New Drug Approvals

Home » Phase3 drugs

Category Archives: Phase3 drugs

Advertisements
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 2,207,127 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,273 other followers

Follow New Drug Approvals on WordPress.com

Categories

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,273 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 year tenure till date Dec 2017, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 50 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 19 lakh plus views on New Drug Approvals Blog in 216 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

Verified Services

View Full Profile →

Categories

Flag Counter
Advertisements

Molidustat, Bay 85-3934


Molidustat structure.png

Molidustat

UNII-9JH486CZ13, cas no 1154028-82-6, MW: 314.3076

2-(6-morpholin-4-ylpyrimidin-4-yl)-4-(triazol-1-yl)-1H-pyrazol-3-one

Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors

  • Originator Bayer Schering Pharma
  • Developer Bayer HealthCare Pharmaceuticals
  • Class Antianaemics; Morpholines; Pyrazoles; Pyrazolones; Pyrimidines; Small molecules; Triazoles
  • Mechanism of Action Hypoxia-inducible factor-proline dioxygenase inhibitors
  • Phase III Anaemia
  • 24 Jun 2018 Biomarkers information updated
  • 23 Jun 2018 Bayer initiates enrolment in the MIYABI HD-M phase III trial for Anaemia in Japan (PO) (NCT03543657)
  • 05 Jun 2018 Bayer plans a phase III trial for Anaemia (renal) in Japan in June 2018 (NCT03543657)

For the cardio-renal syndrome, a Phase IIb program with the investigational new drug Molidustat (BAY 85-3934) is under initiation in patients with anemia associated with chronic kidney disease and/or end-stage renal disease. Molidustat is a novel inhibitor of hypoxia-inducible factor (HIF) prolyl hydroxylase (PH) which stimulates erythropoietin (EPO) production and the formation of red blood cells. Phase I data have shown that inhibition of HIF-PH by Molidustat results in an increase in endogenous production of EPO.

About Bayer HealthCare

The Bayer Group is a global enterprise with core competencies in the fields of health care, agriculture and high-tech materials. Bayer HealthCare, a subgroup of Bayer AG with annual sales of EUR 18.6 billion (2012), is one of the world’s leading, innovative companies in the healthcare and medical products industry and is based in Leverkusen, Germany. The company combines the global activities of the Animal Health, Consumer Care, Medical Care and Pharmaceuticals divisions. Bayer HealthCare’s aim is to discover, develop, manufacture and market products that will improve human and animal health worldwide. Bayer HealthCare has a global workforce of 54,900 employees (Dec 31, 2012) and is represented in more than 100 countries. More information at www.healthcare.bayer.com.

molidustat

Molidusat sodium

2D chemical structure of 1375799-59-9

RN: 1375799-59-9
UNII: CI0NE7C96T

Molecular Formula, C13-H13-N8-O2.Na, Molecular Weight, 336.2897

Sodium 1-[6-(morpholin-4-yl)pyrimidin-4-yl]-4-(1H-1,2,3-triazol-1-yl)-1H-pyrazol-5-olate

Molidustat sodium is an orally-available hypoxia-inducible factor prolyl hydroxylase inhibitor in phase I clinical trials at Bayer for the treatment of patients suffering from renal anemia due to chronic kidney disease.

Molidustat (INNBay 85-3934) is a drug which acts as a HIF prolyl-hydroxylase inhibitor and thereby increases endogenous production of erythropoietin, which stimulates production of hemoglobin and red blood cells. It is in Phase III clinical trials for the treatment of anemia secondary to chronic kidney disease.[1][2] Due to its potential applications in athletic doping, it has also been incorporated into screens for performance-enhancing drugs.[3]

WO 2008067871

WO 2012065967

WO 2013167552

2-Heteroaryl-4-aryl-1,2-dihydropyrazolones having a bactericidal and/or fungicidal action are disclosed in EP 165 448 and EP 212 281. The use of 2-heteroaryl-4-aryl-1,2-dihydropyrazolones as lipoxygenase inhibitors for treatment of respiratory tract, cardiovascular and inflammatory diseases is claimed in EP 183 159. 2,4-Diphenyl-1,2-dihydropyrazolones having a herbicidal activity are described in DE 2 651 008.

The preparation and pharmacological properties of certain 2-pyridyl-1,2-dihydropyrazolones are reported in Helv. Chim. Acta 49 (1), 272-280 (1966). WO 96/12706, WO 00/51989 and WO 03/074550 claim compounds having a dihydropyrazolone partial structure for treatment of various diseases, and hydroxy- or alkoxy-substituted bipyrazoles for treatment of neuropsychiatric diseases are disclosed in WO 2006/101903.

Heteroaryl-substituted pyrazole derivatives for treatment of pain and various CNS diseases are furthermore described in WO 03/051833 and WO 2004/089303. WO 2006/114213 has meanwhile disclosed 2,4-dipyridyl-1,2-dihydropyrazolones as inhibitors of HIF prolyl 4-hydroxylases.

The x-ray crystal structure of the compound 3-methyl-1-(pyridin-2-yl)-4-(1-pyridin-2-yl-3-methyl-1H-pyrazol-5-yl)-2H-3-pyrazolin-5 (114)-one (other name: 5,5′-dimethyl-2,2′-di-pyridin-2-yl-1′,2′-dihydro-2H,3′H-3,4′-bipyrazol-3′-one) is reported inActa Crystallogr., Section E: Structure Reports Oμline E57 (11), o1126-o1127 (2001) [Chem. Abstr. 2001:796190].

The synthesis of certain 3′,5-dimethyl-2-phenyl-1′-(1,3-thiazol-2-yl)-1′H,2H-3,4′-bipyrazol-5′-ol derivatives is described inIndian J. Heterocyclic Chem. 3 (1), 5-8 (1993) [Chem. Abstr. 1994:323362].

The preparation and tautomerism of individual 4-(pyrazol-5-yl)-pyrazolin-5-one derivatives is reported in J. Heterocyclic Chem. 27 (4), 865-870 (1990) [Chem. Abstr. 1991:428557]. A therapeutic use has not hitherto been described for the compounds mentioned in these publications. The compound 2-tert-butyl-1′-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]-3′,5-dimethyl-1′H,2H-3,4′-bipyrazol-5′-ol is listed as a test example in WO 2007/008541.

SYN

WO 2013167552

CLIP

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cmdc.201700783

Image result for molidustat

1-[6-(Morpholin-4-yl)pyrimidin-4-yl]-4-(1H-1,2,3-triazol-1-yl)-1Hpyrazol-5-ol (molidustat, BAY 85-3934, 45): Method A (gram-scale): Ethyl 3-(dimethylamino)-2-(1H-1,2,3-triazol-1-yl)acrylate (73, 1.98 g, 9.43 mmol) and 4-(6-hydrazinopyrimidin-4-yl)morpholine (78, 1.89 g, 9.70 mmol) were introduced into ethyl acetate (25 mL) and TFA (502 mg, 4.4 mmol) was added at RT. The mixture was stirred under reflux for 18 h, then cooled to 0–58C and subsequently stirred for a further 2 h. The solid formed was filtered off, washed with cold ethyl acetate and dried first in air and thereafter under a high vacuum. Yield: 2.13 g (71%);

1H NMR (400 MHz, [D6 ]DMSO): d=8.42 (s, 1H), 8.38 (s, 1H), 8.01 (s, 1H), 7.73 (s, 1H), 7.70 (s, 1H), 3.71–3.65 (m, 4H), 3.57–3.51 ppm (m, 4H);

13C NMR (125 MHz, [D6 ]DMSO): d=44.3, 65.6, 85.6, 102.8, 123.7, 132.9, 135.8, 152.4, 154.1, 154.7, 162.0 ppm;

IR (KBr): n˜ =3441, 3135–3108, 2965–2884, 1636–1345, 1257 cm@1 ;

UV/Vis (acetonitrile/water 1:1): lmax (e)= 249 nm (34928 L (mol cm)@1 );

MS (EI+) m/z: 315 [M+H]+ ;

Anal. calcd for C13H14N8O2 : C 49.7, H 4.5, N 35.7, O 10.2, found: C 49.5, H 4.4, N 35.5, O 12.6.

Method B (kilogram-scale): Inastirred vessel, 4- (6-hydrazinopyrimidin-4-yl)morpholine (78, 42.0 kg, 215.1 mol) and methyl 3-(dimethylamino)-2-(1H-1,2,3-triazol-1-yl)acrylate (83, 44.0 kg, 224.2 mol) were suspended in ethyl acetate (378 kg), admixed with TFA (12.1 kg, 106.1 mol) and heated under reflux (from 788C to 81 8C) at a jacket temperature of 908C for 26 h. The suspension obtained was cooled to 0 8C, stirred at 08C for 1 h and filtered. The filter cake was washed with ethyl acetate (53 kg) and dried under reduced pressure at up to 458C. The filter cake was admixed with a mixture of water (355 kg) and acetic acid (11.7 kg), then suspended and stirred at 50–548C for 1 h. After cooling to 248C, the suspension was filtered. The filter cake was washed first with water (90 kg), then twice with methanol (50 kg each time) and finally dried at 35–458C under reduced pressure. Yield: 57.4 kg (85%)

Synthesis of molidustat sodium (84)

Sodium 1-[6-(morpholin-4-yl)pyrimidin-4-yl]-4-(1 H-1,2,3-triazol1-yl)-1H-pyrazol-5-olate (molidustat sodium, 84): Kilogram scale: In a stirred vessel, compound 45 (55 kg, 175.0 mol) was suspended in a mixture of methanol (200 kg) and water (30 kg), admixed with triethylamine (17.8 kg, 175.9 mmol), heated at 608C, stirred further for about 1 h and filtered hot to separate off undissolved constituents. The filter cake was washed with methanol (15 kg, 608C). Sodium hydroxide solution (18.7 kg, 210.4 mmol, 45% strength) was slowly introduced at 608C and methanol (5 kg) was added. Sodium 1-[6-(morpholin-4-yl)pyrimidin-4-yl]-4-(1H-1,2,3-triazol-1-yl)- 1H-pyrazol-5-olate (84, 0.12 kg) was added as seed crystals and the mixture was stirred at 608C for another 1 h and cooled to 248C over a period of about 2 h. The mixture was stirred for 8 h at this temperature, subsequently cooled to 08C over a period of about 1 h and filtered in portions by means of a centrifuge. The filter cake was washed with a mixture of water (24 kg) and methanol (168 kg) and also methanol (about 23 kg in each case) and dried all together at 40 8C under reduced pressure in a dryer for 8 h. Yield: 57.6 kg (98%);

1H NMR (500 MHz, [D6 ]DMSO): d=8.98 (d, J= 1.4 Hz, 1H), 8.72 (s, 1H), 8.68 (s, 1H), 8.64 (d, J=1.4 Hz, 1H), 7.77 (s, 1H), 4.25–4.00 ppm (m, 8H);

13C NMR (125 MHz, [D6 ]DMSO): d= 48.2, 67.8, 91.5, 107.0, 129.6, 130.9, 138.0, 151.7, 152.0, 157.4, 159.9 ppm;

IR (KBr): n˜ =3153–3006, 2976–2855, 1630–1439, 1241, 1112, 987 cm@1 ;

UV/Vis (acetonitrile/water 1:1): lmax (e)=284 nm (16855 L [mol cm]@1 );

MS (EI+) m/z: 337 [M+Na]+ , 315 [M+H]+ ;

Anal. calcd for C13H13N8O2Na: C 46.4, H 3.9, N 33.3, found: C 46.1, H 4.0, N 33.1.

PATENT

RM 1

Example 3A 3-(Dimethylamino)-2-(1H-1,2,3-triazol-1-yl)acrylic acid ethyl ester

Figure US20100305085A1-20101202-C00024

The preparation of the starting compound is carried out analogously to 2A starting from 1.00 g (6.45 mmol) 2-(1H-1,2,3-triazol-1-yl)acetic acid ethyl ester.

Yield: 1.4 g (100% of th.)

1H-NMR (400 MHz, DMSO-d6): δ=8.10 (d, 1H), 7.78 (d, 1H), 7.65 (s, 1H), 4.03 (q, 2H), 3.06 (br. s, 3H), 2.10 (br. s, 3H), 1.12 (t, 3H).

LC-MS (Method 5): Rt=1.40 min; MS (ESIpos): m/z=211 [M+H]+.

 …………

RM 2

Example 16A 4-(6-Hydrazinopyrimidin-4-yl)morpholine

Figure US20100305085A1-20101202-C00043

Stage a):

4-(6-Chloropyrimidin-4-yl)morpholine

Figure US20100305085A1-20101202-C00044

45.0 g (302.1 mmol) 4,6-dichloropyrimidine are initially introduced into 450 ml water. 26.3 g (302.1 mmol) morpholine are added and the mixture is stirred at 90° C. for 16 h. Thereafter, it is cooled to 0° C. and the precipitate formed is filtered off. The precipitate is washed once with 50 ml water and dried in air.

Yield: 51.0 g (85% of th.)

LC-MS (Method 4): Rt=1.09 min; MS (ESIpos): m/z=200 [M+H]+;

1H-NMR (400 MHz, DMSO-d6): δ=8.35 (s, 1H), 6.95 (s, 1H), 3.62 (s, 8H).

Stage b)

4-(6-Hydrazinopyrimidin-4-yl)morpholine

Figure US20100305085A1-20101202-C00045

53.0 g (2.7 mmol) 4-(6-chloropyrimidin-4-yl)morpholine are initially introduced into 260 ml ethanol. 132.9 g (2.7 mol) hydrazine hydrate are added and the mixture is stirred under reflux for 16 h. Thereafter, it is cooled to RT and approx. half of the solvent is removed by distillation. The mixture is cooled to 0° C. and the solid formed is filtered off. It is rinsed with cold ethanol and the solid is dried first in air and then in vacuo.

Yield: 35.0 g (68% of th.)

LC-MS (Method 1): Rt=0.17 min; MS (ESIpos): m/z=196 [M+H]+;

1H-NMR (400 MHz, DMSO-d6): δ=7.94 (s, 1H), 7.70 (s, 1H), 5.91 (s, 1H), 4.15 (s, 2H), 3.66-3.60 (m, 4H), 3.45-3.37 (m, 4H).

 ………..

Example 71

2-(6-Morpholin-4-ylpyrimidin-4-yl)-4-(1H-1,2,3-triazol-1-yl)-1,2-dihydro-3H-pyrazol-3-one

Figure US20100305085A1-20101202-C00156

1.9 g (8.8 mmol) of the compound from Example 3A and 1.9 g (9.7 mmol) of the compound from Example 16A are initially introduced into 25 ml ethyl acetate and 504 mg (4.4 mmol) TFA are added at RT. The mixture is stirred under reflux for 16 h, then cooled to 5° C. and subsequently stirred for a further 2 h. The solid formed is filtered off, washed with ethyl acetate and dried first in air and thereafter under a high vacuum. 1.7 g of product are obtained.

The mother liquor is combined with the wash solution and the solvent is removed. According to LC-MS, the residue (2.4 g) still contains the intermediate 3-[2-(6-morpholin-4-ylpyrimidin-4-yl)hydrazino]-2-(1H-1,2,3-triazol-1-yl)prop-2-enoic acid ethyl ester (intermediate stage of the cyclization), which is used directly for the preparation of Example 72 (see there).

Yield: 1.7 g (61% of th.)

LC-MS (Method 9): Rt=0.90 min; MS (ESIpos): m/z=315 [M+H]+;

1H-NMR (400 MHz, DMSO-d6): δ=8.42 (s, 1H), 8.38 (s, 1H), 8.01 (s, 1H), 7.73 (s, 1H), 7.70 (s, 1H), 3.71-3.65 (m, 4H), 3.57-3.51 (m, 4H).

………..

Hydrochloride

Example 72

2-(6-Morpholin-4-ylpyrimidin-4-yl)-4-(1H-1,2,3-triazol-1-yl)-1,2-dihydro-3H-pyrazol-3-one hydrochloride

Figure US20100305085A1-20101202-C00157

Batch 1: 7.5 ml of a 4 N solution of hydrogen chloride in dioxane are added to 1.7 g (5.4 mmol) of the compound from Example 71. The mixture is stirred at RT, 5 ml dioxane are added and the mixture is stirred at RT for 16 h. The solid is filtered off and washed with 5 ml dioxane. The mixture is dried under a high vacuum for 16 h, 10 ml methanol are then added and the mixture is stirred at RT for 1 h. The solid is filtered off, washed with 4 ml methanol and dried under a high vacuum. 1.6 g of the title compound are obtained.

Batch 2: A further amount of the title compound is obtained as follows: The residue (2.4 g) obtained from the mother liquor during the synthesis of Example Compound 71, which contains the open-ring intermediate state of the cyclization, 3-[2-(6-morpholin-4-ylpyrimidin-4-yl)hydrazino]-2-(1H-1,2,3-triazol-1-yl)prop-2-enoic acid ethyl ester, is dissolved in 12 ml ethanol and 1.5 ml 30% strength sodium methylate solution in methanol are added at RT, while stirring. The mixture is subsequently stirred at RT for 45 min, then adjusted to pH 5 with 2 N hydrochloric acid and subsequently stirred at RT for a further 16 h. The mixture is cooled to 10° C. and the solid is filtered off and washed with 3.5 ml dioxane. The mixture is dried under a high vacuum for 16 h, 5 ml methanol are then added and the mixture is subsequently stirred at RT for 1 h. The solid is filtered off, washed with 2 ml methanol and dried under a high vacuum to give a further 997 mg of the title compound in this way.

Yield: together 2.6 g (83% of th.)

LC-MS (Method 6): Rt=0.89 min; MS (ESIpos): m/z=315 [M+H]+;

1H-NMR (400 MHz, DMSO-d6): δ=8.54 (s, 1H), 8.39 (s, 1H), 8.28 (s, 1H), 7.88 (s, 1H), 7.42 (s, 1H), 3.71 (s, 8H).

References

  1. Jump up^ Flamme, I; Oehme, F; Ellinghaus, P; Jeske, M; Keldenich, J; Thuss, U (2014). “Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85-3934 (Molidustat) stimulates erythropoietin production without hypertensive effects”PLoS ONE9 (11): e111838. Bibcode:2014PLoSO…9k1838Fdoi:10.1371/journal.pone.0111838PMC 4230943PMID 25392999.
  2. Jump up^ Gupta, Nupur; Wish, Jay B (2017). “Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors: A Potential New Treatment for Anemia in Patients with CKD”. American Journal of Kidney Diseases69 (6): 815. doi:10.1053/j.ajkd.2016.12.011PMID 28242135.
  3. Jump up^ Dib, Josef; Mongongu, Cynthia; Buisson, Corinne; Molina, Adeline; Schänzer, Wilhelm; Thuss, Uwe; Thevis, Mario (2017). “Mass spectrometric characterization of the hypoxia-inducible factor (HIF) stabilizer drug candidate BAY 85-3934 (molidustat) and its glucuronidated metabolite BAY-348, and their implementation into routine doping controls”. Drug Testing and Analysis9 (1): 61–67. doi:10.1002/dta.2011PMID 27346747.
Patent ID

Title

Submitted Date

Granted Date

US8653111 Substituted dihydropyrazolones for treating cardiovascular and hematological diseases
2012-01-23
2014-02-18
US8653074 Substituted sodium 1H-pyrazol-5-olate
2011-11-08
2014-02-18
US8389520 SUBSTITUTED DIHYDROPYRAZOLONES FOR TREATING CARDIOVASCULAR AND HEMATOLOGICAL DISEASES
2010-12-02
US2016015786 MOBILIZING AGENTS AND USES THEREFOR
2013-11-04
2016-01-21
US2015087827 METHOD FOR THE PREPARATION OF TRIAZOLE COMPOUNDS
2013-05-06
2015-03-26
Molidustat
Molidustat structure.png
Clinical data
Synonyms Bay 85-3934
ATC code
  • None
Identifiers
CAS Number
PubChem CID
UNII
Chemical and physical data
Formula C13H14N8O2
Molar mass 314.31 g·mol−1
3D model (JSmol)

//////////MolidustatBay 85-3934

Advertisements

Revefenacin, ревефенацин , ريفيفيناسين , 瑞维那新 ,


Revefenacin.png

Revefenacin; 864750-70-9; TD-4208; UNII-G2AE2VE07O; G2AE2VE07O; TD-4208; GSK-1160724;

160724; GSK 1160724; TD-4028; YUPELRI

Molecular Formula: C35H43N5O4
Molecular Weight: 597.76 g/mol

[1-[2-[[4-[(4-carbamoylpiperidin-1-yl)methyl]benzoyl]-methylamino]ethyl]piperidin-4-yl] N-(2-phenylphenyl)carbamate

TD-4208
UNII:G2AE2VE07O
ревефенацин [Russian] [INN]
ريفيفيناسين [Arabic] [INN]
瑞维那新 [Chinese] [INN]

Revefenacin is under investigation for the treatment of Chronic Obstructive Pulmonary Disease (COPD).

  • Originator Theravance
  • Developer Theravance Biopharma
  • Class Antiasthmatics; Biphenyl compounds; Carbamates; Piperidines
  • Mechanism of Action Muscarinic receptor antagonists
  • Preregistration Chronic obstructive pulmonary disease
  • 17 Sep 2018 Efficacy data from two replicate 12-week phase III trials and a 12-month safety trial in Chronic obstructive pulmonary disease (COPD) presented at the European Respiratory Society International Congress (ERS-2018)
  • 31 May 2018 Theravance Biopharma in collaboration with Theravance Biopharma initiates enrolment in a phase III trial for Chronic obstructive pulmonary disease in USA (NCT03573817)
  • 18 May 2018Efficacy and adverse events data from a phase I trial in Chronic obstructive pulmonary disease presented at the 114th International Conference of the American Thoracic Society

The compound was licensed to GlaxoSmithKline by Theravance for the inhalation treatment of chronic obstructive pulmonary disease in 2004. The rights were returned in 2009. In 2014, Theravance Biopharma spun-off from Theravance. In 2015, Theravance Biopharma and Mylan enter in a co development agreement for the global development and commercialization of the once-daily nebulizer for the treatment of chronic obstructive pulmonary disease and other respiratory diseases.

SYN

WO 2012009166

SYN OF INT

STR1

FINAL

STR1

PAPER
Discovery of (R)-1-(3-((2-Chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl (1,1′-biphenyl)-2-ylcarbamate (TD-5959, GSK961081, batefenterol): First-in-class dual pharmacology multivalent muscarinic antagonist and 2 agonist (MABA) for the treatment of chronic obstructive pulmonary disease (COPD)
J Med Chem 2015, 58(6): 2609

Discovery of (R)-1-(3-((2-Chloro-4-(((2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl)amino)methyl)-5-methoxyphenyl)amino)-3-oxopropyl)piperidin-4-yl [1,1′-Biphenyl]-2-ylcarbamate (TD-5959, GSK961081, Batefenterol): First-in-Class Dual Pharmacology Multivalent Muscarinic Antagonist and β2 Agonist (MABA) for the Treatment of Chronic Obstructive Pulmonary Disease (COPD)

Departments of Medicinal Chemistry, Pharmacology, §Drug Metabolism and Pharmacokinetics, and Molecular and Cellular Biology, Theravance Biopharma, Inc., 901 Gateway Boulevard, South San Francisco, California 94080, United States
J. Med. Chem.201558 (6), pp 2609–2622
DOI: 10.1021/jm501915g
*Phone: 650-808-3737. E-mail: ahughes@theravance.com
Abstract Image

Through application of our multivalent approach to drug discovery we previously reported the first discovery of dual pharmacology MABA bronchodilators, exemplified by 1. Herein we describe the subsequent lead optimization of both muscarinic antagonist and β2 agonist activities, through modification of the linker motif, to achieve 24 h duration of action in a guinea pig bronchoprotection model. Concomitantly we targeted high lung selectivities, low systemic exposures and identified crystalline forms suitable for inhalation devices. This article culminates with the discovery of our first clinical candidate 12f (TD-5959, GSK961081, batefenterol). In a phase 2b trial, batefenterol produced statistical and clinically significant differences compared to placebo and numerically greater improvements in the primary end point of trough FEV1 compared to salmeterol after 4 weeks of dosing in patients with moderate to severe chronic obstructive pulmonary disease (COPD).

PATENT

WO 2006099165

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006099165

FIG. 18 shows a PXRD pattern of Form I of the crystalline freebase of the compound of formula I. This crystalline freebase is further characterized by the DSC trace in FIG. 19, the TGA trace in FIG. 20, the DMS trace in FIG. 21, and the micrographic image in FIG. 22.
FIG. 23 shows a PXRD pattern of Form II of the crystalline freebase of the compound of formula I. This crystalline freebase is further characterized by the DSC trace in FIG. 24, the TGA trace in FIG. 25, and the DMS trace in FIG. 26.

PREPARATION 1
Biphenyl-2-ylcarbamic Acid Piperidin-4-yl Ester
Biphenyl-2-isocyanate (97.5 g, 521 mmol) and 4-hydroxy-N-benzylpiperidine (105 g, 549 mmol) were heated together at 70 0C for 12 hours. The reaction mixture was then cooled to 50 0C and ethanol (1 L) was added and then 6M HCl (191 mL) was added slowly. The resulting mixture was then cooled to ambient temperature and ammonium formate (98.5 g, 1.56 mol) was added and then nitrogen gas was bubbled through the solution vigorously for 20 minutes. Palladium on activated carbon (20 g, 10 wt% dry basis) was then added and the reaction mixture was heated at 40 0C for 12 hours, and then filtered through a pad of Celite. The solvent was then removed under reduced pressure and IM HCl (40 mL) was added to the crude residue. The pH of the mixture was then adjusted with IO N NaOH to pH 12. The aqueous layer was extracted with ethyl acetate (2 x 150 mL) and the organic layer was dried (magnesium sulfate), filtered and the solvent removed under reduced pressure to give 155 g of the title intermediate (100% yield). HPLC (10-70) Rt = 2.52; m/z: [M + H+] calc’d for C18H20N2O2 297.15; found 297.31
PREPARATION 2
iV-Benzyl-iV-methylaminoacetaldehvde
To a 3-necked 2-L flask was added N-benzyl-N-methylethanolamine (30.5 g, 0.182 mol), DCM (0.5 L), DIPEA (95 mL, 0.546 mol) and DMSO (41 mL, 0.728 mol).

Using an ice bath, the mixture was cooled to about -10 °C and sulfur trioxide pyridine-complex (87 g, 0.546 mol) was added in 4 portions over 5 minute intervals. The reaction was stirred at -10 0C for 2 hours. Before removing the ice-bath, the reaction was quenched by adding water (0.5 L). The aqueous layer was separated and the organic layer was washed with water (0.5 L) and brine (0.5 L) and then dried over magnesium sulfate and filtered to provide the title compound which was used without further purification.
PREPARATION 3
Biphenyl-2-ylcarbamic Acid l-[2-(Εenzylmethylammo)ethyllpiperidin-4-yl Ester
To a 2-L flask, containing the product of Preparation 2 in DCM (0.5 L) was added the product of Preparation 1 (30 g, 0.101 mol) followed by sodium triacetoxyborohydride (45 g, 0.202 mol). The reaction mixture was stirred overnight and then quenched by the addition of 1 N hydrochloric acid (0.5 L) with vigorous stirring. Three layers were observed and the aqueous layer was removed. After washing with IN NaOH (0.5 L)3 a homogenous organic layer was obtained which was then washed with a saturated solution of aqueous NaCl (0.5 L), dried over magnesium sulfate, filtered and the solvent removed under reduced pressure. The residue was purified by dissolving it in a minimal amount of isopropanol and cooling this solution to 0 °C to form a solid which was collected and washed with cool isopropanol to provide 42.6 g of the title compound (95% yield). MS m/z: [M + H+] calc’d f for C28H33N3O2444.3; found 444.6. Rf=3.5l min (10-70 ACN:H2O, reverse phase HPLC).
PREPARATION 3 A
Biphenyl-2-ylcarbamic Acid l-f2-(Benzylmethylammo)ethyllpiperidin-4-yl Ester
The title compound was prepared by mesylation of iV-benzyl-N-methyl
ethanolamine, which was then reacted with biphenyl-2-ylcarbamic acid piperidin-4-yl ester in an alkylation reaction.
A 500 mL flask (reactor flask) was charged with N-benzyl-iV-methylethanolamine (24.5 mL), DCM (120 mL), NaOH (80 mL; 30wt%) and tetrabutylammonium chloride. Mixing at low speed throughout the reaction, the mixture was cooled to -10 °C (cooling bath), and the addition funnel charged with DCM (30 mL) and mesyl chloride (15.85 mL), which was added drop wise at a constant rate over 30 minutes. The addition was exothermic, and stirring was continued for 15 minutes while the temperature equilibrated back to -10 0C. The reaction was held for at least 10 minutes to ensure full hydrolysis of the excess mesyl chloride.
A 250 mL flask was charged with biphenyl-2-ylcarbamic acid piperidin-4-yl ester (26 g; prepared as described in Preparation 1) and DCM (125 mL), stirred for 15 minutes at room temperature, and the mixture chilled briefly to 10 0C to form a slurry. The slurry was then charged into the reactor flask via the addition funnel. The cooling bath was removed and the reaction mixture was warmed to 5 °C. The mixture was transferred to a separatory funnel, the layers allowed to settle, and the aqueous layer removed. The organic layer was transferred back to the reactor flask, stirring resumed, the mixture held to room
temperature, and the reaction monitored by HPLC for a total of 3.5 hours.
The reactor flask was charged with NaOH (IM solution; 100 mL), stirred, and the layers allowed to settle. The organic layer was separated, washed (NaCl satd. solution), its volume partially reduced under vacuum, and subjected to repeated IPA washings. The solids were collected and allowed to air-dry (25.85 g, 98% purity). Additional solids were obtained from further processing of the mother liquor (volume reduction, EPA, cooling).
PREPARATION 4
Biphenyl-2-ylcarbamic Acid l-(2-Methylaminoethyl)piperidin-4-yl Ester
To a Parr hydrogenation flask was added the product of Preparation 3 (40 g, 0.09 mol) and ethanol (0.5 L). The flask was flushed with nitrogen gas and palladium on activated carbon (15g, 10 wt% (dry basis), 37% wt/wt) was added along with acetic acid (20 mL). The mixture was kept on the Parr hydrogenator under a hydrogen atmosphere (-50 psi) for 3 hours. The mixture was then filtered and washed with ethanol. The filtrate was condensed and the residue was dissolved in a minimal amount of DCM. Isopropyl acetate (10 volumes) was added slowly to form a solid which was collected to provide 22.0 g of the title compound (70% yield). MS m/z: [M + H+] calc’d for C21H27N3O2 354.2; found 354.3. R/=2.96 min (10-70 ACNrH2O, reverse phase HPLC).
PREPARATION 5
Biphenyl-2-ylcarbamic Acid l-{2-[(4-Formylbenzoyr)
methylaminol ethyll piperidin-4- yl Ester
To a three-necked 1-L flask was added 4-carboxybenzaldehyde (4.77 g,
31.8 mmol), EDC (6.64 g, 34.7 mmol), HOBT (1.91 g, 31.8 mmol), and DCM (200 mL). When the mixture was homogenous, a solution of the product of Preparation 4 (10 g, 31.8 mmol) in DCM (100 mL) was added slowly. The reaction mixture was stirred at room temperature for approximately 16 hours and then washed with water (1 x 100 mL), IN HCl (5 x 60 mL), IN NaOH (1 x 100 mL) brine (1 x 5OmL)3 dried over sodium sulfate, filtered and concentrated to afford 12.6 g of the title compound (92% yield; 85% purity based on HPLC). MS m/z: [M + H+] calc’d for C29H31N3O4 486.2; found 486.4. i?y=3.12 min (10-70 ACNiH2O, reverse phase HPLC).
EXAMPLE 1
Biphenyl-2-ylcarbamic Acid 1 -(2- { |4-(4-Carbamoylpiperidin- 1 -ylmethvD
benzoylimethylamino) ethyl’)piperidin-4-vl Ester

To a three-necked 2-L flask was added isonipecotamide (5.99 g, 40.0 mmol), acetic acid (2.57 mL), sodium sulfate (6.44 g) and isopropanol (400 mL). The reaction mixture was cooled to 0-10 0C with an ice bath and a solution of biphenyl-2-ylcarbamic acid l-{2-[(4-formylbenzoyl)methylamino]ethyl}piperidin-4-yl ester (11 g, 22.7 mmol; prepared as described in Preparation 5) in isopropanol (300 mL) was slowly added. The reaction mixture was stirred at room temperature for 2 hours and then cooled to 0-10 0C. Sodium triacetoxyborohydride (15.16 g, 68.5 mmol) was added portion wise and this mixture was stirred at room temperature for 16 hours. The reaction mixture was then concentrated under reduced pressure to a volume of about 50 mL and this mixture was acidified with IN HCl (200 mL) to pH 3. The resulting mixture was stirred at room temperature for 1 hour and then extracted with DCM (3 x 250 mL). The aqueous phase was then cooled to 0-5 °C with an ice bath and 50% aqueous NaOH solution was added to adjust the pH of the mixture to 10. This mixture was then extracted with isopropyl acetate (3 x 300 mL) and the combined organic layers were washed with water (100 mL), brine (2 x 50 mL), dried over sodium sulfate, filtered and concentrated to afford 10.8 g of the title compound (80% yield. MS m/z: [M + H+] calc’d for C35H43N5O4 598.3; found 598.6. Rj=232 min (10-70 ACNiH2O, reverse phase HPLC).

EXAMPLE 2
Crystalline Diphosphate Salt of Biphenyl-2-ylcarbamic Acid l-(2-{[4-(4- Carbamoylpiperidin-l-ylmethyl)benzoyl1methylamino>ethyDpiperidin-4-yl Ester
500 mg of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiρeridin-l-ylmethyl) benzoyl]methylamino}ethyl)piperidin-4-yl ester (0.826 mmol of 96% pure material;
prepared as described in Example 1) was taken up in 5 ml of water and 1.5 ml of IM phosphoric acid. The pH was adjusted to approximately pH 5.3 with an additional 0.25ml of IM phosphoric acid (equaling 2.1 molar equivalents). The clear solution was filtered through a 0.2 micron filter, frozen and lyophilized to dryness to yield an amorphous diphosphate salt.
20 mg of the amorphous diphosphate salt was dissolved in 2 ml of IPA: ACN (1:1). 0.1 ml of water was added and the mixture heated to 60 °C under stirring. Almost all of the solids dissolved. The suspension was allowed to cool to ambient temperature, under stirring, overnight. The resulting crystals were collected by filtration and air-dried for 20 minutes to give the title compound (18.5 mg, 93% yield) as a white crystalline solid.
When examined under a microscope using polarized light, the crystals exhibited some birefringence.
EXAMPLE 3
Crystalline Diphosphate Salt of Biphenyl-2-ylcarbamic Acid l-(2-{|4-(4- Carbamoylpiperidin-l-vhτiethyl)benzoyl]methylamino}ethyl)piperidin-4-yl Ester
5.0 g of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester (freebase; prepared as described in Example 1) was combined with 80 ml of IPA:ACN (1:1). 4.0 ml of water was added and the mixture heated to 50 °C under stirring, forming a clear solution. To this was added dropwise at 50 °C, 16 ml IM phosphoric acid. The resulting cloudy solution was stirred at 50 °C for 5 hours, then allowed to cool to ambient temperature, under slow stirring, overnight. The resulting crystals were collected by filtration and air-dried for 1 hour, then under vacuum for 18 hours, to give the title compound (5.8 g, 75% yield) as a white crystalline solid (98.3% purity by HPLC).

EXAMPLE 4
Crystalline Monosulfate Salt of Biphenyl-2-ylcarbamic Acid l-(2-{[4-(4- Carbamoylpiperidm-l-ylmethvπbenzoyllmethylamino>ethyl)piperidm-4-yl Ester
442 mg of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-Carbamoylpiperidin-l-ylmethyl) benzoyl]methylamino} ethyl)piperidin-4-yl ester (0.739 mmol of 96% pure material;
prepared as described in Example 1) was taken up in 5 ml of H2OrACN (1 : 1) and 1.45 ml of IN sulfuric acid was added slowly, while monitoring the pH. The pH was adjusted to approx. pH 3.3. The clear solution was filtered through a 0.2 micron filter, frozen and lyophilized to dryness to yield a monosulfate salt.
30.3 mg of the monosulfate salt was dissolved in 1.65 ml of IPA:ACN (10:1). The suspension was heated by placing the vial in a pre-heated 60 °C water bath for 30 minutes. A viscous material was formed and the heat increased to 70 °C for 30 minutes. Since the material remained viscous, the heat was lowered to 60 0C and the mixture heated for an additional hour. The heat was turned off and the mixture was allowed to cool to room temperature. After 4 days, the material appeared to be solid, and the sample was allowed to sit for an additional nine days. The solid was then filtered and dried using a vacuum pump for 1 hour to give the title compound (23 mg, 76% yield).
EXAMPLE 5
Crystalline Monosulfate Salt of Biphenyl-2-ylcarbamic Acid l-(2-{[~4-(4- Carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino>ethyl)piperidin-4-yl Ester
161 g of the monosulfate salt (prepared as described in Example 4) was dissolved in 8.77 ml of IPA:ACN (10:1). The suspension was heated by placing the vial in a pre-heated 70 °C water bath for 1.5 hours. Oil droplets formed within 5 minutes. The heat was lowered to 60 °C and the mixture heated for an additional 1.5 hours, followed by heating at 50 °C for 40 minutes, at 40 °C for 40 minutes, then at 30 0C for 45 minutes. The heat was turned off and the mixture was allowed to slowly cool to room temperature. The next day, the material was viewed under a microscope and indicated needles and plates. The material was then heated at 40 °C for 2 hours, at 35 0C for 30 minutes, and then at 30 °C for 30 minutes. The heat was turned off and the mixture was allowed to slowly cool to room temperature. The solid was then filtered and dried using a vacuum pump for 1 hour to give the title compound (117 mg, 73% yield).

EXAMPLE 6
Crystalline Dioxalate Salt of Biphenyl-2-ylcarbamic Acid l-(2-{|4-(4-Carbamoylpiperidin- 1 -ylmethyl)benzoyl]methylamino> ethyl)piperidin-4-yl Ester
510 mg of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino} ethyl)piperidin-4-yl ester (0.853 mmol of 96% pure material; prepared as described in Example 1) was taken up in 5 ml of H2O:ACN (1:1) and 1.7 ml of IM aqueous oxalic acid was added slowly, while monitoring the pH. The pH was adjusted to approx. pH 3.0. The clear solution was filtered through a 0.2 micron filter, frozen and lyophilized to dryness to yield a dioxalate salt.
31.5 mg of the dioxalate salt was dissolved in 2.76 ml of 94%IPA/6%H20. The mixture was stirred in a pre-heated 60 °C water bath for 2.5 hours. After 25 minutes, all of the sample was in solution. The heat was turned off and the mixture was allowed to cool to room temperature. The next day, a small amount of viscous material was present. The vial was refrigerated at 4 °C. After 4 days, the viscous material was still present. The vial was then placed at room temperature and observed one month later. The material appeared to be solid, and was observed to be crystalline under a microscope. The solid was then filtered and dried using a vacuum pump for 1 hour to give the title compound (20 mg, 63.5% yield).
EXAMPLE 7
Crystalline Dioxalate Salt of Biphenyl-2-ylcarbamic Acid l-(2-{T4-(4-Carbamoylpiperidin- 1 -ylmethyl)benzoyl]methylammo) ethvDpiperidin-4-yl Ester
150 mg of the dioxalate salt (prepared as described in Example 6) was dissolved in 13.1 ml of 94%IPA/6%H20. The mixture was stirred in a pre-heated 60 °C water bath for 2.5 hours. The heat was turned off and the mixture was allowed to cool to room
temperature. The vial was refrigerated at 4 °C. After 6 days, an oily material was observed with what appeared to be a crystal on the side of the vial. The vial was then allowed to reach room temperature, at which point seeds (crystalline material from Example 6) were added and allowed to sit for 16 days. During this time, more crystals were observed to come out of solution. The solid was then filtered and dried using a vacuum pump for 14 hours to give the title compound (105 mg, 70% yield).

EXAMPLE 8
Crystalline Freebase Biphenyl-2-ylcarbamic Acid l-(2-(f4-(4-Carbamoylpiperidin-l- ylmethvDbenzoyl]methylaniino}ethyl)piperidin-4-yl Ester (Form T)
109 mg of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester (prepared as described in
Example 1) was dissolved in 0.56 ml of H2O: ACN (1:1). The suspension was left in a vial (cap loosely placed on top) to allow for a slower evaporation time. The vial was placed under a nitrogen flow environment, although the nitrogen was not used for evaporation, only for the environment. A precipitate was visible within 1 day, which was observed to be crystalline under a microscope. The solid was then placed on a high vacuum line to remove all solvent to give the title compound. Quantitative recovery, 97.8% pure by HPLC.

In an alternate procedure, after dissolving in H2O: ACN (1:1) (approximately 350 mg/mL), the vial was stored at 5 0C, and the precipitate was visible at day 2. The solid was filtered, rinsed with water, and dried on high vacuum overnight. Recovery was 55%, with the solid having 98.2% purity and the liquid having 92.8% purity.
EXAMPLE 9
Crystalline Freebase Biphenyl-2-ylcarbamic Acidl-(2-{J4-(4-Carbamoylpiperidin- l-yhiaethyl)benzoyllmethylammo|ethvDpiperidin-4-yl Ester (Form T)
50.4 mg of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester (prepared as described in
Example 1) was dissolved in 0.144 ml of H2O:ACN (1:1). The suspension was left in vial (cap loosely placed on top) to allow for a slower evaporation time. The vial was refrigerated at 4 0C for 6 days. A precipitate was visible after 2 days. The solid was filtered and placed on a high vacuum line to remove all solvent and give the title compound as a white solid (27.8 mg, 55.2 % yield).
EXAMPLE 10
Crystalline Freebase Biphenyl-2-ylcarbamic Acid l-(2-{[4-(4-Carbamoylpiperidin- l-vhnethvDbenzoyl]methylamino>ethvDpiperidin-4-yl Ester (Form T)
230 mg of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-yhnethyl)benzoyl]methylamino}ethyl)piρeridin-4-yl ester (prepared as described in
Example 1) was dissolved in 0.2 ml of H2O:ACN (1:1), using slight heat. The mixture was then heated in a 70 °C water bath for 2 hours. The heat was turned off and the mixture was allowed to cool to room temperature, then refrigerated at 4 °C for 1 hour. 50 μl of water was then added (oiled out), followed by the addition of 40 μl of ACN to get the sample back into solution. Seeds (crystalline material from Example 8) were added under slow stirring at room temperature. Crystals started to form ,and the mixture was allowed to sit overnight, with slow stirring. The next day, a heat cool cycle was applied (30 °C for 10 minutes, 40 0C for 10 minutes, then 50 °C for 20 minutes). The heat was turned off and the mixture allowed to cool overnight, with slow stirring. The next day, a second heat/cool cycle was applied (60 0C for 1 hour, with dissolving observed at 70 °C). The heat was turned off and the mixture allowed to cool overnight, with slow stirring. The next day, crystals were present and a third heat cool cycle was applied (60 0C for 3 hours). The heat was turned off and the mixture allowed to cool overnight, with slow stirring. The next day, a heat cool cycle was applied (60 °C for 3 hours, slow cool, then 60 °C for 3 hours). The heat was turned off and the mixture allowed to cool overnight, with slow stirring. After 3 days, the solid was filtered and placed on a high vacuum line to remove all solvent and give the title compound.
EXAMPLE 11
Crystalline Freebase Biphenyl-2-ylcarbamic Acid l-(2-{[4-(4-Carbamoylpiperidin- l-ylmethyl)benzoyl]methylamino|ethyl)piperidin-4-yl Ester (Form JD
70 mg of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-yhnethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester (prepared as described in
Example 1) was dissolved in 0.1 mL ACN. After addition of 0.3 ml MTBE, the solution appeared cloudy. An additional 50 μl of ACN was added to clarify the solution (155 mg/ml ACN:MTBE = 1 :2). The mixture was left in the vial and capped. Crystals appeared by the next day. The solid was then filtered and placed on a high vacuum line to remove all solvent and give the title compound.

PATENT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2011008809

U.S. Patent Publication No. 2005/0203133 to Mammen et al. discloses novel biphenyl compounds that are expected to be useful for treating pulmonary disorders such as chronic obstructive pulmonary disease (COPD) and asthma. In particular, the compound biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl) benzoyl]methylamino}ethyl)piperidin-4-yl ester is specifically described in this application as possessing muscarinic receptor antagonist or anticholinergic activity.

The chemical structure of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoyl piperidin- 1 -ylmethyl)benzoyl]methylamino } ethyl)piperidin-4-yl ester is represented by formula I:

I

The compound of formula I has been named using the commercially-available AutoNom software (MDL, San Leandro, California).

Therapeutic agents useful for treating pulmonary or respiratory disorders are advantageously administered directly into the respiratory tract by inhalation. In this regard, several types of pharmaceutical inhalation devices have been developed for administering therapeutic agents by inhalation including dry powder inhalers (DPI),

metered-dose inhalers (MDI) and nebulizer inhalers. When preparing pharmaceutical compositions and formulations for use in such devices, it is highly desirable to have a crystalline form of the therapeutic agent that is neither hygroscopic nor deliquescent and which has a relatively high melting point thereby allowing the material to be micronized without significant decomposition. Although crystalline freebase forms of the compound of formula I have been reported in U.S. Patent Publication No. 2007/0112027 to Axt et al. as Form I and Form II, the crystalline freebase forms of the present invention have different and particularly useful properties, including higher melting points

One aspect of the invention relates to crystalline freebase forms of biphenyl-2-ylcarbamic acid 1 -(2- { [4-(4-carbamoylpiperidin- 1 -ylmethyl)benzoyl]methy lamino } ethyl) piperidin-4-yl ester characterized by a powder x-ray diffraction pattern comprising diffraction peaks at 2Θ values of 6.6±0.1, 13.1±0.1, 18.6±0.1, 19.7±0.1, and 20.2±0.1.

Another aspect of the invention relates to a crystalline freebase of biphenyl-2-ylcarbamic acid 1 -(2- { [4-(4-carbamoylpiperidin- 1 -ylmethyl)benzoyl]methy lamino } ethyl) piperidin-4-yl ester, designated as form III, which is characterized by a powder x-ray diffraction pattern comprising diffraction peaks at 2Θ values of 6.6±0.1, 13. l±O.l,

18.6±0.1, 19.7±0.1, and 20.2±0.1; and further characterized by having five or more additional diffraction peaks at 2Θ values selected from 8.8=1=0.1, 10. l±O.l, 11.4±0.1, l l.β±O.l, 14.8±0.1, 15.2±0.1, lβ.l±O.l, 16.4±0.1, 16.9±0.1, 17.5±0.1, 18.2±0.1, 19.3±0.1, 19.9±0.1, 20.8±0.1, 21. l±O.l, 21.7±0.1, and 22.3±0.1.

Still another aspect of the invention relates to a crystalline freebase of biphenyl-2-ylcarbamic acid 1 -(2- { [4-(4-carbamoylpiperidin- 1 -ylmethyl)benzoyl]methy lamino } ethyl) piperidin-4-yl ester, designated as form IV, which is characterized by a powder x-ray diffraction pattern comprising diffraction peaks at 2Θ values of 6.6±0.1 , 13. l±O.1 ,

18.6=1=0.1, 19.7=1=0.1, and 20.2±0.1; and further characterized by having five or more additional diffraction peaks at 2Θ values selected from 10.6±0.1, 15.0=1=0.1, lβ.O±O.l, 17.3±0.1, 17.7±0.1, 20.9±0.1, 21.4±0.1, 22.6±0.1, 24.6±0.1, and 27.8±0.1.

Preparation 1

Biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l- ylmethvDbenzovHmethylaminol ethyDpiperidin-4-yl Ester The diphosphate salt of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester (16 g) was dissolved in a biphasic mixture of water (100 mL) and EtOAc (200 mL). NaOH (2 N, 75 mL) was added over a period of 5 minutes. The mixture was then stirred for 30 minutes. The phases were separated and the aqueous phase was extracted with EtOAc (200 mL). The combined organic phases were concentrated. DCM (100 mL) was added, and the mixture evaporated to dryness. The solids were dried in an oven for about 48 hours to yield the title compound (9.6 g).

EXAMPLE 1

Crystalline Freebase of Biphenyl-2-ylcarbamic Acid l-(2-{r4-(4-Carbamoylpiperidin-l- ylmethyl)benzoyllmethylamino|ethyl)piperidin-4-yl Ester (Form III) Biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester (102.4 mg) was dissolved in MeCN (500 μL). The solution was stirred at room temperature for 80 minutes and a white solid precipitate formed. The mixture was placed in the shaker block to thermocycle (0-40 0C in one hour blocks) for 48 hours. A white, dense, immobile solid was observed. MeCN (500 μL) was added to mobilize the slurry. The mixture was then placed back in the shaker block for 2 hours. The solids were isolated by vacuum filtration using a sinter funnel, then placed in the piston dryer at 40 0C under full vacuum for 15.5 hours, to yield 76.85 mg of the title crystalline compound.

EXAMPLE 2

Crystalline Freebase of Biphenyl-2-ylcarbamic Acid l-(2-{r4-(4-Carbamoylpiperidin-l- ylmethyl)benzoyllmethylamino|ethyl)piperidin-4-yl Ester (Form III) Diphosphate salt of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoyl-piperidin-l-ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester (C3sH43NsO4»2H3PO4; MW 793.75; 632.9 g) was slurried in isopropyl acetate (11.08 L) and water (6.33 L) at room temperature under nitrogen. The suspension was warmed to 53±3 0C and 1OM NaOH (317 mL) was added to the stirred mixture, while maintaining the temperature of the mixture above 50 0C. The mixture was stirred for approximately 5 minutes at 53±3 0C before allowing the layers to settle. The layers were then separated and the aqueous layer was removed. Water (3.16 L) was added to the organic layer while maintaining the temperature of the mixture above 50 0C. The mixture was stirred for 5 minutes at 53±3 0C before allowing the layers to settle. The layers were separated and the water layer was removed. Isopropyl acetate (6.33 L) was added and then about 10 volumes of distillate were collected by atmospheric distillation. This step was repeated with additional isopropyl acetate (3.2 L). After the second distillation, the temperature of the clear solution was reduced to 53±3 0C, then seeded with a suspension of the biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester crystalline freebase (Form III; 3.2 g) in isopropyl acetate (51 mL). The resulting suspension was stirred at 53±3 0C for 2 hours, then cooled to 10±3 0C over 4 hours. The suspension was stirred at 10±3 0C for at least 2 hours and then the solids were collected by filtration. The resulting filter cake was washed with isopropyl acetate (2 x 1.9 L) and the product was dried in vacuo at 50 0C to yield the title crystalline compound (C3SH43NsO4; MW 597.76; 382.5 g, 80.3% yield).

EXAMPLE 3

Recrystallization of Crystalline Freebase of Biphenyl-2-ylcarbamic Acid l-(2-{[4-(4- Carbamoylpiperidin- 1 -ylmethyDbenzoyllmethylaminol ethyl)piperidin-4-yl Ester (Form

III)

Crystalline freebase of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester (Form III; C35H43N5O4; MW 597.76; 372.5 g) was slurried in toluene (5.6 L) at 20±3 0C under nitrogen. The suspension was warmed to 82±3 0C, and held at this temperature until complete dissolution was observed. The solution was then clarified into the crystallizer vessel, followed by rinsing with toluene (373 μL). Solids were observed in the crystallizer vessel, and the vessel was re-heated to 82±3 0C to effect dissolution, then cooled to 58±3 0C and seeded with a pre-sonicated (approximately 1 minute) of crystalline freebase (Form III; 1.9 g) in toluene (8 μL). The resulting suspension was allowed to stand at 58±3 0C for at least 4 hours, then cooled to 20±3 0C over 2 hours (approximate cooling rate of 0.33 °C/min). The suspension was stirred at 20±3 0C for at least 1 hour, then the solids were collected by filtration. The resulting filter cake was washed with toluene (2 x 1.2 L) and the product was dried in vacuo at 52±3 0C to yield the title crystalline compound (345.3 g, 92.7% yield).

EXAMPLE 4

Crystalline Freebase of Biphenyl-2-ylcarbamic Acid l-(2-{r4-(4-Carbamoylpiperidin-l- ylmethyl)benzoyllmethylamino|ethyl)piperidin-4-yl Ester (Form IV) Biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester (prepared as described in Preparation 1; 2.5 g) was dissolved in MeCN (10 mL) to yield a viscous oily pale yellow material. Additional MeCN (5 mL) was added to dilute the material. The solution was seeded with crystalline freebase (20 mg; Form III prepared as described in Example 1) and stirred at room temperature for 90 minutes. A large amount of white precipitate (small crystals) was observed. The slurry was analyzed under a polarized light microscope and found to be birefringent.

Additional MeCN (3 mL) was added and the slurry was placed in a Metz SynlO block to thermocycle (0-40 0C in one hour blocks) at 800 rpm overnight. The Metz SynlO is a 10 position parallel reaction station that is static. Agitation of the solution/slurry was by a cross magnetic stirrer bar. The shaker block was a separate piece of equipment that was heated and cooled by an external Julabo bath. The material was removed at 0 0C. It was observed that the slurry had settled out, leaving a pale yellow solution above the white precipitate. The slurry was stirred and placed back in the shaker block to thermocycle.

The material was removed at 40 0C, and stirred at a high agitation rate at room temperature for 80 minutes. The slurry was again analyzed and found to be birefringent. The filter cake was isolated by vacuum filtration using a sinter funnel. MeCN (3 mL) was used to wet the filter paper and the filter cake was washed with MeCN prior to filtration. The cake was deliquored under vacuum for 40 minutes to yield 2.3 g of a flowing white powder. The material was placed in a piston dryer at 400C for 65 hours, to yield 2.2 g of the title crystalline compound as a white powder (99.6% purity).

PATENT

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=0049F6A3F9FB8C7273B825D49F2465F6.wapp1nA?docId=WO2005087738&tab=PCTDESCRIPTION&maxRec=1000

Example 1
Biphenyl-2-ylcarbamic Acid l-(2-{[4-(4-Carbamoylpiperidin-l- ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl Ester

To a three-necked 2-L flask was added isonipecotamide (5.99 g, 40.0 mmol), acetic acid (2.57 mL), sodium sulfate (6.44 g) and LPA (400 mL). The reaction mixture was cooled to 0-10°C with an ice bath and a solution ofthe product of Preparation 5 (11 g, 22.7 mmol) in LPA (300 mL) was slowly added. The reaction mixture was stined at room temperature for 2 hours and then cooled to 0-10°C. Sodium triacetoxyborohydride (15.16 g, 68.5 mmol) was added portion wise and this mixture was stined at room temperature for 16 h. The reaction mixture was then concentrated under reduced pressure to a volume of about 50 mL and this mixture was acidified with IN HCl (200 mL) to pH 3. The resulting mixture was stined at room temperature for 1 hour and then extracted with DCM (3 x 250 mL). The aqueous phase was then cooled to 0-5°C with an ice bath and 50% aqueous NaOH solution was added to adjust the pH ofthe mixture to 10. This mixture was then extracted with isopropyl acetate (3 x 300 mL) and the combined organic layers were washed with water (100 mL), brine (2 x 50 mL), dried over sodium sulfate, filtered and concentrated to afford 10.8 g ofthe title compound (80% yield. MS m/z: [M + H“1”] calcd for C35H43N5O4, 598.3; found, 598.6. Rf = 2.32 min (10-70 ACN: H2O, reverse phase HPLC).

Example 1A
Biphenyl-2-ylcarbamic acid l-(2- {[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl] methylamino} ethyl)piperidin-4-yl ester was also prepared as a diphosphate salt using the following procedure :
5.0 g ofthe product of Example 1 was combined with 80 ml of IPA:ACN (1:1). 4.0 ml of water was added and the mixture heated to 50°C under stining, forming a clear solution. To this was added dropwise at 50°C, 16 ml 1M phosphoric acid. The resulting cloudy solution was stined at 50°C for 5 hours, then allowed to cool to ambient temperature, under slow stirring, overnight. The resulting crystals were collected by filtration and air-dried for 1 hour, then under vacuum for 18 hours, to give the diphosphate salt ofthe title compound (5.8 g, 75% yield) as a white crystalline solid (98.3% purity by HPLC).

Example IB
Biphenyl-2-ylcarbamic acid 1 -(2- { [4-(4-carbamoylpiperidin- 1 -ylmethyl)benzoyl] methylamino }ethyl)piperidin-4-yl ester was also prepared as a monosulfate salt using the following procedure.
442 mg ofthe product of Example 1 (0.739 mmol of 96% pure material) was taken up in 5 ml of H2O:ACN (1:1) and 1.45 ml of IN sulfuric acid was added slowly, while monitoring the pH. The pH was adjusted to approx. pH 3.3. The clear solution was filtered through a 0.2 micron filter, frozen and lyophilized to dryness. 161 g of the lyophilized material was dissolved in 8.77 ml of IPA:ACN (10:1). The suspension was heated by placing the vial in a pre-heated 70°C water bath for 1.5 hours. Oil droplets formed within 5 minutes. The heat was lowered to 60°C and the mixture heated for an additional 1.5 hours, followed by heating at 50°C for 40 minutes, at 40°C for 40 minutes, then at 30°C for 45 minutes. The heat was turned off and the mixture was allowed to slowly cool to room temperature. The next day, the material was viewed under a microscope and indicated needles and plates. The material was then heated at 40°C for 2 hours, at 35°C for 30 minutes, and then at 30°C for 30 minutes. The heat was turned off and the mixture was allowed to slowly cool to room temperature. The solid was then filtered and dried using a vacuum pump for 1 hour to give the monosulfate salt ofthe title compound (117 mg, 73% yield).

Example IC
Biphenyl-2-ylcarbamic acid l-(2- {[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl] methylamino} ethyl)piperidin-4-yl ester was also prepared as a dioxalate salt using the following procedure.
510 mg ofthe product of Example 1 (0.853 mmol of 96% pure material) was taken up in 5 ml of H2O:ACN (1:1) and 1.7 ml of 1M aqueous oxalic acid was added slowly, while monitoring the pH. The pH was adjusted to approx. pH 3.0. The clear solution was filtered through a 0.2 micron filter, frozen and lyophilized to dryness. 150 mg ofthe lyophilized material was dissolved in 13.1 ml of 94%IPA/6%H20. The mixture was stined in a pre-heated 60°C water bath for 2.5 hours. The heat was turned off and the mixture was allowed to cool to room temperature. The vial was refrigerated at 4°C. After 6 days, an oily material was observed with what appeared to be a crystal on the side ofthe vial. The vial was then allowed to reach room temperature, at which point seeds (synthesis described below) were added and allowed to sit for 16 days. During this time, more crystals were observed to come out of solution. The solid was then filtered and dried using a vacuum pump for 14 hours to give the dioxalate salt ofthe title compound (105 mg, 70% yield).
Seed Synthesis
510 mg ofthe product of Example 1 (0.853 mmol of 96% pure material) was taken up in 5 ml of H2O:ACN (1:1) and 1.7 ml of 1M aqueous oxalic acid was added slowly, while monitoring the pH. The pH was adjusted to approx. pH 3.0. The clear solution was filtered through a 0.2 micron filter, frozen and lyophilized to dryness to yield a dioxalate salt. 31.5 mg of this dioxalate salt was dissolved in 2.76 ml of 94%IPA/6%H20. The mixture was stined in a pre-heated 60°C water bath for 2.5 hours. After 25 minutes, all of the sample was in solution. The heat was turned off and the mixture was allowed to cool to room temperature. The next day, a small amount of viscous material was present. The vial was refrigerated at 4°C. After 4 days, the viscous material was still present. The vial was then placed at room temperature and observed one month later. The material appeared to be solid, and was observed to be crystalline under a microscope. The solid was then » filtered and dried using a vacuum pump for 1 hour to give the dioxalate salt (20 mg, 63.5% yield).

Example ID
Biphenyl-2-ylcarbamic acid 1 -(2- { [4-(4-carbamoylpiperidin- 1 -ylmethyl)benzoyl] methylamino} ethyl)piperidin-4-yl ester was also prepared as a freebase crystal using the following procedure.
230 mg ofthe product of Example 1 was dissolved in 0.2 ml of H O:ACN (1:1), using slight heat. The mixture was then heated in a 70°C water bath for 2 hours. The heat was turned off and the mixture was allowed to cool to room temperature, then refrigerated at 4°C for 1 hour. 50 μl of water was then added (oiled out), followed by the addition of 40 μl of ACN to get the sample back into solution. Seeds (synthesis described below) were added under slow stirring at room temperature. Crystals started to form ,and the mixture was allowed to sit overnight, with slow stirring. The next day, a heat cool cycle was applied (30°C for 10 minutes, 40°C for 10 minutes, then 50°C for 20 minutes). The heat was turned off and the mixture allowed to cool overnight, with slow stirring. The next day, a second heat/cool cycle was applied (60°C for 1 hour, with dissolving observed at 70°C). The heat was turned off and the mixture allowed to cool overnight, with slow stirring. The next day, crystals were present and a third heat cool cycle was applied (60°C for 3 hours). The heat was turned off and the mixture allowed to cool overnight, with slow stirring. The next day, a heat cool cycle was applied (60°C for 3 hours, slow cool, then 60°C for 3 hours). The heat was turned off and the mixture allowed to cool overnight, with slow stirring. After 3 days, the solid was filtered and placed on a high vacuum line to remove all solvent and give a freebase crystal ofthe title compound.

Seed Synthesis
109 mg ofthe product of Example 1 was dissolved in 0.56 ml of H2O:ACN (1:1). The suspension was left in a vial (cap loosely placed on top) to allow for a slower evaporation time. The vial was placed under a nitrogen flow environment, although the nitrogen was not used for evaporation, only for the environment. A precipitate was visible within 1 day, which was observed to be crystalline under a microscope. The solid was then placed on a high vacuum line to remove all solvent to give the freebase crystal.
Quantitative recovery, 97.8% pure by HPLC.

Example IE
Biphenyl-2-ylcarbamic acid 1 -(2- { [4-(4-carbamoylpiperidin- 1 -ylmethyl)benzoyl] methylamino} ethyl)piperidin-4-yl ester was also prepared as a freebase crystal using the following alternate procedure.
70 mg ofthe product of Example 1 was dissolved in 0.1 mL ACN. After addition of 0.3 ml MTBE, the solution appeared cloudy. An additional 50 μl of ACN was added to clarify the solution (155 mg/ml ACNMTBE = 1 :2). The mixture was left in the vial and capped. A solid appeared by the next day. The solid was then filtered and placed on a high vacuum line to remove all solvent and give a freebase crystal ofthe title compound.

PATENT

https://patents.google.com/patent/WO2012009166A1/en

U.S. Patent No. 7,228,657 to Mammen et al. discloses novel biphenyl compounds that are expected to be useful for treating pulmonary disorders such as chronic obstructive pulmonary disease and asthma. In particular, the compound biphenyl-2-ylcarbamic acid 1- (2- {[4-(4-carbamoylpiperidin-l-ylmethyl)benzoyl]methylamino}-ethyl)piperidin-4-yl ester is specifically described in this application as possessing muscarinic receptor antagonist or anticholiner ic activity, and is represented by formula I:

Figure imgf000002_0001

The compound of formula I is synthesized from the compound 8, which is described as being prepared from the oxidation of 2-(benzylmethylamino)ethanol to the aldehyde intermediate followed by reductive amination with biphenyl-2-yl-carbamic acid piperidin- 4-yl ester and debenzylation:

Figure imgf000003_0001
Figure imgf000003_0002

However, while this procedure performs well on small scale, the aldehyde intermediate is difficult to scale up due to its instability, and low yields were typically observed.

Thus, a need exists for an efficient process of preparing compound 8 as a pure material with high chemical purity and good overall yield, without having to isolate intermediates. This invention addresses those needs.

Therapeutic agents useful for treating pulmonary or respiratory disorders are advantageously administered directly into the respiratory tract by inhalation. In this regard, several types of pharmaceutical inhalation devices have been developed for administering therapeutic agents by inhalation including dry powder inhalers, metered- dose inhalers, and nebulizer inhalers. When preparing pharmaceutical compositions and formulations for use in such devices, it is highly desirable to have a crystalline form of the therapeutic agent that is neither hygroscopic nor deliquescent and which has a relatively high melting point thereby allowing the material to be micronized without significant decomposition.

A crystalline diphosphate of the compound of formula I has been reported in U.S. Patent No. 7,700,777 to Axt et al, and a crystalline freebase (identified as Form III) is described in U.S. Patent Application Publication No. 201 1/0015163 to Woollham. All of the aforementioned disclosures are incorporated herein by reference.

The compound of formula I is described as being prepared by reacting compound 8 with 4-carboxybenzaldehyde to form the aldehyde core 10:

Figure imgf000004_0001

which is then isolated prior to being combined with isonipicotamide in the presence of a reducing agent to form the compound of formula I. The crystalline diphosphate is prepared by contacting the separated and purified compound of formula I with phosphoric acid. The crystalline freebase (Form III) can then be prepared from the crystalline diphosphate.

A need also exists for an efficient process of preparing the crystalline freebase (Form III). It is desirable to develop a process that does not first require preparation of the crystalline diphosphate. This invention addresses those needs.

Figure imgf000011_0001
Figure imgf000013_0001
Figure imgf000014_0001

Preparation 1

Biphenyl-2-yl-carbamic acid piperidin-4-yl Ester

Figure imgf000018_0001

Biphenyl-2-isocyanate (97.5 g, 521 mmol) and 1 -benzylpiperidin-4-ol (105 g, 549 mmol) were heated together at 70°C for 12 hours. The mixture was then cooled to 50°C and EtOH (1 L) was added, followed by the slow addition of 6M HC1 (191 mL). The resulting mixture was then cooled to ambient temperature. Ammonium formate (98.5 g, 1.6 mol) was added and then nitrogen gas was bubbled through the solution vigorously for 20 minutes. Palladium on activated carbon (20 g, 10 wt% dry basis) was added and the mixture was heated at 40°C for 12 hours, and then filtered. The solvent was removed under reduced pressure and 1M HC1 (40 mL) was added to the crude residue. The pH of the mixture was adjusted with 10 N NaOH to pH 12. The aqueous layer was extracted with EtOAc (2×150 mL), and the organic layer was dried over MgS04, filtered and the solvent removed under reduced pressure to yield the title compound (155 g). HPLC (10-70) ¾ = 2.52; m/z: [M + H+] calcd for Ci8H2202 297.15; found 297.3.

EXAMPLE 1

Step A: (2,2-Dimethoxyethyl)methylcarbamic Acid Benzyl Ester

Figure imgf000018_0002

K2CO3 (13.8 g, 100 mmol, 1.76 eq.) and H20 (46 mL) were mixed to form a homogeneous solution. The solution was cooled to 20°C. N-methylaminoacetaldehyde dimethylacetal (12.8 mL, 100 mmol, 1.8 eq) and MeTHF (50 mL) were added. The resulting mixture was cooled to 2°C. Benzyl chloroformate (8.1 mL, 56.7 mmol, 1.0 eq.) was added by syringe over 10 minutes (addition was exothermic). The mixture was maintained at room temperature until completion of the reaction. The layers were separated and the organic layer was washed with IN HC1 (50 mL) and used directly in the next step.

Step B: Methyl-(2-oxoethyl)carbamic Acid Benzyl Ester

Figure imgf000019_0001

The mixture from the previous step was combined with a 3N HC1 solution (70 mL), and the resulting mixture was stirred for 18 hours at 22°C to yield a clear homogeneous pale yellow solution. Solid aHC03 was added to the solution to bring the pH to neutral. The layers were separated and the aqueous layer was back-extracted with MeTHF (20 mL). The organic layers were combined and washed with a saturated aHC03 solution (50 mL). The layers were separated and the organic layer was dried over Na2S04, filtered and concentrated to dryness to afford the title compound (1 1.9 g) as a pale yellow oil.

Step C: Biphenyl-2-yl-carbamic acid l-[2-(benzyloxycarbonyl

methylamino)ethyl]piperidin-4-yl Ester

Figure imgf000019_0002

Biphenyl-2-yl-carbamic acid piperidin-4-yl ester (31.1 g, 105 mmol, 1.0 eq.) and MeTHF (150 mL) were mixed. A solution of methyl-(2-oxoethyl)carbamic acid benzyl ester (23 g, 113.4 mmol, 1.05 eq.) in MeTHF (150 mL) was prepared and added to the ester mixture. The resulting mixture was heated to 30°C for a few minutes, then cooled to room temperature over 1 hour. The mixture was then cooled to 3°C and the temperature maintained for 1 hour. NaHB(OAc)3 (35.1 g, 170 mmol, 2.0 eq.) was added portion-wise while maintaining the internal temperature at 7±1°C. After addition, the mixture was allowed to warm to room temperature until the reaction was complete. A saturated solution of aHC03 (3000 mL) was added, stirred for 20 minutes, and the layers separated. This was repeated, after which the organic layer was dried over a2S04. The material was filtered, concentrated and dried under high vacuum to afford the title compound (43 g) as a thick colorless to pale yellow oil, which was used directly in the next step without purification.

Step D: Biphenyl-2-yl-carbamic acid l-(2-methylaminoethyl)piperidin-4-yl Ester

Figure imgf000020_0001

Biphenyl-2-yl-carbamic acid l-[2-(benzyloxycarbonyl methylamino)ethyl] piperidin-4-yl ester (53 g, 105 mmol, 1 eq.), MeOH (250 mL), and MeTHF (50 mL) were combined under nitrogen. 10% palladium on carbon (0.8 g) was added and hydrogen was bubbled into the mixture for 1 minute. The reaction vessel was sealed and stirred under hydrogen at atmospheric pressure for three hours. The mixture was then filtered, and the solids were washed MeTHF (10 mL).

The filtrate and washes were combined and concentrated under reduced pressure (250 mL removed). MTBE (100 mL) was added, and the solution again concentrated under reduced pressure (100 mL removed). MTBE (200 mL) was added and the solution was seeded with a few milligrams of biphenyl-2-yl-carbamic acid l-(2-methylaminoethyl) piperidin-4-yl ester, and the mixture was maintained for 3 hours. The solids were collected and the vessel and filter cake were washed with MTBE (2×15 mL). The material was dried to yield 13.2 g of the title compound (99.5% pure). This process was repeated to yield the title compound (12.5 g, 98.6% pure). The filtrate and washes were combined and concentrated under reduced pressure. MTBE (150 mL) was added and the solution was seeded with a few milligrams of biphenyl-2-yl-carbamic acid l-(2-methylaminoethyl) piperidin-4-yl ester, and the mixture was maintained for 20 hours. The solids were collected and the vessel and filter cake were washed with MTBE (2×15 mL). The material was dried to yield the title compound (5 g, 90% pure).

A portion of the three crops (13 g , 12 g, 4.5 g, respectively) were combined taken up in IPA (90 mL). The resulting slurry was heated to 45°C, then cooled to room temperature over 1 hour. The slurry was stirred for 5 hours at 25°C. The solids were collected and washed with IPA (2×15 mL). The solids were then dried for 1 hour to yield the title compound (25 g, >99% pure).

EXAMPLE 2

All volumes and molar equivalents are given relative to biphenyl-2-yl-carbamic acid piperidin-4-yl ester.

Step A: (2,2-Dimethoxyethyl)methylcarbamic Acid Benzyl Ester K2C03 (8.4 kg, 60 mol, 1.8 eq.) and H20 (49.3 kg, 2.6 volumes) were placed in the reaction vessel and stirred. N-methylaminoacetaldehyde dimethylacetal (6.5 kg, 54 mol, 1.6 eq) and MeTHF (20.2 kg, 2.9 volumes) were added. The resulting mixture was cooled to 5°C. Benzyl chloroformate (6.8 kg, 37.6 mol, 1.1 eq.) was added over a period of about 30 minutes, while maintaining the temperature below 10°C. The feed line was rinsed with MeTHF (4.3 kg). The mixture was then maintained at 5°C and stirred for 1 hour. The layers were separated and the organic layer was washed with IN HC1 (14.3 kg, 1 1.7 mol, 1.4 volumes) and used directly in the next step.

Step B: Methyl-(2-oxoethyl)carbamic Acid Benzyl Ester

The mixture from the previous step was combined with water (23.4 kg,

2.9 volumes) and 30% hydrochloric acid (13.1 kg, 107.7 mol, 1.1 volumes). Water (5.1 kg) was used to rinse the feed line. The temperature was adjusted to 25-30°C, and the reaction was run for 16-24 hours. A 25% NaOH solution (1 1.8 kg, 71.1 mol, 2.2 eq.) was added to the solution to adjust the pH and obtain phase separation.

The layers were separated and the aqueous layer was back-extracted with MeTHF

(10.0 kg, 1.1 volumes). The aqueous layer was discarded and the organic layers were combined. MeTHF (4.4 kg) was used to rinse the feed line. The organics were washed with a saturated aHC03 solution (14.6 kg, 15.6 mol, 1.1 volumes). The layers were separated and the organic layer was dried over a2S04 (2.5 kg, 17.6 mol) for 60-90 minutes. The drying agent was filtered off and the remaining solids were washed with

MeTHF (8.8 kg, 1 volume). The reaction vessel was washed with water and MeOH before continuing with the next step.

Step C: Biphenyl-2-yl-carbamic acid l-[2-(benzyloxycarbonyl

methylamino) ethyl Jpiperidin-4-yl Ester

The product from the previous step (in MeTHF) and biphenyl-2-yl-carbamic acid piperidin-4-yl ester (10.0 kg, 32.6 mol, 1.0 eq.) in MeTHF (28.5 kg) were placed in the reaction vessel and heated to 30°C for one hour. The mixture was then cooled to 5°C. NaHB(OAc)3 (10.0 kg, 45.8 mol, 1.4 eq.) was added portion wise over a period of 40 minutes while maintaining the temperature below 20°C. The mixture was then stirred for 30 minutes. Additional NaHB(OAc)3 (0.5 kg) was added the reaction allowed to progress to completion. A saturated solution of NaHCC^ (14.3 kg, 15.3 mol, 1.1 volumes) was added and stirred for 10 minutes. The aqueous phase was separated and discarded. A 33% NaOH solution (15.8 kg, 129.9 mol, 4.0 eq.) was added to the reaction mixture to adjust the H to be in the range of 8-12. Water (40 kg) was added in two portions, after which phase separation occurred. A saturated NaHCC (7.1 kg, 7.6 mol, 0.7 volumes) was added to the reaction mixture and stirred for 10 minutes. The aqueous phase was separated and discarded. Additional water (4.9 kg) was added to dissolve any remaining salts and a vacuum distillation was conducted at a maximum temperature of 45°C to remove part of the solvent (7.2 volumes). MeOH (56.1 kg, 7.2 volumes) was added to the reaction mixture before continuing with the next step.

Step D: Biphenyl-2-yl-carbamic acid l-(2-methylaminoethyl)piperidin-4-yl Ester

10% palladium on carbon (0.4 kg, 0.03 wt%, Degussa type 101 NE/W) was added to the reaction mixture. A hydrogenation reaction was performed to remove the benzyloxycarbonyl protective group, with reaction conditions at 30±5°C and 4 bar pressure. The reaction was run until completion. The mixture was then filtered and the filter cake was washed with MeOH (8.0 kg, 1.0 volume). The reaction was continued in a clean vessel, which was charged with the product solution (in MeTHF/MeOH) from the hydrogenation reaction. 3-Mercaptopropyl silica (0.6 kg, 0.07 wt%, Silicycle) was added. MeOH (4.8 kg) was used to rinse the feed line. The reaction mixture was stirred for 14-72 hours at 25±5°C. Activated carbon (0.7 kg, 0.07 wt%) was added and the mixture stirred for 30 minutes. The mixture was filtered and the filter cake was washed with MeOH (1.0 volume). The reaction was continued in a clean vessel, which was charged with the product solution (in MeTHF/MeOH), and MeOH (4.2 kg) was used to rinse the feed line. The mixture was heated to 40-45°C and a vacuum distillation was performed to bring the final volume to 5.6 volumes (removal of methanol).

2-propanol (40.2 kg, 5.0 volumes) was added and distillation continued until the volume was reduced to 2.5 volumes. The solids were then isolated by filtration and washed with MTBE (1.5 volumes) to yield the product as a wet cake (8.6 kg, 96.8% purity). The cake was charged to the reaction vessel and additional 2-propanol

(1.9 volumes) was added. The mixture was warmed to 40±5°C, and maintained at that temperature for 2 hours. The mixture was then slowly cooled over a minimum of 4 hours to 20°C, then actively cooled to 5-10°C, followed by stirring for 2 hours. The product was filtered and the resulting cake washed with MTBE (1.0 volume). The solids were then dried under atmospheric conditions to yield the title compound (6.6 kg, 98.5% purity).

EXAMPLE 3

Crystalline Freebase of Biphenyl-2-yl-carbamic Acid l- {2-r(4-carbamoylbenzoyl) methylaminolethyllpiperidin-4-yl Ester (Form III)

Biphenyl-2-yl-carbamic acid l-{2-[(4-formylbenzoyl)

methylamino ] ethyl }piperidin-4-yl Ester

Figure imgf000023_0001

4-Carboxybenzaldehyde (9 g, 60 mmol, 1.0 eq.) and biphenyl-2-yl-carbamic acid 1-

(2-methylaminoethyl)piperidin-4-yl ester (21.2 g, 60 mmol, 1.0 eq.) were combined in MeTHF (115 mL). The mixture was stirred for 0.5 hours, forming a thick slurry.

Additional MeTHF (50 mL) was added to form a free-flowing slurry. 4-(4,6-dimethoxy- l,3,5-triazin-2-yl)-4-methylmorpholinium chloride (18 g, 63 mmol, 1.1 eq., 97% pure) was added in two portions and the funnel rinsed with additional MeTHF (50 mL). The mixture was stirred at room temperature overnight. MeCN (50 mL) was added and the mixture was filtered. The solids were washed with MeTHF (30 mL). The filtrate and washes were combined and a saturated aHC03 solution (100 mL) was added and stirred for 10 minutes. The layers were separated and a saturated NaCl solution (100 mL) was added and stirred for 10 minutes. The layers were separated and the aqueous layer discarded. The resulting solution was concentrated under reduced pressure and held at room temperature for three days, then used directly in the next step.

Step B: Biphenyl-2-yl-carbamic acid l-{2-[(4-carbamoylbenzoyl)

meth lamino] ethyl}piperidin-4-yl ester (non-isolated form)

Figure imgf000023_0002

Isonipecotamide (15.4, 120 mmol, 2.0 eq.) and IPA (200 mL) were added to the solution of biphenyl-2-yl-carbamic acid l-{2-[(4-formylbenzoyl)methylamino]ethyl} piperidin-4-yl ester from the previous step. Liquid (200 mL) was distilled off and additional IPA (400 mL) was added under reduced pressure at 60°C. Liquid (400 mL) was distilled off over a period of 1.5 hours and additional IPA (600 mL) was added. Liquid (100 mL) was distilled off and the remaining solution was cooled to 30°C to yield a hazy white mixture, which was then added to Na2S04 (18 g). The flask was rinsed with IPA (100 mL) and added to the solution. The resulting mixture was cooled to room

temperature and AcOH (20 mL, 360 mmol, 6.0 eq.) was added. The mixture was cooled to 18°C with an ice bath and NaHB(OAc)3 (38.2 g, 180 mmol, 3.0 eq.) was added over 5 minutes. The mixture was allowed to warm up to 25°C and was maintained at that temperature for 2 hours. Solvent was removed under reduced pressure, and the remaining material was used directly in the next step.

Step C: Biphenyl-2-yl-carbamic acid l-{2-[(4-carbamoylbenzoyl)

methylamino]ethyl}piperidin-4-yl ester (isolated solid)

iPrOAc (300 mL) was added to the material, followed by the addition of water (200 mL). The pH of the solution was adjusted to pH 1 with 3N HC1 (-150 mL). The layers were separated and the organic layer was discarded. The aqueous layer was collected, and iPrOAc (300 mL) was added. The pH of the solution was adjusted to basic pH with 50 wt% NaOH (-100 mL). The resulting mixture was stirred for 15 minutes and the layers were separated. The organic layer was filtered and seeded with micronized crystalline freebase of biphenyl-2-yl-carbamic acid l- {2-[(4-carbamoylbenzoyl) methylamino]ethyl}piperidin-4-yl ester (Form III; prepared as described in U.S. Patent Application Publication No. 201 1/0015163 to Woollham) and stirred overnight at room temperature to yield a white slurry. Stirring was continued for 8 hours at room temperature and for 16 hours at 5°C (cold room). The mixture was slowly filtered under pressure. The cake was washed with cold iPrOAc (2×20 mL) and dried under nitrogen to yield a white solid (27.5 g). The material was further dried in a vacuum oven at 30°C for 24 hours to yield 25.9 g.

Step D: Crystalline Freebase of Biphenyl-2-yl-carbamic Acid l-{2-[ ( 4- carbamoylbenzoyl)methylamino]ethyl}piperidin-4-yl Ester (Form III) The white solid (5 g, 60 mmol, 1.0 eq.) was dissolved in toluene (75 mL) and the resulting mixture was heated to 82°C to yield a clear solution. The solution was filtered. The solids were washed with toluene (2 x 5 mL), and the filtrate and washes were combined. The mixture was cooled to 60°C and seeded with micronized crystalline freebase of biphenyl-2-yl-carbamic acid l-{2-[(4-carbamoylbenzoyl)methylamino]ethyl} piperidin-4-yl ester (Form III; prepared as described in Example 3 in U.S. Patent

Application Publication No. 201 1/0015163 to Woollham). The mixture was maintained at 55°C for 2 hours, then cooled to room temperature on an oil bath overnight (~16 hours). The resulting slurry was then filtered and the cake was dried for 3 hours to yield a solid while material (4.6 g). The material was further dried in a vacuum oven at 30°C for 24 hours (exhibited no further weight loss) to yield the title compound (4.6 g).

The product was analyzed by powder x-ray diffraction, differential scanning calorimetry and thermal gravimetric analysis, and was determined to be the crystalline freebase (Form III) of biphenyl-2-ylcarbamic acid l-(2-{[4-(4-carbamoylpiperidin-l- ylmethyl)benzoyl]methylamino}ethyl)piperidin-4-yl ester described in U.S. Patent Application Publication No. 201 1/0015163 to Woollham.

US20050113417A1 *2003-11-212005-05-26Mathai MammenCompounds having beta2 adrenergic receptor agonist and muscarinic receptor antagonist activity
WO2006099165A1 *2005-03-102006-09-21Theravance, Inc.Crystalline forms of a biphenyl compound
US7228657B22003-07-102007-06-12Controlled Environments LimitedClimate control for a greenhouse
US20110015163A12009-07-152011-01-20Grahame WoollamCrystalline freebase forms of a biphenyl compound
Family To Family Citations
JP4555283B2 *2003-02-142010-09-29セラヴァンス, インコーポレーテッドβ2 adrenergic receptor agonist activity and biphenyl derivatives having muscarinic receptor antagonist activity
CN1930125B *2004-03-112010-07-21施万制药Biphenyl compounds useful as muscarinic receptor antagonists
US7659403B2 *2005-03-102010-02-09Theravance, Inc.Biphenyl compounds useful as muscarinic receptor antagonists
Patent ID

Title

Submitted Date

Granted Date

US9226896 CRYSTALLINE FREEBASE FORMS OF A BIPHENYL COMPOUND
2014-11-19
2015-06-18
US9656993 CRYSTALLINE FORMS OF A BIPHENYL COMPOUND
2015-12-18
2016-06-16
US7700777 Crystalline forms of a biphenyl compound
2007-12-27
2010-04-20
Patent ID

Title

Submitted Date

Granted Date

US9415041 Crystalline freebase forms of a biphenyl compound
2015-12-01
2016-08-16
US9249099 CRYSTALLINE FORMS OF A BIPHENYL COMPOUND
2014-11-25
2015-06-04
US8921396 Crystalline freebase forms of a biphenyl compound
2013-08-22
2014-12-30
US7521041 Biphenyl compounds useful as muscarinic receptor antagonists
2008-04-24
2009-04-21
US2007112027 Crystalline forms of a biphenyl compound
2007-05-17
Patent ID

Title

Submitted Date

Granted Date

US8017783 Biphenyl compounds useful as muscarinic receptor antagonists
2008-03-20
2011-09-13
US7550595 Biphenyl compounds useful as muscarinic receptor antagonists
2007-12-20
2009-06-23
US9283183 BIPHENYL COMPOUNDS USEFUL AS MUSCARINIC RECEPTOR ANTAGONISTS
2014-11-12
2015-06-18
US2010048622 CRYSTALLINE FORMS OF A BIPHENYL COMPOUND
2010-02-25
US9452161 Biphenyl compounds useful as muscarinic receptor antagonists
2016-02-05
2016-09-27
Patent ID

Title

Submitted Date

Granted Date

US8754225 PROCESS FOR PREPARING A BIPHENYL-2-YLCARBAMIC ACID
2012-01-19
US8921395 Crystalline forms of a biphenyl compound
2014-03-19
2014-12-30
US8716313 Crystalline forms of a biphenyl compound
2013-01-14
2014-05-06
US8557997 Biphenyl compounds useful as muscarinic receptor antagonists
2012-08-23
2013-10-15
US8541451 CRYSTALLINE FREEBASE FORMS OF A BIPHENYL COMPOUND
2011-01-20
Patent ID

Title

Submitted Date

Granted Date

US8377965 CRYSTALLINE FORMS OF A BIPHENYL COMPOUND
2010-10-07
US8242137 CRYSTALLINE FORMS OF A BIPHENYL COMPOUND
2010-01-28
2012-08-14
US2017204061 BIPHENYL COMPOUNDS USEFUL AS MUSCARINIC RECEPTOR ANTAGONISTS
2016-08-30
US9765028 CRYSTALLINE FREEBASE FORMS OF A BIPHENYL COMPOUND
2016-07-11
US9035061 PROCESS FOR PREPARING A BIPHENYL-2-YLCARBAMIC ACID
2013-11-26
2014-05-01
Patent ID

Title

Submitted Date

Granted Date

US7803812 BIPHENYL COMPOUNDS USEFUL AS MUSCARINIC RECEPTOR ANTAGONISTS
2009-09-10
2010-09-28
US7910608 Biphenyl compounds useful as muscarinic receptor antagonists
2009-01-15
2011-03-22
US7491736 Biphenyl compounds useful as muscarinic receptor antagonists
2007-12-20
2009-02-17
US7585879 Biphenyl compounds useful as muscarinic receptor antagonists
2007-11-15
2009-09-08
US7288657 Biphenyl compounds useful as muscarinic receptor antagonists
2005-09-15
2007-10-30
Patent ID

Title

Submitted Date

Granted Date

US8912334 Biphenyl compounds useful as muscarinic receptor antagonists
2013-09-11
2014-12-16
US8273894 Biphenyl compounds useful as muscarinic receptor antagonists
2012-04-03
2012-09-25
US8173815 BIPHENYL COMPOUNDS USEFUL AS MUSCARINIC RECEPTOR ANTAGONISTS
2011-12-29
2012-05-08
US8053448 BIPHENYL COMPOUNDS USEFUL AS MUSCARINIC RECEPTOR ANTAGONISTS
2011-06-02
2011-11-08
US8034946 BIPHENYL COMPOUNDS USEFUL AS MUSCARINIC RECEPTOR ANTAGONISTS
2010-09-30
2011-10-11

/////////TD-4208, UNII:G2AE2VE07O, ревефенацин ريفيفيناسين 瑞维那新 , GSK 1160724, revefenacin, PHASE 3

CN(CCN1CCC(CC1)OC(=O)NC2=CC=CC=C2C3=CC=CC=C3)C(=O)C4=CC=C(C=C4)CN5CCC(CC5)C(=O)N

Vericiguat, ベルイシグアト


Vericiguat.pngImage result for vericiguatImage result for vericiguat

Vericiguat

BAY 102; BAY-1021189; MK-1242

1350653-20-1
Chemical Formula: C19H16F2N8O2

Molecular Weight: 426.3878

Vericiguat; 1350653-20-1; UNII-LV66ADM269; Methyl (4,6-diamino-2-(5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)pyrimidin-5-yl)carbamate; BAY-1021189; LV66ADM269

Methyl (4,6-diamino-2-(5-fluoro-1-((2-fluorophenyl)methyl)-1H-pyrazolo(3,4-b)pyridin-3-yl(pyrimidin-5-yl)carbamate

methyl N-[4,6-diamino-2-[5-fluoro-1-[(2-fluorophenyl)methyl]pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-5-yl]carbamate

Methyl{4,6-diamino-2-[5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridi- n-3-yl]pyrimidin-5-yl}carbamate

  • Originator Bayer HealthCare Pharmaceuticals
  • Developer Bayer HealthCare Pharmaceuticals; Merck & Co
  • Mechanism of Action Guanylate cyclase stimulants
  • Phase III Chronic heart failure
  • Phase I Coronary artery disease
  • 28 May 2018 Phase II VITALITY HFpEF trial for Chronic heart failure in Austria, USA, Belgium, Portugal, Canada, Spain, Hungary and Greece (PO) (EudraCT2018-000298-65) (NCT03547583)
  • 17 May 2018 Phase-I clinical trials in Coronary artery disease (In adults, In the elderly) in Moldova and Germany (PO) (NCT03504982)
  • 20 Apr 2018 Bayer in collaboration with Merck Sharp & Dohme Corp. plans a phase I trial for Coronary Artery Disease in the Netherlands, Moldova and Germany (NCT03504982)

Vericiguat, also known as BAY1021189 or BAY10-21189, is a potent and orally active sGC stimulator (Soluble Guanylate Cyclase Stimulator). Direct stimulation of soluble guanylate cyclase (sGC) is emerging as a potential new approach for the treatment of renal disorders. sGC catalyzes the formation of cyclic guanosine monophosphate (cGMP), deficiency of which is implicated in the pathogenesis of chronic kidney disease (CKD).

Vericiguat, discovered at Bayer, is the first soluble guanylate cyclase (sGC) stimulator. Vericiguat is currently being studied in a Phase III clinical program for the treatment of heart failure with reduced ejection fraction (HFrEF)

ベルイシグアト
Vericiguat

C19H16F2N8O2 : 426.38
[1350653-20-1]

Vericiguat hydrochloride.png

Vericiguat hydrochloride

cas 1350658-96-6

PHASE 3 MERCK/BAYER

Chemical Names: UNII-5G76IGF54K; 5G76IGF54K; ; 1350658-96-6; Carbamic acid, N-(4,6-diamino-2-(5-fluoro-1-((2-fluorophenyl)methyl)-1H-pyrazolo(3,4-b)pyridin-3-yl)-5-pyrimidinyl)-, methyl ester, hydrochloride (1:1); Methyl (4,6-diamino-2-(5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo(3,4-b)pyridin-3-yl)pyrimidin-5-yl)carbamate hydrochloride
Molecular Formula: C19H17ClF2N8O2
Molecular Weight: 462.846 g/mol

Image result for DRUG FUTURE Vericiguat

Clip

https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0036-1590758.pdf

Image result for vericiguat

Significance: Vericiguat (BAY 1021189) is an orally available soluble guanylate cyclase (sGC) stimulator that has entered phase-three trials for the once-daily treatment of chronic heart failure. Key steps in the synthesis depicted are (1) construction of the 5-fluoro-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine-3-carboxylate C by condensation of the 5-amino-1H-pyrazole-3-carboxylate A with the aldehyde B and (2) construction of the pyrimidine-4,5,6-triamine derivative H through reaction of [(E)-phenyldiazenyl]malononitrile (G) with amidine F.

Comment: Experimental details are provided for the noteworthy four-step synthesis (not shown) of the crystalline 2-fluoro-(3-morpholin-4-yl)acrylaldehyde B from commercially available 2,2,3,3- tetrafluoro-1-propanol. The synthesis of pyrazole A is described in a patent (A. Straub et al. WO 2000/006569 A1). The [(E)-phenyldiazenyl]malononitrile (G) was generated in situ by reaction of phenyldiazonium chloride with malononitrile.

M. FOLLM ANN * E T AL. (BAYER AG, WUPPERTAL , GE RMANY) Discovery of the Soluble Guanylate Cyclase Stimulator Vericiguat (BAY 1021189) for the Treatment of Chronic Heart Failure J. Med. Chem. 2017, 60, 5146–5161
Clip
Image result for vericiguat
Image result for vericiguat
Image result for vericiguat
Image result for vericiguatImage result for vericiguatImage result for vericiguat
24. Yield 2.2 g (70%). 1 H NMR (400 MHz, DMSO-d6): δ = 8.89 (dd, J = 9.0, 2.8 Hz, 1H), 8.66 (m, 1H), 7.99 and 7.67 (2 br s, 1H), 7.32−7.40 (m, 1H), 7.19−7.26 (m, 1H), 7.10−7.19 (m, 2H), 6.22 (br s, 4H), 5.79 (s, 2H), 3.62 (br s, 3H). LC-MS (method d): tR (min) = 0.79. MS (ESI +): m/z = 427 [M + H]+
PATENT
US 8,802,847

Example 13

Methyl{4,6-diamino-2-[5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridi- n-3-yl]pyrimidin-5-yl}carbamate

Method A:

4.0 g (77.0% by weight, 8.36 mmol) of the compound from Example 12 in 37.9 ml of isopropanol were heated to 35.degree. C. and then 0.84 ml (10.87 mmol) of methyl chloroformate was added dropwise. The mixture was stirred at 35.degree.-40.degree. C. for 20 h and heated to 50.degree. C., and 9.5 ml of methanol were added. Subsequently, 1.9 ml of triethylamine were added dropwise within 0.5 h and rinsed in with 1.3 ml of methanol, and the mixture was stirred at 50.degree. C. for 1 h. Thereafter, the reaction mixture was cooled to RT and stirred at RT for 1 h, and the solids were filtered off with suction, washed three times with 8 ml each time of ethanol, suction-dried and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 3.4 g of crude product. 3.0 g of the crude product were stirred in 8 ml of DMSO for 5 min, 13.0 ml of ethyl acetate and 50 mg of activated carbon were added, and the mixture was heated at reflux (84.degree. C.) for 15 min. The suspension was hot-filtered and the filter residue was washed with 1.9 ml of ethyl acetate.sup.1). 60 ml of ethyl acetate and 16 ml of ethanol were heated to 60.degree. C., and the combined filtrates were added dropwise and stirred at 60.degree. C. for 1.5 h. The suspension was cooled to RT within 25 min, stirred for a further 1.5 h, cooled further to 0.degree.-5.degree. C. and stirred for a further 1 h. The solids were filtered off with suction, washed twice with 6.4 ml each time of ethyl acetate, suction-dried and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 2.2 g (70.0% of theory) of the title compound. 1) According to the preparation process described, the di-dimethyl sulphoxide solvate is obtained at this point, and this is characterized in Tables 2 and 4 by the reflections in the x-ray diffractogram and bands in the IR spectrum.

MS (ESIpos): m/z=427 (M+H).sup.+

.sup.1H NMR (400 MHz, DMSO-d.sub.6): .delta.=3.62 (br s, 3H), 5.79 (s, 2H), 6.22 (br s, 4H), 7.10-7.19 (m, 2H), 7.19-7.26 (m, 1H), 7.32-7.40 (m, 1H), 7.67 and 7.99 (2 br s, 1H), 8.66 (m, 1H), 8.89 (dd, 1H) ppm.

The di-dimethyl sulphoxide solvate of the compound of the formula (I) has the advantage of much better filterability than the substance in the prior art. Furthermore, the preparation process via the di-dimethyl sulphoxide solvate of the compound of the formula (I) leads to a very high purity of the compound of the formula (I).

Method B:

4.0 g (10.8 mmol) of the compound from Example 12 Method B in 37.9 ml of isopropanol were heated to 35.degree. C. and then 1.1 ml (14.1 mmol) of methyl chloroformate were added dropwise. The mixture was stirred at 35.degree.-40.degree. C. for 16.5 h and cooled to RT, and 2.1 ml of aqueous ammonia (28%) were added. Subsequently, 4.2 ml of water were added and the mixture was stirred for 2.5 h. The solids were filtered off with suction, washed twice with 5 ml each time of water, suction-dried and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 4.4 g of crude product.

Method C:

4.0 g (10.8 mmol) of the compound from Example 12 Method B in 37.9 ml of isopropanol were heated to 35.degree. C. and then 1.1 ml (14.1 mmol) of methyl chloroformate were added dropwise. The mixture was stirred at 35.degree.-40.degree. C. for 16.5 h, and 9.5 ml of methanol were added at 50.degree. C. Subsequently, 2.42 ml of triethylamine were added dropwise within 20 min and rinsed in with 1.3 ml of methanol, and the mixture was stirred at 50.degree. C. for 1 h. Thereafter, the reaction mixture was cooled to RT and stirred at RT for 1 h, and the solids were filtered off with suction, washed three times with 8 ml each time of methanol, suction-dried and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 4.3 g of crude product.

Method D:

6.9 g of the crude product were stirred in 18.4 ml of DMSO for 5 min, 30.0 ml of ethyl acetate and 115 mg of activated carbon were added, and the mixture was heated at reflux (84.degree. C.) for 15 min. The suspension was hot-filtered and the filter residue was washed with 4.4 ml of ethyl acetate. 138 ml of ethyl acetate were heated to 50.degree. C., and the combined filtrates were added dropwise and stirred at 45-50.degree. C. for 1 h. The suspension was cooled to 0.degree.-5.degree. C. within 1.5 h and stirred for a further 1 h. The solids were filtered off with suction, washed twice with 14.8 ml each time of ethyl acetate and suction-dried for 1 h. 6.4 g of the di-dimethyl sulphoxide solvate were obtained as a moist product.sup.1).

Method E:

2.0 g of the di-dimethyl sulphoxide solvate were stirred at reflux temperature in 40 ml of ethyl acetate and 11.1 ml of ethanol for 17 h, cooled to RT and stirred for a further 1 h. The solids were filtered off with suction, washed four times with 1.4 ml each time of ethyl acetate and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 1.4 g of the title compound present in polymorph I.

Method F:

0.5 g of the di-dimethyl sulphoxide solvate were stirred at reflux temperature in 12.5 ml of solvent for 17 h, cooled to RT and stirred for a further 1 h. The solids were filtered off with suction, washed with 2 ml of solvent and suction-dried for 30 min. This gave 0.3 g of the title compound present in polymorph I.

The following solvents were used:

1.) 9 ml of ethyl acetate/3.5 ml of ethanol/0.3 ml of water

2.) 12.5 ml of isopropanol

3.) 12.5 ml of isopropanol/0.3 ml of water

4.) 12.5 ml of methanol

5.) 12.5 ml of methanol/0.3 ml of water

6.) 12.5 ml of acetonitrile

7.) 12.5 ml of acetone

8.) 12.5 ml of tetrahydrofuran,

9.) 12.5 ml of methyl tert-butyl ether

Table 1 indicates the reflections of the x-ray diffractogram. Table 3 shows the bands of the IR spectrum.

The compound (I) in crystalline polymorph I is notable for higher stability and more particularly for the fact that it is stable in the micronization process and hence no conversion and recrystallization takes place.

The compound of the formula (I) can be prepared by processes described above. This affords the compound of the formula (I) in a crystal polymorph referred to hereinafter as polymorph I. Polymorph I has a melting point of 257.degree. C. and a characteristic x-ray diffractogram featuring the reflections (2 theta) 5.9, 6.9, 16.2, 16.5, 24.1 and 24.7, and a characteristic IR spectrum featuring the band maxima (in cm.sup.-1) 1707, 1633, 1566, 1475, 1255 and 1223 (Tables 1 and 3, FIGS. 1 and 5).

Surprisingly, four further polymorphs, a monohydrate, a dihydrate, a DMF/water solvate and a di-dimethyl sulphoxide solvate, and also a triacetic acid solvate of the compound of the formula (I) were found. The compound of the formula (I) in polymorph II melts at approx. 253.degree. C.; the compound of the formula (I) in polymorph III has a melting point of approx. 127.degree. C. Polymorph IV of the compound of the formula I melts at a temperature of 246.degree. C., while polymorph V has a melting point of 234.degree. C. The monohydrate contains approx. 4.1% water, the dihydrate contains 7.8% water, the DMF/water solvate contains 13.6% dimethylformamide and 0.9% water, the di-DMSO solvate contains 26.8% dimethyl sulphoxide and the triacetic acid solvate contains 29.7% acetate. Each of the crystalline forms mentioned has a characteristic x-ray diffractogram and IR spectrum (Tables 2 and 3, FIGS. 1-4, 6-14).

TABLE 1
X-ray diffractometry for polymorphs I to V

FIGURES

FIG. 1: IR spectrum of the compound of the formula (I) in polymorphs I, II and III

FIG. 2: IR spectrum of the compound of the formula (I) in polymorphs IV, V and as the triacetic acid solvate

FIG. 3: IR spectrum of the compound of the formula (I) as the di-DMSO solvate, DMF/water solvate and monohydrate

FIG. 4: IR spectrum of the compound of the formula (I) as the dihydrate

FIG. 5: X-ray diffractogram of the compound of the formula (I) in polymorph I

FIG. 6: X-ray diffractogram of the compound of the formula (I) in polymorph II

FIG. 7: X-ray diffractogram of the compound of the formula (I) in polymorph III

FIG. 8: X-ray diffractogram of the compound of the formula (I) in polymorph IV

FIG. 9: X-ray diffractogram of the compound of the formula (I) in polymorph V

FIG. 10: X-ray diffractogram of the compound of the formula (I) as the triacetic acid solvate

FIG. 11: X-ray diffractogram of the compound of the formula (I) as the di-DMSO solvate

FIG. 12: X-ray diffractogram of the compound of the formula (I) as the DMF-water solvate

FIG. 13: X-ray diffractogram of the compound of the formula (I) as the monohydrate

FIG. 14: X-ray diffractogram of the compound of the formula (I) as the dihydrate

PATENT

Example 11A

2-[5-Fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidine-4,5,6-triamine

      Variant A: Preparation Starting from Example 7A:
      In pyridine (30 ml), 378 mg (0.949 mmol) of the compound from Example 7A were introduced and then 143 mg (0.135 mmol) of palladium (10% on carbon) were added. The mixture was hydrogenated overnight at RT under standard hydrogen pressure. The suspension was then filtered through kieselguhr and the filtercake was washed with ethanol. The filtrate was concentrated and yielded 233 mg (81% purity, 51% of theory) of the desired compound, which was reacted without further purification.
      Variant B: Preparation Starting from Example 10A:
      In DMF (800 ml), 39.23 g (85.75 mmol) of the compound from Example 10A were introduced and then 4 g of palladium (10% on carbon) were added. The mixture was hydrogenated with stirring overnight under standard hydrogen pressure. The batch was filtered over kieselguhr and the filter product was washed with a little DMF and then with a little methanol, and concentrated to dryness. The residue was admixed with ethyl acetate and stirred vigorously, and the precipitate was filtered off with suction, washed with ethyl acetate and diisopropyl ether and dried under a high vacuum over Sicapent.
      Yield: 31.7 g (100% of theory)
      LC-MS (method 2): R t=0.78 min
      MS (ESIpos): m/z=369 (M+H) +

Working Examples

Example 1

Methyl {4,6-diamino-2-[5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-5-yl}carbamate

      In pyridine (600 ml), 31.75 g (86.20 mmol) of the compound from Example 11A were introduced under argon and cooled to 0° C. Then a solution of 6.66 ml (86.20 mmol) of methyl chloroformate in dichloromethane (10 ml) was added dropwise and the mixture was stirred at 0° C. for 1 h. Thereafter the reaction mixture was brought to RT, concentrated under reduced pressure and co-distilled repeatedly with toluene. The residue was stirred with water/ethanol and then filtered off on a frit, after which it was washed with ethanol and ethyl acetate. Subsequently the residue was again stirred with diethyl ether, isolated by filtration with suction and then dried under a high vacuum.
      Yield: 24.24 g (65% of theory)
      LC-MS (method 2): R t=0.79 min
      MS (ESIpos): m/z=427 (M+H) +
       1H NMR (400 MHz, DMSO-d 6): δ=3.62 (br. s, 3H), 5.79 (s, 2H), 6.22 (br. s, 4H), 7.10-7.19 (m, 2H), 7.19-7.26 (m, 1H), 7.32-7.40 (m, 1H), 7.67 and 7.99 (2 br. s, 1H), 8.66 (m, 1H), 8.89 (dd, 1H).
Patent ID

Title

Submitted Date

Granted Date

US2016324856 USE OF SGC STIMULATORS FOR THE TREATMENT OF NEUROMUSCULAR DISORDERS
2015-01-13
US2016158233 SGC STIMULATORS OR SGC ACTIVATORS AND PDE5 INHIBITORS IN COMBINATION WITH ADDITIONAL TREATMENT FOR THE THERAPY OF CYSTIC FIBROSIS
2014-07-21
2016-06-09
US2013158028 USE OF STIMULATORS AND ACTIVATORS OF SOLUBLE GUANYLATE CYCLASE FOR TREATING SICKLE-CELL ANEMIA AND CONSERVING BLOOD SUBSTITUTES
2011-06-21
2013-06-20
US9845300 PROCESS FOR PREPARING SUBSTITUTED 5-FLUORO-1H-PYRAZOLOPYRIDINES
2017-02-17
US9604948 PROCESS FOR PREPARING SUBSTITUTED 5-FLUORO-1H-PYRAZOLOPYRIDINES
2015-07-10
2016-01-14
Patent ID

Title

Submitted Date

Granted Date

US2017273977 SUBSTITUTED 5-FLUORO-1H-PYRAZOLOPYRIDINES AND THEIR USE
2016-11-10
US8921377 Substituted 5-fluoro-1H-pyrazolopyridines and their use
2013-03-27
2014-12-30
US8420656 Substituted 5-fluoro-1H-pyrazolopyridines and their use
2012-01-26
US9096592 BICYCLIC AZA HETEROCYCLES, AND USE THEREOF
2011-08-31
2014-05-29
US2014038956 Use of sGC stimulators, sGC activators, alone and combinations with PDE5 inhibitors for the treatment of systemic sclerosis (SSc).
2011-05-24
2014-02-06

////////////////Vericiguat,  BAY 102, BAY-1021189, MK-1242, ベルイシグアト , PHASE 3,  MERCK, BAYER

COC(=O)NC1=C(N=C(N=C1N)C2=NN(C3=NC=C(C=C23)F)CC4=CC=CC=C4F)N

RG7440, Ipatasertib, アイパタセルチブ;


1001264-89-6.png

Ipatasertib.svg

Ipatasertib

GDC-0068 , RG7440

CAS 1001264-89-6, C24H32ClN5O2, 457.9962

アイパタセルチブ;
イパタセルチブ;

Antineoplastic, AKT serine/threonine kinase inhibitor

2(S)-(4-Chlorophenyl)-1-[4-[7(R)-hydroxy-5(R)-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl]piperazin-1-yl]-3-(isopropylamino)propan-1-one

(2S)-2-(4-Chlorophenyl)-1-(4-((5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta(d)pyrimidin-4-yl)piperazin-1-yl(-3-((propan-2-yl)amino)propan-1-one

1-Propanone, 2-(4-chlorophenyl)-1-(4-((5R,7R)-6,7-dihydro-7-hydroxy-5-methyl-5H-cyclopentapyrimidin-4-yl)-1-piperazinyl)-3-((1-methylethyl)amino)-,  (2S)-

2D chemical structure of 1396257-94-5

Ipatasertib dihydrochloride
1396257-94-5

Ipatasertib (RG7440) is an experimental cancer drug in development by Roche. It is a small molecule inhibitor of Akt. It was discovered by Array Biopharma and is currently in phase II trials for treatment of breast cancer.[1]

In vitro, ipatasertib showed activity against all three isoforms of Akt.[2]

Ipatasertib is an orally-available protein kinase B (PKB/Akt) inhibitor in phase III clinical development at Genentech for the treatment of metastatic castration-resistant prostate cancer in combination with abiraterone and prednisone.

In 2014, orphan drug designation was assigned in the U.S. for the treatment of gastric cancer including cancer of the gastro-esophageal junction.

Ipatasertib. An orally bioavailable inhibitor of the serine/threonine protein kinase Akt (protein kinase B) with potential antineoplastic activity. Ipatasertib binds to and inhibits the activity of Akt in a non-ATP-competitive manner, which may result in the inhibition of the PI3K/Akt signaling pathway and tumor cell proliferation and the induction of tumor cell apoptosis. Activation of the PI3K/Akt signaling pathway is frequently associated with tumorigenesis and dysregulated PI3K/Akt signaling may contribute to tumor resistance to a variety of antineoplastic agents. Check for active clinical trials using this agent.

PROBLEM 

It has been found that ipatasertib exhibits a very high solubility (>1 g/g water; >2 g/g water/ethanol 1:1) and a very high hygroscopicity (˜6% at 50% RH, >35% at 95% RH). Whereas poor solubility is often a limiting factor in the development of galenical formulations of other API’s (active pharmaceutical ingredient), a high solubility can equally be problematic for the process performance. Due to this very high intrinsic hygroscopicity of the API, ipatasertib drug substance tends to auto-dissolve to a honey-like viscous liquid at increased humidity. Such high solubility and hygroscopicity may pose serious problems for processing as well as for stability and shelf-life of the final product. Therefore, conventional pharmaceutical compositions comprising ipatasertib and processes for the manufacture of pharmaceutical compositions comprising wetting (e.g. wet granulation) are difficult due to the high solubility and high hygroscopicity of the API.

SYN

 Ipatasertib pk_prod_list.xml_prod_list_card_pr?p_tsearch=A&p_id=691990

Bromination of (+)-(R)-pulegone (I) with Br2 in the presence of NaHCO3 in Et2O, followed by ring contraction via Favorskii rearrangement with NaOEt in EtOH, and treatment with semicarbazide hydrochloride and NaOAc in refluxing EtOH/H2O gives rise to cyclopentanecarboxylate (II) (1). Subsequent ozonolysis of olefin (II) by means of O3 in EtOAc at -78 °C, and reductive treatment with Zn in AcOH provides beta-ketoester (III). Reaction of ketoester (III) with ammonium acetate (IVa) in MeOH/CH2Cl2 yields enamine (V), which upon cyclization with ammonium formate (IVb) and formamide (VI) at 150 °C provides cyclopentapyrimidinol (VII). Chlorination of pyrimidinol (VII) using POCl3 in refluxing CH2Cl2 results in 4-chloro-5(R)-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidine (VIII), which is condensed with N-Boc-piperazine (IX) in the presence of DIEA in refluxing BuOH to produce piperazinyl cyclopentapyrimidine (X). Oxidation of compound (X) using mCPBA and NaHCO3 in CHCl3 furnishes N-oxide (XI). Subsequent rearrangement of N-oxide (XI) using Ac2O in CH2Cl2 at 100 °C yields acetate (XII). This compound (XII) is hydrolyzed with LiOH in H2O/THF to give alcohol (XIII), which upon Swern oxidation with (COCl)2, DMSO and Et3N in CH2Cl2 at -78 °C affords ketone (XIV) (1-6). Asymmetric transfer hydrogenation of ketone (XIV) in the presence of RuCl[(R,R)-TsDPEN(p-cymene)], HCOOH and Et3N in CH2Cl2, followed by protection with PNBCl in the presence of Et3N in CH2Cl2, and hydrolysis with LiOH in H2O/THF gives rise to alcohol (XV) (1-6). Also, intermediate (XV) can be produced by enzymatic reduction of ketone (XI) using KRED-101 in the presence of GDH, NADP, KOH and PEG-400, KRED-X1.1-P1F01 in the presence of glucose and NAD in DMSO/i-PrOH or KRED-X1.1-P1B06, KRED-X1.1-P1F01 or KRED-X1.1-P1H10 in the presence of NADP in DMSO/i-PrOH or i-PrOH (11,12). In an alternative method, asymmetric transfer hydrogenation of ketone (XIV) in the presence of RuCl[(R,R)-MsDPEN(p-cymene)], HCOOH and Et3N in CH2Cl2, followed by O-protection of the resultant cis/trans mixture of alcohols with PNBCl and Et3N or protection with pivaloyl chloride in the presence of DIEA in CH2Cl2, followed by separation of the resulting cis/trans mixture of esters by means of HPLC. Hydrolysis of trans ester with LiOH in THF yields alcohol (XV) (11). N-Deprotection of piperazine derivative (XV) by means of HCl in CH2Cl2, i-PrOH or toluene at 62 °C provides amine dihydrochloride (XVI) (1-7,11,12), which is then coupled with aminoacid derivative (XVIIa) (1-7,11) or its sodium salt (XVIIb) (12,13) in the presence of DIEA and HBTU in CH2Cl2 or NMM and T3P in i-PrOH or toluene to produce amide (XVIII) (1-7,11-13). Finally, Boc-deprotection of precursor (XVIII) by means of HCl in MeOH/Et2O, PrOH, i-PrOH or toluene at 57 °C furnishes the target GDC-0068

 Ipatasertib pk_prod_list.xml_prod_list_card_pr?p_tsearch=A&p_id=691990

Synthesis of intermediate (XVII): Condensation of methyl (4-chlorophenyl)acetate (XIX) with formaldehyde (XX) in the presence of NaOMe in DMSO gives beta-hydroxyester (XXI). Subsequent dehydration of alcohol (XXI) using MsCl and Et3N in CH2Cl2 provides arylacrylate (XXII), which upon conjugate addition with isopropylamine (XXIII) in the presence of Boc2O in THF yields N-Boc beta-aminoester (XXIV). Basic hydrolysis of ester (XXIV) using KOSiMe3 in THF generates the potassium carboxylate (XXV), which upon condensation with 4(R)-benzyl-2-oxazolidinone (XXVI) via activation with pivaloyl chloride and BuLi in THF at -78 °C affords the N-acyl oxazolidinone (XXVII) (2-6). Finally, removal of the chiral auxiliary group of (XXVII) using LiOH and H2O2 in THF/H2O furnishes the key intermediate (XVII) (1-6,11). Alternative synthesis of intermediate (XXVII): Protection of isopropylamine (XXIII) with Boc2O in toluene affords tert-butyl isopropylcarbamate (XXVIII), which upon N-alkylation with bromomethyl methyl ether (XXIX) in the presence of NaHMDS in 2-MeTHF gives tert-butyl isopropyl(methoxymethyl)carbamate (XXX) (11). Condensation of 4(R)-benzyl-2-oxazolidinone (XXVI) with 2-(4-chlorophenyl)acetyl chloride (XXXIIa) using BuLi in THF at -50 °C (1) or with 2-(4-chlorophenyl)acetic acid (XXXIIb) via activation with pivaloyl chloride and Et3N in refluxing toluene (11) affords N-acyl oxazolidinone(XXXI). After conversion of intermediate (XXXI) to its titanium enolate with TiCl4 and DIEA in CH2Cl2 at -50 °C, diastereoselective Mannich reaction with formaldehyde hemiaminal (XXX) affords adduct (XXVII)

PAPER

Synthesis of Akt inhibitor ipatasertib. Part 2. Total synthesis and first kilogram scale-up
Org Process Res Dev 2014, 18(12): 1652

https://pubs.acs.org/doi/full/10.1021/op500270z

https://pubs.acs.org/doi/suppl/10.1021/op500270z/suppl_file/op500270z_si_001.pdf

Synthesis of Akt Inhibitor Ipatasertib. Part 2. Total Synthesis and First Kilogram Scale-up

 Small Molecule Process Chemistry, Genentech, Inc., a member of the Roche Group, 1 DNA Way, South San Francisco, California 94080-4990, United States
 Array BioPharma Inc., 3200 Walnut Street, Boulder, Colorado 80301, United States
Org. Process Res. Dev.201418 (12), pp 1652–1666
DOI: 10.1021/op500270z
*E-mail: travisr@gene.com.
Abstract Image

Herein, the first-generation process to manufacture Akt inhibitor Ipatasertib through a late-stage convergent coupling of two challenging chiral components on multikilogram scale is described. The first of the two key components is a trans-substituted cyclopentylpyrimidine compound that contains both a methyl stereocenter, which is ultimately derived from the enzymatic resolution of a simple triester starting material, and an adjacent hydroxyl group, which is installed through an asymmetric reduction of the corresponding cyclopentylpyrimidine ketone substrate. A carbonylative esterification and subsequent Dieckmann cyclization sequence was developed to forge the cyclopentane ring in the target. The second key chiral component, a β2-amino acid, is produced using an asymmetric aminomethylation (Mannich) reaction. The two chiral intermediates are then coupled in a three-stage endgame process to complete the assembly of Ipatasertib, which is isolated as a stable mono-HCl salt.

(S)-2-(4-Chlorophenyl)-1-(4-((5R,7R)-7-hydroxy-5-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)piperazin-1-yl)-3-(isopropylamino)propan-1-one, Ipatasertib Mono-HCl

 Ipatasertib mono-HCl (3.23 kg, 80% yield) as an off-white solid. Analytical results: 99.7 A% [0.26% S,R,S-diastereomer observed)]; impurity 23 (M399) was not detected (<0.02 A%) [Method 2.2]; ruthenium content by IPC-AES = 5 ppm; analysis for PF6 anion by CAD-HPLC resulted in not detected [Method 2.3]; residual solvent = 0.4% EtOAc; ion chromatography (IC) = 8.5% chloride (1.14 salt equivalent); DSC = 141 °C; FTIR (neat) 3269 (br OH), 2961–2865 (N–H stretch), 1637 (C═O stretch); 1H NMR (600 MHz, DMSO-d6) 9.39 (s, 1H), 8.64 (s, 1H), 8.49 (s, 1H), 7.49 (q, J = 2.9 Hz, 2H), 7.41 (q, J = 2.9 Hz, 2H), 5.58 (s, 1H), 4.91 (t, J = 6.9 Hz, 1H), 4.78 (dd, J = 8.9, 4.5 Hz, 1H), 3.81 (m, J = 3.3 Hz, 1H), 3.68 (m, J = 3.3 Hz, 1H), 3.67 (m, J = 3.1 Hz, 1H), 3.65 (m, J = 3.2 Hz, 1H), 3.63 (m, J = 3.6 Hz, 1H), 3.59 (m, J = 4.3 Hz, 1H), 3.51 (m, J = 3.5 Hz, 1H), 3.46 (m, J = 3.5 Hz, 1H), 3.36 (m, J = 3.2 Hz, 1H), 3.30 (m, J = 5.7 Hz, 1H), 3.21 (m, J = 3.4 Hz, 1H), 2.98 (m, J = 5.8 Hz, 1H), 1.97 (m, J = 4.8 Hz, 2H), 1.26 (d, J = 6.6 Hz, 3H), 1.25 (d, J = 7.0 Hz, 3H); 13C NMR (150 MHz, DMSO-d6) 170.2, 168.2, 159.4, 155.2, 135.3, 132.5, 129.7 (2C), 129.1 (2C), 120.8, 71.7, 50.4, 47.0, 44.8, 44.5, 44.1, 41.4, 40.8, 34.5, 19.8, 18.4, 18.1; HRMS calcd for C24H32ClN5O2 457.2245; found [M+H]+ 458.2306.

str1

 Ipatasertib freebase (3.9 kg, 98.2 A% containing ~1.2% impurity 23 (M399) and impurity M416 at 0.2 A% [Method 2.2]) as tan solid. By CAD-HPLC (see Figure S1-2), the PF6 anion was present in ~0.86 A% [Method 2.3]; Ion chromatography (IC) = 4.0% chloride (0.56 salt equivalent); 1 H NMR (600 MHz, DMSO-d6) 8.44 (s, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 5.48 (br s, 1H), 4.86 (t, J = 6.9 Hz, 1H), 4.58 (dd, J = 7.3, 4.6 Hz, 1H), 3.74 (m, 1H), 3.40 (m, 1H), 3.63 (m, 2H), 3.61 (m, 1H), 3.42 (m, 1H), 3.57 (m, 1H), 3.18 (m, 1H), 3.50 (m, J = 2.9 Hz, 1H), 3.09 (m, J = 3.1 Hz, 1H), 3.42 (m, 1H), 2.87 (m, J = 4.7 Hz, 1H), 2.00 (m, 1H), 1.92 (m, J = 3.1 Hz, 1H), 1.15 (d, J = 6.4 Hz, 6H), 1.03 (d, J = 6.9 Hz, 3H); 13C NMR (150 MHz, DMSO-d6) 172.0, 169.0, 159.6, 156.3, 136.3, 132.1, 129.7 (2C), 128.9 (2C), 120.9, 72.0, 49.4, 48.7, 45.4, 44.9, 44.8, 44.6, 41.4, 40.9, 34.3, 20.1, 19.9, 19.7; HRMS calcd for C24H32ClN5O2 [M+H]+ 458.2317; found 458.2312. See supporting information (S2) for the NMR spectra (DMSO-d6) of Ipatasertib freebase: ( 1 H) S2, Figure S2-5.12 and ( 13C) Figure S2-5.13.

https://pubs.acs.org/doi/suppl/10.1021/op500270z/suppl_file/op500270z_si_002.pdf

Table S2-1 1 H NMR Assignments of Ipatasertib mono-HCl. S2-52 Figure S2-5.10. 13C NMR (DMSO-d6) spectrum of Ipatasertib mono-HCl. S2-53 Table S2-2 13C NMR Assignments of Ipatasertib mono-HCl. S2-54 Table S2-3 Characteristic Ipatasertib mono-HCl Infrared Signals. S2-55 Figure S2-5.11. FTIR Spectrum of Ipatasertib mono-HCl. S2-56 Figure S2-5.12. XRPD Pattern of Ipatasertib mono-HCl. S2-57

PAPER

https://pubs.acs.org/doi/abs/10.1021/op500271w

https://pubs.acs.org/doi/suppl/10.1021/op500271w/suppl_file/op500271w_si_001.pdf

Synthesis of Akt Inhibitor Ipatasertib. Part 1. Route Scouting and Early Process Development of a Challenging Cyclopentylpyrimidine Intermediate

 Array BioPharma Inc., 3200 Walnut Street, Boulder, Colorado 80301, United States
 Genentech Inc., a member of the Roche Group, 1 DNA Way, South San Francisco, California 94080-4990, United States
Org. Process Res. Dev.201418 (12), pp 1641–1651
DOI: 10.1021/op500271w
Abstract Image

Herein, the route scouting and early process development of a key cyclopentylpyrimidine ketone intermediate toward the synthesis of Akt inhibitor Ipatasertib are described. Initial supplies of the intermediate were prepared through a method that commenced with the natural product (R)-(+)-pulegone and relied on the early construction of a methyl-substituted cyclopentyl ring system. The first process chemistry route, detailed herein, enabled the synthesis of the ketone on a hundred-gram scale, but it was not feasible for the requisite production of multikilogram quantities of this compound and necessitated the exploration of alternative strategies. Several new synthetic approaches were investigated towards the preparation of the cyclopentylpyrimidine ketone, in either racemic or chiral form, which resulted in the discovery of a more practical route that hinged on the initial preparation of a highly substituted dihydroxypyrimidine compound. The cyclopentane ring in the target was then constructed through a key carbonylative esterification and subsequent tandem Dieckmann cyclization–decarboxylation sequence that was demonstrated in a racemic synthesis. This proof-of-concept was later developed into an asymmetric synthesis of the cyclopentylpyrimidine ketone, which will be described in a subsequent paper, along with the synthesis of Ipatasertib.

PAPER

Discovery and preclinical pharmacology of a selective ATP-Competitive akt inhibitor (GDC-0068) for the treatment of human tumors
J Med Chem 2012, 55(18): 8110

PAPER

Asymmetric synthesis of akt kinase inhibitor ipatasertib
Org Lett 2017, 19(18): 4806

PATENT

WO 2008006040

PATENT

WO 2012135753

PATENT

WO 2012135759

PATENT

WO 2012135781

PATENT

WO 2013173784

PATENT

WO 2015073739

PATENT

WO 2012135779

PATENT

WO 2013173768

References

  1. Jump up^ https://www.clinicaltrials.gov/ct2/show/NCT02301988
  2. Jump up^ Lin K, Friedman L, Gloor S, Gross S, Liederer BM, Mitchell I, et al. Preclinical characterization of GDC-0068, a novel selective ATP competitive inhibitor of Akt. 22nd-EORTC-NCI-AACR-2010 2010; abstr. 79
Ipatasertib
Ipatasertib.svg
Clinical data
Routes of
administration
PO
ATC code
  • None
Identifiers
ChemSpider
KEGG
Chemical and physical data
Formula C24H32ClN5O2
Molar mass 458.00 g·mol−1
3D model (JSmol)

////////////// ipatasertib, orphan drug designation, GDC-0068 , RG7440, PHASE 3

CC(C)NC[C@@H](C(=O)N1CCN(CC1)c2ncnc3[C@H](O)C[C@@H](C)c23)c4ccc(Cl)cc4

It has been found that ipatasertib exhibits a very high solubility (>1 g/g water; >2 g/g water/ethanol 1:1) and a very high hygroscopicity (˜6% at 50% RH, >35% at 95% RH). Whereas poor solubility is often a limiting factor in the development of galenical formulations of other API’s (active pharmaceutical ingredient), a high solubility can equally be problematic for the process performance. Due to this very high intrinsic hygroscopicity of the API, ipatasertib drug substance tends to auto-dissolve to a honey-like viscous liquid at increased humidity. Such high solubility and hygroscopicity may pose serious problems for processing as well as for stability and shelf-life of the final product. Therefore, conventional pharmaceutical compositions comprising ipatasertib and processes for the manufacture of pharmaceutical compositions comprising wetting (e.g. wet granulation) are difficult due to the high solubility and high hygroscopicity of the API.

BMS 986205, ONO 7701


ChemSpider 2D Image | BMS 986205 | C24H24ClFN2Oimg

BMS 986205

(2R)-N-(4-Chlorophenyl)-2-[cis-4-(6-fluoro-4-quinolinyl)cyclohexyl]propanamide
Cyclohexaneacetamide, N-(4-chlorophenyl)-4-(6-fluoro-4-quinolinyl)-α-methyl-, cis-
Cyclohexaneacetamide, N-(4-chlorophenyl)-4-(6-fluoro-4-quinolinyl)-α-methyl-, cis-(αR)-
(i?)-N-(4-chlorophenyl)-2- c 5-4-(6-fluoroquinolin-4-yl)cyclohexyl)propanamide

CAS: 1923833-60-6

Phase III Head and neck cancer; Malignant melanoma

BMS-986205, ONO-7701,  F- 001287

  • Molecular Formula C24H24ClFN2O
  • Average mass 410.912 Da

BMS986205, BMS 986205, ONO-7701

Cyclohexaneacetamide, N-(4-chlorophenyl)-4-(6-fluoro-4-quinolinyl)-α-methyl-, cis-(αR)-

A potent and selective IDO1 (indoleamine 2,3-dioxygenase 1) inhibitor.

Alternate Name (R)-N-(4-chlorophenyl)-2-((1s,4S)-4-(6-fluoroquinolin-4-yl)cyclohexyl)propenamide
Appearance Crystalline solid
CAS # 1923833-60-6
Molecular Formula C₂₄H₂₄ClFN₂O
Molecular Weight 410.92
  • Originator Bristol-Myers Squibb
  • Developer Bristol-Myers Squibb; Ono Pharmaceutical
  • Class Antineoplastics; Cyclohexanes; Quinolines; Small molecules
  • Mechanism of Action Indoleamine-pyrrole 2,3-dioxygenase inhibitors

Highest Development Phases

  • Phase II IHead and neck cancer; Malignant melanoma
  • Phase I/II Cancer
  • Phase I Solid tumours

Most Recent Events

  • 01 Jun 2018Efficacy and adverse events data from a phase I/IIa trial in Bladder cancer (Combination therapy, Late-stage disease) presented at the 54th Annual Meeting of the American Society of Clinical Oncology (ASCO- 2018)
  • 08 May 2018Bristol-Myers Squibb plans the CheckMate 9UT phase II trial for Bladder Cancer in USA, Canada, Italy, Mexico, Netherlands, Spain and United Kingdom , (NCT03519256)
  • 30 Apr 2018Bristol-Myers Squibb withdraws a phase III trial for Non-small cell lung cancer (First-line therapy, Combination therapy, Late-stage disease) in USA, Austria, Australia, Brazil, Canada, Czech Republic, France, Germany, Greece, Italy, Japan, South Korea, Mexico, Spain, Switzerland, Taiwan and Turkey prior to enrolment (NCT03417037)

WO 2016073770

Inventors Hilary Plake BeckJuan Carlos JaenMaksim OSIPOVJay Patrick POWERSMaureen Kay REILLYHunter Paul SHUNATONAJames Ross WALKERMikhail ZIBINSKYJames Aaron BalogDavid K WilliamsJay A MARKWALDEREmily Charlotte CHERNEYWeifang ShanAudris Huang
Applicant Flexus Biosciences, Inc.

Image result for BMS 986205

Image result for BMS 986205
Bristol-Myers Squibb
, following its acquisition of Flexus Biosciences, is developing BMS-986205 (previously F- 001287), the lead from an immunotherapy program of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors for the potential treatment of cancer. In February 2016, a phase I/IIa trial was initiated .

BMS-986205 (ONO-7701) is being evaluated at Bristol-Myers Squibb in phase I/II clinical trials for the oral treatment of adult patients with advanced cancers in combination with nivolumab. Early clinical development is also ongoing at Ono in Japan for the treatment of hematologic cancer and for the treatment of solid tumors.

In April 2017, data from the trial were presented at the 108th AACR Annual Meeting in Washington DC. As of February 2017, the MTD had not been reached, but BMS-986205 plus nivolumab treatment was well tolerated, with only two patients discontinuing treatment due to DLTs. The most commonly reported treatment-related adverse events (TRAEs) were decreased appetite, fatigue, nausea, diarrhea, and vomiting. Grade 3 TRAEs were reported in three patients during the combination therapy; however, no grade 3 events were reported during BMS-986205 monotherapy lead-in. No grade 4 or 5 TRAEs were reported with BMS-986205 alone or in combination with nivolumab

Indoleamine 2,3-dioxygenase (IDO; also known as IDOl) is an IFN-γ target gene that plays a role in immunomodulation. IDO is an oxidoreductase and one of two enzymes that catalyze the first and rate-limiting step in the conversion of tryptophan to N-formyl-kynurenine. It exists as a 41kD monomer that is found in several cell populations, including immune cells, endothelial cells, and fibroblasts. IDO is relatively well-conserved between species, with mouse and human sharing 63% sequence identity at the amino acid level. Data derived from its crystal structure and site-directed mutagenesis show that both substrate binding and the relationship between the substrate and iron-bound dioxygenase are necessary for activity. A homolog to IDO (ID02) has been identified that shares 44% amino acid sequence homology with IDO, but its function is largely distinct from that of IDO. (See, e.g., Serafini P, et al, Semin. Cancer Biol, 16(l):53-65 (Feb. 2006) and Ball, H.J. et al, Gene, 396(1):203-213 (Jul. 2007)).

IDO plays a major role in immune regulation, and its immunosuppressive function manifests in several manners. Importantly, IDO regulates immunity at the T cell level, and a nexus exists between IDO and cytokine production. In addition, tumors frequently manipulate immune function by upregulation of IDO. Thus, modulation of IDO can have a therapeutic impact on a number of diseases, disorders and conditions.

A pathophysiological link exists between IDO and cancer. Disruption of immune homeostasis is intimately involved with tumor growth and progression, and the production of IDO in the tumor microenvironment appears to aid in tumor growth and metastasis. Moreover, increased levels of IDO activity are associated with a variety of different tumors (Brandacher, G. et al, Clin. Cancer Res., 12(4): 1144-1151 (Feb. 15, 2006)).

Treatment of cancer commonly entails surgical resection followed by chemotherapy and radiotherapy. The standard treatment regimens show highly variable degrees of long-term success because of the ability of tumor cells to essentially escape by regenerating primary tumor growth and, often more importantly, seeding distant metastasis. Recent advances in the treatment of cancer and cancer-related diseases, disorders and conditions comprise the use of combination therapy incorporating immunotherapy with more traditional chemotherapy and radiotherapy. Under most scenarios, immunotherapy is associated with less toxicity than traditional chemotherapy because it utilizes the patient’s own immune system to identify and eliminate tumor cells.

In addition to cancer, IDO has been implicated in, among other conditions, immunosuppression, chronic infections, and autoimmune diseases or disorders (e.g. , rheumatoid arthritis). Thus, suppression of tryptophan degradation by inhibition of IDO activity has tremendous therapeutic value. Moreover, inhibitors of IDO can be used to enhance T cell activation when the T cells are suppressed by pregnancy, malignancy, or a virus (e.g., HIV). Although their roles are not as well defined, IDO inhibitors may also find use in the treatment of patients with neurological or neuropsychiatric diseases or disorders (e.g., depression).

Small molecule inhibitors of IDO have been developed to treat or prevent IDO-related diseases. For example, the IDO inhibitors 1-methyl-DL-tryptophan; p-(3-benzofuranyl)-DL-alanine; p-[3-benzo(b)thienyl]-DL-alanine; and 6-nitro-L-tryptophan have been used to modulate T cell-mediated immunity by altering local extracellular concentrations of tryptophan and tryptophan metabolites (WO 99/29310). Compounds having IDO inhibitory activity are further reported in WO 2004/094409.

In view of the role played by indoleamine 2,3-dioxygenase in a diverse array of diseases, disorders and conditions, and the limitations (e.g., efficacy) of current IDO inhibitors, new IDO modulators, and compositions and methods associated therewith, are needed.

In April 2017, preclinical data were presented at the 108th AACR Annual Meeting in Washington DC. BMS-986205 inhibited kynurenine production with IC50 values of 1.7, 1.1 and > 2000 and 4.6, 6.3 and > 2000 nM in human (HeLa, HEK293 expressing human IDO-1 and tryptophan-2, 3-dioxygenase cell-based assays) and rat (M109, HEK293 expressing mouse ID0-1 and -2 cell-based assays) respectively. In human SKOV-3 xenografts (serum and tumor) AUC (0 to 24h; pharmacokinetic and pharmacodynamic [PK and PD])) was 0.8, 4.2 and 23 and 3.5, 11 and 40 microM h, respectively; area under the effect curve (PK and PD) was 39, 32 and 41 and 60, 63 and 76% kyn, at BMS-986205 (5, 25 and 125 mg/kg, qd×5), respectively

In April 2017, preclinical data were presented at the 253rd ACS National Meeting and Exhibition in San Francisco, CA. BMS-986205 showed potent and selective inhibition of IDO-1 enzyme (IC50 = 1.7nM) and potent growth inhibition in cellular assays (IC50 = 3.4 nM) in SKOV3 cells. A good pharmacokinetic profile was seen at oral and iv doses in rats, dogs and monkeys. The compound showed good oral exposure and efficacy in in vivo assays

Preclinical studies were performed to evaluate the activity of BMS-986205, a potent and selective optimized indoleamine 2, 3-dioxygenase (IDO)- 1inhibitor, for the treatment of cancer. BMS-986205 inhibited kynurenine production with IC50 values of 1.7, 1.1 and > 2000 and 4.6, 6.3 and > 2000 nM in human (HeLa, HEK293 expressing human IDO-1 and tryptophan-2, 3-dioxygenase cell-based assays) and rat (M109, HEK293 expressing mouse ID0-1 and -2 cell-based assays) respectively. BMS-986205 was also found to be potent when compared with IDO-1from other species (human < dog equivalent monkey equivalent mouse > rat). In cell-free systems, incubation of inhibitor lead to loss of heme absorbance of IDO-1 which was observed in the presence of BMS-986205 (10 microM), while did not observed with epacadostat (10 microM). The check inhibitory activity and check reversibility (24 h after compound removal) of BMS-986205 was found to be < 1 and 18% in M109 (mouse) and < 1 and 12% SKOV3 (human) cells, respectively. In human whole blood IDO-1, human DC mixed lymphocyte reaction and human T cells cocultured with SKOV3 cells- cell based assays, BMS-986205 showed potent cellular effects (inhibition of kynurenine and T-cell proliferation 3H-thymidine) with IC50 values of 2 to 42 (median 9.4 months), 1 to 7 and 15 nM, respectively. In human SKOV-3 xenografts (serum and tumor) AUC (0 to 24h; pharmacokinetic and pharmacodynamic [PK and PD])) was 0.8, 4.2 and 23 and 3.5, 11 and 40 microM h, respectively; area under the effect curve (PK and PD) was 39, 32 and 41 and 60, 63 and 76% kyn, at BMS-986205 (5, 25 and 125 mg/kg, qd×5), respectively. In vivo human-SKOV3 and hWB-xenografts, IC50 values of BMS-986205 were 3.4 and 9.4 NM, respectively. The ADME of BMS-986205 at parameters iv/po dose was 0.5/2, 0.5/1.5 and 0.5/1.2 mg/kg, respectively; iv/clearance was 27, 25 and 19 ml, min/kg, respectively; iv Vss was 3.8, 5.7 and 4.1 l/kg, respectively; t1/2 (iv) was 3.9, 4.7 and 6.6 h, respectively; fraction (po) was 64, 39 and 10%, respectively. At the time of presentation, BMS-986205 was being evaluated in combination with nivolumab.

The chemical structure and preclinical profile was presented for BMS-986205 ((2R)-N-(4-Chlorophenyl)-2-[cis-4-(6-fluoroquinolin-4-yl)cyclohexyl]propanamide), a potent IDO-1 inhibitor in phase I for the treatment of cancer. This compound showed potent and selective inhibition of IDO-1 enzyme (IC50 = 1.7nM) and potent growth inhibition in cellular assays (IC50 = 3.4 nM) in SKOV3 cells. The pharmacokinetic profile in rats dosed at 0.5 mg/kg iv and 2 mg/kg po, with clearance, Vss, half-life and bioavailability of 27 ml/min/kg, 3.8 l/kg, 3.9 h and 4%, respectively; in dogs at 0.5 iv and 1.5 po mg/kg dosing results were 25 ml/min/kg, 5.7 l/kg, 4.7 h and 39%; and, in cynomolgus monkeys with the same doses as dogs results were 19 ml/min/kg, 4.1 l/kg, 6.6 h and 10%, respectively. The compound showed good oral exposure and efficacy in in vivo assays.

BMS-986158: a BET inhibitor for cancerAshvinikumar Gavai of Bristol Myers Squibb (BMS) gave an overview of his company’s research into Bromodomian and extra-terminal domain (BET) as oncology target for transcriptional suppression of key oncogenes, such as MYC and BCL2. BET inhibition has been defined as strong rational strategy for the treatment of hematologic malignancies and solid tumors. From crystal-structure guided SAR studies, BMS-986158, 2-{3-(1,4-Dimethyl-1H-1,2,3-triazol-5-yl)-5-[(S)-(oxan-4-yl)(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl}propan-2-ol, was chosen as a potent BET inhibitor, showing IC50 values for BRD2, BRD3 and BRD4 activity of 1 nM; it also inhibited Myc oncogene (IC50 = 0.5 nM) and induced chlorogenic cancer cell death. In vitro the compound also displayed significant cytotoxicity against cancer cells.  When administered at 0.25, 0.5 and 1 mg/kg po, qd to mice bearing human lung H187 SCLC cancer xenograft, BMS-986158 was robust and showed efficacy as a anticancer agent at low doses. In metabolic studies, it showed t1/2 of 36, 40 and 24 min in human, rat and mice, respectively, and it gave an efflux ratio of 3 in Caco-2 permeability assay. In phase 1/II studies, BMS-986158 was well tolerated at efficacious doses and regimens, and drug tolerable toxicity at efficacy doses and regimens. Selective Itk inhibitors for inflammatory disordersThe development of highly selective Itk inhibitors for the treatment of diseases related to T-cell function, such as inflammatory disorders, was described by Shigeyuki Takai (Ono Pharmaceutical). Inhibitory properties of a hit compound, ONO-8810443, were modified via X-ray structure and Molecular Dynamics stimulation to get ONO-212049 with significant kinase selectivity (140-fold) against Lck, a tyrosine kinase operating upstream of Itk in the TCR cascade. Further modifications identified final lead compound ONO-7790500 (N-[6-[3-amino-6-[2-(3-methoxyazetidin-1-yl)pyridin-4-yl]pyrazin-2-yl]pyridin-3-yl]-1-(3-methoxyphenyl)-2,3-dimethyl-5-oxopyrazole-4-carboxamide), which selectively inhibited Itk (IC50 = < 0.004 microM) over Lck (IC50 = 9.1 microM; SI 2000-fold) and suppressed Jurkat T-cell proliferation (IC50 = 0.014 microM). This compound suppressed alphaCD3/CDP28 CD4+T-cell stimulation (IC50 = 0.074 microM) with selectivity over PMA/Ionomycin (IC50 = > 10 microM). ONO-7790500 also exhibited in vivo IL-2 inhibitory properties (62% inhibition at 30 mg/kg po) in mice. In pharmacokinetic studies in balb/c mice, the compound administered orally (10 mg/kg) showed a Cmax of 1420 ng/ml, AUClast of 11,700 ng*h/ml, t1/2 of 5.3 h and oral bioavailability of 68%. Administration iv at 0.3 mg/kg gave an AUC last of 610 ng*h/ml, t1/2 of 3.8 h, Vss of 1260 ml/kg and Cl of 5.1 ml/min/kg. ADMET data showed ONO-7790500 did not have relevant activity in cytochromes and hERG channels (IC50 > 10 microM) in toxicological studies, and gave a PAMPA value of 5.0 x 10(-6) cm/s. Fused imidazole and pyrazole derivatives as TGF-beta inhibitorsDual growth and differentiation factor-8 (GDF-8; also known as myostatin) and TGF-beta inhibitors were described. Both targets belong to TGF-beta superfamily consisting of a large group of structurally related cell regulatory proteins involved in fundamental biological and pathological processes, such as cell proliferation or immunomodulation. Myostatin (GDF8) is a negative regulator negative regulator of skeletal muscle growth and has also been related to bone metabolism. Investigators at Rigel Pharmaceuticals found that compounds designed to be GDF-8 inhibitors were able to inhibit TGF-beta as well, this could be an advantage for the treatment of diseases associated with muscle and adipose tissue disorders, as well as potentially immunosuppressive disorders. Jiaxin Yu from the company described  new fused imidazole derivatives, of which the best compound was 6-[2-(2,4,5-Trifluorophenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-3-yl]quinoxaline. This compound was very potent at TGF-beta Receptor Type-1 (ALK5) inhibition with an IC50 value of 1nM. In an in vivo mouse assay this compound showed good activity at 59.7 mg/kg, po, and good plasma exposure; inhibition of GDF-8 and TGFbeta growth factors was 90 and 81.6 %, respectively.Rigel’s Ihab Darwish described a series of fused pyrazole derivatives, with the best compound being 6-[2-(2,4-Difluorophenyl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl][1,2,4]triazolo[1,5-a]pyridine. This compound showed an IC50 of 0.06 and 0.23 microM for GDF-8 and TGFbeta, respectively, in the pSMAD (MPC-11) signaling inhibition test. The compound had a good pharmacokinetic profile, with 40% of bioavailability in mice after a 5-mg/kg po dose. An iv dose of 1 mg/kg showed t1/2 of 0.7 h and Vss of 1.0 l/h/kgDiscovery of selective inhibitor of IDO BMS-986205 for cancerIndoleamine-2,3-dioxygenase (IDO)-1 enzyme initiates and regulates the first step of the kynurenine pathway (KP) of tryptophan metabolism, and evidence has shown that overexpression of IDO-1 in cancer tumors is a crucial mechanism facilitating tumor immune evasion and persistence. The chemical structure and preclinical profile of BMS-986205 was presented by Aaron Balog from BMS. BMS-986205 ((2R)-N-(4-Chlorophenyl)-2-[cis-4-(6-fluoroquinolin-4-yl)cyclohexyl]propanamide),  is a potent IDO-1 inhibitor in phase I for the treatment of cancer. This compound showed potent and selective inhibition of IDO-1 enzyme (IC50 = 1.7nM) and potent growth inhibition in cellular assays (IC50 = 3.4 nM) in SKOV3 cells. The pharmacokinetic profile in rats dosed at 0.5 mg/kg iv and 2 mg/kg po, with clearance, Vss, half-life and bioavailability of 27 ml/min/kg, 3.8 l/kg, 3.9 h and 4%, respectively; in dogs at 0.5 iv and 1.5 po mg/kg dosing results were 25 ml/min/kg, 5.7 l/kg, 4.7 h and 39%; and, in cynomolgus monkeys with the same doses as dogs results were 19 ml/min/kg, 4.1 l/kg, 6.6 h and 10%, respectively. The compound showed good oral exposure and efficacy in in vivo assays.Three further reports have been published from this meeting .The website for this meeting can be found at https://www.acs.org/content/acs/en/meetings/spring-2017.html.

SYNTHESIS

1 Wittig  NaH

2 REDUCTION H2, Pd, AcOEt, 4 h, rt, 50 psi

3 Hydrolysis HCl, H2O, Me2CO, 2 h, reflux

4  4-Me-2,6-(t-Bu)2-Py, CH2Cl2, overnight, rt

5 SUZUKI AcOK, 72287-26-4, Dioxane, 16 h, 80°C

6  Heck Reaction,  Suzuki Coupling, Hydrogenolysis of Carboxylic Esters, Reduction of Bonds, HYDROGEN

7 Et3N, THF, rt – -78°C , Pivaloyl chloride, 15 min, -78°C; 1 h, 0°C ,THF, 0°C – -78°C, BuLi, Me(CH2)4Me, 15 min, -78°C, R:(Me3Si)2NH •Na, THF, 10 min, -50°C , HYDROLYSIS,  (PrP(=O)O)3, C5H5N, AcOEt, 5 min, rt

Product Patent

WO2016073770

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=289DBE79BEFC6ADC558C89E7A74B19DB.wapp2nB?docId=WO2016073770&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

Example 19

(i?)-N-(4-chlorophenyl)-2- c 5-4-(6-fluoroquinolin-4-yl)cyclohexyl)propanamide

Example 19 : (i?)-N-(4-chlorophenyl)-2-(cz5-4-(6-fluoroquinolin-4- yl)cyclohexyl)propanamide

[0277] Prepared using General Procedures K, B, E, L, M, N, and O. General Procedure L employed 2-(4-(6-fluoroquinolin-4-yl)-cyclohexyl)acetic acid (mixture of

diastereomers), and ( ?)-2-phenyl-oxazolidinone. General Procedure M employed the cis product and iodomethane. The auxiliary was removed following General Procedure N and the desired product formed employing General Procedure O with 4-chloroaniline.

Purified using silica gel chromatography (0% to 100% ethyl acetate in hexanes) to afford Example 19. 1H NMR of czs-isomer (400 MHz; CDC13): δ 9.14 (s, 1H), 8.70 (d, J= 4.6 Hz, 1H), 8.06 (dd, J= 9.2 Hz, J= 5.6 Hz, 1H), 7.58-7.64 (m, 3H), 7.45 (ddd, J= 9.3 Hz, J= 7.8 Hz, J= 2.7 Hz, 1H), 7.19-7.24 (m, 2H), 7.15 (d, J= 4.6Hz, 1H), 3.16-3.26 (m, 1H), 2.59-2.69 (m, 1H), 2.08-2.16 (m, 1H), 1.66-1.86 (m, 7H), 1.31-1.42 (m, 1H), 1.21 (d, J= 6.8Hz, 3H) ppm. m/z 411.2 (M+H)+.

PAPER

Bioorganic & Medicinal Chemistry Letters (2018), 28(3), 319-329.

https://www.sciencedirect.com/science/article/pii/S0960894X17312180

PATENT

WO 2018022992

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018022992&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

PATENT

WO 2018071500

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018071500&redirectedID=true

REFERENCES

23-Feb-2015
Bristol-Myers Squibb To Expand Its Immuno-Oncology Pipeline with Agreement to Acquire Flexus Biosciences, Inc
Bristol-Myers Squibb Co; Flexus Biosciences Inc

17-Dec-2014
Flexus Biosciences, a Cancer Immunotherapy Company Focused on Agents for the Reversal of Tumor Immunosuppression (ARTIS), Announces $38M Financing
Flexus Biosciences Inc

2015106thApril 21Abs 4290
Potent and selective next generation inhibitors of indoleamine-2,3-dioxygenase (IDO1) for the treatment of cancer
American Association for Cancer Research Annual Meeting
Jay P. Powers, Matthew J. Walters, Rajkumar Noubade, Stephen W. Young, Lisa Marshall, Jan Melom, Adam Park, Nick Shah, Pia Bjork, Jordan S. Fridman, Hilary P. Beck, David Chian, Jenny V. McKinnell, Maksim Osipov, Maureen K. Reilly, Hunter P. Shunatona, James R. Walker, Mikhail Zibinsky, Juan C. Jaen

2017108thApril 04Abs 4964
Structure, in vitro biology and in vivo pharmacodynamic characterization of a novel clinical IDO1 inhibitor
American Association for Cancer Research Annual Meeting
John T Hunt, Aaron Balog, Christine Huang, Tai-An Lin, Tai-An Lin, Derrick Maley, Johnni Gullo-Brown, Jesse Swanson, Jennifer Brown

2017253rdApril 05Abs MEDI 368
Discovery of a selective inhibitor of indoleamine-2,3-dioxygenase for use in the therapy of cancer
American Chemical Society National Meeting and Exposition
Aaron Balog

April 2-62017
American Chemical Society – 253rd National Meeting and Exhibition (Part IV) – OVERNIGHT REPORT, San Francisco, CA, USA
Casellas J, Carceller V

////////////////PHASE 1, BMS 986205, 1923833-60-6, BMS-986205, ONO-7701,Bristol-Myers Squibb,  Antineoplastics,  F- 001287

 C[C@H]([C@H]1CC[C@@H](C2=CC=NC3=CC=C(F)C=C23)CC1)C(NC4=CC=C(Cl)C=C4)=O

Wrapping up ‘s 1st time disclosures is Aaron Balog of @bmsnews talking about an IOD-1 inhibitor to treat cancer 

str0

////////////////BMS986205, BMS 986205, BM-986205, ONO-7701, Phase III,  Head and neck cancer, Malignant melanoma, 1923833-60-6

CC(C1CCC(CC1)C2=C3C=C(C=CC3=NC=C2)F)C(=O)NC4=CC=C(C=C4)Cl

ABL 001, Asciminib


img

Image result for ABL001 / Asciminib

ABL001 / Asciminib

Cas 1492952-76-7
Chemical Formula: C20H18ClF2N5O3
Molecular Weight: 449.8428
Elemental Analysis: C, 53.40; H, 4.03; Cl, 7.88; F, 8.45; N, 15.57; O, 10.67

N-[4-[Chloro(difluoro)methoxy]phenyl]-6-[(3R)-3-hydroxypyrrolidin-1-yl]-5-(1H-pyrazol-5-yl)pyridine-3-carboxamide

3-Pyridinecarboxamide, N-[4-(chlorodifluoromethoxy)phenyl]-6-[(3R)-3-hydroxy-1-pyrrolidinyl]-5-(1H-pyrazol-3-yl)-

PHASE 3, Chronic Myeloid Leukemia, NOVARTIS

Asciminib is an orally bioavailable, allosteric Bcr-Abl tyrosine kinase inhibitor with potential antineoplastic activity. Designed to overcome resistance, ABL001 binds to the Abl portion of the Bcr-Abl fusion protein at a location that is distinct from the ATP-binding domain. This binding results in the inhibition of Bcr-Abl-mediated proliferation and enhanced apoptosis of Philadelphia chromosome-positive (Ph+) hematological malignancies. The Bcr-Abl fusion protein tyrosine kinase is an abnormal enzyme produced by leukemia cells that contain the Philadelphia chromosome.

ABL001 has been used in trials studying the health services research of Chronic Myelogenous Leukemia and Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia.
  • Originator Novartis
  • Developer Novartis; Novartis Oncology
  • Class Antineoplastics; Pyrazoles; Pyrrolidines; Small molecules
  • Mechanism of Action Bcr-abl tyrosine kinase inhibitors

Highest Development Phases

  • Phase III Chronic myeloid leukaemia
  • No development reported Precursor cell lymphoblastic leukaemia-lymphoma

Most Recent Events

  • 04 Nov 2017 No recent reports of development identified for phase-I development in Acute-lymphoblastic-leukaemia(Second-line therapy or greater) in Australia (PO)
  • 04 Nov 2017 No recent reports of development identified for phase-I development in Acute-lymphoblastic-leukaemia(Second-line therapy or greater) in France (PO)
  • 04 Nov 2017 No recent reports of development identified for phase-I development in Acute-lymphoblastic-leukaemia(Second-line therapy or greater) in Germany (PO)
  • The tyrosine kinase activity of the ABLl protein is normally tightly regulated, with the N-terminal cap region of the SH3 domain playing an important role. One regulatory mechanism involves the N-terminal cap glycine-2 residue being myristoylated and then interacting with a myristate binding site within the SHI catalytic domain. A hallmark of chronic myeloid leukemia (CML) is the Philadelphia chromosome (Ph), formed by the t(9,22) reciprocal chromosome translocation in a haematopoietic stem cell. This chromosome carries the BCR-ABL1 oncogene which encodes the chimeric BCR-ABL1 protein, that lacks the N-terminal cap and has a constitutively active tyrosine kinase domain.Although drugs that inhibit the tyrosine kinase activity of BCR-ABL1 via an ATP-competitive mechanism, such as Gleevec® / Glivec® (imatinib), Tasigna® (nilotinib) and Sprycel® (dasatinib), are effective in the treatment of CML, some patients relapse due to the emergence of drug-resistant clones, in which mutations in the SHI domain compromise inhibitor binding. Although Tasigna® and Sprycel® maintain efficacy towards many Gleevec-resistant mutant forms of BCR-ABLl, the mutation in which the threonine-315 residue is replaced by an isoleucine (T315I) remains insensitive to all three drugs and can result in CML patients developing resistance to therapy. Therefore, inhibiting BCR-ABLl mutations, such as T315I, remains an unmet medical need. In addition to CML, BCR-ABLl fusion proteins are causative in a percentage of acute lymphocytic leukemias, and drugs targeting ABL kinase activity also have utility in this indication.Agents targeting the myristoyl binding site (so-called allosteric inhibitors) have potential for the treatment of BCR-ABLl disorders (J. Zhang, F. J. Adrian, W. Jahnke, S. W. Cowan- Jacob, A. G. Li, R. E. Iacob4, T. Sim, J. Powers, C. Dierks, F. Sun, G.-R. Guo, Q. Ding, B. Okram, Y. Choi, A. Wojciechowski, X. Deng, G. Liu, G. Fendrich, A. Strauss, N. Vajpai, S. Grzesiek, T. Tuntland, Y. Liu, B. Bursulaya, M. Azam, P. W. Manley, J. R. Engen, G. Q. Daley, M. Warmuth., N. S. Gray. Targeting BCR-ABL by combining allosteric with ATP -binding-site inhibitors. Nature 2010;463:501-6). To prevent the emergence of drug resistance from ATP inhibitor and/or allosteric inhibitor use, a combination treatment using both types of inhibitor can be developed for the treatment of BCR-ABLl related disorders. In particular, the need exists for small molecules, or combinations thereof, that inhibit the activity of BCR-ABLl and BCR-ABLl mutations via the ATP binding site, the myristoyl binding site or a combination of both sites.Further, inhibitors of ABL 1 kinase activity have the potential to be used as therapies for the treatment of metastatic invasive carcinomas and viral infections such as pox and Ebola viruses.The compounds from the present invention also have the potential to treat or prevent diseases or disorders associated with abnormally activated kinase activity of wild-type ABL1, including non-malignant diseases or disorders, such as CNS diseases in particular neurodegenerative diseases (for example Alzheimer’s, Parkinson’s diseases), motoneuroneuron diseases (amyotophic lateral sclerosis), muscular dystrophies, autoimmune and inflammatory diseases (diabetes and pulmonary fibrosis), viral infections, prion diseases.

Asciminib is an allosteric inhibitor of BCR-ABL kinase in phase III clinical development at Novartis for the treatment of patients with chronic myelogenous leukemia (CML) in chronic phase who have been previously treated with ATP-binding site tyrosine kinase inhibitors. Early clinical trials are also under way in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and as first-line threapy of CML.

PATENT

WO2013171639

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013171639&recNum=141&docAn=IB2013053768&queryString=EN_ALL:nmr%20AND%20PA:novartis&maxRec=3644

To illustrate tautomerism with the following specific examples, (R)-N-(4- (chlorodifluoromethoxy)phenyl)-6-(3-hydroxypyrrolidin-l-yl)-5-(lH-pyrazol-5-yl)nicotinamide

(right structure, below) is a tautomer of (R)-N-(4-(chlorodifluoromethoxy)phenyl)-6-(3-hydroxypyrrolidin-l-yl)-5-(lH-pyrazol-3-yl)nicotinamide (left structure, below) and vice versa:

[0045] Where the plural form (e.g. compounds, salts) is used, this includes the singular

Example 9

(R)-N-(4-(Chlorodifluoromethoxy)phenyl)-6-(3-hvdroxypyrrolidin-l-yl)-5-(lH-pyrazol-5- vDnicotinamide

[00365] A mixture of (R)-5-Bromo-N-(4-(chlorodifluoromethoxy)phenyl)-6-(3-hydroxypyrrolidin-l-yl)nicotinamide (Stage 9.2, 100 mg, 0.216 mmol) and 5-(4 ,4,5,5-tetramethyl- 1 ,3 ,2-dioxaborolan-2-yl)- 1 -((2-(trimethylsilyl)ethoxy)methyl)- IH-pyrazole (215 mg, 0.663 mmol), Pd(PPh3)2Cl2 (17 mg, 0.024 mmol), Na2C03 (115 mg, 1.081 mmol), DME (917 μί), water (262 μΕ) and EtOH (131 μί) in a MW vial was sealed, evacuated / purged 3 times with argon and subjected to MW irradiation at 125°C for 20 min. The RM was diluted with 2 mL

of DME, stirred with Si-Thiol (Silicycle 1.44 mmol/g, 90 mg, 0.130 mmol) for 3 h. The mixture was centrifuged and the supernatant was filtered through a 0.45 μηι PTFE filter and the solvent was evaporated off under reduced pressure. The crude product was purified by flash

chromatography (RediSep® Silica gel column, 12 g, cyclohexane / EtOAc from 40% to 100% EtOAc) to afford the protected intermediate as a colorless oil. Ethylene diamine (96 μί, 1.428 mmol) and TBAF 1 M in THF (1.428 mL, 1.428 mmol) were then added and the RM was stirred at 80-85°C for 5 days. The solvent was evaporated off under reduced pressure and the residue was dissolved in EtOAc (40 mL), washed 3 times with sat. aq. NaHCC and brine, dried over Na2S04 and The solvent was evaporated off under reduced pressure to give a residue which was purified by preparative SFC (Column DEAP, from 25% to 30% in 6 min) to yield the title compound as a white solid.

[00366] Alternatively, Example 9 was prepared by adding TFA (168 mL, 2182 mmol) to a solution of N-(4-(chlorodifluoromethoxy)phenyl)-6-((R)-3-hydroxypyrrolidin-l-yl)-5-(l-(tetrahydro-2H-pyran-2-yl)-lH-pyrazol-5-yl)nicotinamide (Stage 9.1, 31.3 g, 54.6 mmol) in DCM (600 mL). The mixture was stirred at RT for 2.5 h. The solvent was evaporated off under reduced pressure and the residue was dissolved in EtOAc (1.5 L),washed with a sat. solution of NaHC03 (3 x 500 mL) and brine (500 mL), dried over Na2S04 and the solvent was evaporated off under reduced pressure to give a residue which was suspended in DCM (300 mL), stirred at RT for 15 min, filtered, washed with DCM (200 mL), dried and purified by chromatography (Silica gel, 1 kg, DCM / MeOH 95:5). The residue was dissolved in MeOH (500 mL) and treated with Si-Thiol (Biotage, 5.0 g , 6.5 mmol) for 16 h at 25°C. The resin was filtered off, the solvent was evaporated off under reduced pressure and the residue was crystallized from MeCN to afford the title compound as a white crystalline solid.

[00367] Alternatively, Example 9 was prepared by the dropwise addition of aqueous HC1

(7.7 mL of 6M) to a solution of N-(4-(chlorodifluoromethoxy)phenyl)-6-((R)-3-hydroxypyrrolidin- 1 -yl)-5-( 1 -(tetrahydro-2H-pyran-2-yl)- 1 H-pyrazol-5-yl)nicotinamide (Stage 9.1, 3.8 g, 7.12 mmol) in MeOH (20 mL) and THF (10 mL) with cooling (below 35°C). The mixture was stirred at 22°C for 2 h and then added to cooled (10°C) 1.2 M NaOH (22 mL).

Throughout the addition the temperature was kept below 30°C and pH was kept in the range of 9-10. The RM was then stirred for 30 min at 30°C. The solvent was evaporated off under reduced pressure, until the desired compound precipitated. The precipitate was filtered and dried to give the title compound as a yellow solid.

[00368] Analytical data for Example 9: HPLC (Condition 5) tR = 5.54 min, HPLC Chiral

(CHIRALCEL® OD-H, 250 x 4.6 mm, eluent : n-heptane/EtOH/MeOH (85: 10:5), 1 mL/min, UV 210 nm) tR = 10.17 min, UPLC-MS (condition 3) tR = 0.93 min, m/z = 450.3 [M+H]+, m/z = 494.1 [M+formic acid-H]XH-NMR (400 MHz, DMSO-d6) δ ppm 1.65 – 1.76 (m, 1 H) 1.76 – 1.87 (m, 1 H) 2.93 (d, J=l 1.73 Hz, 1 H) 3.19 – 3.29 (m, 2 H) 3.35 – 3.51 (m, 1 H) 4.10 – 4.25 (m, 1 H) 4.89 (br. s, 1 H) 6.41 (br. s, 1 H) 7.33 (d, J=8.50 Hz, 2 H) 7.57/7.83 (br. s, 1 H) 7.90 (d, J=8.50 Hz, 2 H) 8.07 (br. s, 1 H) 8.77 (br. s, 1 H) 10.23 (s, 1 H) 12.97/13.15 (br. s, 1 H).

[00369] Stage 9.1 : N-(4-(Chlorodifluoromethoxy)phenyl)-6-((R)-3-hydroxypyrrolidin- 1 -yl)-5-( 1 -(tetrahydro-2H-pyran-2- l)- 1 H-pyrazol-5-yl)nicotinamide

[00370] l-(Tetrahydro-2H-pyran-2-yl)-5-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-lH-pyrazole (29.6 g, 102 mmol), K3P04 (51.6 g, 236 mmol) and Pd(PPh3)4 (4.55 g, 3.93 mmol) were added to a suspension of (R)-5-bromo-N-(4-(chlorodifluoromethoxy)phenyl)-6-(3-hydroxypyrrolidin-l-yl)nicotinamide (Stage 9.2, 36.4 g, 79 mmol) in toluene (360 mL) under an argon atmosphere and the mixture was stirred at 110°C for 4 h. The RM was poured into brine (500 mL) and extracted with EtOAc (2 x 1 L). The combined extracts were washed with brine (500 mL), dried over Na2S04, and the solvent was evaporated off under reduced pressure to give a residue which was purified by chromatography (Silica gel column, 1.5 kg, DCM / MeOH 95:5) to afford a dark yellow foam, that was dissolved in MeOH / DCM (1 L of 3: l) and treated with Si-Thiol (Biotage, 35 g , 45.5 mmol) for 17 h at 30°C. The resin was filtered off, and solvent was evaporated off under reduced pressure, until the desired compound crystallized. The product was filtered washed with MeOH and dried to afford the title compound.

[00371] Alternatively, Stage 9.1 was prepared by adding 4-(chlorodifluoromethoxy)aniline

(16.6 g, 84.9 mmol), NMM (21.7 g, 212.1 mmol), hydroxybenzotriazole hydrate (HOBt H20, 11.9 g, 77.77 mmol) and l-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCIHCl, 20.9 g, 109.0 mmol) to a solution of 6-((R)-3-hydroxypyrrolidin-l-yl)-5-(l-(tetrahydro-2H-pyran-2-yl)-lH-pyrazol-5-yl)nicotinic acid (Stage 9.4, 29.83 g, 70.7 mmol) in THF (271 mL). The mixture was stirred for 1.5 h at 25°C and then at 65°C for 16 h. After cooling the RM to 35 °C, further EDCIHCl (13.3 g, 69.4 mmol) was added and the RM was stirred for 1.5 h at 35°C then again at 65°C for 16 h. After cooling the RM to 35°C, water (150 mL) was added, the THF was removed under reduced pressure, EtOAc (180 mL) was added and the mixture was stirred for at 35 °C fori h. The two layers were separated and the aq. phase was then extracted with EtOAc (60 mL). The combined organic layers were washed with water (90 mL), brine (90 mL). The solvent was evaporated off under reduced pressure to give a brown solid which was purified by column chromatography (Silica gel, DCM / MeOH 40: 1 to 20: 1) to afford the title compound as a yellow solid.

[00372] Analytical data for Stage 9.1: HPLC (Condition 5) tR = 6.12 min, UPLC-MS

(Condition 3) tR = 1.06 min, m/z = 533.2 [M+H]+XH-NMR (400 MHz, DMSO-d6) δ ppm 1.36 -2.02 (m, 7 H) 2.23 – 2.38 (m, 1 H) 3.08 – 3.29 (m, 2 H) 3.32 – 3.52 (m, 2 H) 3.73 – 3.93 (m, 1 H) 4.13 – 4.25 (m, 1 H) 4.80 – 4.90 (m, 1 H) 4.95 – 5.17 (m, 1 H) 6.33 – 6.50 (m, 1 H) 7.33 (d, J=8.99 Hz, 2 H) 7.61 (d, J=1.56 Hz, 1 H) 7.86 (d, J=8.99 Hz, 2 H) 7.97 – 8.11 (m, 1 H) 8.82 (s, 1 H) 10.13 – 10.25 (m, 1 H).

[00373] Stage 9.2: (R)-5-Bromo-N-(4-(chlorodifluoromethoxy)phenyl)-6-(3-hydroxypyrrolidin- 1 -yl)nicotinamide

[00374] (R)-Pyrrolidin-3-ol (9.55 g, 109.6 mmol) and DIPEA (35.1 ml, 201.3 mmol) were added to a suspension of 5-bromo-6-chloro-N-(4-(chlorodifluoromethoxy)phenyl)nicotinamide (Stage 9.3, 37.7 g, 91.5 mmol) in iPrOH (65 mL) and stirred at 140°C for 1 h. EtOAc (700 mL) was added and the solution was washed IN HC1 (2 x 200 mL), sat. NaHCC (200 mL) and brine (2 x 200 mL), dried over Na2S04, and the solution was concentrated under reduced pressure until crystallization commenced. n-Heptane (1 L) were added and the mixture was stirred at RT for 30 min, filtered and washed with ΪΡΓ20 (500 mL) to afford the title compound as a white crystalline solid. HPLC (Condition 5) tR = 6.68 min, UPLC-MS (Condition 3) tR = 1.10 min, m/z =

462.2/464.2 [M+H]+XH-NMR (400 MHz, DMSO-d6) δ ppm 1.78 – 2.01 (m, 2 H) 3.55 (d, J=l 1.34 Hz, 1 H) 3.66 – 3.75 (m, 1 H) 3.79 – 3.93 (m, 2 H) 4.34 (br. s, 1 H) 4.98 (d, =3.13 Hz, 1 H) 7.32 (d, J=8.99 Hz, 2 H) 7.84 (d, J=8.99 Hz, 2 H) 8.33 (d, J=1.96 Hz, 1 H) 8.66 (d, J=1.96 Hz, 1 H) 10.21 (s, 1 H).

[00375] Stage 9.3: 5-Bromo-6-chloro-N- 4-(chlorodifluoromethoxy)phenyl)nicotinamide

[00376] DMF (2.55 mL, 33.0 mmol) and SOCl2 (24.08 ml, 330 mmol) were added to a suspension of 5-bromo-6-chloro-nicotinic acid (26 g, 110 mmol) in toluene (220 mL) and the RM was stirred at 80°C for 1 h. The solvent was evaporated off under reduced pressure and the residue was dissolved in THF (220 mL) and cooled to -16°C. DIPEA (38.4 mL, 220 mmol) was added, followed by dropwise addition of a solution of 4-(chlorodifluoromethoxy)aniline (22.35 g, 115 mmol) in THF (220 mL) over 15 min. The suspension was stirred for 1 h at RT. The solvent was evaporated off under reduced pressure and the residue was dissolved in TBME (700 mL), washed with IN HC1 (2 x 200 mL), sat. NaHC03 (200 mL) and brine (2 x 200 mL), dried over Na2S04, and the solvent was evaporated off under reduced pressure to give the product which was crystallized from EtOAc – n-heptane to afford the title compound as a white crystalline solid. HPLC (Condition 5) tR = 7.77 min, UPLC-MS (Condition 3) tR = 1.24 min, m/z =

409.1/411.1/413.1 [M+H]+XH-NMR (400 MHz, DMSO-d6) δ ppm 7.38 (d, =8.99 Hz, 2 H) 7.85 (d, =8.99 Hz, 2 H) 8.72 (br. s, 1 H) 8.92 (br. s, 1 H) 10.68 (s, 1 H).

[00377] Stage 9.4: 6-((R)-3-Hydroxypyrrolidin-l-yl)-5-(l-(tetrahydro-2H-pyran-2-yl)-lH-pyrazol-5-yl)nicotinic acid

[00378] Aq. NaOH (180 niL of 2.6 M) was added to a solution of methyl 6-((R)-3-hydroxypyrrolidin- 1 -yl)-5-(l -(tetrahydro-2H-pyran-2-yl)- 1 H-pyrazol-5-yl)nicotinate (Stage 9.5, 11 lg, 299 mmol) in MeOH (270 mL) and the RM was stirred at RT for 14 h. The MeOH was evaporated off under reduced pressure and the aq. residue was treated with brine (90 mL), extracted with MeTHF twice (540 mL + 360 mL) and the combined organic layers were washed with water (90 mL). MeTHF was added to the combined aq. layers, the biphasic mixture was cooled to 0 °C and acidified (pH = 4-4.5) with aq. HC1 solution (18%) and extracted with

MeTHF. The combined organic extracts were washed with brine and the solvent was evaporated off under reduced pressure to give a residue which was recrystallized from a EtOAc / TBME (1 : 1) to afford the title compound as a white solid. HPLC (Condition 7) tR = 4.74 min, LC-MS

(Condition 8) tR = 3.37 min, m/z = 359.0 [M+H]+XH-NMR (400 MHz, DMSO-d6) δ ppm 1.44 (br. s, 2 H), 1.51 (d, J=11.54 Hz, 2 H), 1.64 – 1.86 (m, 4 H), 1.90 (br. s, 1 H), 2.31 (d, J=9.29 Hz, 1 H), 2.77 (br. s, 1 H), 3.10 (br. s, 1 H), 3.21 (d, J=8.78 Hz, 2 H), 3.27 – 3.51 (m, 4 H), 3.87 (d, J=11.54 Hz, 1 H), 4.16 (br. s, 1 H), 4.75 – 4.93 (m, 1 H), 5.04 (br. s, 1 H), 6.35 (d, J=17.32 Hz, 1 H), 7.51 – 7.64 (m, 1 H), 7.64 – 7.82 (m, 1 H), 8.67 (d, J=2.26 Hz, 1 H), 12.58 (br. s, 1 H).

[00379] Stage 9.5: Methyl 6-((R)-3-hydroxypyrrolidin-l-yl)-5-(l-(tetrahydro-2H-pyran-2-yl)- 1 H-pyrazol-5-yl)nicotinate

[00380] A mixture of (R)-methyl 5-bromo-6-(3-hydroxypyrrolidin-l-yl)nicotinate (Stage

9.6, 90 g, 299 mmol), l-(tetrahydro-2H-pyran-2-yl)-lH-pyrazole-5-boronic acid pinacol ester (103.9 g, 373.6 mmol), K3P04 (126.9 g, 597.7 mmol), Pd(PPh3)2Cl2 (6.29 g, 8.97 mmol) in toluene (900 mL) was stirred at 92°C and for 16 h. After cooling the mixture to RT, the solution was washed with water (450 mL), 5% NaHCC solution (430 mL) and the solvent was evaporated off under reduced pressure to give a residue which was used without further purifications in the next step. HPLC (Condition 7) tR = 6.929 min, LC-MS (Condition 8) tR = 4.30 min, m/z = 373.0 [M+H ; XH-NMR (400 MHz, DMSO-d6) δ ppm 1.19 – 1.28 (m, 1 H), 1.35 – 1.63 (m, 4 H), 1.63 -1.86 (m, 3 H), 1.89 (br. s, 1 H), 2.12 – 2.39 (m, 1 H), 3.11 (br. s, 1 H), 3.18 – 3.48 (m, 4 H), 3.78 (s, 4 H), 3.88 (d, J=11.54 Hz, 1 H), 4.08 – 4.24 (m, 1 H), 4.86 (dd, J=18.20, 2.89 Hz, 1 H), 5.02 (d, J=8.28 Hz, 1 H), 6.39 (br. s, 1 H), 7.58 (d, J=1.25 Hz, 1 H), 7.78 (br. s, 1 H), 8.69 (t, J=2.01 Hz, 1 H).

[00381] Stage 9.6: (R)-methyl 5-bromo-6-(3-hydroxypyrrolidin-l-yl)nicotinate

[00382] DIPEA (105.3 g, 142.2 mL, 814.4 mmol) was added to a solution of methyl-5-bromo-6-chroronicotinate (85 g, 339.5 mmol) and (R)-pyrrolidin-3-ol (54.2 g, 441.2 mmol) in isopropyl acetate and the RM was stirred at 70°C for 14 h . The solvent was evaporated off under reduced pressure to give a the residue which was dissolved in toluene (850 mL), washed with water (127 mL) and brine (127 mL)and concentrated under reduced pressure until precipitation commenced. n-Heptane (340 mL) was slowly added to the stirred mixture at 22 °C, which was then cooled to 0 °C and the product was filtered, washed with a toluene / n-heptane mixture

(1 : 1.5) and dried to give the title compound as a yellow solid. HPLC (Condition 7) tR = 8.54 min, LC-MS (Condition 8) tR = 4.62 min, m/z = 300.9/302.9 [M+H]+XH-NMR (400 MHz, DMSO-d6) δ ρριη 1.77 – 1.99 (m, 2 H), 3.57 (d, J=11.54 Hz, 1 H), 3.72 (ddd, J=l 1.11, 7.97, 3.26 Hz, 1 H), 3.78 (s, 3 H), 3.81 -3.90 (m, 2 H), 4.26 – 4.39 (m, 1 H), 4.99 (br. s, 1 H), 8.11 (d, J=2.01 Hz, 1 H), 8.56 (d, J=1.76 Hz, 1 H).

PAPER

  • By Wylie, Andrew A.; Schoepfer, Joseph; Jahnke, Wolfgang; Cowan-Jacob, Sandra W.; Loo, Alice; Furet, Pascal; Marzinzik, Andreas L.; Pelle, Xavier; Donovan, Jerry; Zhu, Wenjing; et al
  • From Nature (London, United Kingdom) (2017), 543(7647), 733-737.

By Wylie, Andrew A. et alFrom Nature (London, United Kingdom), 543(7647), 733-737; 2017

PAPER

  • By Molica, Matteo; Massaro, Fulvio; Breccia, Massimo
  • From Expert Opinion on Pharmacotherapy (2017), 18(1), 57-65.

PATENT

US 20170216289

PAPER

  • By El Rashedy, Ahmed A.; Olotu, Fisayo A.; Soliman, Mahmoud E. S.
  • From Chemistry & Biodiversity (2018), 15(3), n/a.
Patent ID

Patent Title

Submitted Date

Granted Date

US2016108123 ANTIBODY MOLECULES TO PD-L1 AND USES THEREOF
2015-10-13
2016-04-21
US2014343086 COMPOUNDS AND COMPOSITIONS FOR INHIBITING THE ACTIVITY OF ABL1, ABL2 AND BCR-ABL1
2014-07-31
2014-11-20
US8829195 Compounds and compositions for inhibiting the activity of ABL1, ABL2 and BCR-ABL1
2013-05-13
2014-09-09

////////////////ABL001, Asciminib, ABL 001, ABL-001, PHASE 3, Chronic Myeloid Leukemia,  NOVARTIS

 O=C(NC1=CC=C(OC(F)(Cl)F)C=C1)C2=CN=C(N3C[C@H](O)CC3)C(C4=CC=NN4)=C2

Alpelisib, BYL 719


Alpelisib.pngChemSpider 2D Image | Alpelisib | C19H22F3N5O2S

Alpelisib

(2S)-1-N-[4-methyl-5-[2-(1,1,1-trifluoro-2-methylpropan-2-yl)pyridin-4-yl]-1,3-thiazol-2-yl]pyrrolidine-1,2-dicarboxamide
PDT PAT WO 2010/029082
Chemical Names: Alpelisib; CAS 1217486-61-7; BYL-719; BYL719; UNII-08W5N2C97Q; BYL 719
Molecular Formula: C19H22F3N5O2S
Molecular Weight: 441.473 g/mol
  1. alpelisib
  2. 1217486-61-7
  3. BYL-719
  4. BYL719
  5. UNII-08W5N2C97Q
  6. BYL 719
  7. Alpelisib (BYL719)
  8. (S)-N1-(4-Methyl-5-(2-(1,1,1-trifluoro-2-methylpropan-2-yl)pyridin-4-yl)thiazol-2-yl)pyrrolidine-1,2-dicarboxamide
  9. NVP-BYL719

Alpelisib is an orally bioavailable phosphatidylinositol 3-kinase (PI3K) inhibitor with potential antineoplastic activity. Alpelisib specifically inhibits PI3K in the PI3K/AKT kinase (or protein kinase B) signaling pathway, thereby inhibiting the activation of the PI3K signaling pathway. This may result in inhibition of tumor cell growth and survival in susceptible tumor cell populations. Activation of the PI3K signaling pathway is frequently associated with tumorigenesis. Dysregulated PI3K signaling may contribute to tumor resistance to a variety of antineoplastic agents.

Alpelisib has been used in trials studying the treatment and basic science of Neoplasms, Solid Tumors, BREAST CANCER, 3rd Line GIST, and Rectal Cancer, among others.
str1 str2
Image result for Alpelisib PHARMACODIA
 SYN 2Image result for Alpelisib PHARMACODIA
POLYMORPHS

(S)-pyrrolidine-l,2-dicarboxylic acid 2-amide l-(4-methyl-5-[2-(2,2,2-trifluoro-l,l- dimethyl-ethyl)-pyridin-4-yl]-thiazol-2-yl)-amidei hereafter referred to as compound I,

Figure imgf000002_0001

is an alpha-selective phosphatidylinositol 3 -kinase (PI3K) inhibitor. Compound I was originally described in WO 2010/029082, wherein the synthesis of its free base form was described. There is a need for additional solid forms of compound I, for use in drug substance and drug product development. It has been found that new solid forms of compound I can be prepared as one or more polymorph forms, including solvate forms. These polymorph forms exhibit new physical properties that may be exploited in order to obtain new pharmacological properties, and that may be utilized in drug substance and drug product development. Summary of the Invention

In one aspect, provided herein is a crystalline form of the compound of formula I, or a solvate of the crystalline form of the compound of formula I, or a salt of the crystalline form of the compound of formula I, or a solvate of a salt of the crystalline form of the compound of formula I. In one embodiment, the crystalline form of the compound of formula I has the polymorph form SA, SB, Sc, or SD.

In another aspect, provided herein is a pharmaceutical composition comprising a crystalline compound of formula I. In one embodiment of the pharmaceutical composition, the crystalline compound of formula I has the polymorph form SA, SB,Sc, or So.

In another aspect, provided herein is a method for the treatment of disorders mediated by PI3K, comprising administering to a patient in need of such treatment an effective amount of a crystalline compound of formula I, particularly SA, SB, SC,or SD .

In yet another aspect, provided herein is the use of a crystalline compound of formula I, particularly SA, SB, SC, or SD, for the preparation of a medicament for the treatment of disorders mediated by PI3K.

In still another aspect, provided herein is a method for the treatment of disorders selected from benign or malignant tumor; a cancer selected from sarcoma; lung; bronchus; prostate; breast (including sporadic breast cancers and sufferers of Cowden disease);

pancreas; gastrointestinal cancer; colon; rectum; colon carcinoma; colorectal adenoma;

thyroid; liver; intrahepatic bile duct; hepatocellular; adrenal gland; stomach; gastric; glioma; glioblastoma; endometrial; melanoma; kidney; renal pelvis; urinary bladder; uterine corpus; uterine cervix; vagina; ovary; multiple myeloma; esophagus; a leukaemia; acute myelogenous leukemia; chronic myelogenous leukemia; lymphocytic leukemia; myeloid leukemia; brain; a carcinoma of the brain; oral cavity and pharynx; larynx; small intestine; non-Hodgkin lymphoma; melanoma; villous colon adenoma; a neoplasia; a neoplasia of epithelial character; lymphomas; a mammary carcinoma; basal cell carcinoma; squamous cell carcinoma; actinic keratosis; tumor diseases, including solid tumors; a tumor of the neck or head; polycythemia vera; essential thrombocythemia; myelofibrosis with myeloid metaplasia; and Walden stroem disease; as well as polycythemia vera, essential thrombocythemia, myelofibrosis with myeloid metaplasia, asthma, COPD, ARDS, Loffler’s syndrome, eosinophilic pneumonia, parasitic (in particular metazoan) infestation (including tropical eosinophilia), bronchopulmonary aspergillosis, polyarteritis nodosa (including Churg-Strauss syndrome), eosinophilic granuloma, eosinophil-related disorders affecting the airways occasioned by drug-reaction, psoriasis, contact dermatitis, atopic dermatitis, alopecia areata, erythema multiforme, dermatitis herpetiformis, scleroderma, vitiligo, hypersensitivity angiitis, urticaria, bullous pemphigoid, lupus erythematosus, pemphisus, epidermolysis bullosa acquisita, autoimmune haematogical disorders (e.g., haemolytic anaemia, aplastic anaemia, pure red cell anaemia and idiopathic thrombocytopenia), systemic lupus erythematosus, polychondritis, scleroderma, Wegener granulomatosis, dermatomyositis, chronic active hepatitis, myasthenia gravis, Steven-Johnson syndrome, idiopathic sprue, autoimmune inflammatory bowel disease (e.g., ulcerative colitis and Crohn’s disease), endocrine opthalmopathy, Grave’s disease, sarcoidosis, alveolitis, chronic hypersensitivity pneumonitis, multiple sclerosis, primary biliary cirrhosis, uveitis (anterior and posterior), interstitial lung fibrosis, psoriatic arthritis, glomerulonephritis, cardiovascular diseases, atherosclerosis, hypertension, deep venous thrombosis, stroke, myocardial infarction, unstable angina, thromboembolism, pulmonary embolism, thrombolytic diseases, acute arterial ischemia, peripheral thrombotic occlusions, and coronary artery disease, reperfusion injuries, retinopathy, such as diabetic retinopathy or hyperbaric oxygen-induced retinopathy, and conditions characterized by elevated intraocular pressure or secretion of ocular aqueous humor, such as glaucoma, comprising administering to a patient in need of such treatment an effective amount of the crystalline compound of formula I, particularly polymorph forms SA, SB, SC, or SD-

In another aspect, provided herein is the use of the crystalline compound of formula I, particularly polymorph forms SA, SB, SC, or SD for the preparation of a medicament for the treatment of the disorders listed above. Brief Description of the Drawings

Figure I depicts the X-ray powder diffraction pattern of polymorph form A. Figure II depicts the FT-IR spectrum of polymorph form A. Figure III depicts the differential scanning calorimetry thermogram of polymorph form A. Figure IV depicts the X-ray powder diffraction pattern of polymorph form SA- Figure V depicts the X-ray powder diffraction pattern of polymorph form SB. Figure VI depicts the X-ray powder diffraction pattern of polymorph form Sc. Figure VII depicts the X-ray powder diffraction pattern of polymorph form SD.

Scheme 2. Synthesis of (S)-Pyrrolidine-1.2-dicarboxylic acid 2-amide l-((4-methyl-5-r2- (2,2,2-trifluoro- 1 , 1 -dimethyl-ethyl -pyridin-4-yl1-thiazol-2-yl} -amide)

Figure imgf000028_0001

Example 2: (S)-Pyrrolidine-1.2-dicarboxylic acid 2-amide 1 -((4-methyl-5- 2 -(2,2,2- trifluoro-1 J-dirhethyl-ethylVpyridin-4-yl -thia2ol-2-yll-amide

The title compound is prepared in analogy to the procedure described in Example 1 but with the following modifications. In Step 2.1 (corresponding to Step 1.1 of Example 1), the reaction mixture is stirred for 14 h at reflux. In Step 2.2 (corresponding to Step 1.2 of Example 1), the reaction mixture is stirred for 1 h at 85 °C and extracted with ethyl acetate after being quenched. In step 2.3 (corresponding to Step 1.3 of Example 1), the reaction mixture is stirred for 2.5 h at 120 °C. In Step 2.4 (corresponding to Step 1.4 of Example 1), the reaction mixture is stirred for 1 h at 83 °C and extracted with ethyl acetate after being quenched. In Step 2.5 (corresponding to Step 1.5 of Example 1), the reaction mixture is stirred for 1 h at 65 °C and trituration in methanol is not performed. In Step 2.6

(corresponding to Step 1.6 of Example 1), the crude product is not purified. In Step 2.7 (corresponding to Step 1.7 of Example 1), 3,3,3-trifluoro-2,2-dimethyl-propionyl chloride is used.

Title compound: ESI-MS: 442.0 [M+H]+; tR= 3.02 min (System 1); TLC: Rf = 0.35 (DCM/MeOH, 9: 1).

Example 3: Preparation of Polymorph Form A

(S)-Pyrrolidine-l,2-dicarboxylic acid 2-amide l-({4-methyl-5-[2-(2,2,2-trifluoro-l,l- dimethyl-ethyl)-pyridin-4-yl]-thiazol-2-yl}-amide) (10.0 g) was suspended in ethanol/water (85:15 v/v; 75 mL) and the mixture was heated to 75 °C. The solution was clear-filtered into a second flask and the first flask was then washed with ethanol/water (4:6 v/v; 20 mL), followed by water (10 mL). The clear solution was stirred at 75 °C for an additional 30 minutes. The clear solution was then cooled to 2 °C over 2 hours and the obtained thick suspension was stirred at 2 °C for an additional hour. The mixture was then filtered, and the flask and filter cake were washed with ethanol/water (1 :1 v/v; 20 mL), followed by ethyl acetate (10 mL). The wet filter cake was returned to the flask and suspended in ethyl acetate (75 mL). the mixture was heated to 78 °C and was stirred under reflux for 1 hour. During this time, 15 mL ethyl acetate was distilled off. The mixture was then cooled to 2 °C over 2 hours and the suspension was stirred at 2 °C for an additional hour. The mixture was filtered, and the flask and filter cake were washed with cold ethyl acetate (12 mL). The filter cake was then dried under 1-50 mbar vacuum at 50 °C to yield the polymorph form A (7.3 g).

Publication numberPriority datePublication dateAssigneeTitle
WO2010029082A12008-09-102010-03-18Novartis AgOrganic compounds
WO2012016970A1 *2010-08-022012-02-09Novartis AgA crystalline form of (s)-pyrrolidine-1,2-dicarboxylic acid 2-amide 1-(4 -methyl-5-[2-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-yl]-thiazol-2-yl)-amide and its use as pi3k inhibitor
KR20070113188A *2004-10-072007-11-28베링거 인겔하임 인터내셔날 게엠베하Thiazolyldihydroindazoles
EP2016075A1 *2006-05-032009-01-21AstraZeneca ABThiazole derivatives and their use as anti-tumour agents
WO2016051374A1 *2014-10-032016-04-07Novartis AgPharmaceutical compositions comprising alpelisib
CN105979947A *2013-12-062016-09-28诺华股份有限公司Dosage regimen for an alpha-isoform selective phosphatidylinositol 3-kinase inhibitor
 PATENTS
Patent ID

Patent Title

Submitted Date

Granted Date

US9815898 ANTIBODY MOLECULES TO PD-1 AND USES THEREOF
2017-05-15
US2017210733 BENZOXAZEPIN OXAZOLIDINONE COMPOUNDS AND METHODS OF USE
2017-04-07
US2017210804 ANTIBODY MOLECULES TO LAG-3 AND USES THEREOF
2017-03-24
US2017190777 ANTIBODY MOLECULES TO TIM-3 AND USES THEREOF
2017-03-17
US2017166550 BENZOTHIOPHENE-BASED SELECTIVE ESTROGEN RECEPTOR DOWNREGULATORS
2016-12-09
Patent ID

Patent Title

Submitted Date

Granted Date

US2015291606 MERTK-SPECIFIC PYRROLOPYRIMIDINE COMPOUNDS
2015-04-03
2015-10-15
US2015291609 MERTK-SPECIFIC PYRIMIDINE COMPOUNDS
2015-04-03
2015-10-15
US9603850 MERTK-SPECIFIC PYRAZOLOPYRIMIDINE COMPOUNDS
2015-04-03
2015-10-15
US2015259420 ANTIBODY MOLECULES TO LAG-3 AND USES THEREOF
2015-03-13
2015-09-17
US9605070 ANTIBODY MOLECULES TO TIM-3 AND USES THEREOF
2015-01-30
2015-08-06
Patent ID

Patent Title

Submitted Date

Granted Date

US2016108123 ANTIBODY MOLECULES TO PD-L1 AND USES THEREOF
2015-10-13
2016-04-21
US2017209574 COMBINATION THERAPIES
2015-10-02
US2017224836 ANTI-CDH6 ANTIBODY DRUG CONJUGATES
2015-08-07
US2017189409 MEDICAL USE
2015-05-21
US2015320880 ANTIBODY DRUG CONJUGATES
2015-05-20
2015-11-12

/////////////////Alpelisib,  CAS,  1217486-61-7, BYL-719, BYL719, UNII-08W5N2C97Q, BYL 719

CC1=C(SC(=N1)NC(=O)N2CCCC2C(=O)N)C3=CC(=NC=C3)C(C)(C)C(F)(F)F

Capmatinib, капматиниб , كابماتينيب , 卡马替尼 ,


  • ThumbChemSpider 2D Image | Capmatinib | C23H17FN6OChemSpider 2D Image | Capmatinib | C23H17FN6OCapmatinib.png

Capmatinib / INC280/ INCB 28060

INC280 / INCB-28060 FREE BASE

UNIITY34L4F9OZ

CAS number 1029712-80-8

WeightAverage: 412.428
Chemical FormulaC23H17FN6O

2-fluoro-N-methyl-4-{7-[(quinolin-6-yl)methyl]imidazo[1,2-b][1,2,4]triazin-2-yl}benzamide

Capmatinib dihydrochloride; CAS 1197376-85-4

1029712-80-8 [RN]
2-Fluoro-N-méthyl-4-[7-(6-quinoléinylméthyl)imidazo[1,2-b][1,2,4]triazin-2-yl]benzamide [French] [ACD/IUPAC Name]
капматиниб [Russian] [INN]
كابماتينيب [Arabic] [INN]
卡马替尼 [Chinese] [INN]

Scheme 1

Scheme 2

Method C


Capmatinib has been used in trials studying the treatment of Melanoma, Gliosarcoma, Solid Tumors, Colorectal Cancer, and Hepatic Impairment, among others.

Capmatinib is an orally bioavailable inhibitor of the proto-oncogene c-Met (also known as hepatocyte growth factor receptor (HGFR)) with potential antineoplastic activity. Capmatinib selectively binds to c-Met, thereby inhibiting c-Met phosphorylation and disrupting c-Met signal transduction pathways. This may induce cell death in tumor cells overexpressing c-Met protein or expressing constitutively activated c-Met protein. c-Met, a receptor tyrosine kinase overexpressed or mutated in many tumor cell types, plays key roles in tumor cell proliferation, survival, invasion, metastasis, and tumor angiogenesis.

Capmatinib has been used in trials studying the treatment of Melanoma, Gliosarcoma, Solid Tumors, Colorectal Cancer, and Hepatic Impairment, among others

Protein kinases (PKs) are a group of enzymes that regulate diverse, important biological processes including cell growth, survival and differentiation, organ formation and morphogenesis, neovascularization, tissue repair and regeneration, among others. Protein kinases exert their physiological functions through catalyzing the phosphorylation of proteins (or substrates) and thereby modulating the cellular activities of the substrates in various biological contexts, hi addition to the functions in normal tissues/organs, many protein kinases also play more specialized roles in a host of human diseases including cancer. A subset of protein kinases (also referred to as oncogenic protein kinases), when dysregulated, can cause tumor formation and growth, and further contribute to tumor maintenance and progression (Blume- Jensen P et al, Nature 2001, 411(6835):355-365). Thus far, oncogenic protein kinases represent one of the largest and most attractive groups of protein targets for cancer intervention and drug development. c-Met, a proto-oncogene, is a member of a distinct subfamily of heterodimeric receptor tyrosine kinases which include Met, Ron, and Sea (Birchmeier, C. et al., Nat. Rev. MoI. Cell Biol. 2003, 4(12):915-925; Christensen, J. G. et al., Cancer Lett. 2005, 225(1): 1-26). The only high affinity ligand for c-Met is the hepatocyte growth factor (HGF), also known as scatter factor (SF). Binding of HGF to c-Met induces activation of the receptor via autophosphorylation resulting in an increase of receptor dependent signaling. Both c-Met and HGF are widely expressed in a variety of organs, but their expression is normally confined to the cells of epithelial and mesenchymal origin, respectively. The biological functions of c-Met (or c-Met signaling pathway) in normal tissues and human malignancies such as cancer have been well documented (Christensen, J.G. et al., Cancer Lett. 2005, 225(l):l-26; Corso, S. et al., Trends in MoI. Med. 2005, l l(6):284-292).

HGF and c-Met are each required for normal mammalian development, and abnormalities reported in both HGF- and c-Met-null mice are consistent with proximity of embryonic expression and epithelial-mesenchymal transition defects during organ morphogenesis (Christensen, J.G. et al., Cancer Lett. 2005, 225(1): 1-26). Consistent with these findings, the transduction of signaling and subsequent biological effects of HGF/c-Met pathway have been shown to be important for epithelial-mesenchymal interaction and regulation of cell migration, invasion, cell proliferation and survival, angiogenesis, morphogenesis and organization of three-dimensional tubular structures (e.g. renal tubular cells, gland formation) during development. The specific consequences of c-Met pathway activation in a given cell/tissue are highly context-dependent.

Dysregulated c-Met pathway plays important and sometimes causative (in the case of genetic alterations) roles in tumor formation, growth, maintenance and progression (Birchmeier, C. et al., Nat. Rev. MoI. Cell. Biol. 2003, 4(12):915-925; Boccaccio, C. et al., Nat. Rev. Cancer 2006, 6(8):637-645; Christensen, J.G. et al., Cancer Lett. 2005, 225(1): 1-26). HGF and/or c-Met are overexpressed in significant portions of most human cancers, and are often associated with poor clinical outcomes such as more aggressive disease, disease progression, tumor metastasis and shortened patient survival. Further, patients with high levels of HGF/c-Met proteins are more resistance to chemotherapy and radiotherapy, hi addition to the abnormal HGF/c-Met expression, c-Met receptor can also be activated in cancer patients through genetic mutations (both germline and somatic) and gene amplification. Although gene amplification and mutations are the most common genetic alterations that have been reported in patients, the receptor can also be activated by deletions, truncations, gene rearrangement, as well as abnormal receptor processing and defective negative regulatory mechanisms.

The various cancers in which c-Met is implicated include, but are not limited to: carcinomas (e.g., bladder, breast, cervical, cholangiocarcinoma, colorectal, esophageal, gastric, head and neck, kidney, liver, lung, nasopharygeal, ovarian, pancreas, prostate, thyroid); musculoskeletal sarcomas (e.g., osteosarcaoma, synovial sarcoma, rhabdomyosarcoma); soft tissue sarcomas (e.g., MFH/fibrosarcoma, leiomyosarcoma, Kaposi’s sarcoma); hematopoietic malignancies (e.g., multiple myeloma, lymphomas, adult T cell leukemia, acute myelogenous leukemia, chronic myeloid leukemia); and other neoplasms (e.g., glioblastomas, astrocytomas, melanoma, mesothelioma and Wilm’s tumor (www.vai.org/met/; Christensen, J. G. et al., Cancer Lett. 2005, 225(1): 1-26).

The notion that the activated c-Met pathway contributes to tumor formation and progression and could be a good target for effective cancer intervention has been further solidified by numerous preclinical studies (Birchmeier, C. et al., Nat. Rev. MoI. Cell Biol. 2003, 4(12):915-925; Christensen, J.G. et al., Cancer Lett. 2005, 225(l):l-26; Corso, S. et al., Trends in MoI. Med. 2005, 11(6):284-292). For example, studies showed that the tpr-met fusion gene, overexpression oϊc-met and activated c-met mutations all caused oncogenic transformation of various model cell lines and resulted in tumor formation and metastasis in mice. More importantly, significant anti-tumor (sometimes tumor regression) and anti-metastasis activities have been demonstrated in vitro and in vivo with agents that specifically impair and/or block HGF/c-Met signaling. Those agents include anti-HGF and anti-c-Met antibodies, HGF peptide antagonists, decoy c-Met receptor, c-Met peptide antagonists, dominant negative c-Met mutations, c-Met specific antisense oligonucleotides and ribozymes, and selective small molecule c-Met kinase inhibitors (Christensen, J.G. et al., Cancer Lett. 2005, 225(1): 1-26).

In addition to the established role in cancer, abnormal HGF/c-Met signaling is also implicated in atherosclerosis, lung fibrosis, renal fibrosis and regeneration, liver diseases, allergic disorders, inflammatory and autoimmune disorders, cerebrovascular diseases, cardiovascular diseases, conditions associated with organ transplantation (Ma, H. et al., Atherosclerosis. 2002, 164(l):79-87; Crestani, B. et al., Lab. Invest. 2002, 82(8):1015-1022; Sequra-Flores, A. A. et al., Rev. Gastroenterol. Mex. 2004, 69(4)243-250; Morishita, R. et al., Curr. Gene Ther. 2004, 4(2)199-206; Morishita, R. et al., Endocr. J. 2002, 49(3)273-284; Liu, Y., Curr. Opin. Nephrol. Hypertens. 2002, l l(l):23-30; Matsumoto, K. et al., Kidney Int. 2001, 59(6):2023-2038; Balkovetz, D.F. et al., Int. Rev. Cytol. 1999, 186:225-250; Miyazawa, T. et al., J. Cereb. Blood Flow Metab. 1998, 18(4)345-348; Koch, A.E. et al., Arthritis Rheum. 1996, 39(9):1566-1575; Futamatsu, H. et al., Circ. Res. 2005, 96(8)823-830; Eguchi, S. et al., Clin. Transplant. 1999, 13(6)536-544).

Inhibitors of c-Met and other kinases are reported in U.S. Ser. No. 11/942,130, including the compound 2-fluoro-N-methyl-4-[7-(quinolin-6-ylmethyl)imidazo[l ,2-b][l ,2,4]triazin-2-yl]benzamide (I) having the structure indicated below.

(I)

New or improved forms of existing agents which inhibit kinases such as c-Met are continually needed for developing more effective pharmaceuticals to treat cancer and other diseases. The salts, compositions, and methods described herein are directed toward these needs and other ends.

PATENT

Example 8 4-Bromo-3-fluoro-N-methoxy-iV-methylbenzamide (3)

To a suspension of 4-bromo-3-fluorobenzoic acid (1, 967.9 g, 4.4 mol) in dichloromethane (5.9 L) and DMF (21 mL) was slowly added a solution of oxalyl chloride ((COCl)2, 560 mL, 6.4 mol, 1.45 equiv) in dichloromethane (520 mL) at room temperature. The resulting reaction mixture was stirred at room temperature for 20 h and then cooled to 0 0C by ice-water bath. iV,0-dimethyl hydroxylamine hydrochloride (826 g, 8.4 mol, 1.9 equiv) was added followed by slow addition of triethylamine (TEA, 2.5 L, 17.7 mol, 4.0 equiv) at 0 0C. The reaction mixture was then gradually warmed to room temperature and stirred at room temperature overnight. Once the coupling reaction was complete, the reaction mixture was washed with saturated aqueous sodium bicarbonate solution (NaHCO3, 2 L). The aqueous phase was back extracted with dichloromethane (1 L). The combined organic phases were washed with water (1 L), brine (1 L), and concentrated under reduced pressure. The resulting solid residue was dissolved into methyl tert-butyl ether (MTBE, 5 L), washed sequentially with water (5 x 1 L), brine (1 L), and dried over anhydrous sodium sulfate (Na2SO4). The filtrated solution was concentrated under reduced pressure and the resulting solid was dried in a vacuum oven at 45 0C to afford 4-bromo-3-fluoro-Λr-methoxy-Λr-methylbenzamide (3, 1106 g, 1153 g theoretical, 95.9% yield) which was used for the subsequent reaction without further purification. For 3: 1H NMR (400 MHz, DMSO-J6) δ ppm 7.78 (t, IH, J= 7.47 Hz), 7.56 (dd, IH, J= 9.3, 1.6 Hz), 7.18 (d, IH, J= 8.1 Hz), 3.53 (s, 3H), 3.25(s, 3H); C9H9BrFNO2 (MW 262.08), LCMS (EI) mle 262.0/ 264.0 (M+ + H).

Scheme 1 (Examples 8-14)

C7H4BrFO2 C7H3BrCIFO C9H9BrFNO2 MoI. Wt: 219.01 MoI. Wt: 237.45 MoI. Wt: 26208

C8H6BrFO C8H4BrFO2 Ci2Hi4BrFO3 MoI. Wt: 217.04 MoI. Wt: 231.02 MoI. Wt: 305.14

13

C22H13FN3 MoI. Wt: 380.38

Example 9 l-(4-Bromo-3-fluorophenyl)ethanone (4)

To a solution of crude 4-bromo-3-fluoro-N-methoxy-iV-methylbenzamide (3, 1106 g, 4.2 mol) in anhydrous tetrahydrofuran (THF, 11 L) was slowly added a 3.0 M solution of methylmagnesium chloride (MeMgCl, 2.5 L, 7.5 mol, 1.7 equiv) in THF at 0 0C. The resulting reaction mixture was stirred at 0 0C for 2 h and then quenched very carefully with saturated aqueous ammonium chloride (NH4Cl, 1.5 L). The resulting solution was concentrated under reduced pressure to remove most of THF. The residue was then diluted with ethyl acetate (EtOAc, 5 L) and the resulting solution was washed with water (2 L). The aqueous phase was extracted with ethyl acetate (EtOAc, 2 x 2 L). The combined organic phases were washed with water (2 L), brine (2 L) and dried over anhydrous sodium sulfate (Na2SO4). The filtered solution was concentrated under reduced pressure and the resulting solid was dried in a vacuum oven at 45 0C to afford l-(4-bromo-3-fluorophenyl)ethanone (4, 890.8 g, 911.6 g theoretical, 97.7% yield) as a solid which was used in the subsequent reaction without further purification. For 4: 1H NMR (400 MHz, OMSO-d6) δ ppm 7.89-7.84 (m, 2H), 7.71 (dd, IH, J= 8.30, 1.87 Hz), 2.57 (s, 3H).

Example 10 2-(4-Bromo-3-fluorophenyl)-2-oxoacetaldehyde (5)

To a solution of l-(4-bromo-3-fluorophenyl)ethanone (4, 890.8 g, 4.1 mol) in DMSO (4 L) was slowly added a solution of 48% aqueous hydrogen bromide (HBr, 1420 mL, 12.5 mol, 3.0 equiv). The reaction temperature was gradually increased from 2O0C to 50 0C during the course of the addition. The reaction mixture was subsequently heated to 60 0C and stirred at 60 0C overnight. The resulting dimethyl sulfide was removed by distillation and the residue was poured into ice water (28 L). The resulting yellow precipitate was collected by filtration (save the filtrate) and washed with water (5 L). The yellow solid was dissolved in ethyl acetate (EtOAc, 5 L), washed with brine (1 L) and dried over anhydrous sodium sulfate (Na2SO4). The solution was then concentrated under the reduced pressure and the resulting solid was dried in a vacuum oven at 45 0C to give the desired product, 2-(4-bromo-3-fluorophenyl)-2-oxoacetaldehyde, as its hydrate (hydrate of 5, 730.6 g, 1020.9 g theoretical, 71.6% yield). The aqueous phase (filtrate) was extracted with ethyl acetate (3 x 5 L) and the combined organic phase was washed with water (2 x 2 L), brine (2 L) and dried over anhydrous sodium sulfate (Na2SO4). The solution was concentrated under reduced pressure and the resulting solid was dried in a vacuum oven at 45 0C to give the second crop of 2-(4-bromo-3-fluorophenyl)-2-oxoacetaldehyde hydrate (hydrate of 5, 289.4 g, 1020.9 g theoretical, 28.3% yield; total 1020 g, 1020.9 g theoretical, 99.9% yield) which was used in the subsequent reaction without further purification. For hydrate of 5: H NMR (400 MHz, DMSO-</6) δ ppm 8.00-7.70 (m, 3H), 6.69 (br s, 2H), 5.59 (s, IH).

Example 11 l-(4-Bromo-3-fluorophenyl)-2,2-diethoxyethanone (6)

A 22 L flask was charged with the hydrate of (4-bromo-3-fluorophenyl)-2-oxoacetaldehyde (5, 1020 g, 4.41 mol), toluene (7.5 L), triethyl orthoformate (1633 g, 1.8 L, 11.04 mol, 2.5 equiv), para-toluene sulfonic acid (33.5 g, 0.176 mol, 0.4 equiv) at room temperature, and the resulting reaction mixture was heated to 110 0C and stirred at 1 10 0C for 6 h. When HPLC showed that the reaction was complete, the reaction mixture was cooled down to room temperature before being poured into a 50 L separation funnel along with ethyl acetate (7.5 L) and the saturated aqueous sodium bicarbonate solution (NaHCO3, 3 L). The mixture was stirred and the layers were separated. The aqueous layer was extracted with ethyl acetate (2 L). The combined organic layers were washed with brine (4 L), dried with sodium sulfate (Na2SO4), and concentrated under the reduced pressure to afford crude l-(4-bromo-3-fluorophenyl)-2,2-diethoxyethanone (6, 1240 g, 1345.7 g theoretical, 92.1% yield) which was used in the subsequent reaction without further purification. For 6: 1H NMR (400 MHz, DMSO-J6) δ ppm 7.94-7.94 (m, 2H), 7.78 (dd, IH, J= 8.51, 2.08 Hz), 5.40 (s, IH), 3.77-3.60 (m, 4H), 1.16-1.14 (m, 6H).

Example 12 6-(4-Bromo-3-fluorophenyl)-l,2,4-triazin-3-amine (7)

A 22 L flask was charged with l-(4-bromo-3-fluorophenyl)-2,2-diethoxyethanone (6, 1240 g, 4.07 mol), ethanol (11 L), water (1.4 L), potassium hydroxide (KOH, 910 g, 16.3 mol, 4.0 equiv), and aminoguanidine bicarbonate (1105 g, 8.13 mol, 2.0 equiv) at room temperature. The resulting reaction mixture was then heated to 75 0C for 14 h. When HPLC showed the condensation reaction was deemed complete, the reaction mixture was cooled down to room temperature before being filtered. The filtrate was then concentrated under the reduced pressure to remove the most of the solvents. The residual aqueous solution was extracted with ethyl acetate (EtOAc, 3 x 6 L). The organic layers were combined and concentrated under the reduced pressure to give a dark brown solid. This solid was dissolved in ethanol (4 L) and the resulting solution was treated with a solution of 0.2 M aqueous hydrochloric acid solution (4 L). The resulting slurry was subsequently heated to 50 0C for 6 h before being allowed to cool down to room temperature. A solution of saturated aqueous sodium bicarbonate solution (NaHCO3, 2 L) was slowly added to the slurry and the resulting mixture was then concentrated under the reduced pressure to remove most of the solvents. The aqueous residue was then treated with ethyl acetate (20 L) to dissolve the solids. The two layers were separated and the aqueous layer was extracted with ethyl acetate (2 x 2 L). The combined organic layers were concentrated under the reduced pressure. The dark brown solids were treated with methyl ter/-butyl ether (MTBE, 4 L) and the resulting slurry was heated to 30 0C and stirred at 30 0C for 30 min. The mixture was filtered and the solids (green to orange in color) were collected (save the filtrate) and washed with methyl tert-buty\ ether (MTBE, 2 L) to give the first crop of the crude desired product (7). The filtrate was evaporated under the reduced pressure, and the resulting dark brown solids were treated with methyl tert-butyl ether (MTBE, 2 L). The resulting slurry was heated to 30 0C and stirred at 30 0C for 30 min. The mixture was filtered to give the second crop of the crude desired product (7) which was washed with MTBE (1 L). The combined solids were dried in vacuum at 40 – 45 0C to afford 6-(4-bromo-3-fluorophenyl)-l,2,4-triazin-3-amine (7, 585 g, 1095.1 g theoretical, 53.4 % yield) which was used in the subsequent reaction without further purification. For 7: 1H NMR (400 MHz, DMSO-J6) δ ppm 8.86 (s, IH), 7.97 (d, IH, J= 10.79 Hz), 7.81 (m, 2H), 7.52 (br s, 2H); C9H6BrFN4 (MW 269.07), LCMS (EI) mle 269.0/271.1 (M+ + H).

Example 13 6-((2-(4-Bromo-3-fluorophenyl)imidazo[l,2-6][l,2,4]triazin-7-yl)methyl)quinoline (12) l-(2-Chloro-l-hydroxy-3-(quinolin-6-yl)propyl)pyrrolidine-2,5-dione (11, 228 g, 0.74 mol, 1.1 equiv) and 6-(4-bromo-3-fluorophenyl)-l,2,4-triazin-3-amine (7, 181 g, 0.673 mol) were suspended in 1-butanol (1800 mL) and the resulting suspension was heated to 110 0C and stirred at 110 0C for 18 h (the reaction mixture becomes homogeneous at this point). The reaction mixture was then gradually cooled down to room temperature before being further cooled down to 10 0C in an ice bath. The resulting yellow solid was collected by filtration (save the 1 -butanol filtrates), washed with cold 1-butanol (3 x 100 mL) and dried by suction. This solid was then suspended in the saturated aqueous sodium bicarbonate solution (NaHCO3, 500 mL) and the resulting suspension was stirred at room temperature for 1 h to neutralize the corresponding hydrochloride salt. The free base was then filtered, washed with water (500 mL) and dried in a vacuum oven at 45 0C for 18 h to afford the first crop of the crude 6-((2-(4-bromo-3-fluorophenyl)imidazo[l,2-6][l,2,4]triazin-7-yl)methyl)quinoline (12, 125.1 g, 292.3 g theoretical, 42.8% yield). The 1-butanol filtrates were then concentrated under the reduced pressure and the resulting solids were dissolved in dichloromethane (CH2Cl2, 2 L). The solution was wash with the saturated aqueous sodium bicarbonate solution (NaHCO3, 1 L), dried over sodium sulfates (Na2SO4), and concentrated under the reduced pressure. The residue was then purified by flash column chromatography (SiO2, O – 10% MeOH-CH2Cl2 gradient elution) to afford the second crop of 6-((2-(4-bromo-3-fluorophenyl)imidazo[l,2-&][l ,2,4]triazin-7-yl)methyl)-quinoline (12, 19.7 g, 292.3 g theoretical, 6.7% yield; total 144.8 g, 292.3 g theoretical, 49.5% yield) as yellow solids. For 12: 1H NMR (400 MHz, DMSO-^6) δ ppm 9.23 (s, IH), 9.11 (dd, IH, J= 4.98, 1.55 Hz), 8.85 (d, IH, J= 8.09 Hz), 8.25 – 8.18 (m, 2H), 8.12 -8.00 (m, 3H), 7.93 – 7.86 (m, 3H), 4.70 (s, 2H); C21H13BrFN5 (MW 434.26), LCMS (EI) mle 434.00/435.95 (M+ + H).

Example 14 2-Fluoro-4-(7-(quinolin-6-ylmethyl)imidazo[l,2-6][l,2,4]triazin-2-yl)benzonitrile (13)

6-((2-(4-Bromo-3-fluorophenyl)imidazo[ 1 ,2-b] [ 1 ,2,4]triazin-7-yl)methyl)quinoline (12, 200 g, 0.461 mol), zinc cyanide (ZnCN2, 32.7 g, 0.277 mol, 0.6 equiv), zinc powder (Zn, 6.0 g, 0.093 mol, 0.2 equiv) and Pd(dppf)2Cl2 (22.6 g 0.028 mol, 0.06 eqiv) were suspended in premixed solution of ΛyV-dimethyl acetamide (DMAC, 2000 mL) and water (H2O, 40 mL). The resulting suspension was then degassed with a stream of nitrogen for 20 min before being heated to 110 0C and stirred at 110 0C for 1 – 2 h (homogeneous solution was observed). When LC/MS indicated the reaction was deemed complete, the reaction mixture was cooled first to room temperature and then in an ice bath to 5 0C. The cooled reaction mixture was diluted with a mixture of the saturated aqueous ammonium chloride solution (aq. NH4Cl), the concentrated ammonium hydroxide aqueous solution (aq. NH4OH), and water (4:1 :4 by volumn, 8.1 L) and the resulting mixture was stirred at room temperature for 30 min. The resulting solids were collected by filtration and dried in a vacuum oven overnight at 45 0C to afford the crude desired product (13). This crude material was then purified by flash chromatography (SiO2, gradient elution with 1% triethylamine in dichloromethane, 2.5 % acetone and 1% triethylamine in dichloromethane, 5.0 % acetone and 1% triethylamine in dichloromethane, and 10.0 % acetone and 1% triethylamine in dichloromethane sequentially) to afford the pure 2-fluoro-4-(7-(quinolin-6-ylmethyl)-imidazo[l,2-έ][l,2,4]triazin-2-yl)benzonitrile (13, 127.4 g, 175.4 g theoretical, 72.6% yield) as yellow solids. For 13: 1H NMR (400 MHz, DMSO-^6) δ ppm 9.24 (s, IH), 8.81 (dd, IH, J= 4.15, 1.66 Hz), 8.26 – 8.12 (m, 4H), 8.02 (s, IH), 7.95 – 7.93 (m, 2H), 7.76 (dd, IH, J= 8.71, 2.08 Hz), 7.47 (dd, IH, J= 8.70, 4.15 Hz), 4.62 (s, 2H); C22HnFN6 (MW 380.38), LCMS (EI) mle 381.0 (M+ + H).

Example 15 6-(3,3-Diethoxyprop-l-ynyl)quinoline (22)

A mixture of 6-bromoquinoline (8, 2.63 g, 12.6 mmol), propargylaldehyde diethyl acetal (3.73 niL, 25.2 mmol, 2.0 equiv), triethylamine (TEA, 12.7 mL, 90.8 mmol, 7.2 equiv), copper(I) iodide (CuI, 24.0 mg, 0.126 mmol, 0.01 equiv), and triphenylphosphine (PPh3, 0.39716 g, 1.5142 mmol, 0.12 equiv) in JV^V-dimethylformamide (DMF, 15.6 mL, 202 mmol) was degassed with nitrogen bubbling for 5 min. Palladium acetate (Pd(OAc)2, 0.08499 g, 0.3786 mmol, 0.03 equiv) was added and the mixture was degassed with nitrogen bubbling for 5 min. The reaction mixture was heated to 90 0C under nitrogen with stirring. After 3 h and 10 min, HPLC indicated that the reaction was complete. The reaction mixture was diluted with ethyl acetate (EtOAc, 100 mL) and washed with water (H2O, 2 x 100 mL). The aqueous layer was extracted with ethyl acetate (EtOAc, 20 mL). The combined organic extracts were then concentrated under the reduced pressure to give the crude product as a black oil. The crude product was purified by flash column chromatography (SiO2, 0 – 40% EtOAc in hexane gradient elution) to afford 6-(3,3-diethoxyprop-l-ynyl)quinoline (22, 3.2 g, 3.22 g theoretical, 99% yield) as a colorless oil. For 22: 1H NMR (400 MHz, OMSO-d6) δ ppm 8.92 (dd, IH, J= 4.35 Hz, 1.86 Hz), 8.36 (d, IH, J= 8.40 Hz, 1.66 Hz), 8.20 (d, IH, J= 1.78 Hz), 7.99 (d, IH, J= 8.71 Hz), 7.76 (dd, IH, J= 8.71 Hz, 1.87 Hz), 7.57 (dd, IH, J= 8.09 Hz, 4.05 Hz), 5.58 (s, IH), 3.75 – 3.55 (m, 4H), 1.17 (t, 6H, J= 7.16 Hz); Ci6H17NO2 (MW 255.31), LCMS (EI) m/e 256.0 (M+ + H).

Scheme 2 (Examples 15-18)

Method C


Example 16 6-(3,3-Diethoxypropyl)quinoline (23)

Method A. 3,3-Diethoxy-l-propene (548 g, 4.2 mol, 1.75 equiv) was added to a 22 L flask charged with 0.5 M solution of 9-borabicyclo[3.3.1] nonane in tetrahydrofuran (9-BBN solution in THF, 8.4 L, 4.2 mol, 1.75 equiv) at room temperature (the internal temperature raised to 40 0C) over 1 h.. The resulting reaction mixture was stirred at room temperature for overnight. At which time 1H NMR of an aliquot of the reaction mixture indicated that all the 3,3-diethoxy-1-propene had been consumed. 6-Bromoquinoline (8, 500 g, 2.4 mol, 1.0 equiv), potassium carbonate (K2CO3, 662 g, 4.8 mol, 2.0 equiv), tricyclohexylphosphine (67.4 g, 0.24 mol, 0.1 equiv), palladium acetate (Pd(OAc)2, 27 g, 0.12 mol, 0.05 equiv) and water (90 mL) were added to the reaction mixture in that order followed by degassing with nitrogen for 0.5 h. The reaction mixture was then heated to reflux for 4 h. Once TLC and LC/MS showed that the starting material had been consumed, the reaction mixture was cooled to room temperature with stirring before being quenched with water (7.5 L) and ethyl acetate (EtOAc, 7.5 L). The layers were separated and the aqueous layer was extracted with ethyl acetate (EtOAc, 4 L). The combined organic layers were washed with a saturated brine solution (NaCl, 4 L), dried over magnesium sulfate (MgSO4) and concentrated under the reduced pressure. The residue was purified by column chromatography (SiO2, 10 – 60% of ethyl acetate in heptane gradient elution) to afford 6-(3,3-diethoxypropyl)quinoline (23, 520 g, 622.4 g theoretical, 83.5% yield) as a colorless oil. For 23: 1HNMR (DMSO-</6, 300MHz) δ ppm 8.81 (dd, IH, J= 4.23 Hz, 1.73 Hz), 8.28 (d, IH, J= 8.07 Hz), 7.91 (d, IH, J= 8.62 Hz ), 7.75 (s, IH), 7.61 (dd, lH, J= 8.63 Hz, 1.92 Hz), 7.46 (dd, IH, J= 8.25 Hz, 4.22 Hz), 4.46 (t, IH, J= 5.60 Hz), 3.61 – 3.38 (m, 4H), 2.79 (t, 2H, J= 8.53 Hz), 1.95 -1.85 (m, 2H), 1.11 (t, 6H, J= 6.84 Hz); Ci6H21NO2 (MW 259.34), LCMS (EI) m/e 260.2 (M+ + H).

Method A-Alternative. 9-BBN was generated in situ and used to prepare compound 23 as discribed as follows: under a nitrogen atmosphere anhydrous 1 ,2-dimethoxyethane (DME, 47.0 mL) was charged into a 500 mL 3-neck flask equipped with a distillation apparatus. Borane-dimethyl sulfide complex (12.1 g, 151 mmol, 2 equiv) was added and the solution temperature increased from 20 to 22 0C. To this solution, 1 ,5-cyclooctadiene (16.3 g, 151 mmol, 2 equiv) was added dropwise over a period of 30 min to maintain a reaction temperature of 50 – 60 0C, during which time a small amount of dimethyl sulfide was collected by the distillation apparatus. The reaction mixture was then distilled under nitrogen until the distillate temperature reach 84 0C. The distillates collected had a volume of ~ 21 mL. The oil bath was removed and anhydrous THF (49 mL) was added. A small sample of the reaction mixture was taken for 1H NMR analysis and the result indicated the olefin was consumed. This 9-BBN solution was used directly for the next step.

To the above 9-BBN solution, 3,3-diethoxy-l-propene (19.3 g, 142 mmol, 1.89 equiv) was added dropwise while maintaining the temperature below 30 0C. The reaction is slightly exothermal and white precipitate slowly dissolved. The reaction mixture was then stirred at room temperature for 18 h.

To the solution prepared above, 6-bromoquinoline (8, 15.7 g, 75.4 mmol, 1 equiv), tricyclohexylphosphine (1.27 g, 4.52 mmol, 0.06 equiv), potassium carbonate (20.8 g, 151 mmol, 2 equiv), and water (0.421 mL, 23.4 mmol) were added. The mixture was degassed with nitrogen bubbling for 10 – 15 min. Palladium acetate (Pd(OAc)2, 0.508 g, 2.26 mmol, 0.03 equiv) was added and the nitrogen bubbling was continued for an additional 10 min. The reaction mixture was heated to 75 0C and maintained at 75 – 78 0C for 2 – 3 h. When HPLC showed the completion of the reaction, the heating was discontinued and the reaction mixture was cooled to room temperature. Ethyl acetate (EtOAc, 162 mL) and water (H2O, 162 mL) were added and the organic layer was separated. The aqueous layer was extracted with ethyl acetate (EtOAc, 2 x 60 mL) and the combined organic extracts were dried over sodium sulfate (Na2SO4) and concentrated under the reduced pressure. The residue was purified by flash column chromatography (silica gel, 0 – 40% EtOAc in hexane gradient elution) to afford 6-(3,3-diethoxypropyl)quinoline (23, 17.6 g, 19.6 g theoretical, 90% yield) as a clear oil, which was found to be identical to the meterial made from Method A in every comparable aspect.

Method B. A mixture of 6-(3,3-diethoxyprop-l-yn-l-yl)quinoline (22, 56 mg, 0.22 mmol) and 10% palladium on carbon (5 mg) in THF (5 mL) was hydrogenated under H2 at 1 atm for 6 h. The reaction mixture was filtered through a celite bed and the celite bed was washed with THF (2 x 2 mL). The combined filtrates were concentrated under the reduced pressure to afford 6-(3,3-diethoxypropyl)quinoline (23, 56 mg, 57 mg theoretical, 98% yield) as a clear oil, which was found to be sufficiently pure to be used in the subsequent reaction without further purification and was identical to the meterial made from Method A in every comparable aspect.

Example 17 3-(Quinolin-6-yl)propanal (9)

Method 1. A 22 L flask was charged with tris(dibenzylideneacetone)dipalladium(0) (70.0 g, 0.076 mol, 0.015 equiv), tri-tert-butylphosphonium tetrafluoroborate (44 g, 0.152 mol, 0.03 equiv), and dioxane (12 L) at room temperature. The resulting solution was then degassed with a steady stream of nitrogen for 20 min before 6-bromoquinoline (8, 1055 g, 5.07 mol, 1.0 equiv), allyl alcohol (588 g, 10.1 mol, 2.0 equiv), and 7V-methyl-iV-cyclohexylcyclohexylamine (1186 g, 6.08 mol, 1.2 equiv) were added at room temperature. The resulting reaction mixture was stirred at 50 – to 55 °C for 8 – 12 h. When TLC and LC/MS showed that the reaction was deemed complete, the reaction mixture was cooled to room temperature before methyl fert-butyl ether (MTBE, 10 L) was added to the reaction mixture. The resulting mixture was stirred at room temperature for 10 min before being filtered through a plug of celite. The filtrate was concentrated under the reduced pressure and the residue was purified by flash column chromatography (SiO2, 20 – 80 % ethyl acetate in heptane gradient elution) to afford 3-(quinolin-6-yl)propanal (9, 495 g, 939.1 g theoretical, 52.7%) as a yellow oil, which solidified partially upon standing at 0 – 5 0C. For 9: 1H NMR (400 MHz, DMSO-J6) δ ppm 9.75 (t, IH, J= 1.24 Hz), 8.83 (dd, IH, J= 4.15 Hz, 1.66 Hz), 8.25 (dd, IH, J= 8.3, 1.03 Hz), 7.93 (d, IH, J= 8.71 Hz), 7.76 (d, IH, J= 1.45 Hz), 7.64 (dd, IH, J= 8.72 Hz, 2.08 Hz), 7.48 (dd, IH, J= 8.30 Hz, 4.36 Hz), 3.05 (t, 2H, J= 7.26 Hz), 2.89 (t, 2H, J= 7.26 Hz); Ci2HnNO (MW 185.22), LCMS (EI) We 186 (M+ + H).

Method 2. A solution of 6-(3,3-diethoxypropyl)quinoline (23, Method A of Example 16, 520 g , 2.08 mol, 1.0 equiv) in ethyl acetate (EtOAc, 2.2 L) was cooled to 0 0C before a 2 N aqueous hydrochloric acid (HCl) solution (2.2 L) was added over 1 h while keeping the reaction temperature below 5 0C. The resulting reaction mixture was stirred for an additional 2 h at 0 – 5 0C. When TLC and HPLC/MS indicated the reaction was complete, the reaction was quenched with an ice cold 3 N aqueous sodium hydroxide (NaOH) solution at 0 °C until the pH was between 8 to 9. The layers were separated and the aqueous layer was extracted with ethyl acetate (EtOAc, 2 L). The combined organic layers were washed with brine (2 L), dried with sodium sulfate (Na2SO4), and concentrated under the reduced pressure to afford crude 3-(quinolin-6-yl)propanal (9, 385.3 g, 385.3 g theoretical, 100%) as a yellow oil, which was found to be identical to the material obtained from Method 1 in every comparable aspect. Since this crude material was found to be sufficiently pure, it was used directly in subsequent reaction without further purification.

Method 5. A 22 L flask charged with 0.5 M solution of 9-borabicyclo[3.3.1] nonane in tetrahydrofuran (9-BBN, 5.75 L, 2.89 mol, 2.0 equiv) and tetrahydrofuran (THF, 6 L) was treated with 3,3-diethoxy-l-propene (393 g, 3.02 mol, 2.10 equiv) at 0 – 5 0C and the resulting reaction mixture was subsequently warmed to room temperature and stirred at room temperature for 14 h. 6-Bromoquinoline (8, 300 g, 1.44 mol, 1.0 equiv), palladium acetate (Pd(OAc)2, 16.1 g, 0.072 mol, 0.05 equiv), potassium carbonate (K2CO3, 398 g, 2.89 mol, 2.0 equiv), tricyclohexylphosphine (22.3 g, 0.079 mol, 0.055 equiv), and water (52 g, 2.8 mol) were added to the reaction mixture at room temperature before being degassed with nitrogen for 1 h. The resulting reaction mixture was heated to 75 0C for 1 h. When TLC and LC/MS showed the reaction was deemed complete, the reaction mixture was cooled to room temperature and water (2 L) was added to dissolve the salts. The resulting mixture was then concentrated under the reduced pressure to a volume of approximately 4 L before being filtered through a plug of Celite. The Celite plug was washed with ethyl acetate (EtOAc, 2 L). The filtrate was concentrated under the reduced pressure to a volume of approximately 2 L and this residual solution was then added slowly over 5 min to a flask containing a 2.0 M aqueous hydrochloric acid (HCl) solution (2 L) at 0 – 5 °C. The resulting solution was stirred at 0 – 5 °C for 14 h before being quenched with saturated aqueous sodium bicarbonate (NaHCO3) solution at 0 0C until the pH was between 8 to 9. The layers were separated and the aqueous layer was extracted with ethyl acetate (EtOAc, 2 L). The combined organic layers were washed with brine (1 L), dried with sodium sulfate (Na2SO4), and concentrated under the reduced pressure. The residue, which contains the crude 3-(quinolin-6-yl)propanal (9) was purified by flash column chromatography (SiO2, 20 – 80 % ethyl acetate in heptane gradient elution) to afford 3-(quinolin-6-yl)propanal (9, 139 g, 266.7 g theoretical, 52.1%) as a yellow oil, which was found to be identical to the material obtained from Methods 1 and 2.

Example 18 l-(2-Chloro-l-hydroxy-3-(quinolin-6-yI)propyl)pyrrolidine-2,5-dione (11)

Method I. A solution of 3-(quinolin-6-yl)propanal (9, 407 g, 2.2 mol, 1.0 equiv) in chloroform (CHCl3, 1700 mL) was cooled to 0 0C before proline (52 g, 0.44 mol, 0.2 equiv) and iV-chlorosuccinimide (NCS, 303 g, 2.31 mol, 1.05 equiv) were added. The resulting reaction mixture was allowed to slowly warm to room temperature (becomes homogeneous) and stirred at room temperature for overnight. The reaction was exothermal to around 40 0C when it reaches room temperature and a precipitate had formed at this point. Once TLC and LC/MS showed that the reaction was deemed complete, the reaction mixture was diluted with ethyl acetate (EtOAc, 1700 mL) and the resulting mixture was cooled to 0 0C. The solid was collected by filtration and the collected wet solid cake was placed in a flask and triturated with water (750 mL). The resulting suspension was stirred at room temperature for 30 min before the solids were collected by filtration. The collected solids were washed with water (250 mL) and methyl tert-bntyl ether (MTBE, 500 mL) and dried in a vacuum oven at 45 0C to constant weight to afford l-(2-chloro-l-hydroxy-3-(quinolin-6-yl)propyl)pyrrolidine-2,5-dione (11, 378.7 g, 701.3 g theoretical, 54 % yield) as off-white powder. For 11: 1HNMR (DMSO-J6, 400MHz) δ ppm 8.86 (dd, IH, J= 4.15 Hz, 1.66 Hz), 8.33 (dd, IH, J= 8.51 Hz, 1.04 Hz), 7.98 (d, IH, J= 8.72 Hz), 7.85 (d, IH, J= 1.66 Hz), 7.68 (dd, IH, J= 8.51 Hz, 1.87 Hz), 7.51 (dd, IH, J= 8.29 Hz, 4.15 Hz), 7.36 (d, IH, J = 7.05 Hz), 5.28 (dd, IH, J= 9.54 Hz, 6.85 Hz), 5.07 (dt, IH, J= 9.75 Hz, 2.70 Hz), 3.65 (dd, IH, J= 14.52 Hz, 2.49 Hz), 3.09 (dd, IH, J= 14.52 Hz, 9.75 Hz), 2.64 (s, 4H); C16H15ClN2O3 (MW 318.75), LCMS (EI) m/e 319.2 (M+ + H).

Method II. A solution of 3-quinolin-6-ylpropanal (9, 74.8 g, 0.404 mol) in acetonitrile (202 mL, 3.87 mol) was cooled to 0 0C before L-proline (4.70 g, 0.0404 mol, 0.10 equiv), benzoic acid (4.96 g, 0.0404 mol, 0.10 equiv), and iV-chlorosuccinimide (NCS, 57.8 g, 0.424 mol, 1.05 equiv) were added at 0 0C. The reaction mixture was stirred at 0 °C for 3 h and the resulting clear solution was allowed to warm to room temperature and stirred at room temperature for 18 h. The reaction mixture became a thick suspension and LCMS showed the completion of the reaction. Ethyl acetate (EtOAc, 202 mL) was added to the reaction mixture and the resulting mixture was stirred at room temperature for 1 h. The solids were collected by filtration, washed with ethyl acetate (EtOAc, 100 mL) and dried under vacuum at 40 – 45 0C to constant weight to afford l-(2-chloro-l-hydroxy-3-(quinolin-6-yl)propyl)pyrrolidine-2,5-dione (11, 88.8 g, 128.8 g theoretical, 69 % yield) as an off-white powder, which was found to be identical to the material made from method I in every comparable aspect.

Scheme 3 (Examples 19-21)

15 21, dihydrochloride

C23H17FN6O C23H19Q2FN6O MoI Wt 412 42 MoI Wt 485 34

Example 19

2-Fluoro-4-(7-(quinolin-6-ylmethyl)imidazo[l,2-Z>] [l,2,4]triazin-2-yl)benzoic acid (14)

A suspension of 2-fluoro-4-(7-(quinolin-6-ylmethyl)imidazo[l ,2-&][l ,2,4]triazin-2-yl)benzonitrile (13, 277.5 g, 0.73 mol, 1.0 equiv) in concentrated hydrochloric acid (2500 mL) and water (250 mL) was heated to 1000C (homogenous at this point) and stirred at around 100 0C for 18 h. When LC/MS indicated the reaction was deemed complete, the reaction mixture was cooled down to 70 – 80 0C before being diluted with water (2500 mL). The resulting diluted reaction mixture was then cooled down to room temperature (yellow solid forms at 40 – 50 0C) and subsequent to 0 – 5 0C. The solids were then collected by filtration, washed with a small amount of IN aqueous HCl (100 mL), and dried in a vacuum oven at 45 0C to constant weight to afford 2-fluoro-4-(7-(quinolin-6-ylmethyl)imidazo[l,2-έ][l,2,4]triazin-2-yl)benzoic acid (14, 271 g, 291.5 g theoretical, 93% yield) as yellow to bright-yellow powders. For 14: 1H NMR (400 MHz, OMSO-d6) δ ppm 9.34 (s, IH), 9.23 (dd, IH, J- 5.19 Hz, 1.45 Hz), 9.08 (d, IH, J= 8.29 Hz), 8.38 (d, IH, J= 8.92 Hz), 8.30 (d, IH, J= 1.24 Hz), 8.18 (dd, IH, J= 8.72 Hz, 1.87 Hz), 8.12 (s, IH), 8.08 – 8.00 (m, 4H), 4.75 (s, 2H); C22H16Cl2FN5O2 (MW 472.30), C22H14FN5O2 (free base: MW 399.38), LCMS (EI) mle 400.0 (M+ + H).

Example 20 2-Fluoro-7V-methyl-4-(7-(quiiiolin-6-ylmethyl)imidazo[l,2-^][l,2,4]triazin-2-yl)benzainide

(15).

A suspension of 2-fluoro-4-(7-(quinolin-6-ylmethyl)imidazo[l ,2-b][l ,2,4]triazin-2-yl)benzoic acid (14, 431.4 g, 0.914 mol, 1.0 equiv) and (benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP, 570 g, 1.1 mol, 1.2 equiv) in ΛyV-dimethylformamide (DMF, 3700 mL) was treated with a solution of 2 M methylamine in THF (1830 mL, 3.656 mol, 4.0 equiv) over 15 min at room temperature. The reaction temperature increased to 30 0C during the addition of methylamine and the reaction mixture became homogeneous once the addition of methylamine was complete. Triethylamine (TEA, 382 mL, 2.742 mol, 3.0 equiv) was then added to the reaction mixture and the resulting reaction mixture was stirred at room temperature for 2 – 4 h. When LC/MS showed the coupling reaction was deemed complete, the reaction mixture was treated with water (950 mL). The resulting suspension was cooled down to 0 – 5 0C in an ice-bath and stirred at 0 – 5 0C for 30 min. The solids were collected by filtration and washed with water (200 mL). The wet solid cake was then suspended in a mixture of water and acetonitrile (1/1 by volume, 2000 mL) and the resulted suspension was stirred at room temperature for Ih. The solids were collected by filtration, washed with water and acetonitrile, and dried in a vacuum oven at 40 – 45 0C to constant weight to afford 2-fluoro-Λ/-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[l ,2-έ>][l ,2,4]triazin-2-yl)benzamide (15, 322 g, 377 g theoretical, 85.4% yield) as yellow to bright-yellow powders. For 15: 1H NMR (400 MHz, DMSO-J6) δ ppm 9.20 (s, IH), 8.82 (dd, IH, J= 4.05, 1.56 Hz), 8.38 (br m, IH), 8.27 (dd, IH, J= 8.50 Hz, 1.25 Hz), 8.06 – 7.93 (m, 5H), 7.81 – 7.74 (m, 2H), 7.49 (dd, IH, J= 8.40 Hz, 4.35 Hz), 4.62 (s, 2H), 2.78 (d, 3H, J= 4.36 Hz); C23H17FN6O (MW 412.42), LCMS (EI) mle 413.1 (M+ + H).

Example 21

2-Fluoro-Λr-methyl-4-(7-(quinoIin-6-ylmethyl)imidazo[l,2-6][l,2,4]triazm-2-yl)benzamide dihydrochloride (21, dihydrochloride)

A suspension of 2-fluoro-iV-methyl-4-[7-(quinolin-6-ylmethyl)imidazolo[l ,2-6][l,2,4]triazin-2-yl]benzamide (15, 421.2 g, 1.021 mol) in methanol (MeOH, 6600 mL) was heated to 55 0C before a premixed solution of aqueous concentrated hydrochloric acid (cone.

HCl, 37 wt.%, 12 M, 420 mL, 5.10 mol, 5.0 equiv) in isopropyl alcohol (IPA, 1510 mL) was added dropwise at 55 0C. The resulting clear solution was stirred at 55 0C for 30 min before methyl tert-butyl ether (MTBE, 6750 mL) was added via an additional runnel over 30 min. The solids were slowly precipitated out after addition of methyl tert-butyl ether. The resulting mixture was stirred at 55 0C for an additional 1 h before being gradually cooled down to room temperature. The mixture was stirred at room temperature for overnight. The solids were collected by filtration, washed with methyl tert-butyl ether (MTBE, 3 x 500 mL), and dried in vacuum oven at 45 – 55 0C to constant weight. The desired 2-fluoro-Λr-methyl-4-[7-(quinolin-6-ylmethyl)imidazolo[l,2-£][l,2,4]triazin-2-yl]benzamide dihydrochloride (21, dihydrochloride, 470.7 g, 495.5 g theoretical, 95% yield) was obtained as off-white to light yellow crystalline solids. For 21 (dihydrochloride): mp (decom.) 222 0C; 1H NMR (400 MHz, DMSO-J6) δ ppm 9.46 (s, IH), 9.25 (dd, IH, J= 5.4 Hz, 1.4 Hz), 9.12 (d, IH, J= 8.3 Hz), 8.51 (m, IH), 8.47 (d, IH, J= 0.9 Hz), 8.34 (d, IH, J= 1.3 Hz), 8.23 (s, IH), 8.21 (dd, IH, J= 9.0 Hz, 1.8 Hz), 8.09-8.02 (m, 3H), 7.79 (dd, IH, J= 7.5 Hz, 8.3 Hz), 4.77 (s, 2H), 2.78 (s, 3H, J= 4.5 Hz); 13C NMR (100 MHz, DMSO-^6) δ ppm 163.4, 159.4 (d, J= 249.9 Hz), 145.8, 145.4, 144.5, 143.8, 140.4, 138.8, 136.8, 135.9, 135.7 (J= 8.6 Hz), 131.2 ( J= 3.1 Hz), 130.7, 128.7, 128.2, 126.2 (J- 14.9 Hz), 126.0, 123.1 (J= 3 Hz), 122.5, 121.0, 114.9 (J= 5.6 Hz), 28.4, 26.3; 19F NMR (376.3 MHz, DMSO-^6) δ ppm -113.2; C23H17FN6O (free base, MW 412.42), LCMS (EI) mle 413.1 (M+ + H) and 435.0 (M+ + Na).

Scheme 4 (Examples 22-25)

C7H3BrFN C13H15BFN2O2 MoI. Wt: 200.01 MoI. Wt: 247.07 Example 22 l,2,4-Triazin-3-amine (16)

An aqueous solution of glyoxal (57 Kg of 40 wt% aqueous solution, 393 mol, 0.73 equiv) was added to a suspension of aminoguanidine bicarbonate (73 Kg, 536.3 mol) in water (400 L) at room temperature. The evolution of carbon dioxide (CO2) began almost immediately. The reaction mixture was then stirred at room temperature for 18 h and the evolution of gas had virtually ceased after about 2 h. The reaction mixture was then filtered, and the filtrate was evaporated to dryness under the reduced pressure. The residue was then extracted with cold methanol (MeOH, 3 x 120 L), and the combined methanol solution was cooled down to 0 – 5 0C before being filtered to remove the residual solids. The filtrate was then concentrated under the reduced pressure, and the residue was recrystallized in acetonitrile to afford l,2,4-triazin-3-amine (16, 34 Kg, 37.76 Kg theoretical, 90% yield) as fine, white needles. For 16: 1H NMR (400 MHz, DMSO-J6) δ ppm 8.54 (d, IH, J- 2.33 Hz), 8.20 (d, IH, J= 2.33 Hz), 7.15 (br s, 2H).

Example 23 6-Bromo-l,2,4-triazin-3-amine (17)

A solution of 1 ,2,4-triazin-3-amine (16, 33 Kg, 343.4 mol) in water (500 L) and acetonitrile (300 L) was treated with jV-bromosuccinimide (NBS, 66 Kg, 370 mol, 1.08 equiv) at 5 – 15 0C, and the resulting reaction mixture was stirred at 10 – 15 0C for 1 – 4 h. When TLC and LC/MS showed that the bromination reaction was deemed complete, the reaction mixture was treated with an aqueous solution of saturated sodium carbonate (Na2CO3). The resulting solution was then extracted with ethyl acetate (EtOAc, 3 x 500 L). The combined organic extracts were washed with water (2 x 100 L), dried over magnesium sulfate (MgSO4), and concentrated under the reduced pressure to afford 6-bromo-l,2,4-triazin-3-amine (17, 10.3 Kg, 60 Kg theoretical, 17.2% yield) as yellow to brown powders. For 17: 1H NMR (400 MHz, DMSO-J6) δ ppm 8.39 (s, IH), 7.47 (br, 2H); C3H3BrN4 (MW 174.99), LCMS (EI) mle 175.0/176.9 (M+ + H).

Example 24 2-Fluoro-4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)benzonitrile (19) Step 1. A solution of 2-fluro-4-bromobenzonitrile (18, 12.5 Kg, 62.5 mol) in anhydrous tetrahydrofuran (THF, 30 L) was treated with a solution of isopropylmagnesium chloride generated from magnesium (Mg, 1.8 Kg, 150 mol, 1,2 equiv) an 2-chloropropane (7.2 Kg, 92 mol, 1.47 equiv) in THF (20 L) and 2-(2-(dimethylamino)ethoxy)-τV/vr-dimethylethanamine (11 Kg, 69 mol, 1.1 equiv) at room temperature. The resulting mixture was then stirred at 12 – 20 0C for an additional 2 h before being treated with trimethylborate (9 Kg, 86.7 mol, 1.4 equiv) at 10 -15 0C. The reaction mixture was stirred at 7 – 16 0C for 40 min. When TLC and LC/MS showed that the reaction was deemed complete, the reaction mixture was quenched with 1 N aqueous hydrochloric acid (HCl, 35 Kg) at room temperature. The quenched aqueous reaction mixture was then extracted with ethyl acetate (EtOAc, 4 x 35 L). The combined organic extracts were washed with water (50 L), dried over magnesium sulfate (MgSO4), and concentrated under the reduced pressure. The residual solids were then recrystallized from acetonitrile (20 L) and hexanes (45 L) to afford the corresponding crude 3-fluoro-4-cyanophenyl boronic acid (5.0 Kg, 48% yield).

Step 2. A suspension of the crude 3-fluoro-4-cyanophenyl boronic acid (9.2 Kg, 55.8 mol) in cyclohexane (150 L) was treated with pinacol (13.2 Kg, 111.6 mol, 2.0 equiv) at room temperature, and the resulting reaction mixture was warmed to 40 0C for 4 h. When TLC and LC/MS showed that the reaction was deemed complete, the reaction mixture was cooled down to room temperature before being washed with water (2 x 75 L). The organic layer was then dried over magnesium sulfate (MgSO4) and concentrated under the reduced pressure to afford 2-fluoro-4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)benzonitrile (19, 11.8 Kg, 13.8 Kg theoretical, 85.6% yield) as a light yellow solid. For 19: 1H NMR (300 MHz, DMSO-J6) δ ppm 7.92 (t, IH, J- 7.00 Hz), 7.62 (m, 2H), 1.29 (s, 12 H).

Example 25 4-(3-Amino-l,2,4-triazin-6-yI)-2-fluorobenzonitrile (20).

A mixture of 6-bromo- 1,2, 4-triazin-3 -amine (17, 100.0 g, 571.47 mmol) and 2-fluoro-4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)benzonitrile (19, 145.43 g, 588.61 mmol, 1.03 equiv) in 1,4-dioxane (1200 mL) was stirred at room temperature for 10 min before potassium carbonate (K2CO3, 355.4 g, 2572 mmol) in water (600 mL) was added to give a deep red solution. The mixture was degassed by bubbling with nitrogen for 10 min before 1,1′-bis(diphenyl phosphino)ferrocene dichloropalladium(II) complex with dichloromethane (1 :1) (Pd(dppf)2Cl2, 14.14 g, 17.14 mmol, 0.03 equiv) was added at room temperature. The resulting reaction mixture was degassed by bubbling with nitrogen for 10 min and then heated at 86 0C under nitrogen. After 2 h, HPLC showed that the reaction was deemed complete, and the reaction mixture was cooled to room temperature and then to 0 – 5 0C with an ice-water bath. 1 ,4-Dioxane (400 mL) was added to the cooled reaction mixture before a solution of 3.3 M aqueous hydrochloric acid solution (HCl, 1900 mL) was added dropwise with stirring to adjust pH to 0.40- 0.93. The mixture was stirred at room temperature for 30 min and filtered. The solid collected was stirred with 1,4-dioxane (260 mL) and then added IN HCl (400 mL). The mixture was stirred at room temperature for 10 min and filtered. The filtrate was combined with the filtrate obtained earlier and washed with ethyl acetate (EtOAc, 2 x 2 L). The combined ethyl acetate extracts was extracted with 1 N aqueous hydrochloric acid solution (HCl, 3 x 200 mL). The combined aqueous solution was then treated with activated charcoal (20 g) and stirred at room temperature for 30 min. The mixture was filtered through a celite bed and the filtrate was cooled to 0 – 5 0C with an ice- water bath. A solution of 50% of sodium hydroxide in water (NaOH, 240 mL, 4500 mmol) was added drowise at 5-12 0C to adjust pH tolθ.6 – 11.6. The mixture was stirred at 0 – 5 0C for 30 min and then filtered. The solids collected were washed with aqueous ammonium hydroxide (1 to 3 of 28% concentrated NH4OH to water, 1900 mL) and dried under vacuum at 40 – 45 0C to constant weight to afford 4-(3-amino-l,2,4-triazin-6-yl)-2-fluorobenzonitrile (20, 101.2 g, 122.9 g theoretical, 82.3% yield) as a off-white powder. For 20: 1H NMR (400 MHz, DMSO-J6) δ ppm 8.94 (s, IH), 8.12 (d, IH, J= 11.41 Hz), 8.08 – 8.00 (m, 2 H), 7.71 (br s, 2 H); Ci0H6FN5 (MW 215.19), LCMS (EI) mle 215.9 (M+ + H).

Scheme 5 (Example 26)

20 13

C10H6FN5 C16H15ON2O3 C22H13FN6 MoI. Wt: 215.19 MoI. Wt 318.75 MoI. Wt: 380.38 Example 26 2-Fluoro-4-(7-(quinolin-6-ylmethyl)imidazo[l,2-Z>][l,2,4]triazin-2-yl)benzonitrile (13).

Step 1. A 22 L reactor equipped with a overhead stirring, a thermocouple, a distillation apparatus, and a nitrogen inlet was purged with nitrogen before 4-(3-amino-l,2,4-triazin-6-yl)-2-fluorobenzonitrile (20, 300 g, 1.39 mol), l-(2-chloro-l-hydroxy-3-(quinolin-6-yl)propyl)pyrrolidine-2,5-dione (11, 635 g, 1.99 mol, 1.43 equiv), and ethylene glycol (3.0 L) were charged to the reactor at room temperature. The resulting reaction mixture was heated to 130-140 °C with nitrogen bubbled through continuously. The distillate was collected with the distillation apparatus. After 3 – 4 h, HPLC indicated the reaction was deemed complete (presence of < 1.5% of starting material 20). The reaction mixture was gradually cooled to room temperature. A 2.5% aqueous sodium carbonate solution (Na2CO3, 14.1 L) was added with stirring to the reactor over 60 min and the mixture was stirred at room temperature for 1 – 2 h. The mixture was then filtered, and the solid was washed with water (9.6 L) and dried under vacuum to afford the desired crude product (13, 980.4 g), which was combined with several other batches for purification as described below.

Step 2. A solution of crude product (13, 2754 g) in methylene chloride (CH2Cl2, 37.8 L) and methanol (0.54 L) was treated with silica gel (SiO2, 2700 g) at room temperature, and the resulting mixture was stirred at room temperature for 90 min. The mixture was filtered and the filter cake was washed with a mixture OfCH2Cl2(18 L) and methanol (0.26 L). The combined filtrates were treated with silica gel (SiO2J 800 g) and the resulting mixture was stirred at room temperature for 90 min and then filtered. The filter cake was washed with a mixture of CH2Cl2 (18 L) and methanol (0.26 L). The combined filtrates were concentrated under the reduced pressure at 20 – 60 0C to about 8 – 12 L. The residue was treated with a mixture of isopropanol (IPA) and water (1 : 1 , 9 L) in portions and the distillation was continued at 1 atm pressure until the temperature reached 68 – 75 0C. The mixture was cooled to room temperature and the solids were collected by filtration. The solids collected were washed with isopropanol (IPA, 3.6 L) and dried under vacuum at 40 – 45 0C to constant weight to afford pure 2-fluoro-4-(7-(quinolin-6-ylmethyl)imidazo[l,2-ό][l,2,4]triazin-2-yl)benzonitrile (13, 940.27g) as a bright yellow powder.

The above reaction and purification process gave product 13 in 59 – 64% yield. The spectroscopic data of compound 13 made by this synthetic process was found to be identical to those obtained from material made by cyanation of compound 12 described previously. For 13: 1H NMR (400 MHz, OMSO-d6) δ ppm 9.24 (s, IH), 8.81 (dd, IH5 J= 4.15, 1.66 Hz), 8.26 – 8.12 (m, 4H), 8.02 (s, IH), 7.95 – 7.93 (m, 2H), 7.76 (dd, IH, J= 8.71, 2.08 Hz), 7.47 (dd, IH, J = 8.70, 4.15 Hz), 4.62 (s, 2H); C22Hi3FN6 (MW 380.38), LCMS (EI) m/e 381.0 (M+ + H).

Scheme 6 (Examples 27-29)

14 15

C22H14FN5O2 C23H17FN6O MoI. Wt: 399.38 MoI. Wt: 412.42

I I) SOd2 aq. HCl/ acetone { 2) MeNH2

15 (.{hydrochloride

C23H17FN6O C23H19CI2FN6O MoI. Wt: 412.42 MoI. Wt: 485.34

Example 27

2-Fluoro-4-(7-(quinolin-6-ylmethyl)imidazo [1,2-6] [1,2,4] triazin-2-yl)benzoic acid (14).

To a 22 L reactor equipped with a overhead stirring, a thermocouple, and a nitrogen inlet was charged compound 13 (900 g, 2.37 mol), water (0.9 L), and concentrated HCl (9.1 L) at room temperature. The resulting reaction mixture was heated at 100 0C for 12 h. When HPLC showed the reaction was complete, the reaction mixture was cooled to 90 0C and water (4.9 L) was added over 15 min while maintaining the temperature at 65 – 90 0C. The reaction mixture was further cooled to room temperature and stirred at room temperature for 3 h. The solids were collected by filtration, washed with water (1.2 L) and dried in vacuum at 40 – 45 0C to constant weight to afford 2-fluoro-4-(7-(quinolin-6-ylmethyl)imidazo[l,2-6][l,2,4]triazin-2-yl)benzoic acid (14, 945 g, 946.5 g theoretical, 99.8% yield) as a light yellow solid, which was found to be identical to the material made by earlier method. For 14: 1H NMR (400 MHz, DMSO-J6) δ ppm 9.34 (s, IH), 9.23 (dd, IH, J= 5.19 Hz, 1.45 Hz), 9.08 (d, IH5 J= 8.29 Hz), 8.38 (d, IH, J = 8.92 Hz), 8.30 (d, IH, J= 1.24 Hz), 8.18 (dd, IH, J= 8.72 Hz, 1.87 Hz), 8.12 (s, IH), 8.08-8.00 (m, 4H), 4.75 (s, 2H); C22Hi6Cl2FN5O2 (MW 472.30), C22H14FN5O2 (free base: MW 399.38), LCMS (EI) mle 400.0 (M+ + H).

Example 28

2-Fluoro-iV-methyl-4-(7-(quinolin-6-yImethyl)iinidazo [ 1 ,2-6] [ 1 ,2,4] triazin-2-yl)benzamide

(15).

Method A. To a stirred solution of 2-fluoro-4-(7-(quinolin-6-ylmethyl)imidazo[l,2-6][l,2,4]triazin-2-yl)benzoic acid (14, 1000 g, 2.12 mol) in acetonitrile (5 L) and CH2Cl2(10 L) were charged HOBt (358 g, 2.65 mol, 1.25 equiv), and EDC hydrochloride (508.4 g, 2.65 mol, 1.25 equiv) at room temperature. Another portion OfCH2Cl2 (10 L) was then added to the reaction mixture and the resulting reaction mixture was stirred at room temperature for 20 min. A 2.0 M solution of methylamine (MeNH2) in THF (3.44 L, 6.88 mol, 3.25 equiv) was added with stirring while maintaining the temperature at 15 – 30 0C. The reaction mixture was stirred at room temperature for 2 h before an additional portion of 2.0 M solution of methylamine (MeNH2) in THF (1.06 L, 2.12 mol, 1 equiv) was added. The reaction mixture was stirred at room temperature for 1 h and a second portion of EDC hydrochloride (406 g, 2.12 mol, 1 equiv) was added and the stirring was continued for 6 h. When HPLC showed less than 1 % of starting material (14) was remaining, the reaction mixture was concentrated under the reduced pressure at < 50 0C. During distillation acetonitile (20 L) was added and distillation was continued until the remaining volume was about 20 L. The residue was treated with an aqueous solution of 2.5% sodium carbonate (Na2CO3, 40 L) and the resulting mixture was stirred at room temperature for 30 min. The solids were collected by filtration, washed with water (3 x 4.0 L), air dried by pulling vacuum on the filter to afford the crude desired product (15). The crude solids were treated with CH2Cl2 (17.6 L) and MeOH (5.2 L) at room temperature and resulting mixture was stirred until a clear solution was obtained. The solution was filtered to remove insoluble materials. With vigorous stirring a 2.5% aqueous solution of sodium carbonate (Na2CO3, 17.6 L) was added to the filtrate and the mixture was stirred at room temperature for 60 min to give a suspension. Heptane (20 L) was added and the mixture was stirred for an additional 60 min. The mixture was filtered and the solid was washed sequentially with water (3 x 4.0 L) and heptane (4.0 L), and dried in vacuum to afford 2-fluoro-./V-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[l,2-b][l,2,4]triazin-2-yl)benzamide (15, 1095.3 g, 874.3 g theoretical) as a bright yellow solid, which was found to be not totally dry and to contain ~ 25% residual solvents. This wet solid was used directly for the subsequent dihydrochloride salt (21) formation reaction without further drying. A small sample was dried completely for spectroscopic analyses and the data were consistent with those obtained by earlier method: For 15: 1H NMR (400 MHz, DMSO-J6) δ ppm 9.20 (s, IH), 8.82 (dd, IH, J= 4.05, 1.56 Hz), 8.38 (br m, IH), 8.27 (dd, IH, J = 8.50 Hz, 1.25 Hz), 8.06 – 7.93 (m, 5H), 7.81 – 7.74 (m, 2H), 7.49 (dd, IH, J= 8.40 Hz, 4.35 Hz), 4.62 (s, 2H), 2.78 (d, 3H, J= 4.36 Hz); C23HnFN6O (MW 412.42), LCMS (EI) m/e 413.1 (M+ + H).

Method B. 2-Fluoro-4-[7-(quinolin-6-ylmethyl)imidazo[l,2-b][l,2,4]triazin-2-yl]benzoic acid dihydrochloride (14, 50.00 g, 0.1059 mol) was added toluene (300 mL) and followed by thionyl chloride (SOCl2, 77.2 mL, 1.06 mol, 10.0 equiv) at room temperature. The resulting reaction mixture was heated at 72 0C under N2 and the reaction was followed by HPLC analysis of the disappearance of the starting material benzoic acid (14). After 48 h, HPLC indicated ~4% starting material remaining and the reaction was stopped. The reaction mixture was concentrated to dryness by vacuum distillation at 40-50 0C. The residual solids were added toluene (300 mL) and the solvent was removed by vacuum distillation at 40-50 0C. THF (250 mL) was added and the mixture was cooled with an ice-water bath. A 2.0 M of methylamine (MeNH2) in THF (529 mL, 1.06 mol, 10 equiv) was added dropwise. The resulting reaction mixture was allowed to warm up to room temperature and stirred at room temperature for 17 h. Water (600 mL) was added to the reaction mixture and THF (400 – 500 mL) was removed by vacuum distillation at 40 0C. Sodium carbonate (15.60 g, 0.147 mol) was added and the mixture was stirred at room temperature for 30 min. The mixture was filtered and the solid was washed with water (3 x 30 mL) and dried. The solid was dissolved in pre-mixed methylene chloride (CH2Cl2, 1000 mL) and methanol (MeOH, 300 mL). With vigorous stirring, a solution of 0.236 M of sodium carbonate (Na2CO3) in water (1000 mL) was added dropwise. Solid was slowly precipitated out after addition of aqueous solution of sodium carbonate (Na2CO3). Hexane (1000 niL) was then added dropwise with stirring. The mixture was stirred at room temperature for 30 – 40 min and the solids were collected by filtration. The solids collected were washed with water (3 x 200 mL) and dried in vacuum at 40 – 500C to constant weight to afford 2-fluoro-Λr-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[l,2-ό][l,2,4]triazin-2-yl)benzamide (15, 42.2 g, 43.67 g theoretical, 96.6% yield) as a bright yellow solid, which was found to be identical to the material made by Method A in every comparable aspect. For 15: 1H NMR (400 MHz, DMSO-J6) δ ppm 9.20 (s, IH), 8.82 (dd, IH, J= 4.05, 1.56 Hz), 8.38 (br m, IH), 8.27 (dd, IH, J= 8.50 Hz, 1.25 Hz), 8.06 – 7.93 (m, 5H), 7.81-7.74 (m, 2H), 7.49 (dd, IH, J= 8.40 Hz, 4.35 Hz), 4.62 (s, 2H), 2.78 (d, 3H, J= 4.36 Hz); C23H17FN6O (MW 412.42), LCMS (EI) mle 413.1 (M+ + H).

Example 29

2-Fluoro-iV-methyl-4-(7-(quinolin-6-ylmethyl)imidazo [ 1 ,2-b] [ 1 ,2,4] triazin-2-yl)benzamide dihydrochloride (21, dihydrochloride)

2-Fluoro-vV-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[l, 2-Z?][l, 2,4]triazin-2-yl)benzamide (15, 210O g, containing ~25% residual solvents) and filtered USP water (7.6 L) were charged into a 50 L reactor at room temperature. With stirring a solution of 6 M aqueous hydrochloric acid (HCl, 3 L) was added with an additional funnel. The resulting reaction mixture was stirred at room temperature for 1.5 h. Acetone (30.5 L) was added to the reactor with stirring during 1 h and the resulting mixture was stirred at room temperature for 2.5 h. The solids were collected by filtration, washed with acetone (2 x 4.3 L) and dried in vacuum to constant weight to afford 2-fluoro-iV-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[l ,2-b][ 1 ,2,4]triazin-2-yl)benzamide dihydrochloride (21, dihydrochloride, 1629.2 g, 1830.6 g theoretical, 89%) as a pale yellowish crystalline powder, which was found to be identical to the material made by previous method in every comparable aspect. For 21 (dihydrochloride): 1H NMR (400 MHz, DMSO-J6) δ ppm 9.46 (s, IH), 9.25 (dd, IH, J= 5.4 Hz, 1.4 Hz), 9.12 (d, IH, J= 8.3 Hz), 8.51 (m, IH), 8.47 (d, IH, J= 0.9 Hz), 8.34 (d, IH, J= 1.3 Hz), 8.23 (s, IH), 8.21 (dd, IH, J= 9.0, 1.8 Hz), 8.09 – 8.02 (m, 3H), 7.79 (dd, IH, J= 7.5, 8.3 Hz), 4.77 (s, 2H), 2.78 (s, 3H, J= 4.5 Hz); 13C NMR (100 MHz, DMSO-J6) δ ppm 163.4, 159.4 (d, J= 249.9 Hz), 145.8, 145.4, 144.5, 143.8, 140.4, 138.8, 136.8, 135.9, 135.7 (J= 8.6 Hz), 131.2 ( J= 3.1 Hz), 130.7, 128.7, 128.2, 126.2 (J= 14.9 Hz), 126.0, 123.1 (J= 3 Hz), 122.5, 121.0, 114.9 (J= 5.6 Hz), 28.4, 26.3; 19F NMR (376.3 MHz, DMSO-Z6) δ ppm -113.2; C23H17FN6O (free base, MW 412.42), LCMS (EI) mle 413.1 (M+ + H) and 435.0 (M+ + Na).\

PATENT

(S)-N-(54(R)-2-(2,5-difluoropheny1)-pyrrolidin-1-y1)-pyrazolo[1,5-a]pyrimidin-3-y1)-3-hydroxypyrrolidine-1-carboxamide.

Patent ID

Patent Title

Submitted Date

Granted Date

US9605070 ANTIBODY MOLECULES TO TIM-3 AND USES THEREOF
2015-01-30
2015-08-06
US9683048 ANTIBODY MOLECULES TO PD-1 AND USES THEREOF
2015-01-23
2015-07-30
US8461330 IMIDAZOTRIAZINES AND IMIDAZOPYRIMIDINES AS KINASE INHIBITORS
2011-06-09
US8420645 SALTS OF 2-FLUORO-N-METHYL-4-[7-(QUINOLIN-6-YL-METHYL)-IMIDAZO[1, 2-b][1, 2, 4]TRIAZIN-2-YL]BENZAMIDE AND PROCESSES RELATED TO PREPARING THE SAME
2009-11-26
US7767675 IMIDAZOTRIAZINES AND IMIDAZOPYRIMIDINES AS KINASE INHIBITORS
2008-07-10
2010-08-03
Patent ID

Patent Title

Submitted Date

Granted Date

US2017190777 ANTIBODY MOLECULES TO TIM-3 AND USES THEREOF
2017-03-17
US2016326178 IMIDAZOTRIAZINES AND IMIDAZOPYRIMIDINES AS KINASE INHIBITORS
2016-02-05
US2016046672 STAPLING eIF4E INTERACTING PEPTIDES
2014-02-28
2016-02-18
US2013324515 IMIDAZOTRIAZINES AND IMIDAZOPYRIMIDINES AS KINASE INHIBITORS
2013-05-16
2013-12-05
US2015148348 SALTS OF 2-FLUORO-N-METHYL-4-[7-(QUINOLIN-6-YL-METHYL)- IMIDAZO[1, 2-B][1, 2, 4]TRIAZIN-2-YL]BENZAMIDE AND PROCESSES RELATED TO PREPARING THE SAME
2014-10-28
2015-05-28
Patent ID

Patent Title

Submitted Date

Granted Date

US2017198041 ANTIBODY MOLECULES TO TIM-3 AND USES THEREOF
2017-02-14
US2017258800 SALTS OF 2-FLUORO-N-METHYL-4-[7-(QUINOLIN-6-YL-METHYL)- IMIDAZO[1, 2-B][1, 2, 4]TRIAZIN-2-YL]BENZAMIDE AND PROCESSES RELATED TO PREPARING THE SAME
2016-11-18
US2016108123 ANTIBODY MOLECULES TO PD-L1 AND USES THEREOF
2015-10-13
2016-04-21
US2017209574 COMBINATION THERAPIES
2015-10-02
US2015259420 ANTIBODY MOLECULES TO LAG-3 AND USES THEREOF
2015-03-13
2015-09-17

/////////////////Capmatinib, INC 280, INC-280, капматиниб كابماتينيب 卡马替尼 , INCB 28060

CNC(=O)C1=CC=C(C=C1F)C1=NN2C(CC3=CC=C4N=CC=CC4=C3)=CN=C2N=C1

Glasdegib, PF-04449913


Glasdegib.svgChemSpider 2D Image | Glasdegib | C21H22N6OGlasdegib.png

str1

Glasdegib (PF-04449913)

1-[(2R,4R)-2-(1H-Benzimidazol-2-yl)-1-methyl-4-piperidinyl]-3-(4-cyanophenyl)urea [ACD/IUPAC Name]
1-[(2R,4R)-2-(1H-benzimidazol-2-yl)-1-methylpiperidin-4-yl]-3-(4-cyanophenyl)urea
CAS 1095173-27-5 [RN]Orphan Drug Status

Glasdegib

  • Molecular FormulaC21H22N6O
  • Average mass374.439 Da
  • Urea, N-[(2R,4R)-2-(1H-benzimidazol-2-yl)-1-methyl-4-piperidinyl]-N’-(4-cyanophenyl)- [ACD/Index Name]
    гласдегиб [Russian] [INN]
    غلاسديغيب [Arabic] [INN]
    格拉德吉 [Chinese] [INN]

FACT SHEET   https://www.pfizer.com/files/news/asco/Glasdegib-Fact-Sheet-6JUNE2018.pdf

Glasdegib (PF-04449913) is an experimental cancer drug developed by Pfizer. It is a small molecule inhibitor of the Sonic hedgehog pathway, which is overexpressed in many types of cancer. It inhibits smoothened receptor, as do most drug in its class.[1]

Four phase II clinical trials are in progress. One is evaluating the efficacy of glasdegib in treating myelofibrosis in patients who were unable to control the disease with ruxolitinib.[2] Another is a combination trial of glasdenib with ARA-Cdecitabinedaunorubicin, or cytarabine for the treatment of acute myeloid leukemia.[3] The third is for the treatment of myelodysplastic syndrome and chronic myelomonocytic leukemia.[4] The fourth administers glasdegib to patients at high risk for relapse after stem cell transplants in acute lymphoblastic or myelogenous leukemia.[5]

  • OriginatorPfizer
  • DeveloperGrupo Espanol de Trasplante Hematopoyetico y Terapia Celular; H. Lee Moffitt Cancer Center and Research Institute; Netherlands Cancer Institute; Pfizer
  • ClassAntineoplastics; Benzimidazoles; Phenylurea compounds; Piperidines; Small molecules
  • Mechanism of ActionHedgehog cell-signalling pathway inhibitors; SMO protein inhibitors
  • Orphan Drug StatusYes – Acute myeloid leukaemia; Myelodysplastic syndromes
  • New Molecular EntityYes

Highest Development Phases

  • Phase IIIAcute myeloid leukaemia
  • Phase IIChronic myeloid leukaemia; Colorectal cancer; Myelodysplastic syndromes; Myelofibrosis; Non-small cell lung cancer
  • Phase I/IIChronic myelomonocytic leukaemia; Glioblastoma; Graft-versus-host disease
  • Phase ICancer; Haematological malignancies
  • No development reportedSolid tumours

Most Recent Events

  • 20 Apr 2018Phase-III clinical trials in Acute myeloid leukaemia (Combination therapy, First-line therapy) in Japan (PO) (NCT03416179)
  • 02 Apr 2018Pfizer terminates a phase II trial in Myelofibrosis (Second-line therapy or greater) in USA, Japan, Austria, France, Spain and United Kingdom (PO) (NCT02226172) (EudraCT2014-001048-40)
  • 06 Feb 2018Phase-I/II clinical trials in Glioblastoma (Newly diagnosed) in Spain (PO) (EudraCT2017-002410-31)

Glasdegib is an orally bioavailable small-molecule inhibitor of the Hedgehog (Hh) signaling pathway with potential antineoplastic activity. Glasdegib appears to inhibit Hh pathway signaling. The Hh signaling pathway plays an important role in cellular growth, differentiation and repair. Constitutive activation of Hh pathway signaling has been observed in various types of malignancies.

Glasdegib is under investigation for the treatment of Acute Myeloid Leukemia.

SYNTHESIS

Discovery of PF-04449913, a Potent and Orally Bioavailable Inhibitor of Smoothened

https://pubs.acs.org/doi/abs/10.1021/ml2002423

 Michael J. Munchhof LLC, 266 West Road, Salem, Connecticut 06420, United States
 Pfizer Global Research and Development, Groton, Connecticut 06340, United States
§ 24 Queen Eleanor Drive, Gales Ferry, Connecticut 06335, United States
 INC Research, Old Lyme, Connecticut 06371, United States
 Reiter.MedChem, 32 West Mystic Avenue, Mystic, Connecticut 06355, United States
# Bristol-Meyers Squibb, Princeton, New Jersey 08540, United States
ACS Med. Chem. Lett.20123 (2), pp 106–111
DOI: 10.1021/ml2002423
Publication Date (Web): December 21, 2011
Copyright © 2011 American Chemical Society
*Tel: 860-287-5924. E-mail: mikemunchhof@yahoo.com.
Abstract Image

Inhibitors of the Hedgehog signaling pathway have generated a great deal of interest in the oncology area due to the mounting evidence of their potential to provide promising therapeutic options for patients. Herein, we describe the discovery strategy to overcome the issues inherent in lead structure 1 that resulted in the identification of Smoothened inhibitor 1-((2R,4R)-2-(1H-benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (PF-04449913, 26), which has been advanced to human clinical studies

1-((2R,4R)-2-(1H-benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (26)

https://pubs.acs.org/doi/suppl/10.1021/ml2002423/suppl_file/ml2002423_si_001.pdf

str1

Product was purified by Companion (ReadySep 40g, silica gel packed) with CH3OH/CH2Cl2 from 1-5% to give the title compound as an off-white solid 915mg (73%). LC-MS 375.3.

1H NMR(acetone-D6): δ 1.81 (m, 2H), 1.9- 2.05 (m, 2H), 2.10 (m, 1H), 2.17 (s, 3H), 2.52 (m, 1H), 2.94 (m, 1H), 3.86 (m, 1H), 4.2 (m, 1H), 6.4 (d, 1H), 7.16 (m, 2H), 7.52 (m, 2H), 7.60 (m, 2H), 7.62 (m, 2H), 8.46 (s, 1H).

The dihydrochloride salt was prepared by adding 4M HCl in dioxane (1.22mL, 4.86 mmol) to a solution of 1-((2R,4R)-2-(1H-benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4- cyanophenyl)urea (910 mg’s, 2.43mmol) in methanol (10mL). The mixture was stirred at at 230C for 10 minutes. The solution was concentrated to give a white solid, 1082 mg’s as the 2 .HCl monohydrate salt. M.P. > 125 0C with dehydration above 130 0C. Analytical calculated for free base C21H22N6O: C 67.38%, H 5.88%, N 22.46%; Found: C 67.16%, H 5.54%, N 22.18%. Purity of the dihydrochloride monohydrate salt was determined to be > 99.9% by analytical HPLC using a Xbridge C18; 3.5µm column and eluting with 95:5 0.1% Perchloric Acid (HClO4) solution in water and acetonitrile, over a gradient of 25 minutes, with and ending solvent ratio of 5:95. Enantiomeric purity of the dihydrochloride monohydrate salt was > 99.9% by chiral HPLC using a Chiralcel OJ column and eluting with 96:4 Heptane:Ethanol(with 0.1% diethylamine).

Syn 2

Development of a Concise, Asymmetric Synthesis of a Smoothened Receptor (SMO) Inhibitor: Enzymatic Transamination of a 4-Piperidinone with Dynamic Kinetic Resolution

https://pubs.acs.org/doi/10.1021/ol403630g

Chemical Research & Development, Analytical Research & Development, Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
Org. Lett.201416 (3), pp 860–863
DOI: 10.1021/ol403630g
Publication Date (Web): January 22, 2014
Copyright © 2014 American Chemical Society
Abstract Image

A concise, asymmetric synthesis of a smoothened receptor inhibitor (1) is described. The synthesis features an enzymatic transamination with concurrent dynamic kinetic resolution (DKR) of a 4-piperidone (4) to establish the two stereogenic centers required in a single step. This efficient reaction affords the desired anti amine (3) in >10:1 dr and >99% ee. The title compound is prepared in only five steps with 40% overall yield.

https://pubs.acs.org/doi/suppl/10.1021/ol403630g/suppl_file/ol403630g_si_001.pdf

1-((2R,4R)-2-(1H-Benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (1)

1 as white solids3 (27.1 g, 99.5 wt%, 90.0% corrected yield, > 99.0 UPLC area% purity): m.p. 223–224 °C; UPLC tR 2.11 min; 1 H NMR (DMSO-d6) δ 12.39 (s, 1H), 8.94 (s, 1H), 7.69 (m, 2 H), 7.57 (m, 3 H), 7.43 (m, 1 H), 7.13 (m, 2H), 6.75 (d, J = 7.2 Hz, 1H), 4.08 (m, 1H), 3.63 (dd, J = 10.3, 3.5 Hz, 1H), 2.89 (dt, J = 12.0, 4.0 Hz, 1H), 2.40 (td, J = 11.9, 3.1 Hz, 1H), 2.06 (s, 3H), 1.98–2.10 (m, 1H), 1.83–1.95 (m, 2H), 1.72 (m, 1H); 13C NMR (DMSO-d6) δ 155.7, 153.9, 144.8, 142.7, 134.3, 133.2, 121.8, 120.9, 119.4, 118.5, 117.3, 111.2, 102.4, 58.6, 49.9, 43.7, 42.4, 36.0, 29.8. HRMS (EI) calcd. for C21H23N6O [M+H]+ : 375.1928; Found 375.1932.

To the crude solution of 3 in DMSO-H2O (UPLC assay ~55.0 mg/mL, 104 mL, ~5.74 g of 3, 24.9 mmol) from the enzymatic transamination reaction (vide supra) was added THF (57.0 mL) followed by 17 (mixture with imidazole, 9.31 gm, 74.0 wt%, 31.2 mmol). The mixture was then stirred at rt for three hours. Once the reaction was complete (<1 % of 3 remaining by UPLC), methanol (10.1 mL, 249 mmol) was added followed by 2-MeTHF (57.0 mL). The layers were separated and the aqueous was extracted with 2-MeTHF (57.0 mL). The combined organic layers were then washed with 2 × 50.0 mL water and 2 × 50.0 mL of 10% aqueous NaCl solution. The organic solution was then concentrated under vacuum and the solvent was switched to acetonitrile to give a slurry with a final volume of ~90.0 mL. The slurry was stirred at rt for three hours and filtered, and the solids were washed with 2 × 10.0 mL of acetonitrile and dried in oven at 60 °C for two hours. The solids (~7.90 gm) were then slurried in 70.0 mL of acetonitrile. The slurry was heated to 60 °C for two hours, cooled to rt, filtered, and the solids were dried in oven under vacuum at 60 °C for 12 hours to give 1 as white solids (7.64 g, 98.0 wt%, 80.0% corrected yield, > 98 UPLC area% purity). The analytical data were identical to that obtained with method A.

References

1. Lin TL, Matsui W. Hedgehog pathway as a drug target: smoothened inhibitors in development. Onco Targets Ther. 2012;5:47-58.

2. Munchhof MJ, Li Q, Shavnya A, et al. Discovery of PF-04449913, a potent and orally bioavailable inhibitor of smoothened. ACS Med Chem Lett. 2012;3(2):106-111.

3. Clement V, Sanchez P, de Tribolet N, et al. Hedgehog-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17(2):165-172.

4. Deschler, B. and Lübbert, M. (2006), Acute myeloid leukemia: Epidemiology and etiology. Cancer, 107: 2099–2107. doi: 10.1002/cncr.22233.

5. American Cancer Society. Key statistics for acute myeloid leukemia. Available at https://www.cancer.org/cancer/acute-myeloid-leukemia/about/key-statistics.html. Accessed January 25, 2018.

6. SEER Cancer Stat Facts: Acute Myeloid Leukemia. National Cancer Institute. Bethesda, MD, April 2017. Available at: http://seer.cancer.gov/statfacts/html/amyl.html. Accessed January 25, 2018.

7. Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood 2006; 107(9): 3481-5.

8. Estey E. Acute myeloid leukemia and myelodysplastic syndromes in older patients. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 2007; 25(14): 1908-15.

9. Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 2012; 30(21): 2670-7.

10. Ornstein MC, Mukherjee S, Sekeres MA. More is better: combination therapies for myelodysplastic syndromes. Best Pract Res Clin Haematol. 2015;28(1):22-31.

11. American Cancer Society. What are the key statistics about myelodysplastic syndromes? Available at: http://www.cancer.org/cancer/myelodysplasticsyndrome/detailedguide/myelo-dysplastic-syndromes-key-statistics. Accessed January 25, 2018. 12. Ma X, Does M, Raza A, et al. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536-1542

Glasdegib
Glasdegib.svg
Clinical data
Synonyms PF-04449913
Identifiers
CAS Number
ChemSpider
KEGG
Chemical and physical data
Formula C21H22N6O
Molar mass 374.45 g·mol−1
3D model (JSmol)
 to 3 of 3
Patent ID

Patent Title

Submitted Date

Granted Date

US8431597 Benzimidazole derivatives
2012-02-24
2013-04-30
US8148401 BENZIMIDAZOLE DERIVATIVES
2009-01-01
2012-04-03
US9611330 COMPOSITIONS AND METHODS FOR CANCER AND CANCER STEM CELL DETECTION AND ELIMINATION
2012-09-07
2014-10-09

////////////Glasdegib, PF-04449913, гласдегиб غلاسديغيب 格拉德吉 , PF04449913, PF 04449913, phase 3, aml, Orphan Drug Status

CN1CCC(CC1C2=NC3=CC=CC=C3N2)NC(=O)NC4=CC=C(C=C4)C#N

Talazoparib, MDV3800


Talazoparib.svg

Talazoparib, BMN-673, MDV-3800

(2S,3S)-methyl-7-fluoro-2-(4-fluorophenyl)-3-(1-methyl-1H-1,2,4-triazol-5-yl)-4-oxo-1,2,3,4-tetrahydroquinoline-5-carboxylate

(8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one

(8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one

CAS 1207456-01-6
Chemical Formula: C19H14F2N6O
Exact Mass: 380.11972

BMN673, BMN673, BMN-673, LT673, LT 673, LT-673,  Talazoparib

BioMarin Pharmaceutical Inc

phase 3

Poly ADP ribose polymerase 2 inhibitor; Poly ADP ribose polymerase 1 inhibitor

cancer

(85,9R)-5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one toluenesulfonate salt

CAS 1373431-65-2(Talazoparib Tosylate)

1H NMR DMSOD6

str1

13C NMR DMSOD6

str1

HMBC NMR

str1

HSQC NMR

str1

Talazoparib (BMN-673) is an investigational drug that acts as a PARP inhibitor. It is in clinical trials for various cancers.

Talazoparib.png

Medivation, under license from BioMarin Pharmaceuticals, following its acquisition of LEAD Therapeutics, is developing a PARP-1/2 inhibitor, talazoparib, for treating cancer, particularly BRCA-mutated breast cancer. In February 2016, talazoparib was reported to be in phase 3 clinical development

Talazoparib, also known as BMN-673, is an orally bioavailable inhibitor of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) with potential antineoplastic activity (PARP1 IC50 = 0.57 nmol/L). BMN-673 selectively binds to PARP and prevents PARP-mediated DNA repair of single strand DNA breaks via the base-excision repair pathway. This enhances the accumulation of DNA strand breaks, promotes genomic instability and eventually leads to apoptosis. PARP catalyzes post-translational ADP-ribosylation of nuclear proteins that signal and recruit other proteins to repair damaged DNA and is activated by single-strand DNA breaks. BMN-673 has been proven to be highly active in mouse models of human cancer and also appears to be more selectively cytotoxic with a longer half-life and better bioavailability as compared to other compounds in development. Check for active clinical trials or closed clinical trials using this agent.

Talazoparib is C19H14F2N6O.

Talazoparib tosylate is C26H22F2N6O4S.[1]

Approvals and indications

None yet.

Mechanism of action

Main article: PARP inhibitor

Clinical trials

After trials for advanced hematological malignancies and for advanced or recurrent solid tumors.[2] it is now in phase 3 for metastatic germline BRCA mutated breast cancer.[3] Trial estimated to complete in June 2016.[4]

As of January 2016 it in 14 active clinical trials.[5]

WO2010017055,  WO2015069851, WO 2012054698, WO 2011130661, WO 2013028495, US 2014323725, WO 2011097602

PAPER

Discovery and Characterization of (8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one (BMN 673, Talazoparib), a Novel, Highly Potent, and Orally Efficacious Poly(ADP-ribose) Polymerase-1/2 Inhibitor, as an Anticancer Agent

BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, California 94949, United States
J. Med. Chem.201659 (1), pp 335–357
DOI: 10.1021/acs.jmedchem.5b01498
Publication Date (Web): December 10, 2015
Copyright © 2015 American Chemical Society
*Phone: 1-415-506-3319. E-mail: bwang@bmrn.com.

Abstract

Abstract Image

We discovered and developed a novel series of tetrahydropyridophthlazinones as poly(ADP-ribose) polymerase (PARP) 1 and 2 inhibitors. Lead optimization led to the identification of (8S,9R)-47 (talazoparib; BMN 673; (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one). The novel stereospecific dual chiral-center-embedded structure of this compound has enabled extensive and unique binding interactions with PARP1/2 proteins. (8S,9R)-47 demonstrates excellent potency, inhibiting PARP1 and PARP2 enzyme activity with Ki = 1.2 and 0.87 nM, respectively. It inhibits PARP-mediated PARylation in a whole-cell assay with an EC50 of 2.51 nM and prevents proliferation of cancer cells carrying mutant BRCA1/2, with EC50 = 0.3 nM (MX-1) and 5 nM (Capan-1), respectively. (8S,9R)-47 is orally available, displaying favorable pharmacokinetic (PK) properties and remarkable antitumor efficacy in the BRCA1 mutant MX-1 breast cancer xenograft model following oral administration as a single-agent or in combination with chemotherapy agents such as temozolomide and cisplatin. (8S,9R)-47 has completed phase 1 clinical trial and is currently being studied in phase 2 and 3 clinical trials for the treatment of locally advanced and/or metastatic breast cancer with germline BRCA1/2 deleterious mutations.

http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.5b01498

http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.5b01498/suppl_file/jm5b01498_si_001.pdf

Preparation of (8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one Tosylate Salt ((8S,9R)-47 Tosylate Salt)

A suspension of (8S,9R)-47 (BMN 673) (400 mg, 1.05 mmol) in a mixture of acetone (27 mL) and THF (13 mL) was heated to reflux until the suspension became clear. TsOH (220 mg, 1.16 mmol) was then added to the solution. White solids started to precipitate out from the solution shortly after the addition of TsOH. After stirring at 25 °C for 30 min, the mixture was filtered to collect the white crystal solids, which were washed with a mixture of acetone (10 mL) and 1,4-dioxane (4 mL) and then dried under vacuum at 45 °C for 3 days. This afforded the product as a white crystalline solid (540 mg, yield 93%). 1H NMR (400 MHz, DMSO-d6) δ (ppm) 2.29 (s, 3H), 3.67 (s, 3H), 4.97–5.06 (m, 2H), 6.91–6.94 (dd, J1 = 2.0 Hz, J2 = 10.8 Hz, 1H), 7.06–7.19 (m, 5H), 7.19–7.51 (m, 4H), 7.74 (s, 1H), 7.87 (s, 1H), 10.32 (brs, 1H), 12.36 (s, 1H). LC-MS (ESI)m/z: 381 (M + H)+. Anal. Calcd for C19H14F2N6O·toluene sulfonic acid: C, 56.52; H, 4.01; N, 15.21. Found: C, 56.49; H, 3.94; N, 15.39.

(8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one (8S,9R)-47 or BMN 673 and (8R,9S)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one (8R,9S)-47

Compound 47 was dissolved in DMF, and chiral resolution was performed using supercritical-fluid chromatography (SFC) with a CHIRALPAK IA chiral column and methanol (20% with 0.1% DEA) and CO2 (80%) as the eluents. Yield 90%. For (8S,9R)-47 (BMN 673): retention time 8.8 min and ee 99.3%. For (8R,9S)-47: retention time 10.2 min and ee 99.2%.
Alternatively, compound (8S,9R)-47 could also be made using (2S,3R)-60a as a starting material and employing the same procedure described for the conversion of 60a to 47.
The optical rotation for both (8S,9R)-47 and (8R,9S)-47 was measured using a RUDOLPH (AUTOPOL V) automatic polarimeter at a concentration of 6.67 mg/mL in MeOH/MeCN/DMF = 0.5:0.5:1 at 20 °C. The specific rotation for (8S,9R)-47 was +92.2°, whereas it was −93.4° for (8R,9S)-47.

PATENT

WO-2016019125

WO2016019125

The compound (85,9R)-5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one toluenesulfonate salt (Compound (A))

Compound (A)

is an inhibitor of poly(ADP-ribose)polymerase (PARP). Methods of making it are described in WO2010017055, WO2011097602, and WO2012054698. However, the disclosed synthetic routes require chiral chromatography of one of the synthetic intermediates in the route to make Compound (A), methyl 7-fluoro-2-(4-fluorophenyl)-3-(l -methyl- lH-1, 2,4-triazol-5-yl)-4-oxo- 1 ,2,3,4-tetrahydroquinoline-5-carboxylate (Intermediate (A)),

Intermediate (A)

to yield the chirally pure (2S,35)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH- 1,2,4-triazol-5-yl)-4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (Compound (1))

Compound (1).

Using conventional chiral chromatography is often solvent and time intensive.

Use of more efficient chromatography methods, such as simulated moving bed (SMB) chromatography still requires the use of expensive chiral chromatography resins, and is not practical on a large scale to purify pharmaceutical compounds. Also, maintaining

Compound (1) in solution for an extended time period during chromatography can lead to epimerization at the 9-position and cleavage of the methyl ester group in Compound (1). Replacing the chromatography step with crystallization step(s) to purify Compound (1) is desirable and overcomes these issues. Therefore, it is desirable to find an alternative to the use of chiral chromatography separations to obtain enantiomeric Compound (1).

Scheme 1 below describes use of Ac49 as a coformer acid for the preparation of Compound (la) and for the chiral resolution of Compound (1).

Scheme 1

Compound (1 )

Example 2 – Preparation of Compound (1) Using Scheme 1

Step la

Intermediate (A) (5 g, 12.5 mmol) was dissolved in 9: 1 v/v MIBK/ethanol (70 mL, 14 vol.) at 50 °C with stirring and dissolution was observed in less than about 5 minutes. [(lS)-en<io]-(+)-3-bromo-10-camphor sulfonic acid monohydrate (4.1 g, 12.5 mmol) was added and dissolution was observed in about 10-20 minutes. Seeding was then performed with Compound (la) (95% e.e., 5 mg, 0.1% w.) and the system was allowed to equilibrate for about 1 hour at 50 °C, was cooled to about 20 °C at 0.15 °C/min, and then equilibrated at 20 °C for 2 hours. The solid phase was isolated by filtration, washed with ethanol, and dried at about 50 °C and 3 mbar for about 2 to 3 hours to yield Compound (la) as a 0.6 molar equiv. EtOH solvate and 0.6 molar equiv. hydrate (93.4% e.e.).

Step lb

Compound (la) was then suspended in MIBK/ethanol 95/5% by volume (38 mL, 10 vol.) at 50 °C with stirring. After about 2 hours at 50 °C, the suspension was cooled to about 5 °C for 10 to 15 hours. The solid phase was recovered by filtration and dried at about 50 °C and 3 mbar for about 3 hours. Compound (la) (97.4% e.e.) was recovered. Step 2

000138] Compound (1) was released by suspending Compound (la) (3.9 g, 5.5 mmoi), without performing the optional reslurrying in Step 1, in 20 mL of water at room temperature and treating with 5M sodium hydroxide in water (1.3 mL, 1.2 mol). The mixture was kept at room temperature for about 15 hours and the solid was isolated by filtration and dried at 50 °C and 3 mbar for about 3 hours. Compound (1) was recovered (94.4% e.e.).

Example 3 – Large Scale Preparation of Compound (1) Using Scheme 1

The procedure of Example 1 was followed using 3.3 kg of Intermediate (A) and the respective solvent ratios to provide 95.7% e.e. in Step la; 99.2% e.e. in Step lb; and 99.2% e.e. in Step 2.

Example 4 – Alternative Preparation of Compound (1) Using Scheme 1

Step la

Intermediate (A) (751 mg, 1.86 mmol)) was dissolved in 9: 1 v/v

MIBK/ethanol (7.5 mL, 10 vol.) at 50 °C with stirring. [(15)-eni o]-(+)-3-bromo-10-camphor sulfonic acid monohydrate (620 mg, 1.88 mmol, 1 equiv.) was added. Formation of a precipitate was observed at about 1 hour at 50 °C. The system was then cooled to about 5 °C at 0.1 °C/min, and then equilibrated at 5 °C for about 60 hours. The solid phase was isolated by filtration and dried at about 50 °C and 3 mbar for about 2 hours to yield

Compound (la)(92% e.e.). See Figures 1-4 for XRPD (Figure 1), chiral HPLC (Figure 2), Ή NMR (Figure 3), and TGA/DSC analyses (Figure 4). The XRPD pattern from the material in Example 3 is similar to that in Example 1 with some slight shifts in the positions of specific diffraction peaks (highlighted by black arrows in Figure l). The ‘H NIVIR was consistent with a mono-salt of Compound (la) containing 0.5 molar equivalent of EtOH and 0.6% by weight residual MIBK. The TGA analysis showed a stepwise mass loss of 3.5% between 25 and 90 °C (potentially representing loss of the 0.5 molar equivalent of EtOH) and a gradual mass loss of 1.2% between 90 and 160 °C (potentially representing the loss of adsorbed water). The DSC analysis had a broad endotherm between 25 and 90 °C

representing desolvation and an endotherm at 135 °C representing melt/degradation.

Step lb

Compound (la) (100.3 mg, 0.141 mmol) was re-suspended in 95:5 v/v MIBK EtOH (1 mL, 10 vol.) at 50 °C and stirred for 1 hour before cooling to 5 °C at

0.1 °C/min. The solid (99.4% e.e.) was recovered by filtration after 1 night at 5 °C. Shifts in the XRPD diffraction peaks were no longer detected (Figure 5; compare Figure 1). Figure 6 shows the chiral HPLC for Compound (la).

Step 2

Compound (la) (100.2 mg, 0.141 mmol) from Step la was suspended in water (2 mL, 20 vol.) at 50 °C and 5 M NaOH in water (34 μL·, 1.2 molar equiv) was added. The resulting suspension was kept at 50 °C for one night, cooled to room temperature

(uncontrolled cooling) and filtered to yield Compound (1) (92% e.e.). The chiral purity was not impacted by this step and no [(15)-enJo]-(+)-3-bromo-10-camphor sulfonic acid was detected by NMR. Figure 7 compares the XRPD of Compound (1) in Step 2 with

Intermediate (A), the starting material of Step 1. Figure 8 shows the NMR of Compound (1) in Step 2 with Intermediate (A), the starting material of Step 1.

Example 5 – Alternative Preparation of Compound (1) Using Scheme 1 Step la

000144] Intermediate (A) (1 equiv.) was added with stirring to a solution of MIBK (12-13 vol), ethanol (1-1.5 vol), and water (0.05-0.10 vol) and the reaction was heated within 15 minutes to an internal temperature of about 48 °C to about 52 °C . [(lS)-endo]-(+)-3-bromo- 10-camphor sulfonic acid (1 equiv) was added and the reaction was stirred for about 5-10 mins at an internal temperature of about 48 °C to about 52 °C until dissolution occurred. Seed crystals of Compound (la) were added and the reaction was allowed to proceed for 1 hour at an internal temperature of about 48 °C to about 52 °C. The reaction was cooled at a rate of 0.15 °C /min to about 19-21 °C. The suspension was stirred for 2 hours at an internal temperature of about 19 °C to 21 °C and then was collected by filtration and washed twice with ethanol. The product was characterized by 1H NMR and 13C NMR (Figures 13a and 13b), IR Spectrum (Figure 14), DSC (Figure 15), and chiral HPLC (Figure 16).

Step 2a

To Compound (la) (1 equiv.) was added acetone (1.1 vol), IPA (0.55 vol), and methanol (0.55 vol) and the reaction was heated to an internal temperature of about 38 °C to 42 °C. Aqueous ammonia (25%) (1.3 equiv) was added and the reaction was stirred for about 10 minutes. The pH of the reaction was confirmed and the next step performed if > 7. Water was added (0.55 vol), the reaction was cooled to an internal temperature of about 35 °C, seed crystals of Compound (1) were added, and the reaction was stirred for about 10 mins. Water was added (3.3 vol) dropwise within about 30 minutes, the suspension was cooled within 30 minutes to an internal temperature of about 0 °C to 5 °C, and the reaction was stirred for 15 minutes. The solid was collected by filtration and washed three times with water.

Step 2b

To the product of Step 2a) was added acetone (4 vol), ΓΡΑ (1 vol), and methanol (1 vol) and the reaction was heated to an internal temperature of about 38 °C to 42 °C resulting in a clear solution. Water (2 vol) and seed crystals of Compound (1) were added and the system was stirred for about 15 minutes at an internal temperature of about 35 °C. Water (342 mL) was added dropwise in about 30 minutes. The suspension was then cooled in 30 min to an internal temperature of about 0 °C to 5 °C and was stirred for an additional 15 minutes. The solid was collected by filtration, washed twice with water, and chiral purity was determined. If > 99% e.e., then the solid was dried at an internal temperature of about 60 °C under reduced pressure to yield Compound (1). The product was characterized by Ή NMR (Figure 19), 13C NMR (Figure 20), IR (Figure 21), DSC (Figure 22), chiral HPLC (Figure 23).

Scheme 2 below describes use of Acl 10 as a coformer acid for the preparation of Compound (lb) and the chiral resolution of Compound (1).

Intermediate (A)

Compound (1 b)

Intermediate (A)

Compound (1 b)

Compound (1 )

Example 6 – Preparation of Compound (1) Using Scheme 2

Step la

Intermediate (A) (102 mg, 0.256 mmol) was dissolved in MIBK (1 mL, 10 vol.) at 65 °C with stirring. (lS)-phenylethanesulfonic acid, prepared using procedures known to one of skill in the art, in MIBK (3.8 M, 80 μί, 1 molar equiv.) was added and a suspension was observed after 30 minutes at 65 °C. The system was kept at 65 °C for another 30 minutes before cooling to 5 °C at 0.1 C/min. After one night at 5 °C, the solid was filtered, dried at 50 °C, 3 mbar pressure for about 2 hours to yield Compound (lb). See Figures 9-12 for XRPD (Figure 9), chiral HPLC (Figure 10), Ή NMR (Figure 11), and TGA/DSC analyses (Figures 12a and 12b). The XRPD diffraction pattern of the solid obtained in Example 5 differed from the XRPD pattern obtained with the solid from in the salt screen of Example 1 and was consistent with the production of different solids in Examples 1 and 5. The Ή NMR was consistent with the mono-salt with a 0.3% by weight residue of dioxane. In Figure 12a, the thermal behavior was consistent with a non-solvated form exhibiting a melt/degradation at 201 °C. Figure 12b compares the melt pattern of Compound (lb) in Example 5 with Compound (lb) in Example 1.

Steps lb and 2 can be carried out using procedures similar to those used in Examples 2-5.

Example 7 – Polymorphism of Compound (la)

Compound (1) (92% e.e., 10 mg, mmol) was placed in 1.5 mL vials and the solvents (1 mL or less) of Table 3 were added at 50 °C until dissolution was achieved. [(1S)-eni o]-(+)-3-bromo-10-camphorsulfonic acid was added as a solid at 50 °C. The samples were kept at 50 °C for about 1 hour prior to being cooled to room temperature overnight

(uncontrolled cooling rate). Clear solutions were successively cooled to 4 °C, -20 °C and evaporated at room temperature. Any gum obtained after evaporation was re-suspended in diethyl ether. The solid phases generated were characterized by XRPD and if relevant, by Ή NMR and TGA/DSC.

Table 3. Compound (la) Polymorphism Conditions

C.S. means clear solution and Susp. means suspension. “A” means the XRPD diffraction pattern was new but similar to that for Ac49 in

Example 1. “B” means the XRPD diffraction pattern was the same as that for Ac49 in Example 1. “M.E.” means molar equiv.

Page 38 of 64

NAI- 1500460480V I

Each of the seven solvents in which solvates were observed (heterosolvates not included) were mixed with MIBK (90% vol). Solutions of Intermediate (A) were prepared in the solvent mixtures (10 vol) at 50 C and [(15)-en<io]-(+)-3-bromo-10-camphor sulfonic acid (1 molar equivalent) was added. The resulting clear solutions were cooled to 5 °C at 0.2 C/min. Surprisingly, no crystallization was reported in any sample. Seeding was performed with a few crystals of each solvate at about 25 °C. The solid phases were analyzed by XRPD and the liquid phases were analyzed by chiral HPLC. See Table 4 for a summary of the results (where “Dias 2” is the (2R, 3R) diastereomer of Compound (la)) .

Table 4. Compound (la) Solvate Analysis

As seen in Table 4 above, the ethanol/MIBK system yielded 93% pure Compound (la) which demonstrates that Compound (la) does crystallize in a very pure form as an ethanolate solvate.

Other objects, features and advantages of the compounds, methods and compositions described herein will become apparent from the following description. It should be understood, however, that the description and the specific examples, while indicating specific embodiments, are given by way of illustration only, since various changes and modifications within the spirit and scope of the present description will become apparent from this detailed description.

All publications including patents, patent applications and published patent applications cited herein are hereby incorporated by reference for all purposes.

PATENT

US 2011196153

http://www.google.co.ve/patents/US20110237581

STR1.jpg

Patent

US 2011237581

PATENTSTR1.jpg

PATENT

http://www.google.com/patents/WO2015069851A1?cl=en

SYNTHETIC EXAMPLES

Example 1

\ , 

(1 a) (2) (3) (la) (5)

To a flask was added N-methyl-l,2,4-triazole (la)(249.3 g, 3.0 mol, 1 equiv.),

2-methyl-THF (1020 mL, about 1 :4 m/v), and DMF (2)(230.2 g, 3.15 mol, 1.05 equiv.), in any order. The solution was cooled to an internal temperature of about -5 to 0 °C. To the flask was added LiHMDS (3) as a 20% solution in 2-methyl-THF (3012 g, 3.6 mol, 1.2 equiv.) dropwise within about 60 minutes. During the addition of the LiHMDS (3), the desired Compound (la) was precipitated as the 2-methyl-THF solvate, and the flask was cooled to about -30 °C. The reaction was stirred for about 30 minutes at an internal temperature of about -5 to 0 °C.

The precipitated crystals were removed from the reaction mixture by filtration and washed with 2-methyl-THF. The product, Compound (la) as the 2-methyl-THF solvate, was dried under vacuum at an internal temperature of about 60 °C (about 72.5% as measured by NMR) to yield Compound (la).

Example 2

As shown in Example 2, the Compounds of Formula I are useful in the synthesis of more complex compounds. See General Scheme 1 for a description of how the first step can be accomplished. Compounds of Formula I can be reacted with compound (6) to yield Compounds of Formula II. In Example 2, Compound (la) can be reacted with

Compound (6) to yield Compound (7). The remaining steps are accomplished using procedures known to one of ordinary skill in the art, for example, as disclosed in

WO2010017055 and WO2011097602 to yield Compound (12).

PATENT

US 2014323725/http://www.google.com/patents/WO2011097602A1

5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9- dihydro-2H-pyrido[4,3,2-Je]phthalazin-3(7H)-one, as shown in formula (1), and its enantiomer compounds, as shown in formulas (la) and (lb):

Figure imgf000003_0001

Example 1

(Z)-6-Fluoro-3-(( 1 -methyl- IH- 1 ,2,4-triazol-5 -yl)methylene)-4-nitroisobenzofuran- 1 (3H)-one (3)

Figure imgf000013_0001

[0053] To a 80 L jacketed glass reactor equipped with a chiller, mechanical stirrer, thermocouple, and nitrogen inlet/outlet, at 15 – 25 °C, anhydrous 2-methyl-tetrahydrofuran (22.7 kg), 6-fluoro-4- nitroisobenzofuran-l(3H)-one (2) (2.4 kg, 12.2 mol, 1.00 eq.), and 2-methyl-2H-l,2,4-triazole-3- carbaldehyde (49.6 – 52.6 % concentration in dichloromethane by GC, 3.59 – 3.38 kg, 16.0 mol, 1.31 eq.) were charged consecutively. Triethylamine (1.50 kg, 14.8 mol, 1.21 eq.) was then charged into the above reaction mixture. The reaction mixture was stirred for another 10 minutes. Acetic anhydride (9.09 – 9.10 kg, 89.0 – 89.1 mol, 7.30 eq.) was charged into the above reaction mixture at room temperature for 20 – 30 minutes. The reaction mixture was heated from ambient to reflux temperatures (85 – 95 °C) for 80 – 90 minutes, and the mixture was refluxed for another 70 – 90 minutes. The reaction mixture was monitored by HPLC, indicating compound (2) was reduced to < 5 %. The resulting slurry was cooled down to 5 – 15 °C for 150 – 250 minutes. The slurry was aged at 5 – 15 °C for another 80 – 90 minutes. The slurry was filtered, and the wet cake was washed with ethyl acetate (2L x 3). The wet cake was dried under vacuum at 40 – 50 °C for 8 hours to give 2.65 – 2.76 kg of (Z)-6-fluoro-3-((l -methyl-lH-l ,2,4-triazol-3- yl)methylene)-4-nitroisobenzofuran-l(3H)-one (3) as a yellow solid (2.66 kg, yield: 75.3 %, purity: 98.6 – 98.8 % by HPLC). LC-MS (ESI) m/z: 291 (M+l)+. Ή-ΝΜΡ (400 MHz, DMSO-d6) δ (ppm): 3.94 (s, 3H), 7.15 (s, 1H), 8.10 (s, 1H), 8.40-8.42 (dd, Jx = 6.4 Hz, J2 = 2.4 Hz, 1H), 8.58-8.61 (dd, Jx = 8.8 Hz, J2 = 2.4 Hz, 1H).

Example 2

Methyl 5- enzoate (4)

Figure imgf000014_0001

Example 2A

[0054] (¾-6-Fluoro-3-((l-methyl-lH-l,2,4-taazol-3-yl)m (3) (177 g, 0.6 mol, 1.0 eq.), and HC1 (2 N in methanol, 3 L, 6 mol, 10 eq.) were charged into a 5 L 3-neck flask equipped with mechanical stirrer, thermometer, and nitrogen inlet/outlet. The reaction mixture was stirred at room temperature for 25 hours. The reaction mixture was monitored by HPLC, indicating 0.8 % compound (3) remained. The reaction mixture was concentrated under vacuum at 40 °C to dryness, and methyl 5-fluoro-2-(2-(l -methyl- lH-l,2,4-triazole-3-yl)acetyl)-3-nitrobenzoate hydrochloride (4) was obtained as a yellow solid (201 g, yield: 93.4 %). It was used for the next step without further purification. LC-MS (ESI) m/z: 323 (M+l)+ ¾-NMR (400 MHz, DMSO-J6) δ (ppm): 3.89 (s, 3H), 3.92 (s, 3H), 4.60 (s, 2H), 7.85 (s, 1H), 8.25-8.28 (dd, Jx = 8.4 Hz, J2 = 2.8 Hz, 2H), 8.52-8.54 (dd, Jx = 8.4 Hz, J2 = 2.8 Hz, 2H).

Example 2B

An alternative workup procedure to that illustrated in Example 2A follows. Instead of evaporating the reaction mixture to dryness, it was condensed to 2 volumes, followed by solvent exchange with 12 volumes of THF, and then 12 volumes of heptane. The slurry mixture was concentrated to 2 volumes and filtered to give the product. As such, 1.8 kilograms of (Z)-6-fluoro-3-((l-methyl-lH-l,2,4-triazol-3- yl)methylene)-4-nitroisobenzofuran-l(3H)-one (3) gave 2.15 kilograms (yield 96.4 %) of the product methyl 5-fluoro-2-(2-(l -methyl- lH-l,2,4-triazole-3-yl)acetyl)-3-nitrobenzoate hydrochloride (4).

Example 3

Methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4- tetrahydroquinoline-5 -carboxylate (5)

Figure imgf000015_0001

Example 3A

To a suspension of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3-nitrobenzoate (4) (5 g, 15.5 mmol, leq.) and 4-fluorobenzaldehyde (3.6 g, 29 mmol, 1.87 eq.) in a mixture of solvents tetrahydrofuran (30 mL) and MeOH (5 mL) was added titanium(III) chloride (20 % w/w solution in 2N Hydrochloric acid) (80 mL, 6 eq.) dropwise with stirring at room temperature. The reaction mixture was allowed to stir at 30~50°C for 2 hours. The mixture was then diluted with water (160 mL), and the resulting solution was extracted with ethyl acetate (100 mL x 4). The combined organic layers were washed with saturated NaHC03 (50 mL x 3) and aqueous NaHS03 (100 mL x 3), dried by Na2S04, and concentrated to dryness. This afforded a crude solid, which was washed with petroleum ether (120 mL) to obtain the title compound as a yellow solid (5.9 g, yield: 95 %, purity: 97 %). LC-MS (ESI) m/z: 399 (M+l)+. ^-NMR (400 MHz, CDCla) δ (ppm): 3.58 (s, 3H), 3.87 (s, 3H), 4.16-4.19 (d, J2=13.2 Hz, 1H), 4.88 (s, 1H), 5.37-5.40 (d, J2=13.2 Hz, 1H), 6.47-6.53 (m, 2H) , 6.97-7.01 (m, 2H), 7.37-7.41 (m, 2H), 7.80 (s, 1H).

Example 3B

An alternative workup procedure to that illustrated in Example 3A follows. After the completion of the reaction, the mixture was extracted with isopropyl acetate (20 volumes x 4) without water dilution. The product was isolated by solvent exchange of isopropyl acetate with heptanes followed by re-slurry with MTBE and filtration. As such, 3 kilograms of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5- yl)acetyl)-3-nitrobenzoate (4) afforded 2.822 kilograms of the title compound (5) (yield 81 %).

Example 3C

To a stirred solution of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3- nitrobenzoate (4) (580 mg, 2 mmol) and 4-fluorobenzaldehyde (488 mg, 4 mmol) in methanol (0.75 mL) and tetrahydrofuran (4.5 mL) was added concentrated HC1 solution (w/w 37 %, 6 mL), then reductive powdered Fe (672 mg, 12 mmol) was added slowly to the reaction system. After the addition was complete, the resulting mixture was heated to 60 °C and kept at this temperature for 3 hours. After the disappearance of the starting material (4) as monitored by LC-MS, the reaction mixture was partitioned between ethyl acetate (30 mL) and water (30 mL) and the aqueous phase was extracted with ethyl acetate (20 mL x 3). The combined organic phase was dried with Na2S04, concentrated in vacuo and purified by column chromatography (ethyl acetate: petroleum ether = 1 : 1) to give the title compound (5) as a pale yellow solid (300 mg, yield 40 %). LC-MS (ESI) m/z: 399 (M+l)+LH-NMR (400 MHz, CDC13) δ (ppm): 3.58 (s, 3H), 3.87 (s, 3H), 4.17 (d, 1H), 4.87 (s, 1H), 5.38 (d, 1H), 6.50 (dd, 2H), 6.99 (dd, 2H), 7.38 (dd, 2H), 7.80 (s, 1H).

Example 3D

To a stirred solution of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3- nitrobenzoate (4) (580 mg, 2 mmol) and 4-fluorobenzaldehyde (488 mg, 4 mmol) in methanol (0.75 mL) and tetrahydrofuran (4.5 mL) was added SnCl2 (2.28 g, 12 mmol) and concentrated HC1 (w/w 37 %, 6 mL), the resulting mixture was reacted at 45 °C for 3 hours, until LC-MS indicating the disappearance of the starting material (4) and about 50 % formation of the product. The mixture was then partitioned between ethyl acetate (30 mL) and water (30 mL) and the aqueous phase was extracted with ethyl acetate (20 mL x 3). The combined organic phase was dried with Na2S04, concentrated in vacuo and purified by column chromatography (ethyl acetate: petroleum ether = 1 : 1) to give the title compound (5) as a pale yellow solid (10 mg, yield 1.3 %). LC-MS (ESI) m/z: 399 (M+l)+LH-NMR (400 MHz, CDC13) δ (ppm): 3.58 (s, 3H), 3.87 (s, 3H), 4.17 (d, 1H), 4.87 (s, 1H), 5.38 (d, 1H), 6.50 (dd, 2H), 6.99 (dd, 2H), 7.38 (dd, 2H), 7.80 (s, 1H).

Example 3E

A solution of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3-nitrobenzoate (4) (580 mg, 2 mmol) and 4-fluorobenzaldehyde (488 mg, 4 mmol) in methanol (20 mL) and acetic acid (1 mL) was stirred at room temperature for 24 hours under hydrogen (1 barr) in the presence of a catalytic amount of 10 % Pd/C (212 mg, 0.2 mmol). After the reaction was complete, the catalyst was removed by filtration through a pad of Celite, the solvent was removed in vacuo, and the residue was purified by column chromatography (ethyl acetate: petroleum ether = 1 : 1) to give the title compound (5) as a pale yellow solid (63 mg, yield 8 %). LC-MS (ESI) m/z: 399 (M+l)+ . 1HNMR (400 MHz, DMSO-d6) δ (ppm): 3.56 (s, 3H), 3.86 (s, 3H), 7.02 (dd, 2H), 7.21 (dd, 2H), 7.90 (s, 1H), 8.08 (s, 1H), 8.26 (dd, 1H), 8.56 (dd, 1H).

Example 4

5-Fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-

Figure imgf000016_0001

 Methyl 7-fluoro-2-(4-fluorophenyl)-3-(l -methyl-lH-l ,2,4-triazol-5-yl)-4-oxo-l,2,3,4- tetrahydroquinoline-5-carboxylate (5) (150 g, 0.38 mol, 1.0 eq.) and methanol (1.7 L) were charged into a 3 L 3-neck flask equipped with a mechanical stirrer, thermometer, and nitrogen inlet/outlet. The resulted suspension was stirred at room temperature for 15 minutes. Hydrazine hydrate (85 % of purity, 78.1 g, 1.33 mol, 3.5 eq.) was charged dropwise into the above reaction mixture within 30 minutes at ambient temperature. The reaction mixture was stirred at room temperature overnight. The reaction was monitored by HPLC, showing about 2 % of compound (5) left. The obtained slurry was filtered. The wet cake was suspended in methanol (2 L) and stirred at room temperature for 3 hours. The above slurry was filtered, and the wet cake was washed with methanol (0.5 L). The wet cake was then dried in vacuum at 45 – 55 °C for 12 hours. This afforded the title compound as a pale yellow solid (112 g, yield: 78.1 %, purity: 95.98 % by HPLC). LC-MS (ESI) m/z: 381 (M+l)+. ^-NMR (400 MHz, DMSO-J6) δ (ppm): 3.66 (s, 3H), 4.97-5.04 (m, 2H), 6.91-6.94 (dd, Jx = 2.4, J2 = 11.2 Hz, 1H), 7.06-7.09 (dd, Jx = 2.4, J2 = 8.8 Hz, 1H), 7.14-7.18 (m, 3H), 7.47-7.51 (m, 2H), 7.72 (s, 1H), 7.80 (s, 1H), 12.35 (s, 1H).

Example 5

5 -Amino-7-flu in- 1 (2H)-one

Figure imgf000017_0001

To a solution of 6-fluoro-3-((l-methyl-lH-l,2,4-triazol-3-yl)methylene)-4-nitroiso-benzofuran- l(3H)-one (3) (4.0 g, 135 mmol) in THF (100 mL) was added hydrazine monohydrate (85 %) (6 mL) at room temperature under nitrogen atmosphere. The mixture was stirred for 2 hours, then acetic acid (6 mL) was added and the mixture was heated to and kept at 60 °C for 18 hours. The resulting mixture was diluted with water (100 mL) and extracted with ethyl acetate (100 mL x 3). The organic layer was dried over anhydrous Na2S04 and evaporated to dryness to afford the title compound as a yellow solid (1.6 g, yield 42 %). LC-MS (ESI) m/z: 275(M+1)+.

Example 6

(£’)-7-fluoro-5-(4-fluorobenzylideneamino)-4-((l -methyl- IH- 1 ,2,4-triazol-5-yl)methyl)phthalazin- 1 (2H)- one

Figure imgf000018_0001

(7)

To a suspended of 5-amino-7-fluoro-4-((l-methyl-lH-l,2,4-triazol-3-yl)methyl) phthalazin- l(2H)-one (7) (1.6 g, 5.8 mmol) in acetonitrile (50 mL) was added 4-fluorobenzaldehyde (2.2 g, 17.5 mmol). The mixture was stirred under reflux under nitrogen for 48 hours. The precipitate was filtered and washed with a mixture of solvents (ethyl acetate/hexane, 1 :1, 10 mL). After drying in vacuum, it afforded the title compound as a yellow solid (1.2 g, yield 52 %). LC-MS (ESI) m/z: 381(M+1)+.

Example 7

5-Fluoro-8 4-fluorophenyl)-9 l-methyl H-l,2,4-triazol-5-yl)-8,9-dihydro-2H^yrido[4,3,2-

Figure imgf000018_0002

(8) (1 )

To a suspension of (£’)-7-fluoro-5-(4-fluorobenzylideneamino)-4-((l-methyl-lH-l,2,4-triazol-5- yl)methyl)phthalazin-l(2H)-one (8) (2.0 g, 5.3 mmol) in THF (80 mL) was added cesium carbonate (3.4 g, 10.6 mmol). The reaction mixture was stirred at 55 °C for 4 hours and cooled down to room temperature. The mixture was diluted with water (50 ml) and extracted with ethyl acetate (50 mL x 3). The combined organic layers were dried over anhydrous Na2S04 and evaporated to dryness to afford the title compound as a white solid (1.6 g, yield 80 %). LC-MS (ESI) m/z: 381(M+1)+. ^-NMR (400 MHz, DMSO- ) δ (ppm): 3.66 (s, 3H), 4.97-5.04 (m, 2H), 6.91-6.94 (dd, Jx = 2.4, J2 = 11.2 Hz, 1H), 7.06-7.09 (dd, Ji = 2.4, J2 = 8.8 Hz, 1H), 7.14-7.18 (m, 3H), 7.47-7.51 (m, 2H), 7.72 (s, 1H), 7.80 (s, 1H), 12.35 (s, 1H).

Example 8

(£)-Methyl 5-fluoro-2-(3-(4-fluorophenyl)-2-(l-methyl-lH-l,2,4-triazol-5-yl)acryloyl)-3-nitrobenzoate

(9)

Figure imgf000019_0001

To a stirred solution of methyl 5-fluoro-2-(2-(l-methyl-lH-l,2,4-triazol-5-yl)acetyl)-3- nitrobenzoate (4) (580mg, 2 mmol) and 4-fluorobenzaldehyde (488 mg, 4 mmol) in dimethylsulfoxide (2 mL) was added L-proline (230 mg, 2 mmol). The resulting mixture was kept with stirring at 45 °C for 48 hours. The reaction system was then partitioned between ethyl acetate (50 mL) and water (30 mL), and the organic phase was washed with water (20 mL x 3), dried with Na2S04, concentrated in vacuo, and purified by column chromatography (ethyl acetate: petroleum ether = 1 :3) to give the title compound (9) as a pale yellow foam (340 mg, yield 40 %). LC-MS (ESI) m/z: 429 (M+l)+. ^-NMR (400 MHz, DMSO-dg); δ (ppm): 3.56 (s, 3H), 3.86 (s, 3H), 7.02 (dd, 2H), 7.21 (dd, 2H), 7.90 (s, IH), 8.08 (s, IH), 8.26 (dd, IH), 8.56 (dd, IH).

Example 9

Methyl 7-fluoro-2-(4-fluorophenyl)- 1 -hydroxy-3-( 1 -methyl- IH- 1 ,2,4-triazol-5-yl)-4-oxo- 1 ,2,3,4- tetrahydroquinoline-5 -carboxylate (10)

Figure imgf000019_0002

To a solution of (£)-Methyl 5-fluoro-2-(3-(4-fluorophenyl)-2-(l-methyl-lH-l,2,4-triazol-5- yl)acryloyl)-3-nitrobenzoate (9) (200 mg, 0.467 mmol) in methanol (20 mL) was added 10 % Pd/C (24 mg). After the addition, the mixture was stirred under H2 (1 atm) at room temperature for 0.5 h. The reaction system was then filtered and evaporated under reduced pressure. The residue was purified by chromatography (ethyl acetate: petroleum ether = 1 :1) to give the title compound (10) (110 mg, yield 57 %) as an off-white foam. LC-MS (ESI) m/z: 415 (M+H)+. ¾-NMR (400 MHz, DMSO-d6) δ (ppm): 3.53 (s, 3H), 3.73 (s, 3H), 5.08 (d, 2H), 5.27 (d, 2H), 6.95 (dd, IH), 7.08 (dd, 2H), 7.15 (dd, IH), 7.42 (dd, 2H), 7.77 (s, IH), 9.92 (s, IH). Example 10

Methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4-

Figure imgf000020_0001

(10) (5)

To a stirred solution of methyl 7-fluoro-2-(4-fluorophenyl)-l-hydroxy-3-(l-methyl-lH-l,2,4- triazol-5-yl)-4-oxo-l, 2,3, 4-tetrahydroquinoline-5 -carboxylate (10) (41.4 mg, 0.1 mmol) in methanol (5 mL) was added concentrated HCl solution (w/w 37 %, 1 mL) and reductive powdered Fe (56 mg, 1 mmol). The reaction mixture was refluxed for 3 hours. After the disappearance of compound (10) as monitored by LC-MS, the reaction system was partitioned between ethyl acetate (20 mL) and water (20 mL) and then the aqueous phase was extracted with ethyl acetate (10 mL x 3). The combined organic phase was dried with Na2S04, concentrated in vacuo and purified by column chromatography (ethyl acetate: petroleum ether = 1 :1) to give the title compound (5) as a pale yellow solid (12 mg, yield 30 %). LC-MS (ESI) m/z: 399 (M+l)+. ¾-NMR (400 MHz, CDC13) δ (ppm): 3.58 (s, 3H), 3.87 (s, 3H), 4.17 (d, 1H), 4.87 (s, 1H), 5.38 (d, 1H), 6.50 (dd, 2H), 6.99 (dd, 2H), 7.38 (dd, 2H), 7.80 (s, 1H).

Example 11

Methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4-

Figure imgf000020_0002

To a solution of (£)-Methyl 5-fluoro-2-(3-(4-fluorophenyl)-2-(l-methyl-lH-l,2,4-triazol-5- yl)acryloyl)-3-nitrobenzoate (9) (214 mg, 0.5 mmol) in methanol (5 mL) was added concentrated HCl solution (w/w 37 %, 1 mL), then reductive Fe powder (140 mg, 2.5 mmol) was added slowly to the reaction system. After the addition was complete the resulting mixture was refluxed for 24 hours. The reaction mixture was then filtered, concentrated, neutralized with saturated NaHC03 (20 mL), and extracted with ethyl acetate (10 mL x 3). The residue was purified by chromatography (ethyl acetate: petroleum ether = 1 : 1) to give the title compound (5) (30 mg, yield 15 %) as an off-white foam. LC-MS (ESI) m/z: 399 (M+H)+. ^-NMR (400 MHz, DMSO-d6) δ (ppm): 3.56 (s, 3H), 3.86 (s, 3H), 7.02 (dd, 2H), 7.21 (dd, 2H), 7.90 (s, 1H), 8.08 (s, 1H), 8.26 (dd, 1H), 8.56 (dd, 1H).

Example 12

(8R,9S)-5-fluoro-8-(4-fluorophenyl)-9-(l-me

Je]phthalazin-3(7H)-one (la) and (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-

Figure imgf000021_0001

(1) (la) (lb)

A chiral resolution of 5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5-yl)-8,9- dihydro-2H-pyrido[4,3,2-Je]phthalazin-3(7H)-one (1) (52.5 g) was carried out on a super-fluid chromatography (SFC) unit using a CHIRALPAK IA column and C02/methanol/diethylamine

(80/30/0.1) as a mobile phase. This afforded two enantiomers with retention times of 7.9 minute (23.6 g, recovery 90 %, > 98 % ee) and 9.5 minute (20.4 g, recovery 78 %, > 98 % ee) as analyzed with a CHIRALPAK IA 0.46 cm x 15 cm column and C02/methanol/diethylamine (80/30/0.1) as a mobile phase at a flow rate of 2 g/minute.

Example 13

(2R,3R)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4- tetrahydroquinoline-5-carboxylate (6a) and (2S,3S)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-

Figure imgf000021_0002

(5) (6a) (6b)

Example 13A

The chiral resolution of compound (5) was carried out on a SFC unit with a CHIRALPAK®IC 3 cm (I.D.) x 25 cm, 5 μηι column, using C02/MeOH (80/20) as a mobile phase at a flow rate of 65 g/ minute while maintaining the column temperature at 35 °C and with a detection UV wavelength of 254 nm. As such, a racemate of compound (5) (5 g) in methanol solution was resolved, which resulted in two enantiomers with a retention times of 2.35 minute (2.2 g, 88 % recovery, >98 % ee) and 4.25 minute (2.3 g, 92 % recovery, >98 % ee), respectively when analyzed using CHIRALPAK®IC 0.46 cm x 15 cm column and CO2/MeOH(80/20) as a mobile phase at a flow rate of 2 mL/ minute.

Example 13B

The chiral resolution of compound (5) was carried out on a SFC unit with a CHIRALPAK®IC 5cm (I.D.) x 25 cm, 5 μηι column, using C02/MeOH (75/25) as a mobile phase at a flow rate of 200 mL/ minute while maintaining the column temperature at 40 °C and with a detection UV wavelength of 255 nm. As such, a racemate of compound (5) (1.25 kg) in methanol solution was resolved, which resulted in two enantiomers in about 83 % yield and 97.4 % purity.

Example 13C

Alternatively, the separation can also be achieved on a Simulated Moving Bed (SMB) unit with a CHIRALPAK®IC column and acetonitrile as a mobile phase. The retention times for the two enantiomers are 3.3 and 4.1 minutes, respectively. In certain embodiments, the productivity can be greater than 6 kg Feed/day/kg CSP.

Example 14

(8R,9S)-5-fluoro-8 4-fluorophenyl)-9<l-me

Je]phthalazin-3(7H)-one (la) and (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(l-methyl-lH-l,2,4-triazol-5- (lb)

Figure imgf000022_0001

Example 14A

To a solution of (2R,3R)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)- 4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (6a) or (2S,3S)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l- methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (6b) (400 mg, 1.0 mmol) in ethanol (8.0 mL) was added hydrazine monohydrate (85 %, 2.0 mL), and the solution stirred at room temperature for 2 hours. The resulting solution was then concentrated to a volume of 2 mL and filtered, and the resultant cake washed with ethanol (1 mL). After drying in vacuum at 50°C, this afforded the title compound as a white solid (209 mg, yield 55 %). LC-MS (ESI) m/z: 381(M+1)+. ^-NMR (400 MHz, DMSO-dg): δ (ppm): 3.681 (s, 3H), 4.99-5.06 (m, 2H), 6.92-6.96 (m, 1H), 7.08-7.11 (m, 1H), 7.16-7.21 (t, J= 8.8 Hz, 2H), 7.49-7.53 (m, 2H), 7.75 (s, 1H), 7.83 (s, 1H), 12.35 (s, 1H).

Example 14B

To a solution of (2R,3R)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l-methyl-lH-l,2,4-triazol-5-yl)- 4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (6a) or (2S,3S)-methyl 7-fluoro-2-(4-fluorophenyl)-3-(l- methyl-lH-l,2,4-triazol-5-yl)-4-oxo-l,2,3,4-tetrahydroquinoline-5-carboxylate (6b) (446 g) in acetonitrile (10 volume) was added hydrazine monohydrate (2.9 eq.), and the solution stirred at room temperature for 2 hours. The resulting solution was then concentrated to a volume of 2 mL and filtered. The crude product was re-slurried with water (3~5 volumes) at 15-16 °C. After drying in vacuum at 50 °C, this affords the title compound as a white solid (329 g, yield 77%, 99.93% purity). LC-MS (ESI) m/z:

381(M+1)+; ¾-NMR (400 MHz, DMSO-d6) δ (ppm): 3.681 (s, 3H), 4.99-5.06 (m, 2H), 6.92-6.96 (m, 1H), 7.08-7.11 (m, 1H), 7.16-7.21 (t, J= 8.8 Hz, 2H), 7.49-7.53 (m, 2H), 7.75 (s, 1H), 7.83 (s, 1H), 12.35 (s, 1H).

Talazoparib (BMN-673) is an orally available poly ADP ribose polymerase (PARP) inhibitor currently in development by Pfizer for the treatment of advanced breast cancer patients with germline BRCA mutations.[1] Talazoparib is similar to the first in class PARP inhibitor, olaparib.[2][3] However, talazoparib is thought to be more potent than olaparib.[3]

Mechanism of action

Talazoparib acts as an inhibitor of poly ADP ribose polymerase(PARP) which aids in single strand DNA repair. Cells that have BRCA1/2mutations are susceptible to the cytotoxic effects of PARP inhibitors because of an accumulation of DNA damage.[1] Talazoparib is theorized to have a higher potency than olaparib due to the additional mechanism of action called PARP trapping. PARP trapping is the mechanism of action where the PARP molecule is trapped on the DNA, which interferes with the cells ability to replicate. Talazoparib is found to be ~100 fold more efficient in PARP trapping than olaparib.[4] However, this increased potency may not translate directly to clinical effectiveness as many other factors must be considered.[3][4]

Commercialization

Talazoparib was originally developed by BioMarin Pharmaceutical Inc. However, Medivation Inc. acquired all worldwide rights to talazoparib in August 2015 to expand their global oncology franchise.[5] Medivation acquired talazoparib for $410 million with additional payments of up to $160 million in royalties and milestones. Under this agreement, Medivation assumed all financial responsibilities for the continued development, regulatory, and commercialization of talazoparib.[5][6]

Clinical trials

As of January 2016, talazoparib is in 14 active clinical trials [7] including a new arm of I-SPY 2.[8] These trials cover a variety of cancers types and combination therapies. The most notable clinical trials are the ABRAZO and EMBRACA studies.

ABRAZO

ABRAZO is a phase II study for the safety and efficacy of treatment of BRCA breast cancer patients with Talazoparib monotherapy. This study is for patients who have failed at least two prior chemotherapy treatments for metastatic breast cancer or been previously treated with a platinum regimen.[6][9][10] The original target enrollment for the study was 70 patients but Biomarin expanded the trial to 140 patients.[9][10] The estimated completion date is December 2016.[10]

EMBRACA

EMBRACA is a phase III study for the treatment of BRCA breast cancer patients with Talazoparib.[11][12][13] This trial is an open-label, randomized, parallel, 2-arm, multi-center comparison of talazaporib against physician’s preference for the treatment of patients with locally advanced or metastatic breast cancer. Patients must also have received prior chemotherapy regimens for metastatic breast cancer.[12][13] Patients participating in this study are randomly selected for either talazoparib or physician’s choice of chemotherapy at a 2:1 ratio to talazoparib.[6] The target enrollment for the study was 430 patients [12][13] and the estimated completion date is June 2017.[13]

References

  1. Jump up to:a b Medivation Inc. “Talazoparib”.
  2. Jump up^ FDA (19 December 2014). “FDA approves Lynparza to treat advanced ovarian cancer”FDA News Release.
  3. Jump up to:a b c Jessica Brown, Stan Kaye, Timothy Yap (29 March 2016). “PARP inhibitors: the race is on”British Journal of Cancer114: 713–5. doi:10.1038/bjc.2016.67PMC 4984871Freely accessiblePMID 27022824.
  4. Jump up to:a b Yuqiao Shen, Mika Aoyagi-Scharber, Bing Wang (June 2015). “Trapping Poly(ADP-Ribose) Polymerase”Journal of Pharmacology and Experimental Therapeutics.
  5. Jump up to:a b Biomarin (24 August 2015). “Medivation to Expand Global Oncology Franchise With the Acquisition of All Worldwide Rights to Talazoparib (BMN 673), a Potent PARP Inhibitor, From BioMarin”.
  6. Jump up to:a b c Silus Inman (25 August 2015). “Medivation Acquires BioMarin’s PARP Inhibitor Talazoparib”.
  7. Jump up^ BMN 673 trials registered
  8. Jump up^ I-SPY 2 TRIAL: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer (I-SPY 2)
  9. Jump up to:a b “BioMarin Provides Program Update for Talazoparib in Metastatic Breast Cancer”. 20 July 2015.
  10. Jump up to:a b c “A Phase 2, 2-Stage, 2-Cohort Study of Talazoparib (BMN 673), in Locally Advanced and/or Metastatic Breast Cancer Patients With BRCA Mutation (ABRAZO Study)”ClinicalTrials.gov.
  11. Jump up^ “EMBRACA CLINICAL STUDY IS NOW ENROLLING”.
  12. Jump up to:a b c “A Study Evaluating Talazoparib (BMN 673), a PARP Inhibitor, in Advanced and/or Metastatic Breast Cancer Patients With BRCA Mutation (EMBRACA Study)”ClinicalTrials.gov.
  13. Jump up to:a b c d “BioMarin Initiates Phase 3 BMN 673 Trial for Metastatic gBRCA Breast Cancer”Benzinga.

External links

nmr……http://www.medkoo.com/uploads/product/Talazoparib__BMN-673_/qc/BMN673-QC-BBC20130523-Web.pdf

Patent                       Submitted                        Granted

PROCESSES OF SYNTHESIZING DIHYDROPYRIDOPHTHALAZINONE DERIVATIVES [US2014323725]2014-06-022014-10-30

CRYSTALLINE (8S,9R)-5-FLUORO-8-(4-FLUOROPHENYL)-9-(1-METHYL-1H-1,2,4-TRIAZOL-5-YL)-8,9-DIHYDRO-2H-PYRIDO[4,3,2-DE]PHTHALAZIN-3(7H)-ONE TOSYLATE SALT [US2014228369]2014-04-142014-08-14

Crystalline (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one tosylate salt [US8735392]2011-10-202014-05-27

DIHYDROPYRIDOPHTHALAZINONE INHIBITORS OF POLY(ADP-RIBOSE)POLYMERASE (PARP) [US8012976]2010-02-112011-09-06

DIHYDROPYRIDOPHTHALAZINONE INHIBITORS OF POLY(ADP-RIBOSE)POLYMERASE (PARP) FOR USE IN TREATMENT OF DISEASES ASSOCIATED WITH A PTEN DEFICIENCY [US2014066429]2013-08-212014-03-06

METHODS AND COMPOSITIONS FOR TREATMENT OF CANCER AND AUTOIMMUNE DISEASE [US2013184342]2013-03-132013-07-18

WO2012054698A1 Oct 20, 2011 Apr 26, 2012 Biomarin Pharmaceutical Inc. Crystalline (8s,9r)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1h-1,2,4-triazol-5-yl)-8,9-dihydro-2h-pyrido[4,3,2-de]phthalazin-3(7h)-one tosylate salt
WO2015069851A1 Nov 6, 2014 May 14, 2015 Biomarin Pharmaceutical Inc. Triazole intermediates useful in the synthesis of protected n-alkyltriazolecarbaldehydes
US8420650 Mar 31, 2011 Apr 16, 2013 Biomarin Pharmaceutical Inc. Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP)
US8541403 Feb 3, 2011 Sep 24, 2013 Biomarin Pharmaceutical Inc. Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP) for use in treatment of diseases associated with a PTEN deficiency
US8735392 Oct 20, 2011 May 27, 2014 Biomarin Pharmaceutical Inc. Crystalline (8S,9R)-5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-8,9-dihydro-2H-pyrido[4,3,2-de]phthalazin-3(7H)-one tosylate salt
US8765945 Feb 8, 2011 Jul 1, 2014 Biomarin Pharmaceutical Inc. Processes of synthesizing dihydropyridophthalazinone derivatives
US8999987 Mar 6, 2013 Apr 7, 2015 Biomarin Pharmaceutical Inc. Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP)
US9018201 Aug 21, 2013 Apr 28, 2015 Biomarin Pharmaceuticial Inc. Dihydropyridophthalazinone inhibitors of poly(ADP-ribose)polymerase (PARP) for use in treatment of diseases associated with a PTEN deficiency

SEE………..http://orgspectroscopyint.blogspot.in/2016/02/talazoparib.html

http://apisynthesisint.blogspot.in/2016/02/talazoparib.html

Talazoparib
Talazoparib.svg
Systematic (IUPAC) name
(8S,9R)-5-Fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de]phthalazin-3-one
Clinical data
Legal status
  • Investigational
Chemical data
Formula C19H14F2N6O
Molar mass 380.35 g/mol
Talazoparib
Talazoparib.svg
Legal status
Legal status
  • Investigational
Identifiers
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C19H14F2N6O
Molar mass 380.35 g/mol
3D model (JSmol)

/////////////BMN 673, talazoparib, phase 3, BMN673, BMN673, BMN-673, LT673, LT 673, LT-673, Poly ADP ribose polymerase 2 inhibitor, Poly ADP ribose polymerase 1 inhibitor, cancer, MDV-3800 , MDV 3800

Cn1c(ncn1)[C@H]2c3c4c(cc(cc4N[C@@H]2c5ccc(cc5)F)F)c(=O)[nH]n3

O=C1NN=C2C3=C1C=C(F)C=C3N[C@H](C4=CC=C(F)C=C4)[C@H]2C5=NC=NN5C

%d bloggers like this: