserts itself into DNA and prevents DNA from unwinding by interfering with the enzyme topoisomerase II. It is an analog of daunorubicin, but the absence of a methoxy group increases its fat solubility and cellular uptake.[1] Similar to other anthracyclines, it also induces histone eviction fromchromatin.[2]

It belongs to the family of drugs called antitumor antibiotics.

It is currently combined with cytosine arabinoside as a first line treatment of acute myeloid leukemia.

It is distributed under the trade names Zavedos (UK) and Idamycin (USA).

Idarubicin ball-and-stick.png

UV – spectrum

Conditions : Concentration – 1 mg / 100 ml
Solvent designation schedule Methanol
0.1 M HCl
0.1M NaOH
The absorption maximum 481 nm,
287 nm,
251 nm
484 nm
289 nm
257 nm
484 nm
289 nm
257 nm
ε 11100

IR – spectrum

Wavelength (μm)
Wavenumber (cm -1 )

Brief background information

Salt ATC Formula MM CAS
L01DB06 C 26 H 27 NO 9 497.50 g / mol 58957-92-9

Idarubicin is the 4-demethoxy derivative of daunorubicin. Idarubicin is an antineoplastic agent that has been used to treat various cancers, including those of the breast, lung, stomach, ovaries, and lymph system. Idarubicin is marketed as an intravenous injection of Idarubicin hydrochloride of the formula,

Figure imgf000003_0003

under the brand name IDAMYCIN®. Idarubicin hydrochloride is a red-orange crystalline powder, soluble in water, methanol, and other polar solvents like dimethylformamide. It is practically insoluble in acetone, chloroform, and methylene chloride. Idarubicin hydrochloride has a melting point of 175-180°C, and apH of 5.0-6.5 in a 0.5% w/v solution in water.


  • antitumor agent
  • anthracycline antibiotic

Classes of substances

  • Naftatsenovye antibiotics

Synthesis pathway


Synthesis a)

  1. Synthesis a)
    • US 4,471,052 (Adria; 9.11.1984; appl. 18.1.1982).
Synthesis of b)

  1. Synthesis of b)
    • DOS 2,525,633 (Soc. Farmaceutici; appl. 06.09.1975; GB -prior. 16.12.1974).
    •  US 4,046,878 (Soc. Farmaceutici; 09/06/1977; appl. 05/22/1975; GB -prior. 12.6.1974).

The reaction of daunomycinone (IX) with AlCl3 in dichloromethane gives 4-demethyldaunomycinone (X), which is ketalized with ethylene glycol as before yielding the dioxolane (XI). The selective sulfonation of (XI) with TsCl, DIEA and DMAP in pyridine affords the 4-tosyloxy derivative (XII), which is treated with 4-methoxybenzylamine (XIII) in pyridine providing the secondary benzylamine (XIV). Elimination of the benzyl protecting group of (XIV) with TFA gives 4-amino-4-demethoxydaunomycinone ethylene ketal (XV), which is deaminated by reaction with TFA, NaNO2 and H3PO2 to give 4-demethoxydaunomycinone (XVI). Finally, this compound is submitted to fermentation with Streptomyces peucetius corneus, S. Peucetius caesius, S. Caeruleus, S. Peucetius , S. Coeruleorubidus, and other chemical or radio-induced mutants thereof.
Mitscher, LA; Lednicer, D. (Pharmacia Corp.); Biosynthesis of simplified anthracyclines US 4471052.

condensation of chiral tetraline (I) with phthalic anhydride (II) by means of AlCl3 at 180 C gives the naphthacenedione (III),  acetyl group which is ketalized with ethylene glycol and p-toluenesulfonic acid yielding the dioxolane (IV). The hydroxylation of (IV) with Br2 and AIBN in CCl4/CHCl3 affords the 4-demethoxy-7-epidaunomycinone (V), which is isomerized with TFA yielding 4-demethoxydaunomycinone (VI) . The condensation of (VI) with the acylated hexopyranosyl chloride (VII) by means of CF3SO3Ag of Br2Hg affords the trifluoroacetylated 4-demethoxydaunomycin (VIII), which is finally deprotected by treated with NaOH  to eliminate the trifluoroacetyl groups


Trade Names

Country Trade name Manufacturer
Germany Zavedos Pharmacia
France – “- Pfizer
United Kingdom – “- Pharmacia
Italy – “- Pharmacia & Upjohn
Japan Idamitsin Pfizer
Ukraine Zavedos Actavis Italy SpA, Italy
Idalek CJSC “Biolik”, Ukraine
Zavedos Pfizer Іtaliya Srl, Іtaliya
Rubidium NGO “Lance Farm”, Russia
other generic drugs


  • Capsules of 5 mg, 10 mg, 25 mg;
  • vial of 5 mg, 10 mg (hydrochloride)

IDAMYCIN PFS Injection contains idarubicin hydrochloride and is a sterile, semi-synthetic, preservative-free solution (PFS) antineoplastic anthracycline for intravenous use. Chemically, idarubicin hydrochloride is 5, 12-Naphthacenedione, 9-acetyl-7-[(3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,9,11-trihydroxyhydrochloride, (7S-cis). The structural formula is as follows:

Idamycin PFS®  (idarubicin hydrochloride) Structural Formula Illustration

C26H27NO9•Hcl           M.W 533.96

IDAMYCIN PFS (idarubicin hydrochloride injection) is a sterile, red-orange, isotonic parenteral preservative-free solution, available in 5 mL (5 mg), 10 mL (10 mg) and 20 mL (20 mg) single-use-only vials.

Each mL contains Idarubicin HCL, USP 1 mg and the following inactive ingredients: Glycerin, USP 25 mg and Water for Injection, USP q.s. Hydrochloric Acid, NF is used to adjust the pH to a target of 3.5.

Product Name
Idarubicin Hydrochloride
Chemical Name
(7S,9S)-9-Acetyl-7-[(3-amino-2,3,6-trideoxy-a-L- lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,9,11- trihydroxy-5,12-naphthacenedione hydrochloride
Idamycin; Zavedos
Formula Wt.
Melting Point
Soluble in water and methanol.
Store Temp
Ganzina, F., Pacciarini, MA., Di Pietro, N. Invest New Drugs. 4:85-105 (1986). Tsuruo, T., Oh-Hara, T., Sudo, Y., Naito, M. Anticancer Res. 13:357-61 (1993). Belaud-Rotureau, MA., Durrieu, F., Labroille, G. et al Leukemia 14:1266-75 (2000).
Idarubicin ball-and-stick.png
Systematic (IUPAC) name
(1S,3S)-3-acetyl-3,5,12-trihydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracen-1-yl 3-amino-2,3,6-trideoxo-α-Llyxo-hexopyranoside
Clinical data
AHFS/ monograph
MedlinePlus a691004
Pregnancy cat. D (US)
Legal status -only (US)
Pharmacokinetic data
Protein binding 97%
Half-life 22 hours
CAS number 58957-92-9 Yes
ATC code L01DB06
PubChem CID 42890
DrugBank DB01177
ChemSpider 39117 Yes
KEGG D08062 Yes
ChEBI CHEBI:42068 Yes
Synonyms 9-acetyl-7-(4-amino-5-hydroxy-6-methyl-tetrahydropyran-2-yl)oxy-6,9,11-trihydroxy-7,8,9,10-tetrahydrotetracene-5,12-dione
Chemical data
Formula C26H27NO9 
Mol. mass 497.494 g/mol


  1. Synthesis a)
    • US 4,471,052 (Adria; 9.11.1984; appl. 18.1.1982).
  2. Synthesis of b)
    • DOS 2,525,633 (Soc. Farmaceutici; appl. 06.09.1975; GB -prior. 16.12.1974).
    •  US 4,046,878 (Soc. Farmaceutici; 09/06/1977; appl. 05/22/1975; GB -prior. 12.6.1974).
    • UV and IR Spectra. H.-W. Dibbern, RM Muller, E. Wirbitzki, 2002 ECV
    • NIST / EPA / NIH Mass Spectral Library 2008
    • Handbook of Organic Compounds. NIR, IR, Raman, and UV-Vis Spectra Featuring Polymers and Surfactants, Jr., Jerry Workman.Academic Press, 2000.
    • Handbook of ultraviolet and visible absorption spectra of organic compounds, K. Hirayama. Plenum Press Data Division, 1967.


  1.  Package insert
  2.  Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, van Tellingen O, Janssen J, Huijgens P, Zwart W, Neefjes J (2013). “Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin”. Nature Communications 4: 1908. doi:10.1038/ncomms2921. PMID 23715267.

External links


Title: Idarubicin
CAS Registry Number: 58957-92-9
CAS Name: (7S,9S)-9-Acetyl-7-[(3-amino-2,3,6-trideoxy-a-L-lyxo-hexopyranosyl)oxy]-7,8,9,10-tetrahydro-6,9,11-trihydroxy-5,12-naphthacenedione
Additional Names: (1S,3S)-3-acetyl-1,2,3,4,6,11-hexahydro-3,5,12-trihydroxy-6,11-dioxo-1-naphthacenyl-3-amino-2,3,6-trideoxy-a-L-lyxo-hexopyranoside; 4-demethoxydaunomycin; 4-demethoxydaunorubicin; DMDR
Manufacturers’ Codes: IMI-30; NSC-256439
Molecular Formula: C26H27NO9
Molecular Weight: 497.49
Percent Composition: C 62.77%, H 5.47%, N 2.82%, O 28.94%
Literature References: Orally active anthracycline; analog of daunorubicin, q.v. Prepn: B. Patelli et al. DE 2525633; eidem, US4046878 (1976, 1977 both to Soc. Farmac. Ital.); and antitumor activity: F. Arcamone et al., Cancer Treat. Rep. 60, 829 (1976). Total synthesis for larger scale preparation: M. J. Broadhurst et al., Chem. Commun. 1982, 158. Synthesis of optically pure isomers: Y. Kimura et al., Bull. Chem. Soc. Jpn. 59, 423 (1986). Metabolism and biodistribution in rats: G. Zini et al., Cancer Chemother. Pharmacol. 16, 107 (1986). HPLC determn in plasma: S. S. N. De Graaf et al., J. Chromatogr. 491, 501 (1989). Clinical pharmacokinetics: H. C. Gillies et al., Br. J. Clin. Pharmacol. 23, 303 (1987). Clinical evaluation of cardiac toxicity: F. Villani et al., Eur. J. Cancer Clin. Oncol. 25, 13 (1989). Reviews of pharmacology and antitumor efficacy: A. M. Casazza, Cancer Treat. Rep. 63, 835-844 (1979); F. Ganzina et al., Invest. New Drugs 4, 85-105 (1986). Symposium on clinical experience in acute leukemias: Semin. Oncol. 17, Suppl. 2, 1-36 (1989).
Derivative Type: Hydrochloride
CAS Registry Number: 57852-57-0
Trademarks: Idamycin (Pharmacia & Upjohn); Zavedos (Pharmacia & Upjohn)
Molecular Formula: C26H27NO9.HCl
Molecular Weight: 533.95
Percent Composition: C 58.48%, H 5.29%, N 2.62%, O 26.97%, Cl 6.64%
Properties: Orange crystalline powder, mp 183-185° (Arcamone); also reported as mp 172-174° (Broadhurst). [a]D20 +205° (c = 0.1 in methanol) (Arcamone); also reported as [a]D20 +188° (c = 0.10 in methanol) (Kimura).
Melting point: mp 183-185° (Arcamone); mp 172-174° (Broadhurst)
Optical Rotation: [a]D20 +205° (c = 0.1 in methanol) (Arcamone); [a]D20 +188° (c = 0.10 in methanol) (Kimura)
Therap-Cat: Antineoplastic.
Keywords: Antineoplastic; Antibiotics and Analogs; Anthracyclines; Topoisomerase II Inhibitor.


Fighting prostate cancer with a tomato-rich diet



Men who eat over 10 portions a week of tomatoes have an 18 per cent lower risk of developing prostate cancer, new research suggests.

With 35,000 new cases every year in the UK, and around 10,000 deaths, prostate cancer is the second most common cancer in men worldwide.

Rates are higher in developed countries, which some experts believe is linked to a Westernised diet and lifestyle.

To assess if following dietary and lifestyle recommendations reduces risk of prostate cancer, researchers at the Universities of Bristol, Cambridge and Oxford looked at the diets and lifestyle of 1,806 men aged between 50 and 69 with prostate cancer and compared with 12,005 cancer-free men.

The NIHR-funded study, published in the medical journal Cancer Epidemiology, Biomarkers and Prevention, is the first study of its kind to develop a prostate cancer ‘dietary index’ which consists of dietary components – selenium, calcium…

View original post 373 more words


S-Clopidogrel structure.svg





Cocrystals of telmisartan: characterization, structure elucidation, in vivo and toxicity studies

Cocrystals of telmisartan: characterization, structure elucidation, in vivo and toxicity studies


CrystEngComm, 2014, 16,8375-8389
DOI: 10.1039/C4CE00797B, Paper
Renu Chadha, Swati Bhandari, Jamshed Haneef, Sadhika Khullar, Sanjay Mandal
*Corresponding authors
aUniversity Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India 
E-mail: ;
Tel: +91 9316015096
bDepartment of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, India 
E-mail: ;
Tel: +91 9779932606
The present study reports novel cocrystals of telmisartan (TEL) with saccharin and glutaric acid.
The present study reports novel cocrystals of telmisartan (TEL) with saccharin and glutaric acid. Crystal engineering approaches such as solution crystallization, solid-state grinding and slurry method have been utilized with the ultimate objective of improving the solubility of this BCS class II drug. The physical characterization revealed that the cocrystals are unique vis-à-visthermal, spectroscopic and X-ray diffraction properties. Structural characterization showed that the cocrystals with saccharin and glutaric acid exist in monoclinic P21/c and triclinic P[1 with combining macron] space groups, respectively. The improved solubility of telmisartan–saccharin (TEL–SAC) (nine-fold) and telmisartan–glutaric acid (two-fold) cocrystals in comparison with the free drug has been demonstrated in solubility experiments in phosphate buffer, pH 7.5. The TEL–SAC cocrystal remained stable in the aqueous medium for 6 hours as confirmed by PXRD. The AUC0–24 of TEL–SAC and TEL–GA was found to be 2-fold and 1.4-fold increased in terms of bioavailability than pure TEL, respectively. The in vivo antihypertensive activity of TEL–SAC in DOCA salt-induced hypertensive rats showed two-fold improved efficacy, while acute toxicity studies revealed no signs of toxicity in rats even at doses of 2000 mg kg−1 of body weight (BW). The new solid phase of telmisartan with saccharin represents a promising and viable opportunity for the manufacture of a drug product with improved therapeutic outcomes.

Structural characterization of form I of anhydrous rifampicin

Structural characterization of form I of anhydrous rifampicin


CrystEngComm, 2014, 16,8555-8562
DOI: 10.1039/C4CE01157K, Paper
Amanda Laura Ibiapino, Rafael Cardoso Seiceira, Altivo Pitaluga, Antonio Carlos Trindade, Fabio Furlan Ferreira
*Corresponding authors
aCenter of Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Av. dos Estados, 5001, Santo André, Brazil 
bLaboratory of Solid State Studies (LEES), Farmanguinhos, FIOCRUZ, Av. Comandante Guaranys, 447, Rio de Janeiro, Brazil
cReal Time Process and Chemical Analysis Development Center (NQTR), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rua Hélio de Almeida, 40, Rio de Janeiro, Brazil
dFederal Institute of São Paulo (IFSP), Av. Mogi das Cruzes, 1501, Suzano, Brazil
Crystal structure determination of form I of anhydrous rifampicin by X-ray powder diffraction data. Crystal morphology prediction revealed a good agreement with the images of the crystals.
Rifampicin is a first-line drug widely used in the treatment of tuberculosis both in the intensive and in the treatment phase. In this work we characterized the crystal structure of form I of anhydrous rifampicin mainly by using X-ray powder diffraction data combined with the Rietveld method. Other complementary techniques such as Fourier transform infrared spectroscopy and thermal analysis were also employed. It crystallized in a monoclinic crystal system with space group C2 and the following unit cell parameters: a = 25.8846(2) Å, b = 14.2965(2) Å, c = 14.2796(2) Å, β = 122.98(1)°, V = 4432.81(7) Å3, Z = 4, Z′ = 1 and ρcalc = 1.23310(2) g cm−3. A BFDH model was used to inspect the crystal morphology prediction, and great similarity with crystals observed on an optical microscope was found. The FTIR spectrum confirmed the results obtained by X-ray powder diffraction, which indicates that all the functional groups involved in H bonding are intramolecularly connected. This polymorphic form presented a thermal stability up to approximately 230 °C.

New cocrystals of ezetimibe with L-proline and imidazole

New cocrystals of ezetimibe with L-proline and imidazole


CrystEngComm, 2014, Advance Article
DOI: 10.1039/C4CE01127A, Paper
Manishkumar R. Shimpi, Scott L. Childs, Dan Bostrom, Sitaram P. Velaga
 *Corresponding authors
aDepartment of Health Sciences Luleå University of Technology, Luleå, Sweden 
bRenovo Research, Atlanta, USA 
cThermal Energy Conversion Laboratory, Department of Applied Physics and Electronics, Umeå University, Umeå S-90187, Sweden
Two new cocrystals of ezetimibe were identified and scale-up. Ezetimibe-proline cocrystal showed improved apparent solubility and physical stability.
The objectives of the study were to screen and prepare cocrystals of anti-cholesterol drug ezetimibe (EZT) with the aim of increasing its solubility and dissolution rate. Thermodynamic phase diagram based high throughput screening was performed using wet milling/grinding or solution crystallization methods. A large number of coformers were tested and the resulting solids were preliminarily characterized using X-ray powder diffraction (PXRD) and Raman spectroscopy. Potential cocrystals of EZT with L-proline and imidazole and a solvate formamide were identified in the screening experiments. The cocrystal hits were further characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), solution Proton nuclear magnetic resonance spectroscopy (1H-NMR) and single crystal XRD. The dissolution properties and stability of cocrystals were determined. Single-crystal X-ray diffraction data were obtained for EZT, EZT-IMI cocrystal and formamide solvate of ezetimibe. All three systems were crystallized in non-centrosymmetric orthorhombic space group P212121 with Z = 4. Robust O–HO, O–HN, N–HO and C–HO hydrogen bonds played an important role in all these crystal structures. EZT-PRO cocrystal showed improved apparent solubility and solid state stability.

Aripiprazole lauroxil ……….Alkermes submits new drug application





7-[4-[4-(2,3-dichlorophenyl)-1- piperazinyl]butoxy]- 3,4-dihydro-2(1H)-quinolinone.

END AUG 2014

The US Food and Drug Administration (FDA) has received a new drug application (NDA) from Ireland-based Alkermes for its aripiprazole lauroxil to treat schizophrenia.

Aripiprazole lauroxil is an injectable atypical antipsychotic with one-month and two-month formulations, developed for the treatment of schizophrenia, which is a chronic, severe and disabling brain disorder.

The company has submitted the application based on positive results from the pivotal phase three study that assessed the efficacy and safety of aripiprazole lauroxil, where the drug demonstrated significant improvements in schizophrenia symptoms when compared to a placebo.

“We have designed aripiprazole lauroxil to be a differentiated treatment option for schizophrenia, with a ready-to-use format with multiple dosing options.”

Alkermes CEO Richard Pops said: “We have designed aripiprazole lauroxil to be a differentiated treatment option for schizophrenia, with a ready-to-use format with multiple dosing options, to help meet the individual needs of patients and their healthcare providers.

“These attributes, together with the robust clinical data observed in the pivotal study, position aripiprazole lauroxil to be a meaningful new entrant in the growing long-acting injectable antipsychotic market, and we look forward to working with the FDA to bring this important new medication to patients and physicians as quickly as possible.”

The study, in which both doses of aripiprazole lauroxil tested, including 441mg and 882mg, reached the primary endpoint with statistically significant and clinically meaningful reductions in positive and negative syndrome scale (PANSS) scores, according to the company.

In addition, it met all secondary endpoints and demonstrated significant improvements in schizophrenia symptoms against the placebo.

  • ALKS 9070
  • ALKS 9072
  • Aripiprazole lauroxil
  • RDC 3317
  • RDC-3317
  • UNII-B786J7A343

Aripiprazole lauroxil [USAN]  CAS  1259305-29-7




Systematic (IUPAC) name
Clinical data
Trade names Abilify
AHFS/ monograph
MedlinePlus a603012
Licence data EMA:Link, US FDA:link
Pregnancy cat. B3 (AU) C (US)
Legal status Prescription Only (S4) (AU) -only (CA) POM (UK) -only (US)
Routes Oral (via tablets, orodispersable tablets, and oral solution); intramuscular (including as a depot)
Pharmacokinetic data
Bioavailability 87%[1][2][3][4]
Protein binding >99%[1][2][3][4]
Metabolism Hepatic (liver; mostly via CYP3A4 and CYP2D6[1][2][3][4])
Half-life 75 hours (active metabolite is 94 hours)[1][2][3][4]
Excretion Renal (27%; <1% unchanged), Faecal (60%; 18% unchanged)[1][2][3][4]
CAS number 129722-12-9 Yes
ATC code N05AX12
PubChem CID 60795
IUPHAR ligand 34
DrugBank DB01238
ChemSpider 54790 Yes
UNII 82VFR53I78 Yes
KEGG D01164 Yes
ChEBI CHEBI:31236 Yes
Chemical data
Formula C23H27Cl2N3O2 
Mol. mass 448.385

Aripiprazole (/ˌɛərɨˈpɪprəzl/ AIR-i-PIP-rə-zohl; brand names: Abilify, Aripiprex) is a partial dopamine agonist of the second generation (or atypical) class of antipsychotics that is primarily used in the treatment of schizophrenia, bipolar disorder, major depressive disorder (as an add on to other treatment), tic disorders, and irritability associated with autism.[5]

It was approved by the U.S. Food and Drug Administration (FDA) for schizophrenia on November 15, 2002 and the European Medicines Agency on 4 June 2004; for acute manic and mixed episodes associated with bipolar disorder on October 1, 2004; as an adjunct for major depressive disorder on November 20, 2007;[6] and to treat irritability in children with autism on 20 November 2009.[7] Likewise it was approved for use as a treatment for schizophrenia by the TGA of Australia in May 2003.[1]

Aripiprazole was developed by Otsuka in Japan, and in the United States, Otsuka America markets it jointly with Bristol-Myers Squibb.

Regulator status

In the United States, the FDA has approved aripiprazole for the treatment of schizophrenia in adults and adolescents (aged 13–17), of manic and mixed episodes associated with Bipolar I (One) Disorder with or without psychotic features in adults, children and adolescents (aged 10–17),[59] of irritability associated with autism in pediatric patients (aged 6–17),[60] and of depression when used along with antidepressants in adults.[61]

Aripiprazole has been approved by the FDA for the treatment of acute manic and mixed episodes, in both pediatric patients aged 10–17 and in adults.[62]

In 2007, aripiprazole was approved by the FDA for the treatment of unipolar depression when used adjunctively with an antidepressant medication.[63] It has not been FDA-approved for use as monotherapy in unipolar depression.

Patent status

Otsuka’s US patent on aripiprazole expires on October 20, 2014;[64] however, due to a pediatric extension, a generic will not become available until at least April 20, 2015.[62] Barr Laboratories (now Teva Pharmaceuticals) initiated a patent challenge under the Hatch-Waxman Act in March 2007.[65] On November 15, 2010, this challenge was rejected by a United States district court in New Jersey.[1][2]

Dosage forms

Abilify 2mg tablets (US)

  • Intramuscular injection, solution: 9.75 mg/mL (1.3 mL)
  • Solution, oral: 1 mg/mL (150 mL) [contains propylene glycol, sucrose 400 mg/mL, and fructose 200 mg/mL; orange cream flavor]
  • Tablet: 2 mg, 5 mg, 10 mg, 15 mg, 20 mg, 30 mg
  • Tablet, orally disintegrating: 10 mg [contains phenylalanine 1.12 mg; creme de vanilla flavor]; 15 mg [contains phenylalanine 1.68 mg; creme de vanilla flavor]


Aripiprazole can be synthesized beginning with a dichloroaniline and bis(2-chloroethyl)amine:[66]

Aripiprazole synth.png
U.S. Patent No.4, 734, 416 and U.S. Patent No.5,006,528 discloses the Aripiprazole, 7-{4- [4- (2, 3-dichlorophenyl) -1-piperazinyl] butoxy}- 3,4-dihydro-2 (IH) -quinolinone or 7-{4-[4- (2, 3-dichlorophenyl) -1- piperazinyl] butoxy}-3, 4-dihydro carbostyril, is a typical antipsychotic agent useful for the treatment of Schizophrenia, having the formula as given below.


U.S. patent No.5,006,528 discloses preparation of Aripiprazole and its pharmaceutically acceptable acid-addition salts. The process for the preparation of acid salts involves reaction of Aripiprazole with a pharmaceutically acceptable inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, and the like; organic acids such as oxalic acid, maleic acid, fumaric acid, maleic acid, tartaric acid, citric acid, . benzoic acid and the like as per Scheme-1. Scheme- 1


a. K2CO3, Water K CH2CI2 c. Column chromatographic purification d. n-Hexane – Ethaπol


The product Aripiprazole .obtained by the above process has melting point of 139.0° – 139.5°C.

The process involves purification of the intermediate, 7-(4- bromobutoxy) -3, 4-dihydrocarbostyril (III) by silica gel column chromatography to remove impurities formed during the reaction. The process further involves two recrystallizations of Aripiprazole from ethanol to obtain the pure Aripiprazole though compromising on yields by increasing the operational cost of the product. PCT publication WO 03/026659 discloses low hygroscopic forms of

Aripiprazole and the process for their preparation from the Aripiprazole hydrate Form SA’ . It further states that the anhydrous

Aripiprazole made by the Japanese patent publication No. 191256/1990, yields the Aripiprazole, which is significantly hygroscopic. As per PCT publication WO 03/026659 anhydrous crystals of Aripiprazole exist as type-I crystals and type-II crystals. Further discloses that the type-I crystals are prepared -by recrsytallization from ethanol solution of

Aripiprazole or by heating Aripiprazole hydrate at 800C and type-II crystals by heating type-I crystals at 130 to 1400C for 15 hrs.

PCT application Publication WO 03/026659 discloses process for the Aripiprazole polymorphic form-B by heating the Aripiprazole hydrate

‘A’ at 90 – 125°C for about 3 – 50 hrs. The process for Polymorphic

Form-C is by heating the Aripiprazole anhydrous to a temperature of 140

– 1500C. The process for Form-D is recrystallization from toluene; process for Form-E is heating with acetonitrile or by recrystallization from acetonitrile and the process for Form-F is by heating the suspension of anhydrous Aripiprazole in acetone. The polymorphic Form-G is by heating to 1700C for at least 2 weeks in a sealed tube, which is a glassy mass.

PCT publication WO 03/026659 further discloses the characterization data X-ray diffraction pattern; IR absorption and DSC of Form B, Form C, Form-D, Form-E, Form-F and Form-G.It further reported the melting point of Aripiprazole anhydrous Form B as 139.7°C-

File:Aripiprazole synthesis.svg


Perhaps owing to its mechanism of action relating to dopamine receptors, there is some evidence to suggest that aripiprazole blocks cocaine-seeking behavior in animal models without significantly affecting other rewarding behaviors (such as food self-administration).[67] Aripiprazole may be counter-therapeutic as treatment for methamphetamine dependency because it increased methamphetamine’s stimulant and euphoric effects, and increased the baseline level of desire for methamphetamine.[68]



Aripiprazole Acid addition salt


Form-A, B, C , D , E , F Type-I & Type-II Aripiprazole acid salts used for the preparation of polymorphs


patent expiry
United States 5006528 1994-10-20 2014-10-20
United States 7115587 2005-01-21 2025-01-21
Aripiprazole can be synthesized beginning with a dichloroaniline and bis(2-chloroethyl)amineU.S. Patent 5,006,528
Aripiprazole synth.png

Aripiprazole, 7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]-butoxy}-3,4-dihydro carbostyril or 7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]-butoxy}-3,4-dihydro-2 (1H)-quinolinone, is an atypical antipsychotic agent useful for the treatment of schizophrenia (U.S. Pat. No. 4,74,416 and U.S. Pat. No. 5,006,528). Schizophrenia is a common type of psychosis characterized by delusions, hallucinations and extensive withdrawal from others. Onset of schizophrenia typically occurs between the age of 16 and 25 and affects 1 in 100 individuals worldwide. It is more prevalent, than Alzheimer’s disease, multiple sclerosis, insulin-dependent diabetes and muscular dystrophy. Early diagnosis and treatment can lead to significantly improved recovery and outcome. Moreover, early therapeutic intervention can avert costly hospitalization.

Aripiprazole (Aripiprazole) is an atypical antipsychotic, on 15 November 2002 by the U.S. FDA clearance to market, its efficacy is through the dopamine D2 receptor and serotonin 5HT1A receptor partial agonist activity and serotonin 5HT2A receptor antagonism activity mediated common. With its unique mechanism of action and safety assessment, aripiprazole known as third-generation antipsychotic drugs.

[0003] Aripiprazole is a quinolinone derivative, developed by the Japanese company Otsuka Pharmaceutical, the chemical name

Is: 7 – {4 – [4 – (2,3 – dichlorophenyl)-1_ piperazinyl] butoxy} -3,4 – dihydro-quinolone, the following structural formula:


Figure CN101538252BD00031

[0005] For the preparation of aripiprazole, Japanese OtsukaPharmaceutical’s patent EP 0367141A2, and related patents US4234585, CN89108934 preparation methods described in 5. In addition, the patent CN1450056A, CN1562973A, CN1784385A, CN1680328A, CN1576273A, etc. describe some of these five Preparation

Method is very similar way. These preparation methods are direct or indirect use of 7 – hydroxy -3,4 – dihydro – quinolin-2 – one (HCS) that the key to higher prices of raw materials, and some methods involve harsh reaction conditions, poor selectivity, low yield, but also increases the cost of industrial production of the product.

[0006] Chinese patent CN1304373C preparation method is not described in the 7 – hydroxy-3 ,4 _ dihydro-2_ (1H) – quinoline

Quinolone intermediates for their preparation of the core reaction is as follows:


Figure CN101538252BD00032

[0008] This reaction is Friedel-Crafts alkylation reaction, there is a harsh reaction conditions, the yield is low, the reaction selectivity is poor, the shortcomings of high emissions, is not conducive to industrial mass production. SUMMARY OF THE INVENTION

[0009] In order to solve the above problems, the present invention provides a simple, high selectivity, high yield, low cost, environmentally friendly, easy to prepare industrialization aripiprazole and intermediates thereof.

[0010] The technical solution of the present invention, the present invention provides in one aspect a process for preparingaripiprazole novel intermediates.

[0011] The present invention, on the other hand provides a method for the preparation of intermediates.

[0012] The present invention provides the use of the other intermediates for preparing aripiprazole two new preparation methods.

[0013] Specifically, the present invention relates to novel intermediates, compounds of formula ⑴:


Figure CN101538252BD00041

[0015] wherein, R is selected from methyl, ethyl, propyl, isopropyl, butyl, t-butyl, benzyl and other common alkyl groups in any one, and preferably is ethyl.

[0016] Compound of formula ⑴: 3 – (4 – (4 – (4 – (2,3 _-dichlorophenyl)-piperazinyl) butoxy) _2_ nitrophenyl) propionate, is the following prepared by the procedure:

[0017] Step one, the acylation reaction: with 4 – methyl – 3 – nitro-phenol (VIII) and acetic anhydride as the raw material, DMAP as catalyst, to give 4 – methyl – 3 – nitrophenyl acetate ( VII).

[0018] wherein 4 – methyl – 3 – nitro-phenol (VIII), acetic anhydride, DMAP molar ratio is preferably 1: 1.0 to 1.4: 0.05, at room temperature, the reaction time is preferably 0.5 to 3 hours.

[0019] Step two, the bromination reaction: The resulting product, 4 to Step one – methyl – 3 – nitrophenyl acetate (VII), N-bromosuccinimide and benzoyl peroxide as a raw material , carbon tetrachloride solvent reflux, to give 4 – bromomethyl-3 – nitrophenyl acetate (VI).

[0020] wherein 4 – methyl – 3 – nitrophenyl acetate (VII), N-bromosuccinimide, benzoyl peroxide molar ratio is preferably 1: 1 to 1.2: 0.05, reaction time is preferably 4-18 hours.

[0021] Step three, instead of the reaction: in an appropriate solvent, adding an alkaline agent and diethyl malonate was stirred in an ice bath, was added dropwise step two the resulting product, 4 – bromomethyl-3 – nitrophenyl yl acetate (VI) solution after completion of the addition reaction of 1 to 3 hours to obtain a brown liquid product, 2 – (4_ acetoxy-2 – nitrobenzyl) malonate (V).

[0022], wherein the alkali agent is a common organic or inorganic base selected from sodium methoxide, sodium ethoxide, sodium hydride, sodium tert-butoxide or potassium tert-butoxide, preferably sodium tert-butoxide; the solvent is selected from tetrahydrofuran, methanol, ethanol, butanol, tert-butanol, toluene or N, N-dimethylformamide; 4 – bromomethyl-3 – nitrophenyl acetate (VI), alkaline agent and lipid diethyl molar ratio is preferably 1: 1.0 to 1.8: 1.0 to 1.4.

[0023] Step 4 Hydrolysis decarboxylation: the product obtained in Step Three 2 – (4_ acetoxy-2 – nitro-benzyl)-malonic acid diethyl ester (V) was added concentrated hydrochloric acid and a suitable solvent, heating and stirring reflux, to give a yellow solid product 3 – (4_ hydroxy-2 – nitrophenyl) propionic acid (IV).

[0024] wherein the solvent is selected from water, methanol, ethanol or acetic acid, water soluble solvent, was heated with stirring under reflux time is preferably 3 to 18 hours. [0025] Step five, the esterification reaction: the product obtained in step 4, 3 – (4 – hydroxy-2 – nitrophenyl) propionic acid (IV) was added to an appropriate solvent, the mixture was stirred in an ice bath, was added dropwise thionyl sulfone, after completion of the addition reaction of 1 to 3 hours, to give a pale brown liquid product 3 – (4 – hydroxy-2 – nitrophenyl) propionate (III).

[0026] wherein the solvent is selected from anhydrous methanol, ethanol, propanol, isopropanol, butanol, t-butanol, benzyl alcohol, alcohol and other common solvents.

[0027] Step VI substitution reaction: 1,4 – dibromobutane was added to an appropriate solvent and an alkaline reagent, heated to 50 ~ 100 ° C, the product obtained was added dropwise Step Five 3 – (4_ hydroxy – nitrophenyl) propionate (III) solution, after the addition was complete the reaction was kept 2 to 4 hours to obtain a brown liquid product 3 – (4 – (4 – bromo-butoxy)-2 – nitrophenyl) propionate (II).

[0028] wherein the solvent is selected from methanol, 95% ethanol, ethanol, acetonitrile and N, N-dimethylformamide, and the like; said alkaline agent is a common organic or inorganic weak base, such as triethylamine, pyridine, potassium carbonate, sodium carbonate, etc..

[0029] Step 7 condensation reaction: the product obtained in Step Six 3 – (4 – (4 – bromo-butoxy)-2 – nitrophenyl) propionate (II) adding a suitable solvent, (2,3 – dichlorophenyl)-piperazine hydrochloride 1_, alkaline reagents and catalysts, to obtain

The intermediate product 3 – (4 – (4 – (4 – (2,3 – dichlorophenyl)-piperazin-1 – yl) butoxy)-2 – nitrophenyl) propionate ⑴.

[0030] Among them, 3 – (4 – (4 – (4 – (2,3 _-dichlorophenyl)-piperazinyl) butoxy) _2_ nitrophenyl) propionate (I), (2, 3 – dichloro-phenyl)-piperazine hydrochloride 1_, alkaline reagents and catalysts, the four molar ratio is preferably 1: 0.9 to 1.0: 2.0 to 2.2: 0.05 to 0.5. The solvent is selected from methanol, ethanol and N, N-dimethylformamide, acetonitrile and the like. Step six of the alkaline reagent and alkaline reagent used in the same, said catalyst is a common low-iodine salts, such as sodium iodide, potassium iodide.

[0031] The present invention provides two other hand, the use of a compound of formula ⑴ preparing aripiprazole new method.

[0032] Method one: ⑴ intermediate compound of formula in an appropriate solvent in the acid or salt or a base in the presence of a reducing agent under the action of restoring ring closure reaction to obtain aripiprazole.

[0033] Method one reductive cyclization of the reducing agent used is iron, zinc, sodium sulfide, stannous chloride, and preferably iron; reaction solvent is selected from water, methanol, ethanol, ethyl acetate or in one or more of the mixed solvent; said acid is a common organic or inorganic acid, preferably acetic acid or hydrochloric acid; said salt is a common inorganic or organic salts selected from chloride, ferrous chloride, , ammonium sulfate, calcium chloride, zinc chloride, sodium chloride, sodium bromide or sodium acetate and the like; common said base is an inorganic base selected from sodium hydroxide, potassium hydroxide or sodium bicarbonate; the reduction ring-closing reaction temperature range of 30 ~ 140 ° C, preferably about 80 ° C; reaction time ranges from about 0.5 to 8 hours, preferably 2 hours.

[0034] Method two: ⑴ intermediate compound of formula in an appropriate solvent in the first catalyst, the reduction reaction, and then carried out in a suitable solvent can be prepared by cyclization of aripiprazole.

[0035] The reduction reaction of the second approach, the reducing agent is hydrogen or a carboxylic acid; the catalyst is selected from molybdenum, molybdenum dioxide or Raney nickel, preferably Raney nickel; the solvent is selected from methanol, ethanol, ethyl acetate or acetic acid, preferably ethanol; said ring-closing reaction of the solvent is selected from N, N-dimethylformamide, trichlorobenzene or xylene; reaction temperature range of 50 ~ 180 ° C, preferably about 70 ~ 150 ° C; reaction time the range of about 1 to 8 hours.

[0036] In summary, the present invention is described for preparing aripiprazole method in 4– methyl – 3 – nitro-phenol (VIII) as a starting material, by acetylation protected hydroxy, radical instead of 4 – bromomethyl-3 – nitrophenyl acetate (VI), the diethyl malonate and a nucleophilic substitution reaction to obtain 2 – (4_ acetoxy-2 – nitrobenzyl ) malonic acid diethyl ester (V), which is decarboxylated by hydrolysis, esterification, to give 3 – (4 – hydroxy-2 – nitrophenyl) propionate (III), the reaction product with dibromobutane an ether compounds, and with (2,3 – dichlorophenyl)-piperazine hydrochloride 1_ condensation, to give 3 – (4 – (4 – (4 – (2,3 – dichlorophenyl) piperazine -1 – yl) butoxy) -2 – nitrophenyl) propionate (I), and then by reductive cyclization step, or first reduced and then ring-closing reaction of aripiprazole. The synthetic route of the present invention is as follows: [0037]

Figure CN101538252BD00061

According to Example 1 of Japanese Unexamined Patent Publication No. 191256/1990, anhydrous aripiprazole crystals are manufactured for example by reacting 7-(4-bromobutoxy)-3,4-dihydrocarbostyril with 1-(2,3-dichlorophenylpiperadine and recrystallizing the resulting raw anhydrousaripiprazole with ethanol. Also, according to the Proceedings of the 4th Japanese-Korean Symposium on Separation Technology (Oct. 6-8, 1996), anhydrousaripiprazole crystals are manufactured by heating aripiprazole hydrate at 80° C. However, the anhydrous aripiprazole crystals obtained by the aforementioned methods have the disadvantage of being significantly hygroscopic.

The hygroscopicity of these crystals makes them difficult to handle since costly and burdensome measures must be taken in order ensure they are not exposed to moisture during process and formulation. Exposed to moisture, the anhydrous form can take on water and convert to a hydrous form. This presents several disadvantages. First, the hydrous forms of aripiprazole have the disadvantage of being less bioavailable and less dissoluble than the anhydrous forms ofaripiprazole. Second, the variation in the amount of hydrous versus anhydrousaripiprazole drug substance from batch to batch could fail to meet specifications set by drug regulatory agencies. Third, the milling may cause the drug substance, Conventional Anhydrous Aripiprazole, to adhere so manufacturing equipment which may further result in processing delay, increased operator involvement, increased cost, increased maintenance, and lower production yield. Fourth, in addition to problems caused by introduction of moisture during the processing of these hygroscopic crystals, the potential for absorbance of moisture during storage and handling would adversely affect the dissolubility of aripiprazole drug substance. Thus shelf-life of the product could be significantly decreased and/or packaging costs could be significantly increased. It would be highly desirable to discover a form of aripiprazole that possessed low hygroscopicity thereby facilitating pharmaceutical processing and formulation operations required for producing dosage units of an aripiprazole medicinal product having improved shelf-life, suitable dissolubility and suitable bioavailability.

Also, Proceedings of the 4 the Japanese-Korean Symposium on Separation Technology (Oct. 6-8, 1996) state that, anhydrous aripiprazole crystals exist as type-I crystals and type-II crystals; the type-I crystals of anhydrous aripiprazolecan be prepared by recrystallizing from an ethanol solution of aripiprazole, or by heating aripiprazole hydrate at 80° C.; and the type-II crystals of anhydrousaripiprazole can be prepared by heating the type-I crystals of anhydrousaripiprazole at 130 to 140° C. for 15 hours.

By the aforementioned methods, anhydrous aripiprazole type-II crystals having high purity can not be easily prepared in an industrial scale with good repeatability.

Chemical Synthesis of Aripiprazole (active ingredient for Abilify)

Chemical Synthesis of Abilify-Aripirazole-Atypical Antipsychotics-Otsuka-BMS-aripiprazole - Ann re ピ have suitable plastic AKZO

Experimental Procedures for the preparation of Aripiprazole (Abilify, aripiprazole)

US 5,006,528 discloses process for the preparation of Aripiprazole in two steps The first step comprises synthesis of 7 -. (4-bromobutoxy) -3,4-dihydrocarbostyril (7-BBQ) by alkylating the hydroxy group of 7-hydroxy-3, 4 -dihydrocarbostyril (7-HQ) with 1 ,4-dibromobutane using potassium carbonate in water at reflux temperature for 3 hours to obtain 7-BBQ in 68% yield The resulting 7-BBQ is further reacted with 1 -. (2,3 – dichlorophenyl)-piperazine to obtain Aripiprazole.

Preparation of 7 – (4-Bromobutoxy) 3 ,4-dihydro-2 (1H) quinolinon ( 7 – (4-Bromobutoxy) 3 ,4-dihydrocarbostyril; 7-BBQ)

7-Hydroxy-3 ,4-dihydro-2 (1H)-quinolinone (aka 7-Hydroxy-3 ,4-dihydrocarbostyril, 60gm) and potassium carbonate (76.3 gm) were taken in acetonitrile (1200ml) at room temperature. To this tetra butyl ammonium iodide (13.7 gm) and 1 ,4-dibromobutane (238.5gm) were added and heated at 40 – 45 ° C for 24 hours Reaction mass was cooled upto room temperature and was filtered off The resulting filtrate was distilled off.. under vacuum. The resultant mass was cooled to 25-30 ° C and cyclohexane (300 ml) was added under stirring. The resulting solid was filtered off and was dried. The resulting solid was taken in water and was stirred for few minutes. The . solid was filtered and dried under vacuum at 55-60 ° C for 20 hours to obtain title compound mp 110.5-111 ° C; 1H NMR (DMSO-d6) ä 1.81 (2H, m,-CH2-), 1.95 (2H , m,-CH2-), 2.41 (2H, t, J) 7 Hz,-CH2CO-), 2.78 (2H, t, J) 7 Hz,-CH2-C-CO-), 3.60 (2H, t, J) 6 Hz,-CH2Br), 3.93 (2H, t, J) 6 Hz, O-CH2-), 6.43 (1H, d, J) 2.5 Hz), 6.49 (1H, dd, J) 2.5, 8 Hz ), 7.04 (1H, d, J) 8 Hz), 9.98 (1H, s, NHCO). Anal. (C13H16NO2Br) C, H, N.

Yield: 73-75%; Purity: 93-95%

Preparation of Aripiprazole (7 – {4 – [4 – (2,3-Dichlorophenyl) piperazin-1-yl] butoxy} 3 ,4-dihydroquinolin-2 (1H)-One)

7 – (4-Bromobutoxy)-l ,2,3,4-tetrahydroquinolin-2-one (50 gm) was taken in acetonitrile (500 ml) at 25-30 ° C. To this potassium carbonate (67.2 gm) and l – (2,3 – dichlorophenyl). piperazine hydrochloride (44.9gm) were added under stirring The reaction mixture was refluxed at 80-85 ° C for 8 hours The reaction mass was cooled to room temperature, filtered and the resulting solid was washed. with acetonitrile. To the resulting solid, water was added and was stirred. The solid was filtered off, washed with water and dried under vacuum at 75-80 ° C for 15 hrs. The resulting crude aripiprazole was crystallized from isopropyl alcohol and water to . obtain title compound Yield: 75-80%; Dimer Impurity: <0.1% 1H NMR:. DMSO-d6 d 9.96 [1H, s, NH]; 7.29 [2H, m, Ar]; 7.13 [1H, q, Ar ]; 7.04 [1H, d, Ar]; 6.49 [1H, dd, Ar]; 6.45 [1H, d, Ar]; 3.92 [2H, t,-CH2-O-]; 2.97 [4H, bb, 2 ( -CH2-)]; 2.78 [2H, t,-CH2-N2-)]; 2.39 [4H, m, 2 (-CH2-)]; 1.73 [2H, m, – CH2-]; 1.58 [2H, m .,-CH2-] IR: cm-1 3193; 2939; 2804; 1680; 1627; 1579; 1520; 1449; 1375; 1270; 1245; 1192; 1169; 1045; 965; 649; 869; 780; 712; 588 .

Preparation of aripiprazole anhydrous Type I using isopropyl alcohol and water
Crude aripiprazole (30 g) was taken in isopropyl alcohol (600 ml) and was heated to 80-85 ° C. Water (90 ml) was added at the same temperature. Activated carbon was added and the mixture was stirred for 30 minutes at the same temperature. The resulting hot solution was filtered and the bed was washed with hot isopropyl alcohol. The resulting filtrate was cooled to 25-30 ° C for 4 hours. The resulting solid was filtered, washed with isopropyl alcohol and dried under suction for 1 hour. The resulting wet solid was dried in preheated oven maintained at 100-105 ° C for 6 hours to obtain title compound.
Yield: 87-89% HPLC Purity: 99.89
Anhydrous crystal D: Below detectable limit (BDL) at limit of detection 1%.
Hydrate A: Below detectable limit (BDL) at limit of detection 1%.
Particle Size Distribution: d 10 = 15.83 m, d 50 = 60.12 m, d 90 = 144.99 m
Preparation of aripiprazole anhydrous Type I using ethanol and water
Crude aripiprazole (15 g) was taken in ethanol (300 ml) and water (45 ml) and was heated to 80-85 ° C for 1-2 hours. The resulting mixture was cooled to 25-30 ° C within 4 hours and . stirred for 3 hours The resulting solid was filtered and dried under suction for 1 hour The resulting wet solid was dried in preheated oven maintained at 100-105 ° C for 3 hours to obtain title compound Yield:.. 90% HPLC Purity: 99.9 %
Anhydrous crystal D: Below detectable limit (BDL) at limit of detection 1%.
Hydrate A: Below detectable limit (BDL) at limit of detection 1%.
Particle Size Distribution: d 10 = 22.01 m, d 50 = 105.10 m, d 90 = 232.97 m

For the Process of references Aripiprazole (Abilify, Japanese: Oh, Bldg re phi, Ann reピplastic AKZO have suitable; Chinese: Ann-law who, aripiprazole)

Yasuo Oshiro, Seiji Sato, Nobuyuki Kurahashi, Tatsuyoshi Tanaka, Tetsuro Kikuchi, Katsura Tottori, Yasufumi Uwahodo, and Takao Nishi; Novel Antipsychotic Agents with Dopamine autoreceptor Agonist Properties: Synthesis and Pharmacology of 7 – [4 – (4-Phenyl-1- piperazinyl) butoxy] – 3,4-dihydro-2 (1H)-quinolinone Derivatives ; J. Med Chem. 1998, 41, 658-667.

Yasuo Oshiro, Seiji Sato, Nobuyuki Kurahashi; Carbostyril Derivatives , Otsuka Pharmaceutical Co., Ltd.;. U.S. Patent 5006528 ; Issue Date: Apr 9, 1991

BANDO, Takuji, YANO, Katsuhiko, FUKANA, Makoto, AOKI, Satoshi; Method for producing fine particles of aripiprazole anhydride crystals b; OTSUKA PHARMACEUTICAL CO, LTD, WO 2013002420 A1..

Yuanqiu Hui, Chen Hongwen, Qian Wen, firewood rain column, Xu Dan, Yang Zhimin, Tian Zhoushan; method for preparing high purity of aripiprazole; NJCTT Pharmaceutical Co., Ltd.; application number: 201210292382.0; Publication Number: CN102863377A; Publication date: 2013.01.09 After (The invention relates to the field of medicine and chemical industry, in particular to a method for preparing high purity of aripiprazole would join aripiprazole A solvent is heated, filtered, and the filtrate was added to a solvent B, low temperature mixing, filtration, the filter cake is suspended in water, adjusted to alkaline pH of the aqueous solution, filtration, high temperature vacuum dried to obtain a high-purity refined product Aripiprazole This method is simple, high purity, suitable for the industrial the large-scale application)


Zheng Si Ji, Liu Xiaoyi, Fulin Yong, Tan Bo, Zhou Min: A aripiprazole pharmaceutical formulation and preparation method; Shanghai Pharmaceutical Co., Ltd. and Western; Publication date: 2013.01.02: Application Number: CN 201210235157.3; Publication Number: CN102846543A (the invention provides a method for preparing aripiprazole pharmaceutical formulation, comprising the steps of: an acidic solution containing aripiprazole is dissolved in the acidulant, to obtain an acidic solution containing the drug; Thereafter, the resulting drug-containing acidic solution alkalizing agents and materials prepared by wet granulation or suspension to give aripiprazole pharmaceutical formulation; said excipients include antioxidants)

Zheng Si Ji; Tan wave; Fulin Yong; Liu Xiaoyi; Yuanshao Qing; Cao Zhihui; aripiprazole Ⅰ type microcrystalline, aripiprazole solid preparation and preparation methods; application number: 201110180032.0; Publication Number: CN102850268A; Publication Date: 2013.01.02

Cai Fu Bo, Qin Xinrong, Du Xiaochun, Li Ling; kind of aripiprazole improved method of synthesis; Chengdu Nakasone Pharmaceutical Group Co., Ltd.; Application Number: 200910058148.X; Publication Number: CN101781246A; Publication date: 2010.07.21 (the invention provides a method of synthesis of aripiprazole improved method according to the modified method of the present invention, aripiprazole into the etherification reaction and condensation reaction of two-step synthesis, by an etherification reaction in the quinolone compound and at least 6-fold molar equivalents of 1,4 – dihalo-butane reacted with a non-polar solvent ether aripiprazole precipitate, and recovering 1,4 – dihalo-butane recycling; azeotropic condensation reaction of a ketone to be / water mixture as solvent, aripiprazole etherified with a piperazine compound or a salt thereof in the presence of a base under reflux and alkaline metal iodide compound conditions, the amount of water added to the end of the reaction, cooling crystallization, filtration, and dried to give aripiprazole. improved high yield synthesis of high purity, step simple, low cost, suitable for industrial production.)

GUPTA, Vijay Shankar, KUMAR, Pramod, VIR, Dharam; Process for producing aripiprazole in anhydrous type i crystals; JUBILANT LIFE SCIENCES LIMITED; WO 2012131451 A1

SRIVASTAVA JAYANT GUPTA Vijay Shankar;. Improved process for the preparation of 7 (4-bromobutoxy) 3,4-dihydrocarbostyril, a precursor of aripiprazole; wo2011030213 A1

No Generic Abilify in the US until April 2015

On May 7, 2012, The US Court of Appeals for the Federal Circuit ruled in favor of Otsuka Pharmaceutical Co., Ltd. In its patent litigation against several companies including Israel-based Teva and Weston, Ontario-based Apotex seeking FDA approval to market generic copies of Abilify ®.. The Federal Circuit Affirmed a Decision of the U.S. District Court for the District of New Jersey Holding that the asserted claims ofU.S. Patent No. 5,006,528 Covering aripiprazole, the active Ingredient in Abilify ®, are Valid, THUS Maintaining Patent and Regulatory Protection for Abilify ® in the U.S. until at least April 20, 2015 . The Case is Otsuka Pharma Co.. V. sand Inc.., 2011-1126 and 2011-1127, US Court of Appeals for the Federal Circuit (Washington). The lower court case is Otsuka Pharmaceutical Co. v. Sandoz Inc., 07cv1000, US District Court for the District of New Jersey (Trenton).

Chemical Name for Aripiprazole (Abilify for active Ingredient): 7 – {4 – [4 – (2,3-Dichlorophenyl) piperazin-1-yl] butoxy} 3 ,4-dihydroquinolin-2 (1H)-One
CAS Number 129722 -12-9
aripiprazole chemical name 7 – [4 – [4 – (2,3 – dichlorophenyl) -1 – piperazinyl] butoxy] -3,4 – dihydro-2 ( 1H) – quinolinone

Aripiprazole (, Aripiprazole, Abilify) is an atypical antipsychotic medication for the quinoline derivatives, aripiprazole is a dopamine system stabilizer first, positive and schizophrenia negative symptoms have a significant effect. For the treatment of schizophrenia, the development of Otsuka Pharmaceutical Co., Ltd., in November 15, 2002 by the U.S. Food and Drug Administration (FDA) approval in the U.S., domestic aripiprazole has (Booz clear (brisking, manufacturers : Chengdu Nakasone Pharmaceutical), Austrian (Manufacturer: Shanghai Pharmaceutical Co., Ltd. and Western)) have been approved by the listing in China. On sale in the United States where the law by Bristol-Myers Squibb is responsible. An law where the main patent protection in the United States, and more than three-quarters of its sales from the U.S., patent will expire in April 2015.

Aripiprazole synthetic route

7 – hydroxy-3 ,4. Dihydro -2 (1H) – quinolinone as a starting material, 1,4. Dibromobutane ether to give 7 – (4 – Bromo-butoxy) -3,4 – dihydro – 2 (1H) quinolinone, and then with 1 – (2,3 – dichlorophenyl) piperazine acid condensation aripiprazole (7 – [4 – [4 – (2,3 – dichlorophenyl) -1 – piperazinyl] butoxy] -3,4 – dihydro -2 (1H) – quinolinone)

Aripiprazole preparation method

7 – (4 – Bromo-butoxy) -3,4 – dihydro -2 (1H) – quinolone
A reaction flask was added 7 – hydroxy – 3,4 – dihydro -2 (1H) – quinolone 32.6 g (0.2mol), 1,4 – dibromo butane 129.5g (0.6mol), 11.2% KOH solution 250ml (0.5mol) and DMF975ml, was heated to 60 º C for 2h diluted with 1L water, the aqueous layer with ethyl acetate. acetate (300ml × 2) and the combined organic layers were washed with water, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to recover the solvent, the residue was recrystallized from isopropanol, to give 7 – (4 – Bromo-butoxy) – 3,4 – dihydro -2 (1H) – quinolone 38.7g, yield 68%, mp108 ~ 110 º C.

Synthesis of aripiprazole
in the reaction flask was added 7 – (4 – Bromo-butoxy) -3,4 – dihydro -2 (1H) – quinolone, 29.8g (0.1mol), KI25g (0.15mol) 95% Ethanol 596ml, stirred and heated to 60 º C, was added N-2 30min after 3 – dichlorophenyl piperazine 23.1g (0.1mol) and triethylamine 20ml (0.15mol), stirred for 8h at 60 º C the mixture is filtered. crystallization filtrate was cooled, filtered and the filter cake was recrystallized twice from ethanol and dried to obtain aripiprazole 25.6g, yield 57%, mp138.9 ~ 139.6 º C.



  1. “Product Information for ABILIFYTM Aripiprazole Tablets & Orally Disintegrating Tablets”. TGA eBusiness Services. Bristol-Myers Squibb Australia Pty Ltd. 1 November 2012. Retrieved 22 October 2013.
  2. “ABILIFY (aripiprazole) tablet ABILIFY (aripiprazole) solution ABILIFY DISCMELT (aripiprazole) tablet, orally disintegrating ABILIFY (aripiprazole) injection, solution [Otsuka America Pharmaceutical, Inc.]”. DailyMed. Otsuka America Pharmaceutical, Inc. April 2013. Retrieved 22 October 2013.
  3. “Abilify Tablets, Orodispersible Tablets, Oral Solution – Summary of Product Characteristics (SPC)”. electronic Medicines Compendium. Otsuka Pharmaceuticals (UK) Ltd. 20 September 2013. Retrieved 22 October 2013.
  4. “ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS”. European Medicines Agency. Otsuka Pharmaceutical Europe Ltd. Retrieved 22 October 2013.
  6. Hitti, Miranda (20 November 2007). “FDA OKs Abilify for Depression”. WebMD. Archived from the original on 5 December 2008. Retrieved 8 December 2008.
  7. Keating, Gina (23 November 2009). “FDA OKs Abilify for child autism irritability”. Reuters. Retrieved 22 September 2010.
  8. “abilify”. The American Society of Health-System Pharmacists. Retrieved 3 April 2011.
  9. Belgamwar RB, El-Sayeh HG (Aug 10, 2011). “Aripiprazole versus placebo for schizophrenia.”. The Cochrane database of systematic reviews (8): CD006622. PMID 21833956.
  10. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, Kissling W, Stapf MP, Lässig B, Salanti G, Davis JM (2013). “Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis”. Lancet 382 (9896): 951–62. doi:10.1016/S0140-6736(13)60733-3. PMID 23810019.
  11. Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Thibaut F, Möller HJ (2013). “World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 2: update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects”. World J. Biol. Psychiatry 14 (1): 2–44. doi:10.3109/15622975.2012.739708. PMID 23216388.
  12. El-Sayeh HG, Morganti C (Apr 19, 2006). “Aripiprazole for schizophrenia.”. Cochrane database of systematic reviews (Online) (2): CD004578. doi:10.1002/14651858.CD004578.pub3. PMID 16625607.
  13. Belgamwar RB, El-Sayeh HG (Aug 10, 2011). “Aripiprazole versus placebo for schizophrenia.”. Cochrane database of systematic reviews (Online) (8): CD006622. doi:10.1002/14651858.CD006622.pub2. PMID 21833956.
  14. Bhattacharjee J, El-Sayeh HG (Jan 23, 2008). “Aripiprazole versus typicals for schizophrenia.”. Cochrane database of systematic reviews (Online) (1): CD006617. doi:10.1002/14651858.CD006617.pub2. PMID 18254107.
  15. Khanna P, Komossa K, Rummel-Kluge C, Hunger H, Schwarz S, El-Sayeh HG, Leucht S (Feb 28, 2013). “Aripiprazole versus other atypical antipsychotics for schizophrenia.”. Cochrane database of systematic reviews (Online) 2: CD006569. doi:10.1002/14651858.CD006569.pub4. PMID 23450570.
  16. “Psychosis and schizophrenia in adults: treatment and management | Guidance and guidelines | NICE”. National Institute for Health and Care Excellence.
  17. Barnes TR (2011). “Evidence-based guidelines for the pharmacological treatment of schizophrenia: recommendations from the British Association for Psychopharmacology”. J. Psychopharmacol. (Oxford) 25 (5): 567–620. doi:10.1177/0269881110391123. PMID 21292923.
  18. Hasan A, Falkai P, Wobrock T, Lieberman J, Glenthoj B, Gattaz WF, Thibaut F, Möller HJ (2013). “World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for biological treatment of schizophrenia, part 2: update 2012 on the long-term treatment of schizophrenia and management of antipsychotic-induced side effects”. World J. Biol. Psychiatry 14 (1): 2–44. doi:10.3109/15622975.2012.739708. PMID 23216388.
  19. De Fruyt J, Deschepper E, Audenaert K, Constant E, Floris M, Pitchot W, Sienaert P, Souery D, Claes S (May 2012). “Second generation antipsychotics in the treatment of bipolar depression: a systematic review and meta-analysis.”. Journal of psychopharmacology (Oxford, England) 26 (5): 603–17. doi:10.1177/0269881111408461. PMID 21940761.
  20. Gitlin M, Frye MA (May 2012). “Maintenance therapies in bipolar disorders.”. Bipolar disorders. 14 Suppl 2: 51–65. doi:10.1111/j.1399-5618.2012.00992.x. PMID 22510036.
  21. de Bartolomeis A, Perugi G (October 2012). “Combination of aripiprazole with mood stabilizers for the treatment of bipolar disorder: from acute mania to long-term maintenance.”. Expert opinion on pharmacotherapy 13 (14): 2027–36. doi:10.1517/14656566.2012.719876. PMID 22946707.
  22. Komossa K, Depping AM, Gaudchau A, Kissling W, Leucht S (Dec 8, 2010). “Second-generation antipsychotics for major depressive disorder and dysthymia.”. Cochrane database of systematic reviews (Online) (12): CD008121. doi:10.1002/14651858.CD008121.pub2. PMID 21154393.
  23. Spielmans GI, Berman MI, Linardatos E, Rosenlicht NZ, Perry A, Tsai AC (Mar 12, 2013). “Adjunctive atypical antipsychotic treatment for major depressive disorder: a meta-analysis of depression, quality of life, and safety outcomes”. Cochrane database of systematic reviews (Online) 10 (3): CD008121. doi:10.1371/journal.pmed.1001403. PMID 23554581.
  24. Nelson JC, Papakostas GI (2009). “Atypical antipsychotic augmentation in major depressive disorder: a meta-analysis of placebo-controlled randomized trials”. Am J Psychiatry 166 (9): 980–91. doi:10.1176/appi.ajp.2009.09030312. PMID 19687129.
  25. Komossa K, Depping AM, Gaudchau A, Kissling W, Leucht S (2010). “Second-generation antipsychotics for major depressive disorder and dysthymia”. Cochrane Database Syst Rev (12): CD008121. doi:10.1002/14651858.CD008121.pub2. PMID 21154393.
  26. Ching H, Pringsheim T (May 16, 2012). “Aripiprazole for autism spectrum disorders (ASD).”. Cochrane database of systematic reviews (Online) 5: CD009043. doi:10.1002/14651858.CD009043.pub2. PMID 22592735.
  27. Joint Formulary Committee. British National Formulary (BNF) 65. Pharmaceutical Pr; 2013.
  28. Australian Medicines Handbook 2013 [Internet]. [cited 2013 Sep 30]. Available from:
  29. Truven Health Analytics, Inc. DRUGDEX® System (Internet) [cited 2013 Jun 25]. Greenwood Village, CO: Thomsen Healthcare; 2013.
  30. “Abilify Discmelt, Abilify Maintena (aripiprazole) dosing, indications, interactions, adverse effects, and more”. Medscape Reference. WebMD. Retrieved 22 October 2013.
  31. Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, Kissling W, Stapf MP, Lässig B, Salanti G, Davis JM (September 2013). “Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis.”. Lancet 382 (9896): 951–962. doi:10.1016/S0140-6736(13)60733-3. PMID 23810019.
  32. Abbasian C, Power P (March 2009). “A case of aripiprazole and tardive dyskinesia”. J Psychopharmacol (Oxford) 23 (2): 214–5. doi:10.1177/0269881108089591. PMID 18515468.
  33. Zaidi SH, Faruqui RA (January 2008). “Aripiprazole is associated with early onset of Tardive Dyskinesia like presentation in a patient with ABI and psychosis”. Brain Inj 22 (1): 99–102. doi:10.1080/02699050701822493. PMID 18183513.
  34. Maytal G, Ostacher M, Stern TA (June 2006). “Aripiprazole-related tardive dyskinesia”. CNS Spectr 11 (6): 435–9. PMID 16816781.
  36. “ABILIFY (aripiprazole) [package insert].”. Otsuka Pharmaceutical Co, Ltd. Retrieved 18 October 2012.
  37. Group, BMJ, ed. (March 2009). “4.2.1”. British National Formulary (57 ed.). United Kingdom: Royal Pharmaceutical Society of Great Britain. p. 192. ISBN 978-0-85369-845-6. “Withdrawal of antipsychotic drugs after long-term therapy should always be gradual and closely monitored to avoid the risk of acute withdrawal syndromes or rapid relapse.”
  38. Moncrieff J (Jul 2006). “Does antipsychotic withdrawal provoke psychosis? Review of the literature on rapid onset psychosis (supersensitivity psychosis) and withdrawal-related relapse”. Acta Psychiatr Scand 114 (1): 3–13. doi:10.1111/j.1600-0447.2006.00787.x. PMID 16774655.
  39. R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, 8th edition, Biomedical Publications, Foster City, CA, 2008, pp. 105-106.
  40. “Abilify (Aripiprazole) – Warnings and Precautions”. 14 February 2007. Archived from the original on 4 December 2008. Retrieved 8 December 2008.
  43. Starrenburg FC, Bogers JP (April 2009). “How can antipsychotics cause diabetes mellitus? Insights based on receptor-binding profiles, humoral factors and transporter proteins”. European Psychiatry 24 (3): 164–170. doi:10.1016/j.eurpsy.2009.01.001. PMID 19285836.
  44. “Abilify (Aripiprazole) – Clinical Pharmacology”. 14 February 2007. Retrieved 8 December 2008.
  45. Brunton, Laurence (2011). Goodman & Gilman’s The Pharmacological Basis of Therapeutics 12th Edition. China: McGraw-Hill. pp. 406–410. ISBN 978-0-07-162442-8.
  46. “PDSP Ki Database”. National Institute of Mental Health. Retrieved 30 June 2013.
  47. Nguyen CT, Rosen JA, Bota RG (2012). “Aripiprazole partial agonism at 5-HT2C: a comparison of weight gain associated with aripiprazole adjunctive to antidepressants with high versus low serotonergic activities”. Prim Care Companion CNS Disord 14 (5). doi:10.4088/PCC.12m01386. PMC 3583771. PMID 23469329.
  48. Newman-Tancredi A, Heusler P, Martel JC, Ormière AM, Leduc N, Cussac D (2008). “Agonist and antagonist properties of antipsychotics at human dopamine D4.4 receptors: G-protein activation and K+ channel modulation in transfected cells”. Int. J. Neuropsychopharmacol. 11 (3): 293–307. doi:10.1017/S1461145707008061. PMID 17897483.
  49. Burstein ES, Ma J, Wong S, Gao Y, Pham E, Knapp AE, Nash NR, Olsson R, Davis RE, Hacksell U, Weiner DM, Brann MR (2005). “Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist”. J. Pharmacol. Exp. Ther. 315 (3): 1278–87. doi:10.1124/jpet.105.092155. PMID 16135699.
  50. Davies MA, Sheffler DJ, Roth BL (2004). “Aripiprazole: a novel atypical antipsychotic drug with a uniquely robust pharmacology”. CNS Drug Rev 10 (4): 317–36. doi:10.1111/j.1527-3458.2004.tb00030.x. PMID 15592581.
  51. Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999). “Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes”. Neuropsychopharmacology 20 (6): 612–27. doi:10.1016/S0893-133X(98)00099-2. PMID 10327430.
  52. Burstein ES, Ma J, Wong S, Gao Y, Pham E, Knapp AE, Nash NR, Olsson R, Davis RE, Hacksell U, Weiner DM, Brann MR (December 2005). “Intrinsic Efficacy of Antipsychotics at Human D2, D3, and D4 Dopamine Receptors: Identification of the Clozapine Metabolite N-Desmethylclozapine as a D2/D3 Partial Agonist”. J Pharmacol Exp Ther 315 (3): 1278–87. doi:10.1124/jpet.105.092155. PMID 16135699.
  53. Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA (2002). “The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor”. Eur J Pharmacol 441 (3): 137–140. doi:10.1016/S0014-2999(02)01532-7. PMID 12063084.
  54. Shapiro DA, Renock S, Arrington E, Chiodo LA, Liu LX, Sibley DR, Roth BL, Mailman R (2003). “Aripiprazole, A Novel Atypical Antipsychotic Drug with a Unique and Robust Pharmacology”. Neuropsychopharmacology 28 (8): 1400–1411. doi:10.1038/sj.npp.1300203. PMID 12784105.
  55. Zhang JY, Kowal DM, Nawoschik SP, Lou Z, Dunlop J (February 2006). “Distinct functional profiles of aripiprazole and olanzapine at RNA edited human 5-HT2C receptor isoforms”. Biochem Pharmacol 71 (4): 521–9. doi:10.1016/j.bcp.2005.11.007. PMID 16336943.
  56. Kegeles LS, Slifstein M, Frankle WG, Xu X, Hackett E, Bae SA, Gonzales R, Kim JH, Alvarez B, Gil R, Laruelle M, Abi-Dargham A (2008). “Dose–Occupancy Study of Striatal and Extrastriatal Dopamine D2 Receptors by Aripiprazole in Schizophrenia with PET and [18F]Fallypride”. Neuropsychopharmacology 33 (13): 3111–3125. doi:10.1038/npp.2008.33. PMID 18418366.
  57. Yokoi F, Gründer G, Biziere K, Stephane M, Dogan AS, Dannals RF, Ravert H, Suri A, Bramer S, Wong DF (August 2002). “Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride”. Neuropsychopharmacology 27 (2): 248–59. doi:10.1016/S0893-133X(02)00304-4. PMID 12093598.
  58. “In This Issue”. Am J Psychiatry 165 (8): A46. August 2008. doi:10.1176/appi.ajp.2008.165.8.A46.
  59. “Abilify Receives Approval for Expanded Use in Children, Teens”. Psych Central. Retrieved 2012-07-16.
  60. “Abilify Gets FDA Approval For Autism Irritability”. Furious Seasons. Retrieved 2012-07-16.
  61. “FDA OKs Abilify for Depression : Antipsychotic Drug Approved for Use in Addition to Antidepressants for Treating Depression”. WebMD. Retrieved 2012-07-16.
  62. “Patent and Exclusivity Search Results”. Electronic Orange Book. US Food and Drug Administration. Retrieved 8 December 2008.
  63.,021713s16,021729s8,021866s8lbl.pdfSection 2.3 pp 7-8
  64. US 5006528, Oshiro, Yasuo; Seiji Sato & Nobuyuki Kurahashi, “Carbostyril derivatives”, published October 20, 1989
  65. “Barr Confirms Filing an Application with a Paragraph IV Certification for ABILIFY(R) Tablets” (Press release). Barr Pharmaceuticals, Inc. 2007-03-20. Retrieved 2008-12-23.
  66. U.S. Patent 5,006,528
  67. Feltenstein MW, Altar CA, See RE (2007). “Aripiprazole blocks reinstatement of cocaine seeking in an animal model of relapse”. Biol. Psychiatry 61 (5): 582–90. doi:10.1016/j.biopsych.2006.04.010. PMID 16806092.
  68. Roache JD (2013). “Role of the human laboratory in the development of medications for alcohol and drug dependence”. In Johnson BA. Addiction medicine: science and practice. New York: Springer. p. 145. ISBN 978-1461439899.

External links

WO2006079548A1 * Jan 27, 2006 Aug 3, 2006 Sandoz Ag Organic compounds
WO2006079549A1 Jan 27, 2006 Aug 3, 2006 Sandoz Ag Salts of aripiprazole
WO2014060324A1 Oct 11, 2013 Apr 24, 2014 Sanovel Ilac Sanayi Ve Ticaret A.S Aripiprazole formulations
EP1844036A1 * Jan 27, 2006 Oct 17, 2007 Sandoz AG Salts of aripiprazole
EP2093217A1 * Jan 27, 2006 Aug 26, 2009 Sandoz AG Polymorph and solvates of aripiprazole
EP2233471A1 * Feb 6, 2009 Sep 29, 2010 Adamed Sp. z o.o. A salt of 7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butoxy}-3,4.dihydro-2(1h)-quinolinone with 5-sulfosalicylic acid and its preparation process
EP2359816A1 Feb 8, 2011 Aug 24, 2011 Sanovel Ilac Sanayi ve Ticaret A.S. Aripiprazole formulations
US7504504 Dec 16, 2004 Mar 17, 2009 Teva Pharmaceutical Industries Ltd. Methods of preparing aripiprazole crystalline forms
US7714129 Sep 29, 2006 May 11, 2010 Teva Pharmaceutical Industries Ltd. Methods of preparing anhydrous aripiprazole form II
US8008490 Jan 27, 2006 Aug 30, 2011 Sandoz Ag Polymorphic forms of aripiprazole and method
US8188076 Feb 26, 2010 May 29, 2012 Reviva Pharmaceuticals, Inc. Compositions, synthesis, and methods of utilizing arylpiperazine derivatives
US8207163 May 27, 2009 Jun 26, 2012 Reviva Pharmaceuticals, Inc. Compositions, synthesis, and methods of using piperazine based antipsychotic agents
US8247420 May 21, 2008 Aug 21, 2012 Reviva Pharmaceuticals, Inc. Compositions, synthesis, and methods of using quinolinone based atypical antipsychotic agents
US8431570 May 7, 2012 Apr 30, 2013 Reviva Pharmaceuticals, Inc. Methods of utilizing arylpiperazine derivatives
US8461154 May 7, 2012 Jun 11, 2013 Reviva Pharmaceuticals, Inc. Methods of utilizing arylpiperazine derivatives
US8575185 Feb 26, 2010 Nov 5, 2013 Reviva Pharmaceuticals, Inc. Compositions, synthesis, and methods of utilizing quinazolinedione derivatives

Best practice paper on visual inspection to be published in September 2014



The ECA working group on visual inspection, which was founded this year, is going to publish its first document during the ECA event Particles in Parenterals and beyond. Read more.,Z-PEM_n.html

Press Announcement: Best practice paper on visual inspection to be published in September 2014

The work on this best practice paper has already started earlier this year and has been intensified since the foundation of the working group in March 2014. The goal of this paper is to harmonise the long lasting experience and knowledge from different and approved industrial practices and from presentations from previous conferences.
The paper, which is much rather supposed to be a reference than a strict requirement, will cover Manual and Automated Inspection issues in the following chapters:

  • Workplace (manual)
  • Operation (manual and automated)
  • Qualification
  • Re-Qualification
  • Re-Validation
  • Evaluation of defects
  • Batch release considerations

The paper is still in the group internal discussion phase…

View original post 93 more words

Handling of OOS Results in Europe



FDA’s Guidance on Out-of-Specification Results has been seen as the state of the art regarding the handling of OOS results. In the meantime, Europe – through the British MHRA and the German ZLG – has also developed requirements on that topic. Read more here about the most important regulations of the respective guidance documents.


GMP News: Handling of OOS Results in Europe,8430,Z-QCM_n.html

For some time now, information about the handling of OOS results has been put on the website of the MHRA. There, you can find a Guidance document entitled “Out of Specification Investigations”. This document was updated last year to add microbiological aspects.

It is easier to understand than the FDA Guideline on the same topic. The different Flow Charts are also helpful.

A definition of all terms – both Out-of-Specification (OOS) Results and Out of Trend (OOT) Results – is provided at the beginning as…

View original post 317 more words

%d bloggers like this: