New Drug Approvals

Home » Phase3 drugs

Category Archives: Phase3 drugs

Advertisements
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 2,529,805 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,366 other followers

Follow New Drug Approvals on WordPress.com

Categories

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,366 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 year tenure till date Dec 2017, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 50 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 19 lakh plus views on New Drug Approvals Blog in 216 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

Verified Services

View Full Profile →

Categories

Flag Counter
Advertisements

Piclidenoson, иклиденозон , بيكليدينوسون , 匹利诺生 ,


img

Thumb

ChemSpider 2D Image | Piclidenoson | C18H19IN6O4

DB05511.png

CF 101, Piclidenoson

ALB-7208

CAS 152918-18-8
Chemical Formula: C18H19IN6O4
Molecular Weight: 510.28

(2S,3S,4R,5R)-3,4-Dihydroxy-5-{6-[(3-iodobenzyl)amino]-9H-purin-9-yl}-N-methyltetrahydro-2-furancarboxamide

N6-(3-Iodobenzyl)adenosine-5′-N-methyluronamide

β-D-Ribofuranuronamide, 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-

1-Deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-D-ribofuranuronamide

10136
1-Deoxy-1-[6-[((3-Iodophenyl)methyl)amino]-9H-purin-9-yl]-N-methyl-β-D-ribofuranuronamide
30679UMI0N
UNII-30679UMI0N
Пиклиденозон [Russian] [INN]
بيكليدينوسون [Arabic] [INN]
匹利诺生 [Chinese] [INN]

CF 101 (known generically as IB-MECA) is an anti-inflammatory drug for rheumatoid arthritis patients. Its novel mechanism of action relies on antagonism of adenoside A3 receptors. CF101 is supplied as an oral drug and has an excellent safety profile. It is also being considered for the treatment of other autoimmune-inflammatory disorders, such as Crohn’s disease, psorasis and dry eye syndrome.

Image result for CF 101, Piclidenoson

  • Originator Can-Fite BioPharma
  • Class Amides; Anti-inflammatories; Antineoplastics; Antipsoriatics; Antirheumatics; Eye disorder therapies; Iodobenzenes; Neuroprotectants; Purine nucleosides; Ribonucleosides; Small molecules
  • Mechanism of Action Adenosine A3 receptor agonists; Immunosuppressants; Interleukin 23 inhibitors; Interleukin-17 inhibitors
  • Phase III Plaque psoriasis; Rheumatoid arthritis
  • Phase II Glaucoma; Ocular hypertension
  • Phase I Uveitis
  • Preclinical Osteoarthritis
  • Discontinued Colorectal cancer; Dry eyes; Solid tumours
  • 05 Feb 2019 Can-Fite BioPharma receives patent allowance for A3 adenosine receptor (A3AR) agonists in USA
  • 05 Feb 2019 Can-Fite BioPharma receives patent allowance for A3 adenosine receptor (A3AR) agonists in North America, South America, Europe and Asia
  • 21 Aug 2018 Phase-III clinical trials in Plaque psoriasis (Monotherapy) in Israel (PO)

Piclidenoson, also known as CF101, is a specific agonist to the A3 adenosine receptor, which inhibits the development of colon carcinoma growth in cell cultures and xenograft murine models. CF101 has been shown to downregulate PKB/Akt and NF-κB protein expression level. CF101 potentiates the cytotoxic effect of 5-FU, thus preventing drug resistance. The myeloprotective effect of CF101 suggests its development as an add-on treatment to 5-FU.

Piclidenoson is known to be a TNF-α synthesis inhibitor and a neuroprotectant. use as an A3 adenosine receptor agonist, useful for treating rheumatoid arthritis (RA), psoriasis, osteoarthritis and glaucoma.

Can-Fite BioPharma , under license from the National Institutes of Health (NIH), is developing a tablet formulation of CF-101, an adenosine A3 receptor-targeting, TNF alpha-suppressing low molecular weight molecule for the potential treatment of psoriasis, RA and liver cancer. The company is also investigating a capsule formulation of apoptosis-inducing namodenoson, the lead from a program of adenosine A3 receptor agonist, for treating liver diseases, including hepatocellular carcinoma (HCC). In January 2019, preclinical data for the treatment of obesity were reported. Also, see WO2019105217 , WO2019105359 and WO2019105082 , published alongside.

PATENT

WO-2019105388

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019105388&tab=FULLTEXT&maxRec=1000

Novel crystalline forms of CF-101 (also known as piclidenoson; designated as Forms CS1, CS2 and CS3), processes for their preparation, compositions comprising them and their use as an A3 adenosine receptor agonist for treating rheumatoid arthritis, psoriasis, osteoarthritis and glaucoma are claimed

CF-101 was developed by Kan-Fete Biomedical Co., Ltd. By the end of 2018, CF-101 is in clinical phase III for the treatment of autoimmune diseases such as rheumatoid arthritis, osteoarthritis and psoriasis, as well as glaucoma. CF-101 is an A3 adenosine receptor (A3AR) agonist, and adenosine plays an important role in limiting inflammation through its receptor. Adenosine can produce anti-inflammatory effects by inhibiting TNF-a, interleukin-1, and interleukin-6. Studies have shown that A3AR agonists are in different experimental autoimmune models, such as rheumatoid arthritis, Crohn’s disease, and silver swarf. In the disease, it acts as an anti-inflammatory agent by improving the inflammatory process.
The chemical name of CF-101 is: 1-deoxy-I-(6-{[(3-iodophenyl)methyl]amino}-9H-fluoren-9-yl)-N-methyl-bD-ribofuranose Carbonamide (hereinafter referred to as “Compound I”) has the following structural formula:
A crystal form is a solid in which a compound molecule is orderedly arranged in a microstructure to form a crystal lattice, and a drug polymorphism phenomenon means that two or more different crystal forms of a drug exist.
Due to different physical and chemical properties, different crystal forms of drugs may have different dissolution and absorption in the body, which may affect the clinical efficacy and safety of the drug to a certain extent; especially for poorly soluble solid drugs, the crystal form will have greater influence. Therefore, the drug crystal form is inevitably an important part of drug research and an important part of drug quality control. Most importantly, the study of crystal forms is beneficial to find a crystal form that is clinically therapeutically meaningful and has stable and physicochemical properties.
There are no reports of CF-101 related crystal forms so far. Amorphous is generally not suitable as a medicinal form, and the molecules in the amorphous material are disorderly arranged, so they are in a thermodynamically unstable state. Amorphous solids are in a high-energy state, and generally have poor stability. During the production and storage process, amorphous drugs are prone to crystal transformation, which leads to the loss of consistency in drug bioavailability, dissolution rate, etc., resulting in changes in the clinical efficacy of the drug. In addition, the amorphous preparation is usually a rapid kinetic solid precipitation process, which easily leads to excessive residual solvents, and its particle properties are difficult to control by the process, making it a challenge in the practical application of the drug.
Therefore, there is a need to develop a crystalline form of CF-101 that provides a usable solid form for drug development. The inventors of the present application have unexpectedly discovered the crystalline forms CS1, CS2 and CS3 of Compound I, which have melting point, solubility, wettability, purification, stability, adhesion, compressibility, fluidity, dissolution in vitro and in vivo, and biological effectiveness. There is an advantage in at least one of the properties and formulation processing properties. Crystalline CS1 has advantages in physical and chemical properties, especially physical and chemical stability, low wettability, good solubility and good mechanical stability. It provides a new and better choice for the development of drugs containing CF-101, which is very important. The meaning.
Figure 7 is a 1 H NMR spectrum of the crystalline form CS3 obtained according to Example 7 of the present invention
The nuclear magnetic data of the crystalline form CS3 obtained in Example 7 was: { 1 H NMR (400 MHz, DMSO) δ 8.82 – 8.93 (m, 1H), 8.53 – 8.67 (m, 1H), 8.45 (s, 1H), 8.31 ( s, 1H), 7.73 (s, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.36 (d, J = 7.7 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 5.98 ( d, J = 7.4 Hz, 1H), 5.74 (s, 1H), 5.56 (s, 1H), 4.64 (d, J = 29.3 Hz, 3H), 4.32 (s, 1H), 4.15 (s, 1H), 2.71 (d, J = 4.6 Hz, 3H), 1.91 (s, 3H).}. Form CS3 has a single peak at 1.91, corresponding to the hydrogen chemical shift of the acetic acid molecule. According to the nuclear magnetic data, the molar ratio of acetic acid molecule to CF-101 is 1:1, and its 1 H NMR is shown in FIG.7

PAPER

Journal of medicinal chemistry (1994), 37(5), 636-46

https://pubs.acs.org/doi/pdf/10.1021/jm00031a014

PAPER

Journal of medicinal chemistry (1998), 41(10), 1708-15

https://pubs.acs.org/doi/abs/10.1021/jm9707737

PAPER

Bioorganic & Medicinal Chemistry (2006), 14(5), 1618-1629

PATENT

WO 2015009008

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015009008

Example 1
Preparation Example 1: Synthesis of Compound (5) (S) -2 – ((R) -1- (2-Chloro-6- (3-iodobenzylamino) -9H- purin- Hydroxyethoxy) -3-hydroxy-N-methylpropanamide)
Scheme 1
Step 1: A solution of (2R, 3S, 4S, 5R) -2- (benzoyloxymethyl) -5- (2,6- dichloro-9H- purin-9- yl) tetrahydrofuran- Preparation of benzoate (7)
Starting material A mixture of (2R, 3R, 4S, 5R) -2-acetoxy-5- (benzoyloxymethyl) tetrahydrofuran-3,4-diyldibenzoate (7.5 g, 14.9 mmol) (3.09 g, 16.4 mmol) was dissolved in acetonitrile (50 mL), and a solution of N, O-bis (trimethylsilyl) acetamid (8.9 mL, 36.4 mmol) was slowly added dropwise for 10-15 minutes Then, the mixture is stirred at 60 DEG C for 30 minutes. After cooling the reaction solution to -30 ° C, TiCl 4 (60 mL, 1 M methylene chloride solution, 59.5 mmol) is added dropwise, and the mixture is stirred at 60-65 ° C for 20 minutes. After confirming the completion of the reaction, methylene chloride (500 mL) and saturated sodium hydrogencarbonate solution (500 mL) are added. The reaction solution was stirred at 0 ° C for 30 minutes, and the organic layer was extracted and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the obtained residue was separated by column chromatography to obtain the intermediate compound (2R, 3S, 4S, 5R) -2- (benzoyloxymethyl) -5- (2,6- dichloro- Yl) tetrahydrofuran-3,4-diyl dibenzoate (9.3 g, 98.8%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 ) δ ppm 4.71-4.74 (dd, J = 12.22, 3.91 Hz, 1H), 4.85-4.93 (m, 2H), 6.12-6.14 (t, J = 4.89 Hz, 1H) (M, 1H), 6.16-6.19 (t, J = 5.38 Hz, 1H), 6.47-6.48 (d, J = 5.38 Hz, 1H), 7.35-7.38 4H), 7.54-7.61 (m, 3H), 7.92-7.93 (d, J = 7.33 Hz, 2H), 8.02-8.06 (m, 4H), 8.28 (s, 1H); 13C NMR (125 MHz; CDCl 3 ) δ 63.50, 71.59, 74.33, 81.56, 87.05, 128.14, 128.59 (3), 128.63 (2), 128.73 (2), 129.10, 129.63 (2), 129.88 (2), 129.92 (2), 131.38, 133.63, 133.87, 133.98, 143.81, 152.36, 152.64, 153.51, 165.13, 165.29, 166.03; mp = 76-80 [deg.] C.
Step 2: (2R, 3S, 4S, 5R) -2- (Benzoyloxymethyl) -5- (2-chloro-6- (3-iodobenzylamino) -9H- purin-9-yl) tetrahydrofuran -3,4-diyl dibenzoate (8)
The intermediate compound (204 mg, 0.32 mmol) and 3-iodobenzylamine hydrochloride (113 mg, 0.41 mmol) prepared in the above step 1 were dissolved in anhydrous ethanol (5 mL) under a nitrogen atmosphere, triethylamine (0.13 mL, 0.96 mmol) is stirred at room temperature for 24 hours. After confirming the completion of the reaction, the reaction solution was concentrated under reduced pressure, and the obtained residue was separated by column chromatography to obtain the intermediate compound (2R, 3S, 4S, 5R) -2- (benzoyloxymethyl) (3-iodobenzylamino) -9H-purin-9-yl) tetrahydrofuran-3,4-diyldibenzoate (230 mg, 86.14%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 ) δ ppm 4.71-4.90 (m, 5H), 6.13-6.17 (m, 2H), 6.33 (.. Br s, 1H), 6.43-6.44 (d, J = 4.89 Hz (M, 4H), 7.31-7.33 (m, 6H), 7.33-7.46 (m, 6H) 7.70-7.71 (t, J = 1.46 Hz, 1H), 7.88 (s, 1H), 7.94-7.96 (m, 2H), 7.99-8.01 (m, 2H), 8.07-8.09 (m, 2H); 13 C NMR (125 MHz; CDCl 3) δ 43.91, 63.79, 71.56, 74.43, 80.97, 86.40, 94.49, 119.07, 127.14, 128.40, 128.52 (3), 128.62 (2), 128.71, 129.32, 129.68 (3), 129.86 (2), 129.93 (2), 130.39 (2), 133.41, 133.69, 133.78, 136.72, 136.80, 138.39, 140.20, 150.05, 155.00, 165.17, 165.31, 166.11; mp = 80-84 [deg.] C.
Step 3: ((3aR, 4R, 6R, 6aR) -6- (2-Chloro-6- (3-iodobenzylamino) -9H- purin-9- yl) -2,2- dimethyltetrahydrofur [3,4-d] [1,3] dioxol-4-yl) methanol (9)
The intermediate compound (20 g, 24.09 mmol) prepared in the above step 2 was dissolved in methanolic ammonia (1 L) and stirred at room temperature for 3 days. The reaction mixture was concentrated under reduced pressure to obtain a triol intermediate. The triol intermediate thus obtained (20 g, 38.63 mmol) was dissolved in anhydrous acetone (400 mL), and 2,2-dimethoxypropane (23.68 mL, 193.15 mmol) and p-toluenesulfonic acid monohydrate (7.34 g, 38.63 mmol) was added dropwise thereto, followed by stirring at room temperature for 12 hours. After confirming the completion of the reaction, saturated sodium hydrogencarbonate solution (400 mL) was added thereto. The reaction mixture was concentrated under reduced pressure. The organic layer was extracted with chloroform (4 x 250 mL), washed with a saturated aqueous sodium chloride solution and dried over anhydrous magnesium sulfate. The reaction mixture was concentrated under reduced pressure, and the obtained residue was then separated by column chromatography to obtain the intermediate compound ((3aR, 4R, 6R, 6aR) -6- (2-Chloro-6- (3-iodobenzylamino) Yl] -2,2-dimethyltetrahydrofuro [3,4-d] [1,3] dioxol-4-yl) methanol (12 g, 89.35%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 )? Ppm 1.36 (s, 3H), 1.62 (s, 3H), 3.77-3.80 (dd, J = 12.71, 1.95 Hz, 1H), 3.95-3.98 12.71, 1.95 Hz, 1H), 4.48-4.49 (d, J = 1.46 Hz, 1H), 4.68 (br. s., 1H, exchangeable with d 2 O, OH), 4.74 (br. s., 2H), (D, J = 5.86, 1.46 Hz, 1H), 5.15-5.17 (t, J = 5.38 Hz, 1H), 5.77-5.78 (d, J = 4.40 Hz, 1H), 6.81 (br s. , 1H, exchangeable with d 2 O, NH), 7.03-7.06 (t, J = 7.82 Hz, 1H), 7.30-7.31 (d, J = 7.33 Hz, 1H), 7.59-7.61 (d, J = 7.82 Hz , & Lt; / RTI & gt; 1H), 7.67 (s, 1H), 7.70 (s, 1H); 13 C NMR (125 MHz; CDCl 3) [delta] 25.26, 27.63, 43.93, 63.37, 81.52, 82.98, 86.12, 93.89, 94.55, 114.18, 120.09, 127.19, 130.44, 136.86 (2), 139.93, 140.01, 148.80, 154.50, 155.14; mp = 82-86 [deg.] C.
Step 4: (2S, 5R) -5- (2-Chloro-6- (3-iodobenzylamino) -9H- purin-9- yl) -3,4- dihydroxy- -2-carboxamide & lt; / RTI & gt; (10)
The intermediate compound (15 g, 26.89 mmol) prepared in step 3 was dissolved in a solution of acetonitrile-water (130 mL, 1: 1) and then (diacetoxy iodo) -benzene (19 g, 59.16 mmol) 2,2,6,6-Tetramethyl 1-piperidinyloxyl (840 mg, 5.37 mmol) was added dropwise, followed by stirring at room temperature for 4 hours. After confirming the completion of the reaction, the reaction solution was concentrated under reduced pressure to obtain an acid intermediate without purification. The obtained intermediate (15 g, 26.23 mmol) was dissolved in anhydrous ethanol (500 mL) under a nitrogen stream, cooled to 0 ° C, thionyl chloride (9.52 mL, 131.17 mmol) was slowly added dropwise and the mixture was stirred at room temperature for 12 hours. After confirming the completion of the reaction, the reaction solution was concentrated under reduced pressure to obtain an ethyl ester intermediate without purification. Methylamine (750 mL, 2 N THF solution) was added dropwise to the resulting ethyl ester intermediate (15.5 g, 25.84 mmol) and the mixture was stirred at room temperature for 12 hours. After confirming the completion of the reaction, the reaction mixture was concentrated under reduced pressure. The obtained residue was purified by column chromatography to obtain the intermediate compound (2S, 5R) -5- (2-Chloro-6- (3- -9-yl) -3,4-dihydroxy-N-methyltetrahydrofuran-2-carboxamide (5 g, 31.80%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; DMSO-d 6 )? Ppm 2.72-2.73 (d, J = 3.91 Hz, 3H), 4.17 (brs, 1H), 4.33 (s, 1H), 4.55-4.56 (D, J = 6.35 Hz, 1H, exchangeable with D 2 O, 2′-OH), 5.71-5.72 d, J = 3.91 Hz, 1H, exchangeable with d 2 O, 3′-OH), 5.92-5.93 (d, J = 7.33 Hz, 1H), 7.11-7.14 (t, J = 7.82 Hz, 1H), 7.35 (D, J = 6.84 Hz, 1H), 7.59-7.61 (d, J = 7.82 Hz, 1H), 7.75 (s, 1H), 8.27-8.28 exchangeable with D 2 O, NH), 8.48 (s, 1 H), 8.98-8.99 (br. t, J = 5.86 Hz, 1H, exchangeable with D 2 O, N 6 H); 13 C NMR (125 MHz; DMSO-d 6) [delta] 26.07, 43.02, 72.79, 73.42, 84.95, 88.10, 95.12, 119.46, 127.31, 130.99, 136.06, 136.51, 141.57, 142.23, 150.00, 153.44, 155.31, 170.14; mp = 207-209 [deg.] C.
Step 5: (S) -2 – ((R) -1- (2-Chloro-6- (3-iodobenzylamino) -9H- purin-9- yl) -2-hydroxyethoxy) -3 – & lt; / RTI & gt; hydroxy-N-methylpropanamide (5)
The intermediate compound (2.0 g, 3.67 mmol) prepared in step 4 was dissolved in water / methanol (210 mL, 1: 2), cooled to 0 ° C and then sodium per iodate (1.57 g, 7.34 mmol) And then stirred at the same temperature for 2 hours. After completion of the reaction was confirmed, sodium borohydride (694 mg, 18.35 mmol) was added and stirred for 1 hour. After confirming the completion of the reaction, the reaction mixture was concentrated under reduced pressure, and the residue was concentrated under reduced pressure using toluene (3 x 50 mL). The residue was separated by column chromatography to obtain the title compound (1.58 g, 79%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; DMSO-d 6 ) δ ppm 2.40 (.. Br s, 3H), 3.53-3.60 (m, 1H), 3.71-3.73 (d, J = 10.27 Hz, 1H), 3.85 (br . s., 1H), 3.95 (br. s., 2H), 4.60 (br. s., 2H), 4.98-5.00 (t, J = 5.38 Hz, 1H, exchangeable with D 2 O, OH), 5.19 -5.20 (t, J = 5.86 Hz, 1H, exchangeable with D 2 O, OH), 5.78-5.80 (t, J = 5.38 Hz, 1H), 7.10-7.13 (t, J = 7.82Hz, 1H), 7.35 -7.36 (d, J = 6.84Hz, 1H), 7.59-7.60 (d, J = 5.86 Hz, 2H, exchangeable with D 2 O, NH), 7.73 (br. s., 1H), 8.30 (s, 1H ), 8.85 (br s, 1H, exchangeable with D 2 O, NH); 13 C NMR (125 MHz; DMSO-d 6) [delta] 25.59, 42.98, 62.02, 62.25, 80.43, 84.90, 95.11, 118.57, 127.27, 130.96, 136.03, 136.45, 140.78, 142.34, 150.69, 153.53, 155.17, 169.31; HRMS (FAB) m / z calcd for C 18 H20 ClIN 6 O 4 [M + Na] + 546.0279, found 569.0162; mp = 226-229 [deg.] C.
Example 2
Preparation Example 2: Synthesis of Compound (11) ((R) -2- (1- (2-Chloro-6- (3-iodobenzylamino) -9H- purin-9-yl) -2- hydroxyethoxy) Propane-1,3-diol)
Scheme 2
The intermediate compound (230 mg, 0.27 mmol) prepared in Step 2 of Example 1 was dissolved in methanolic ammonia (25 mL) and stirred at room temperature for 3 days. The reaction mixture was concentrated under reduced pressure to obtain a triol intermediate. The obtained triol intermediate (248 mg, 0.47 mmol) was treated in the same manner as in Step 5 of Example 1 to obtain the desired compound (109 mg, 75.69%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; DMSO-d 6 )? Ppm 3.13-3.17 (m, 1H), 3.22-3.26 (m, 1H), 3.43-3.47 (m, 2H), 3.54-3.56 (Br s, 2H), 4.41-4.42 (br t, J = 5.38 Hz, 1H, exchangeable with D 2 O, OH), 4.60 , J = 5.38 Hz, 1H, exchangeable with D 2 O, OH), 5.13 (br. s., 1H, exchangeable with D 2 O, OH), 5.80-5.82 (t, J = 4.89 Hz, 1H), 7.11 (D, J = 7.33 Hz, 1H), 7.36-7.37 (d, J = 7.33 Hz, 1H), 7.59-7.60 s, 1 H), 8.82 (br s, 1H, exchangeable with D 2 O, NH); 13 C NMR (125 MHz; DMSO-d 6) [delta] 43.01, 61.12, 61.23, 62.64, 80.90, 84.53, 95.12, 118.56, 127.36, 130.99, 136.04, 136.58, 140.68, 142.44, 150.73, 153.40, 155.12; HRMS (FAB) m / z calcd for C 17 H 19 ClIN 5 O 4 [M + Na] + 519.0170, found 542.0054; mp = 170-172 [deg.] C.
Example 3
Preparation Example 3: Synthesis of Compound (12) ((S) -3-Hydroxy-2 – ((R) -2-hydroxy- 1- (6- (3-iodobenzylamino) -9H- Yl) ethoxy) -N-methylpropanamide & lt; / RTI & gt;
Scheme 3
Step 1: ((3aR, 4R, 6R, 6aR) -6- (6-Chloro-9H- purin-9- yl) -2,2- dimethyltetrahydrofuro [3,4 d] [1,3 ] Dioxol-4-yl) methanol (14)
(Hydroxymethyl) tetrahydrofuran-3,4-diol (4.8 g, 16.74 mmol) and 2,2 & lt; RTI ID = 0.0 & -Dimethoxypropane (10.26 mL, 83.71 mmol) was dissolved in anhydrous acetone (120 mL) under a nitrogen stream, p-toluenesulfonic acid monohydrate (3.18 g, 16.74 mmol) was added dropwise and the mixture was stirred at room temperature for 4 hours . After confirming the completion of the reaction, the reaction is terminated with a saturated sodium hydrogencarbonate solution. The reaction solution was concentrated under reduced pressure, and the organic layer was extracted with chloroform (4 x 20 mL), washed with a saturated aqueous sodium chloride solution and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the obtained residue was separated by column chromatography to obtain the intermediate compound ((3aR, 4R, 6R, 6aR) -6- (6-Chloro-9H-purin-9- 3,4-d] [1,3] dioxol-4-yl) methanol (4.87 g, 89.03%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 )? Ppm 1.38 (s, 3H), 1.65 (s, 3H), 3.80-3.83 (dd, J = 12.22, 1.46 Hz, 1H), 3.95-3.98 (Dd, J = 5.86, 1.46 Hz, 1H), 5.19 (d, J = 8.6 Hz, 1H), 4.53-4.55 5.21 (dd, J = 5.86, 4.40 Hz, 1H), 5.99-6.00 (d, J = 4.89 Hz, 1H), 8.25 (s, 1H), 8.75 (s, 1H); 13 C NMR (125 MHz; CDCl 3 )? 25.22, 27.55, 63.22, 81.51, 83.35, 86.43, 94.02, 114.51, 133.25, 144.73, 150.50, 151.71, 152.31; mp = 146-150 [deg.] C.
Step 2: ((3aR, 4R, 6R, 6aR) -6- (6-Chloro-9H-purin-9- yl) -2,2- dimethyltetrahydrofuro [3,4- d] 3] dioxol-4-yl) methyl benzoate (15)
The intermediate compound (2.8 g, 8.56 mmol) prepared in Step 1 was dissolved in anhydrous methylene chloride (100 mL), and then cooled to 0 ° C. Triethylamine (3.6 mL, 25.70 mmol) and dimethylaminopyridine (21 mg, 0.17 mmol). Benzoyl chloride (1.5 mL, 12.85 mmol) is slowly added dropwise at the same temperature and then stirred at room temperature for 2 hours. After confirming the completion of the reaction, the reaction is terminated with a saturated sodium hydrogencarbonate solution. The reaction solution was concentrated under reduced pressure, the organic layer was extracted with methylene chloride, washed with a saturated aqueous sodium chloride solution and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the obtained residue was separated by column chromatography to obtain the intermediate compound ((3aR, 4R, 6R, 6aR) -6- (6-Chloro-9H-purin-9- 3,4-d] [1,3] dioxol-4-yl) methyl benzoate (3.68 g, 99.72%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 ) δ ppm 1.40 (s, 3H), 1.62 (s, 3H), 4.42-4.46 (dd, J = 11.73, 3.9 Hz, 1H), 4.61-4.64 (m, 2H) (D, J = 7.33 Hz, 2H), 5.51-5.13 (d, J = 2.93 Hz, 1H), 5.53-5.54 7.47-7.50 (t, J = 7.33 Hz, 1 H), 7.79-7.81 (d, J = 7.82 Hz, 2H), 8.21 (s, 1H), 8.64 (s, 1H); 13 C NMR (125 MHz; CDCl 3 ) δ 25.36, 27.15, 63.99, 81.42, 84.07, 85.04, 91.87, 114.92, 128.31 (2), 129.07, 129.39 (2), 132.42, 133.33, 144.10, 150.79, 151.40, 152.02 , 165.80; mp = 50-54 [deg.] C.
Step 3: ((3aR, 4R, 6R, 6aR) -6- (6- (3-Iodobenzylamino) -9H- purin- 9-yl) -2,2 dimethyltetrahydrofuro [3,4 -d] [1,3] dioxol-4-yl) methyl benzoate (16)
The intermediate compound (1.24 g, 2.87 mmol) prepared in the above step 2 was prepared in the same manner as in step 2 of Example 1 to give the intermediate compound ((3aR, 4R, 6R, 6aR) -6- (6- Yl) -2,2-dimethyltetrahydrofuro [3,4-d] [1,3] dioxol-4-yl) methyl benzoate (1.73 g, 96.11 %).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 )? Ppm 1.42 (s, 3H), 1.63 (s, 3H), 4.45-4.59 (m, 1H), 4.59-4.61 (m, 2H), 4.80 (br s. J = 5.38 Hz, 1H), 5.17 (d, J = 3.43 Hz, 1H), 5.58-5.59 , 7.32-7.05 (t, J = 7.33 Hz, 2H), 7.49-7.52 (t, J = = 7.33 Hz, 1 H), 7.58-7.60 (d, J = 7.33 Hz, 1 H), 7.71 (s, (br. s., 1 H); 13 C NMR (125 MHz; CDCl 3 ) δ 25.47, 27.21, 43.81, 64.35, 81.71, 84.21, 85.03, 91.38, 94.55, 114.61, 120.52, 126.85, 128.32 (3), 129.43, 129.62 (2), 130.34, 133.18 , 136.53, 139.16, 140.99, 148.68, 153.34, 154.60, 166.02; mp = 68-72 [deg.] C.
Step 4: ((2R, 3R, 4R, 5R) -3,4-Bis (tert- butyldimethylsilyloxy) -5- (6- (3- iodobenzylamino) -9H-purin- ) Tetrahydrofuran-2-yl) methyl benzoate (17)
The intermediate compound (4.93 g, 7.85 mmol) prepared in the above step 3 was dissolved in 80% acetic acid (250 mL), and the mixture was refluxed at 100 ° C for 12 hours. After completion of the reaction was confirmed, the reaction solution was concentrated under reduced pressure, toluene (4 x 50 mL) was added, and the filtrate was concentrated under reduced pressure to obtain a diol intermediate without purification. The obtained diol intermediate (8.5 g, 14.47 mmol) was dissolved in anhydrous pyridine (250 mL), followed by addition of tetrabutyldimethylsilyl triflate (TBDMSOTf) (13.3 mL, 57.88 mmol) followed by stirring at 50 ° C for 5 hours. After confirming the completion of the reaction, the reaction solution was partitioned into methylene chloride / water. The organic layer was washed with water, saturated sodium hydrogencarbonate solution and saturated saturated sodium bicarbonate solution, and then dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the obtained residue was separated by column chromatography to obtain the intermediate compound ((2R, 3R, 4R, 5R) -3,4-bis (tert-butyldimethylsilyloxy) -9H-purin-9-yl) tetrahydrofuran-2-yl) methylbenzoate (4.47 g, 69.73%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 ) δ ppm -0.17 (s, 3H), 0.01 (s, 3H), 0.1 (s, 3H), 0.12 (s, 3H), 0.83 (s, 9H), 0.93 ( (t, J = 4.40 Hz, 1H), 4.74-4.78 (dd, J = J = 4.40 Hz, 1H), 4.82 (br s, 2H), 5.07-5.09 (t, J = 4.40 Hz, 1H), 5.88-5.89 (d, J = 7.82 Hz, 1H), 7.31-7.33 (d, J = 7.82 Hz, 1H), 7.38-7.41 (t, J = 7.82 Hz, 1H) , 7.52-7.55 (t, J = 7.82 Hz, 1H), 7.59-7.60 (d, J = 7.82 Hz, 1H), 7.72 (s, 1H), 7.84 dd, J = 8.31, 0.97 Hz, 2H), 8.32 (s, 1H); 13 C NMR (125 MHz; CDCl 3)? -0.00, 0.11, 0.26, 0.54, 30.63 (3), 34.61 (2), 49.19, 68.45, 77.09, 79.28, 87.24, 94.71, 99.46, 125.63, 131.74, 133.32 , 134.59, 135.23, 138.10, 141.41, 141.46, 144.66, 145.99, 153.87, 157.99, 159.53, 171.15; mp = 68-70 [deg.] C.
Step 5: ((2R, 3R, 4R, 5R) -3,4-Bis (tert-butyldimethylsilyloxy) -5- (6- (3- iodobenzylamino) -9H-purin- ) Tetrahydrofuran-2-yl) methanol (18)
The intermediate compound (1.28 g, 1.56 mmol) prepared in step 4 was dissolved in anhydrous methanol (100 mL), 25% sodium methoxide / methanol (15 mL) was added, and the mixture was stirred at room temperature for 12 hours. After confirming the completion of the reaction, the reaction solution was concentrated under reduced pressure, and the obtained residue was separated by column chromatography to obtain the intermediate compound ((2R, 3R, 4R, 5R) -3,4- bis (tert- butyldimethylsilyloxy) Yl) tetrahydrofuran-2-yl) methanol (960 mg, 86.48%) was obtained as a pale-yellow amorphous solid.
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 ) δ ppm -0.58 (s, 3H), -0.13 (s, 3H), 0.11-0.13 (d, J = 7.33 Hz, 6H), 0.74 (s, 9H), 0.95 (s, 9H), 3.68-3.71 (d, J = 12.71 Hz, 1H), 3.92-3.95 (d, J = 12.71 Hz, (D, J = 7.33, 4.40 Hz, 1H), 5.75-5.77 (d, J = 7.82 Hz, 1H), 6.39 (br s). J = 7.82 Hz, 1H), 7.30-7.32 (d, J = 7.82 Hz, 1H), 7.59-7.61 (d, J = 7.82 Hz, 1H), 7.70 (s, 1H), 7.76 (br s, 1H), 8.35 (br s, 1H); 13 C NMR (125 MHz; CDCl 3 ) δ 0.00, 1.30, 1.35, 1.38, 31.62 (3), 31.75 (3), 35.61 (2), 49.54, 68.95, 79.91, 79.96, 95.50, 96.96, 100.51, 127.37, 132.70, 136.30, 142.42, 142.57, 146.54, 146.61, 153.78, 158.46, 160.79; mp = 82-86 [deg.] C.
Step 6: (2S, 5R) -3,4-Bis (tert-butyldimethylsilyloxy) -5- (6- (3- iodobenzylamino) -9H- purin- Preparation of tetrahydrofuran-2-carboxamide (19)
The intermediate compound (450 mg, 0.63 mmol) prepared in Step 5 and pyridinium dichromate (5.47 g, 14.54 mmol) were dissolved in DMF (50 mL) under a nitrogen stream, followed by stirring at room temperature for 12 hours. After confirming completion of the reaction, the resulting solid was washed with water to obtain an acid intermediate. The obtained intermediate (450 mg, 0.62 mmol) was dissolved in anhydrous ethanol (10 mL) under a nitrogen stream, cooled to 0 ° C, thionyl chloride (0.25 mL, 3.10 mmol) was slowly added dropwise and the mixture was stirred at room temperature for 5 hours Lt; / RTI & gt; After completion of the reaction was confirmed, the reaction solution was concentrated under reduced pressure, and the residue was partitioned into ethyl acetate / water. The organic layer was washed with water and saturated aqueous sodium chloride solution, and dried over anhydrous magnesium sulfate. After concentration under reduced pressure, an intermediate ethyl ester was obtained. The ethyl ester thus obtained is added with a methylamine / 2N-THF solution under a nitrogen stream, followed by stirring at room temperature for 12 hours. After confirming the completion of the reaction, the reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography to obtain the intermediate compound (2S, 5R) -3,4-bis (tert-butyldimethylsilyloxy) -5- -9H-purin-9-yl) -N-methyltetrahydrofuran-2-carboxamide (400 mg, 85.65%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 ) δ ppm -0.61 (s, 3H), -0.16 (s, 3H), 0.15 (s, 3H), 0.25 (s, 3H), 0.71 (s, 9H), 0.97 (s, 9H), 2.93-2.94 (d, J = 4.40 Hz, 3H), 4.33-4.34 (d, J = 3.42 Hz, (D, J = 7.33 Hz, 1H), 6.42 (br s, 1H), 7.03-7.06 (t, J = 7.82 Hz, 1H), 7.30-7.32 ), 7.59-7.61 (d, J = 7.82 Hz, 1H), 7.70 (s, 1H), 7.75 (s, 1H), 8.36 , 1H); 13 C NMR (125 MHz; CDCl 3 ) δ 0.00, 1.19, 1.21, 1.40, 23.71, 24.00, 31.53 (3), 31.58, 31.78 (2), 35.64, 49.60, 78.09, 81.25, 92.53, 95.48, 100.56, 127.30 , 132.72, 136.34, 142.44, 142.61, 146.64, 146.79, 154.27, 158.70, 160.96, 175.92; mp = 80-84 [deg.] C.
Step 7: (2S, 5R) -3,4-Dihydroxy-5- (6- (3-iodobenzylamino) -9H- purin-9- yl) -N- methyltetrahydrofuran- Manufacture of Radiate (20)
The intermediate compound (65 mg, 0.08 mmol) prepared in Step 6 was dissolved in anhydrous THF under a nitrogen stream, and then tetrabutylammonium fluoride (TBAF) (0.44 mL, 0.43 mmol, (1 M solution THF) Stir at room temperature for 1 hour. After confirming the completion of the reaction, the reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by column chromatography to obtain the intermediate compound (2S, 5R) -3,4-dihydroxy-5- (6- (3-iodobenzylamino) -9H-purin-9-yl) -N-methyltetrahydrofuran-2-carboxamide (52 mg, 95.45%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; DMSO-d 6 ) δ ppm 2.70-2.71 (d, J = 4.40 Hz, 3H), 4.14-4.16 (t, J = 3.91 Hz, 1H), 4.31 (s, 1H), 4.57 (D, J = 4.40 Hz, 1H), 4.67 (d, 1H), 5.96-5.97 (d, J = 7.33 Hz, 1H), 7.09-7.12 (t, J = 7.82 Hz, 1H), 7.35-7.36 (d, J = 7.82 Hz, 1H), 7.56-7.58 1H, J = 7.82 Hz, 1H), 7.72 (s, 1H), 8.29 (s, 1H), 8.42 (s, 1H), 8.53 (br s., 1H), 8.85-8.86 (m, 1H); 13 C NMR (125 MHz; DMSO-d 6 )? 25.81, 42.74, 72.56, 73.49, 85.09, 88.26, 95.06, 120.42, 127.11, 130.95, 135.86, 136.13, 141.17, 143.10, 148.70, 152.94, 154.86, 170.34; mp = 178-182 [deg.] C.
Step 8: (S) -3-Hydroxy-2 – ((R) -2-hydroxy-1- (6- (3-iodobenzylamino) -9H- purin- Preparation of N-methylpropanamide (12)
The intermediate compound (52 mg, 0.10 mmol) prepared in the above Step 7 was treated in the same manner as in Step 5 of Example 1 to obtain the title compound (35 mg, 83.33%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; DMSO-d 6 .) Δ ppm 2.35 (s, 3H), 3.5-3.6 (m, 1H), 3.72-3.74 (d, J = 9.29 Hz, 1H), 3.86 (br s. 2H), 4.99 (br s, 1H, exchangeable with D2O, OH), 5.21 (br. S., 1H), 4.00 (d, J = (d, J = 6.84 Hz, 1H), 7.56 d, J = 6.35 Hz, 2H, exchangeable with D 2 O, NH), 7.71 (s, 1H), 8.22 (s, 1H), 8.30 (s, 1H), 8.37 (br. s., 1H, exchangeable with D2O, NH); 13 C NMR (125 MHz; DMSO-d 6 ) δ 25.53, 42.81, 61.98, 62.26, 80.30, 84.62, 95.09, 119.43, 127.11, 130.91, 135.81, 136.16, 140.19, 143.31, 149.79, 152.98, 154.66, 169.42; HRMS (FAB) m / z calcd for C 1821 IN 6 O 4 [M + Na] +512.0669, found 535.0578; mp = 176-182 [deg.] C.
Example 4
Production Example 4: Synthesis of Compound (21) ((R) -2- (2-hydroxy-1- (6- (3-iodobenzylamino) -9H- purin- 3-diol)
Scheme 4
Step 1: ((3aR, 4R, 6R, 6aR) -6- (6- (3-Iodobenzylamino) -9H-purin-9- yl) -2,2-dimethyltetrahydrofuro [ 4-d] [1,3] dioxol-4-yl) methanol (22)
The intermediate compound (1.73 g, 2.75 mmol) prepared in the step 2 of Example 1 was treated in the same manner as in the step 5 of Example 3 with (3aR, 4R, 6R, 6aR) -6- L, 3-dioxol-4-yl) methanol (1.04 g, 93.69 & lt; RTI ID = 0.0 & gt; %).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CDCl 3 ) δ ppm 1.36 (s, 3H), 1.63 (s, 3H), 3.75-3.80 (t, J = 11.24 Hz, 1H), 3.95-3.97 (d, J = 12.71 Hz , 5.19 (br, s, 2H), 5.10-5.11 (d, J = 4.89 Hz, 1H), 5.19 = 3.91 Hz, 1H), 6.58 (br s, 2H), 7.01-7.04 (t, J = 7.82 Hz, 1H), 7.29-7.30 (d, J = 6.84 Hz, 1H), 7.58-7.59 , J = 7.33 Hz, 1H), 7.69 (br s, 2H), 8.33 (br s, 1H); 13 C NMR (125 MHz; CDCl 3 ) δ 25.24, 27.66, 29.65, 63.36, 81.68, 83.03, 86.12, 94.26, 94.54, 113.93, 121.24, 126.80, 130.32, 136.52, 136.58, 139.71, 140.72, 147.66, 152.73, 154.94 ; mp = 72-76 [deg.] C.
Step 2: (2R, 3S, 4R, 5R) -2- (hydroxymethyl) -5- (6- (3-iodobenzylamino) -9H- purin-9- yl) tetrahydrofuran- – Preparation of diol (23)
The intermediate compound (250 mg, 0.47 mmol) prepared in the above step 1 was dissolved in 80% acetic acid (250 mL), and the mixture was heated under reflux at 100 ° C for 12 hours. After confirming the completion of the reaction, the reaction solution was concentrated under reduced pressure, toluene (4 x 50 mL) was added, and the mixture was concentrated under reduced pressure. The obtained residue was purified by column chromatography to obtain the intermediate (2R, 3S, 4R, Methyl) -5- (6- (3-iodobenzylamino) -9H-purin-9-yl) tetrahydrofuran-3,4-diol (177 mg, 76.95%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; DMSO-d 6 )? Ppm 3.56 (br s, 1H), 3.67-3.69 (d, J = 10.27 Hz, 1H), 3.97 ), 4.61-4.67 (m, 3H), 5.17 (d, J = 2.93 Hz, 1H, exchangeable with D 2 O, OH), 5.35-5.36 (t, J = 5.38 Hz, 1H, exchangeable with D 2 O, OH), 5.43-5.44 (d, J = 5.38 Hz, 1H, exchangeable with d 2O, OH), 5.89-5.90 (d, J = 4.89 Hz, 1H), 7.09-7.11 (t, J = 7.33 Hz, 1H), 7.35-7.36 (d, J = 6.84 Hz, 1H), 7.56-7.58 (d, J = 7.33 Hz, 1H), 7.72 ), 8.45 (br s, 1H, exchangeable with D 2 O, NH); 13 C NMR (125 MHz; DMSO-d 6) [delta] 42.69, 62.08, 71.06, 73.97, 86.32, 88.42, 95.09, 120.24, 127.08, 130.91, 135.81, 136.16, 140.47, 143.22, 149.00, 152.76, 154.79; mp = 174-178 [deg.] C.
Step 3: (R) -2- (2-Hydroxy-1- (6- (3-iodobenzylamino) -9H-purin-9-yl) ethoxy) propane- )
The intermediate compound (77 mg, 0.15 mmol) prepared in the above Step 2 was treated in the same manner as in Step 5 of Example 1 to obtain the desired compound (62 mg, 80.51%).
The analytical data of the obtained compound are as follows.
1 H NMR (500 MHz; CD 3 OD)? Ppm 3.42 – 3.44 (d, J = 5.38 Hz, 2H), 3.54-3.58 (m, 1H), 3.65-3.68 ), 3.75-3.78 (dd, J = 11.73,4.44 Hz, 1H), 4.01-4.02 (d, J = 5.38 Hz, 2H), 4.53 (s, 2H), 6.04-6.06 J = 7.82 Hz, 1H), 7.76 (s, 1H), 7.07-7.10 (t, J = 7.82 Hz, 1H), 7.38-7.40 (d, J = 7.82 Hz, 1H), 7.59-7.60 ), 8.27 (s, 1 H), 8.29 (s, 1 H); 13 C NMR (125 MHz; CD 3 OD)? 42.88, 60.80, 61.25, 62.76, 80.26, 84.02, 93.52, 119.00, 126.44, 129.93, 135.90, 136.10, 139.65, 141.72, 148.97, 152.52, 154.53; HRMS (FAB) m / z calcd for C 17 H 20 IN 5 O 4 [M + H] +485.0560, found 486.0625; mp = 72-76 [deg.] C.

PATENT

WO 2008111082

REFERENCES

1: Avni I, Garzozi HJ, Barequet IS, Segev F, Varssano D, Sartani G, Chetrit N, Bakshi E, Zadok D, Tomkins O, Litvin G, Jacobson KA, Fishman S, Harpaz Z, Farbstein M, Yehuda SB, Silverman MH, Kerns WD, Bristol DR, Cohn I, Fishman P. Treatment of Dry Eye Syndrome with Orally Administered CF101 Data from a Phase 2 Clinical Trial. Ophthalmology. 2010 Mar 19. [Epub ahead of print] PubMed PMID: 20304499.

2: Bar-Yehuda S, Rath-Wolfson L, Del Valle L, Ochaion A, Cohen S, Patoka R, Zozulya G, Barer F, Atar E, Piña-Oviedo S, Perez-Liz G, Castel D, Fishman P. Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment. Arthritis Rheum. 2009 Oct;60(10):3061-71. PubMed PMID: 19790055.

3: Borea PA, Gessi S, Bar-Yehuda S, Fishman P. A3 adenosine receptor: pharmacology and role in disease. Handb Exp Pharmacol. 2009;(193):297-327. Review. PubMed PMID: 19639286.

4: Moral MA, Tomillero A. Gateways to clinical trials. Methods Find Exp Clin Pharmacol. 2008 Mar;30(2):149-71. PubMed PMID: 18560631.

5: Silverman MH, Strand V, Markovits D, Nahir M, Reitblat T, Molad Y, Rosner I, Rozenbaum M, Mader R, Adawi M, Caspi D, Tishler M, Langevitz P, Rubinow A, Friedman J, Green L, Tanay A, Ochaion A, Cohen S, Kerns WD, Cohn I, Fishman-Furman S, Farbstein M, Yehuda SB, Fishman P. Clinical evidence for utilization of the A3 adenosine receptor as a target to treat rheumatoid arthritis: data from a phase II clinical trial. J Rheumatol. 2008 Jan;35(1):41-8. Epub 2007 Nov 15. PubMed PMID: 18050382

/////////////CF 101, Piclidenoson, CF101, CF-101, CF 101, ALB-7208,  ALB 7208, ALB7208,  IB MECA, Phase III,  Plaque psoriasis, Rheumatoid arthritis, UNII-30679UMI0N, Пиклиденозон بيكليدينوسون 匹利诺生 , Can-Fite BioPharma

CNC(=O)[C@H]1O[C@H]([C@H](O)[C@@H]1O)N1C=NC2=C(NCC3=CC(I)=CC=C3)N=CN=C12

Advertisements

VX-445, Elexacaftor, エレクサカフトル


Elexacaftor.png

str1

VX-445, Elexacaftor, エレクサカフトル

597.658 g/mol, C26H34F3N7O4S

3-Pyridinecarboxamide, N-((1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl)-2-((4S)-2,2,4-trimethyl-1-pyrrolidinyl)-

N-[(1,3-Dimethyl-1H-pyrazol-4-yl)sulfonyl]-6-[3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl]-2-[(4S)-2,2,4-trimethyl-1-pyrrolidinyl]-3-pyridinecarboxamide

3-Pyridinecarboxamide, N-((1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl)-2-((4S)-2,2,4-trimethyl-1-pyrrolidinyl)-

UNII-RRN67GMB0V

RRN67GMB0V

VX-445

WHO 11180

Cas 2216712-66-0

WHO 11180

Treatment of cystic fibrosis, CFTR modulator

Elexacaftor is under investigation in clinical trial NCT03525548 (A Study of VX-445 Combination Therapy in CF Subjects Homozygous for F508del (F/F)).

Cystic fibrosis transmembrane conductance regulator (CFTR) corrector designed to restore Phe508del CFTR protein function in patients with cystic fibrosis when administered with tezacaftor and ivacaftor.

VX-445 (elexacaftor), tezacaftor, and ivacaftor triple-drug combo

Vertex Pharmaceuticals (NASDAQ: VRTX) already claims a virtual monopoly in treating the underlying cause of cystic fibrosis (CF). The biotech’s current three CF drugs should generate combined sales of close to $3.5 billion this year. Another blockbuster is likely to join those three drugs on the market in 2020 — Vertex’s triple-drug CF combo featuring VX-445 (elexacaftor), tezacaftor, and ivacaftor.

EvaluatePharma projects that this triple-drug combo will rake in close to $4.3 billion by 2024. The market researcher pegs the net present value of the drug at nearly $20 billion, making it the most valuable pipeline asset in the biopharmaceutical industry right now.

PATENT

WO 2018107100

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018107100&tab=PCTDESCRIPTION&queryString=novozymes&recNum=152&maxRec=27502

Also disclosed herein is Compound 1:

[0013] N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide.

Synthesis of Compound 1

[00256] Part A: Synthesis of (4S)-2,2,4-trimethylpyrrolidine hydrochloride

[00257] Step 1: methyl-2,4-dimethyl-4-nitro-pentanoate

[00258] Tetrahydrofuran (THF, 4.5 L) was added to a 20 L glass reactor and stirred under N2 at room temperature.2-Nitropropane (1.5 kg, 16.83 mol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (1.282 kg, 8.42 mol) were then charged to the reactor, and the jacket temperature was increased to 50 °C. Once the reactor contents were close to 50 °C, methyl methacrylate (1.854 kg, 18.52 mol) was added slowly over 100 minutes. The reaction temperature was maintained at or close to 50 °C for 21 hours. The reaction mixture was concentrated in vacuo then transferred back to the reactor and diluted with methyl tert-butyl ether (MTBE) (14 L).2 M HCl (7.5 L) was added, and this mixture was stirred for 5 minutes then allowed to settle. Two clear layers were visible– a lower yellow aqueous phase and an upper green organic phase. The aqueous layer was removed, and the organic layer was stirred again with 2 M HCl (3 L). After separation, the HCl washes were recombined and stirred with MTBE (3 L) for 5 minutes. The aqueous layer was removed, and all of the organic layers were combined in the reactor and stirred with water (3 L) for 5 minutes. After separation, the organic layers were concentrated in vacuo to afford a cloudy green oil. Crude product was treated with MgSO4 and filtered to afford methyl-2,4-dimethyl-4-nitro-pentanoate as a clear green oil (3.16 kg, 99% yield).

[00259] 1H NMR (400 MHz, Chloroform-d) δ 3.68 (s, 3H), 2.56– 2.35 (m, 2H), 2.11 – 2.00 (m, 1H), 1.57 (s, 3H), 1.55 (s, 3H), 1.19 (d, J = 6.8 Hz, 3H).

[00260] Step 2: Synthesis of methyl (2S)-2,4-dimethyl-4-nitro-pentanoate

[00261] A reactor was charged with purified water (2090 L; 10 vol) and then potassium phosphate monobasic (27 kg, 198.4 moles; 13 g/L for water charge). The pH of the reactor contents was adjusted to pH 6.5 (± 0.2) with 20% (w/v) potassium carbonate solution. The reactor was charged with racemic methyl-2,4-dimethyl-4-nitro-pentanoate (209 kg; 1104.6 moles), and Palatase 20000L lipase (13 L, 15.8 kg; 0.06 vol).

[00262] The reaction mixture was adjusted to 32 ± 2 °C and stirred for 15-21 hours, and pH 6.5 was maintained using a pH stat with the automatic addition of 20% potassium carbonate solution. When the racemic starting material was converted to >98% ee of the S-enantiomer, as determined by chiral GC, external heating was switched off. The reactor was then charged with MTBE (35 L; 5 vol), and the aqueous layer was extracted with MTBE (3 times, 400-1000L). The combined organic extracts were washed with aqueous Na2CO3 (4 times, 522 L, 18 % w/w 2.5 vol), water (523 L; 2.5 vol), and 10% aqueous NaCl (314 L, 1.5 vol). The organic layer was concentrated in vacuo to afford methyl (2S)-2,4-dimethyl-4-nitro-pentanoate as a mobile yellow oil (>98% ee, 94.4 kg; 45 % yield).

[00263] Step 3: Synthesis of (3S)-3,5,5-trimethylpyrrolidin-2-one

[00264] A 20 L reactor was purged with N2. The vessel was charged sequentially with DI water-rinsed, damp Raney® Ni (2800 grade, 250 g), methyl (2S)-2,4-dimethyl-4-nitro-pentanoate (1741g, 9.2 mol), and ethanol (13.9 L, 8 vol). The reaction was stirred at 900 rpm, and the reactor was flushed with H2 and maintained at ~2.5 bar. The reaction mixture was then warmed to 60 °C for 5 hours. The reaction mixture was cooled and filtered to remove Raney nickel, and the solid cake was rinsed with ethanol (3.5 L, 2 vol). The ethanolic solution of the product was combined with a second equal sized batch and concentrated in vacuo to reduce to a minimum volume of ethanol (~1.5 volumes). Heptane (2.5 L) was added, and the suspension was concentrated again to ~1.5 volumes. This was repeated 3 times; the resulting suspension was cooled to 0-5 °C, filtered under suction, and washed with heptane (2.5 L). The product was dried under vacuum for 20 minutes then transferred to drying trays and dried in a vacuum oven at 40 °C overnight to afford (3S)-3,5,5-trimethylpyrrolidin-2-one as a white crystalline solid (2.042 kg, 16.1 mol, 87 %).1H NMR (400 MHz, Chloroform-d) δ 6.39 (s, 1H), 2.62 (ddq, J = 9.9, 8.6, 7.1 Hz, 1H), 2.17 (dd, J = 12.4, 8.6 Hz, 1H), 1.56 (dd, J = 12.5, 9.9 Hz, 1H), 1.31 (s, 3H), 1.25 (s, 3H), 1.20 (d, J = 7.1 Hz, 3H).

[00265] Step 4: Synthesis of (4S)-2,2,4-trimethylpyrrolidine hydrochloride

[00266] A glass lined 120 L reactor was charged with lithium aluminum hydride pellets (2.5 kg, 66 mol) and dry THF (60 L) and warmed to 30 °C. The resulting suspension was charged with (S)-3,5,5-trimethylpyrrolidin-2-one (7.0 kg, 54 mol) in THF (25 L) over 2 hours while maintaining the reaction temperature at 30 to 40 °C. After complete addition, the reaction temperature was increased to 60 – 63 °C and maintained overnight. The reaction mixture was cooled to 22 °C, then cautiously quenched with the addition of ethyl acetate (EtOAc) (1.0 L, 10 moles), followed by a mixture of THF (3.4 L) and water (2.5 kg, 2.0 eq), and then a mixture of water (1.75 kg) with 50 % aqueous sodium hydroxide (750 g, 2 equiv water with 1.4 equiv sodium hydroxide relative to aluminum), followed by 7.5 L water. After the addition was complete, the reaction mixture was cooled to room temperature, and the solid was removed by filtration and washed with THF (3 x 25 L). The filtrate and washings were combined and treated with 5.0 L (58 moles) of aqueous 37% HCl (1.05 equiv.) while maintaining the temperature below 30°C. The resultant solution was concentrated by

vacuum distillation to a slurry. Isopropanol (8 L) was added and the solution was concentrated to near dryness by vacuum distillation. Isopropanol (4 L) was added, and the product was slurried by warming to about 50 °C. MTBE (6 L) was added, and the slurry was cooled to 2-5 °C. The product was collected by filtration and rinsed with 12 L MTBE and dried in a vacuum oven (55 °C/300 torr/N2 bleed) to afford (4S)-2,2,4-trimethylpyrrolidine•HCl as a white, crystalline solid (6.21 kg, 75% yield). 1H NMR (400 MHz, DMSO-d6) δ 9.34 (br d, 2H), 3.33 (dd, J = 11.4, 8.4 Hz, 1H), 2.75 (dd, J = 11.4, 8.6 Hz, 1H), 2.50– 2.39 (m, 1H), 1.97 (dd, J = 12.7, 7.7 Hz, 1H), 1.42 (s, 3H), 1.38 (dd, J = 12.8, 10.1 Hz, 1H), 1.31 (s, 3H), 1.05 (d, J = 6.6 Hz, 3H).

[00267] Part B: Preparation of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide (Compound 1)

[00268] Preparation of starting materials:

[00269] 3,3,3-Trifluoro-2,2-dimethyl-propan-1-ol

[00270] A 1 L 3 neck round bottom flask was fitted with a mechanical stirrer, a cooling bath, an addition funnel, and a J-Kem temperature probe. The vessel was charged with lithium aluminum hydride (LAH) pellets (6.3 g, 0.1665 mol) under a nitrogen atmosphere. The vessel was then charged with tetrahydrofuran (200 mL) under a nitrogen atmosphere. The mixture was allowed to stir at room temperature for 0.5 hours to allow the pellets to dissolve. The cooling bath was then charged with crushed ice in water and the reaction temperature was lowered to 0 oC. The addition funnel was charged with a solution of 3,3,3-trifluoro-2,2-dimethyl-propanoic acid (20 g, 0.1281 mol) in tetrahydrofuran (60 mL) and the clear pale yellow solution was added drop wise over 1 hour. After the addition was complete the mixture was allowed to slowly warm to room temperature and stirring was continued for 24 hours. The suspension was cooled to 0 oC with a crushed ice-water in the cooling bath and then quenched by the very slow and drop wise addition of water (6.3 ml), followed by sodium hydroxide solution (15 weight %; 6.3 mL) and then finally with water (18.9 mL). The reaction temperature of the resulting white suspension was recorded at 5 oC. The suspension was stirred at ~5 oC for 30 minutes and then filtered through a 20 mm layer of Celite. The filter cake was washed with tetrahydrofuran (2 x 100 mL). The filtrate was dried over sodium sulfate (150 g) and then filtered. The filtrate was concentrated under reduced pressure to provide a clear colorless oil (15 g) containing a mixture of the product 3,3,3-trifluoro-2,2-dimethyl-propan-1-ol in THF (73 % weight of product ~10.95g, and 27 wt.% THF as determined by 1H-NMR). The distillate from the rotary evaporation was distilled at atmospheric pressure using a 30 cm Vigreux column to provide 8.75 g of a residue containing 60 % weight of THF and 40 % weight of product (~3.5 g). The estimated total amount of product is 14.45 g (79% yield).1H NMR (400 MHz, DMSO-d6) δ 4.99 (t, J = 5.7 Hz, 1H), 3.38 (dd, J = 5.8, 0.9 Hz, 2H), 1.04 (d, J = 0.9 Hz, 6H).

[00271] tert-Butyl 3-oxo-2,3-dihydro-1H-pyrazole-1-carboxylate

[00272] A 50L Syrris controlled reactor was started and jacket set to 20 °C, stirring at 150 rpm, reflux condenser (10 °C) and nitrogen purge. MeOH (2.860 L) and methyl (E)-3-methoxyprop-2-enoate (2.643 kg, 22.76 mol) were added and the reactor was capped. The reaction was heated to an internal temperature of 40 °C and the system was set to hold jacket temp at 40 °C. Hydrazine hydrate (1300 g of 55 %w/w, 22.31 mol) was added portion wise via addition funnel over 30 min. The reaction was heated to 60 ^C for 1 h. The reaction mixture was cooled to 20 ^C and triethyamine (2.483 kg, 3.420 L, 24.54 mol) was added portion wise (exothermic), maintaining reaction temp <30 °C.

A solution of Boc anhydride (di-tert-butyl dicarbonate) (4.967 kg, 5.228 L, 22.76 mol) in MeOH (2.860 L) was added portion wise maintaining temperature <45 °C. The reaction mixture was stirred at 20 ^C for 16 h. The reaction solution was partially concentrated to remove MeOH, resulting in a clear light amber oil. The resulting oil was transferred to the 50L reactor, stirred and added water (7.150 L) and heptane (7.150 L). The additions caused a small amount of the product to precipitate. The aqueous layer was drained into a clean container and the interface and heptane layer were filtered to separate the solid (product). The aqueous layer was transferred back to the reactor, and the collected solid was placed back into the reactor and mixed with the aqueous layer. A dropping funnel was added to the reactor and loaded with acetic acid (1.474 kg, 1.396 L, 24.54 mol), then began dropwise addition of acid. The jacket was set to 0 °C to absorb the quench exotherm. After addition (pH=5), the reaction mixture was stirred for 1 h. The solid was collected by filtration and washed with water (7.150 L), and washed a second time with water (3.575 L) and pulled dry. The crystalline solid was scooped out of the filter into a 20L rotovap bulb and heptane (7.150 L) was added. The mixture was slurried at 45 °C for 30 mins, and then distilled off 1-2 volumes of solvent. The slurry in the rotovap flask was filtered and the solids washed with heptane (3.575 L) and pulled dry. The solid was further dried in vacuo (50 °C , 15 mbar) to give tert-butyl 5-oxo-1H-pyrazole-2-carboxylate (2921 g, 71%) as coarse, crystalline solid.1H NMR (400 MHz, DMSO-d6) δ 10.95 (s, 1H), 7.98 (d, J = 2.9 Hz, 1H), 5.90 (d, J = 2.9 Hz, 1H), 1.54 (s, 9H).

[00273] Step A: tert-Butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate

[00274] A mixture of 3,3,3-trifluoro-2,2-dimethyl-propan-1-ol (10 g, 70.36 mmol) and tert-butyl 3-hydroxypyrazole-1-carboxylate (12.96 g, 70.36 mmol) in toluene (130 mL) was treated with triphenyl phosphine (20.30 g, 77.40 mmol) followed by isopropyl N-isopropoxycarbonyliminocarbamate (14.99 mL, 77.40 mmol) and the mixture was stirred at 110 °C for 16 hours. The yellow solution was concentrated under reduced

pressure, diluted with heptane (100mL) and the precipitated triphenylphosphine oxide was removed by filtration and washed with heptane/toluene 4:1 (100mL). The yellow filtrate was evaporated and the residue purified by silica gel chromatography with a linear gradient of ethyl acetate in hexane (0-40%) to give tert-butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate (12.3 g, 57%) as an off white solid. ESI-MS m/z calc.308.13477, found 309.0 (M+1) +; Retention time: 1.84 minutes.1H NMR (400 MHz, DMSO-d6) δ 8.10 (d, J = 3.0 Hz, 1H), 6.15 (d, J = 3.0 Hz, 1H), 4.18 (s, 2H), 1.55 (s, 9H), 1.21 (s, 6H).

[00275] Step B: 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole

[00276] tert-Butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate (13.5 g, 43.79 mmol) was treated with 4 M hydrogen chloride in dioxane (54.75 mL, 219.0 mmol) and the mixture was stirred at 45 °C for 1 hour. The reaction mixture was evaporated to dryness and the residue was extracted with 1 M aqueous NaOH (100ml) and methyl tert-butyl ether (100ml), washed with brine (50ml) and extracted with methyl tert-butyl ether (50ml). The combined organic phases were dried, filtered and evaporated to give 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole (9.0 g, 96%) as an off white waxy solid. ESI-MS m/z calc.208.08235, found 209.0 (M+1) +;

Retention time: 1.22 minutes.1H NMR (400 MHz, DMSO-d6) δ 11.91 (s, 1H), 7.52 (d, J = 2.2 Hz, 1H), 5.69 (t, J = 2.3 Hz, 1H), 4.06 (s, 2H), 1.19 (s, 6H).

[00277] Step C: tert-Butyl 2,6-dichloropyridine-3-carboxylate

[00278] A solution of 2,6-dichloropyridine-3-carboxylic acid (10 g, 52.08 mmol) in THF (210 mL) was treated successively with di-tert-butyl dicarbonate (17 g, 77.89 mmol) and 4-(dimethylamino)pyridine (3.2 g, 26.19 mmol) and left to stir overnight at room temperature. At this point, HCl 1N (400 mL) was added and the mixture was stirred vigorously for about 10 minutes. The product was extracted with ethyl acetate (2x300mL) and the combined organics layers were washed with water (300 mL) and brine (150 mL) and dried over sodium sulfate and concentrated under reduced pressure to give 12.94 g (96% yield) of tert-butyl 2,6-dichloropyridine-3-carboxylate as a colorless oil. ESI-MS m/z calc.247.01668, found 248.1 (M+1) +; Retention time: 2.27 minutes.1H NMR (300 MHz, CDCl3) ppm 1.60 (s, 9H), 7.30 (d, J=7.9 Hz, 1H), 8.05 (d, J=8.2 Hz, 1H).

[00279] Step D: tert-Butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylate

[00280] To a solution of tert-butyl 2,6-dichloropyridine-3-carboxylate (10.4 g, 41.9 mmol) and 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole (9.0 g, 41.93 mmol) in DMF (110 mL) were added potassium carbonate (7.53 g, 54.5 mmol) and 1,4-diazabicyclo[2.2.2]octane (706 mg, 6.29 mmol) and he mixture was stirred at room temperature for 16 hours. The cream suspension was cooled in a cold water bath and cold water (130 mL) was slowly added. The thick suspension was stirred at room temperature for 1 hour, filtered and washed with plenty of water to give tert-butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylate (17.6 g, 99%) as an off white solid. ESI-MS m/z calc.419.12234, found 420.0 (M+1) +; Retention time: 2.36 minutes.1H NMR (400 MHz, DMSO-d6) δ 8.44 (d, J = 2.9 Hz, 1H), 8.31 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 6.26 (d, J = 2.9 Hz, 1H), 4.27 (s, 2H), 1.57 (s, 9H), 1.24 (s, 6H).

[00281] Step E: 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid

[00282] tert-butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylate (17.6 g, 40.25 mmol) was suspended in isopropanol (85 mL) treated with hydrochloric acid (34 mL of 6 M, 201 mmol) and heated to reflux for 3 hours (went almost complete into solution at reflux and started to precipitate again). The suspension was diluted with water (51 mL) at reflux and left to cool to room

temperature under stirring for 2.5 h. The solid was collected by filtration, washed with isopropanol/water 1:1 (50mL), plenty of water and dried in a drying cabinet under vacuum at 45-50 °C with a nitrogen bleed overnight to give 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (13.7 g, 91%) as an off white solid. ESI-MS m/z calc.363.05975, found 364.0 (M+1) +; Retention time: 1.79 minutes. 1H NMR (400 MHz, DMSO-d6) δ 13.61 (s, 1H), 8.44 (d, J = 2.9 Hz, 1H), 8.39 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 6.25 (d, J = 2.9 Hz, 1H), 4.28 (s, 2H), 1.24 (s, 6H).

[00283] Step F: 2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxamide

[00284] 2-Chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (100 mg, 0.2667 mmol) and CDI (512 mg, 3.158 mmol) were combined in THF (582.0 µL) and the mixture was stirred at room temperature. Meanwhile, 1,3-dimethylpyrazole-4-sulfonyl chloride (62 mg, 0.3185 mmol) was combined with ammonia (in methanol) in a separate vial, instantly forming a white solid. After stirring for an additional 20 min, the volatiles were removed by evaporation, and 1 mL of dichloromethane was added to the solid residue, and was also evaporated. DBU (100 µL, 0.6687 mmol) was then added and the mixture stirred at 60 °C for 5 minutes, followed by addition of THF (1 mL) which was subsequently evaporated. The contents of the vial containing the CDI activated carboxylic acid in THF were then added to the vial containing the newly formed sulfonamide and DBU, and the reaction mixture was stirred for 4 hours at room temperature. The reaction mixture was diluted with 10 mL of ethyl acetate, and washed with 10 mL solution of citric acid (1 M). The aqueous layer was extracted with ethyl acetate (2x 10 mL) and the combined organics were washed with brine, dried over sodium sulfate, and concentrated to give the product as white solid (137 mg, 99%) that was used in the next step without further purification. ESI-MS m/z calc.520.09076, found 521.1 (M+1) +; Retention time: 0.68 minutes.

[00285] Step G: N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide

[00286] 2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxamide (137 mg, 0.2630 mmol), (4S)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) (118 mg, 0.7884 mmol) , and potassium carbonate (219 mg, 1.585 mmol) were combined in DMSO (685.0 µL) and the mixture was heated at 130 ^C for 16 hours. The reaction was cooled to room temperature, and 1 mL of water was added. After stirring for 15 minutes, the contents of the vial were allowed to settle, and the liquid portion was removed via pipet and the remaining solids were dissolved with 20 mL of ethyl acetate and were washed with 1 M citric acid (15 mL). The layers were separated and the aqueous layer was extracted two additional times with 15 mL of ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromatography eluting with a gradient of methanol in dichloromethane (0-10%) to give N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide (72 mg, 41%) as a white solid. ESI-MS m/z calc.597.2345, found 598.3 (M+1) +; Retention time: 2.1 minutes.1H NMR (400 MHz, DMSO) δ 12.36 (s, 1H), 8.37 (s, 1H), 8.22 (d, J = 2.8 Hz, 1H), 7.74 (d, J = 8.2 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.17 (d, J = 2.8 Hz, 1H), 4.23 (s, 2H), 3.81 (s, 3H), 2.56 (d, J = 10.4 Hz, 1H), 2.41 (t, J = 8.7 Hz, 1H), 2.32 (s, 3H), 2.18 (dd, J = 12.4, 6.1 Hz, 1H), 1.87 (dd, J = 11.7, 5.5 Hz, 1H), 1.55 (d, J = 11.2 Hz, 6H), 1.42 (t, J = 12.0 Hz, 1H), 1.23 (s, 6H), 0.81 (d, J = 6.2 Hz, 3H).

[00287] Alternative Steps F and G:

[00288] Alternative Step F: 2-chloro-N-((1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl)nicotinamide

[00289]

[00291] To a suspension of 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (20.0 g, 53.89 mmol) in THF (78.40 mL) was added solid carbonyldiimidazole (approximately 10.49 g, 64.67 mmol) portion wise and the resulting solution was stirred at room temperature (slight exotherm from 18-21 °C was observed). After 1 h, solid 1,3-dimethylpyrazole-4-sulfonamide

(approximately 11.33 g, 64.67 mmol) was added, followed by DBU (approximately 9.845 g, 9.671 mL, 64.67 mmol) in two equal portions over 1 min (exotherm from 19 to 35 °C). The reaction mixture was stirred at room temperature for 16 h. The reaction mixture was diluted with ethyl acetate (118 mL) and then HCl (approximately 107.8 mL of 2 M, 215.6 mmol). The phases were separated and the aqueous phase was extracted

with ethyl aceate (78 mL). The combined organics were washed with water (39.2 mL), then brine (40 mL), dried over sodium sulfate and concentrated. The resulting foam was crystallized from a 1:1 isopropanol:heptane mixture (80 mL) to afford 2-chloro-N-((1,3-dimethyl-1H-pyrazol-4-yl)sulfonyl)-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl)nicotinamide (26.1 g, 93%) as a white solid. ESI-MS m/z calc.520.0, found 520.9 (M+1) +; Retention time: 1.83 minutes.

[00292] Alternative Step G: N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide

[00294] 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxamide (20.0 g, 38.39 mmol), (4S)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) (approximately 14.36 g, 95.98 mmol), and K2CO3 (approximately 26.54 g, 192.0 mmol) were combined in DMSO (80.00 mL) and 1,2-diethoxyethane (20.00 mL) in a 500-mL flask with reflux condenser. The reaction mixture was heated at 120 °C for 16 h then cooled to room temperature. The reaction was diluted with DCM (200.0 mL) and HCl (approximately 172.8 mL of 2 M, 345.5 mmol); aqueous pH ~1. The phases were separated, and the aqueous phase was extracted with DCM (100.0 mL). The organic phases were combined, washed with water (100.0 mL) (3 x), and dried (Na2SO4) to afford an amber solution. The solution was filtered through a DCM-packed silica gel bed (80 g; 4 g/g) and washed with 20% EtOAc/DCM (5 x 200 mL). The combined filtrate/washes were concentrated to afford 22.2 g of an off-white powder. The powder was slurried in MTBE (140 mL) for 30 min. The solid was collected by filtration (paper/sintered-glass) to afford 24 g after air-drying. The solid was transferred to a drying dish and vacuum-dried (40 °C/200 torr/N2 bleed) overnight to afford 20.70 g (90%) of a white powder. ESI-MS m/z calc.

597.2345, found 598.0 (M+1)+; Retention time: 2.18 minutes.

[00295] 1H NMR (400 MHz, Chloroform-d) δ 13.85 (s, 1H), 8.30 (d, J = 8.6 Hz, 1H), 8.23 (d, J = 2.8 Hz, 1H), 8.08 (s, 1H), 7.55 (d, J = 8.5 Hz, 1H), 5.98 (d, J = 2.8 Hz, 1H), 4.24 (s, 2H), 3.86 (s, 3H), 3.44 (dd, J = 10.3, 8.4 Hz, 1H), 3.09 (dd, J = 10.3, 7.8 Hz, 1H), 2.67– 2.52 (m, 1H), 2.47 (s, 3H), 2.12 (dd, J = 12.3, 7.8 Hz, 1H), 1.70 (dd, J = 12.4, 9.6 Hz, 1H), 1.37 (s, 3H), 1.33 (s, 3H), 1.27 (s, 6H), 1.20 (d, 3H).

[00296] Alternative Synthesis of 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole

Step 1: Preparation of 3,3,3-trifluoro-2,2-dimethylpropan-1-ol

A reactor was loaded with toluene (300 mL) and 3,3,3-trifluoro-2,2-dimethylpropanoic acid (30 g, 192.2 mmol), capped, purged under nitrogen. The reaction was set to control the internal temperature to 40 °C. A solution of Vitride (65% in toluene. approximately 119.6 g of 65 %w/w, 115.4 mL of 65 %w/w, 384.4 mmol) was set up for addition via syringe, and addition was begun at 40 °C, with the target addition temperature between 40 and 50 °C. The reaction was stirred at 40 °C for 90 min. The reaction was cooled to 10 °C then the remaining Vitride was quenched with slow addition of water (6 mL). A solution of 15 % aq NaOH (30 mL) was added in portions, and solids precipitated half way through the base addition. Water (60.00 mL) was added. The mixture was warmed to 30 °C and held for at least 15 mins. The mixture was then cooled to 20 °C. The

aqueous layer was removed. The organic layer was washed with water (60 mL x 3), and then washed with brine (60 mL). The washed organic layer was dried under Na2SO4, followed with MgSO4. The mix was filtered through Celite, and the cake washed with toluene (60.00 mL) and pulled dry. The product 3,3,3-trifluoro-2,2-dimethyl-propan-1-ol (22.5 g, 82%) was obtained as clear colorless solution.

Step 2: Preparation of 1-(tert-butyl) 4-ethyl 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazole-1,4-dicarboxylate

A reactor was charged with 3,3,3-trifluoro-2,2-dimethylpropan-1-ol (17.48 g, 123.0 mmol) solution in toluene (250g), 1-(tert-butyl) 4-ethyl 3-hydroxy-1H-pyrazole-1,4-dicarboxylate (30.0 g, 117.1 mmol), and PPh3 (35.33 g, 134.7 mmol). The reaction was heated to 40 °C. DIAD (26.09 mL, 134.7 mmol) was weighed and placed into a syringe and added over 10 minutes while maintaining an internal temperature ranging between 40 and 50 °C. The reaction was then heated to 100 °C over 30 minutes. After holding at 100 °C for 30 minutes, the reaction was complete, and the mixture was cooled to 70 °C over 15 minutes. Heptane (180.0 mL) was added, and the jacket was cooled to 15 °C over 1 hour. (TPPO began crystallizing at ~35 °C). The mixture stirring at 15 °C was filtered (fast), the cake was washed with a pre-mixed solution of toluene (60 mL) and heptane (60 mL) and then pulled dry. The clear solution was concentrated to a waxy solid (45 °C, vacuum, rotovap). Crude 1-(tert-butyl) 4-ethyl 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazole-1,4-dicarboxylate (53.49g) was obtained as a waxy solid, (~120% of theoretical mass recovered).

Step 3: Preparation of 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazole-4-carboxylic acid

A solution of 1-(tert-butyl) 4-ethyl 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazole-1,4-dicarboxylate (50.0 g, 131 mmol) in 2-methyltetrahydrofuran (500 mL) was prepared in a reactor and stirred at 40 °C. Portions of KOt-Bu (80.85 g, 720.5 mmol) were then added over 30 minutes. Addition was exothermic. After 2053.49g UPLC-MS showed complete removal of the Boc group, so water (3.53 g, 3.53 mL, 196 mmol) was added drop-wise addition via syringe over 20 min to keep the reaction temperature between 40-50 °C. The mixture was then stirred for 17 hours to complete the reaction. The mixture was then cooled to 20 °C and water (400 mL) was added. The stirring was stopped and the layers were separated. The desired product in the aqueous layer was returned to the reactor and the organic layer was discarded. The aqueous layer was washed with 2-Me-THF (200 mL). Isopropanol (50. mL) was added followed by dropwise addition of aqueous HCl (131 mL of 6.0 M, 786.0 mmol) to adjust the pH to ❤ while maintaining the temperature below 30 °C. The resulting solid was then isolated by filtration and the filter cake washer with water (100 mL) then pulled dry until a sticky cake was obtained. The solids were then dried under vacuum at 55 °C to afford 3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazole-4-carboxylic acid (23.25 g) as an off-white fine solid.

[00297] Step 4: Preparation of 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole

3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazole-4-carboxylic acid (1.0 equiv) was added to a reactor followed by DMF (6.0 vol, 2.6 wt equiv). The mixture was stirred at 18– 22 °C. DBU (0.2 equiv.) was charged to the reaction mixture at a rate of approximately 45 mL/min. The reaction temperature was then raised to 98– 102 °C over 45 minutes. The reaction mixture was stirred at 98– 102 °C for no less than 10 h. The reaction mixture was then cooled to -2°C to 2 °C over approximately 1 hour and was used without isolation to make ethyl 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl)nicotinate.

[00298] Alternate procedure for the preparation of 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid

[00299] Step 1. Ethyl 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl)nicotinate

[00300] A solution of ethyl 2,6-dichloronicotinate (256 g, 1.16 mol) and 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole (242 g, 1.16 mol) in DMF (1.53 L) was treated with potassium carbonate (209 g, 1.51 mol) and DABCO (19.6 g, 174 mmol). The resultant suspension was stirred allowed to exotherm from 14 to 25 °C and then maintained at 20– 25 °C with external cooling for 3 days. The suspension was cooled to below 10 °C when water (2.0 L) was added in a thin stream while maintaining the temperature below 25 °C. After the addition was complete, the suspension was stirred for an additional 1 h. The solid was collected by filtration (sintered-glass/polypad) and the filter-cake was washed with water (2 x 500-mL) and dried with suction for 2 h to afford water-damp ethyl 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl)nicotinate (512 g; 113% yield) as white powder which was used without further steps in the subsequent reaction.

[00301] Step 2.2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1h-pyrazol-1-yl)nicotinic acid

[00302] The water-damp ethyl 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1H-pyrazol-1-yl)nicotinate (455 g, 1.16 mol; assumed 100% yield from previous step) in EtOH (1.14 L) and THF (455 mL) was stirred at ambient temperature (17 °C) when 1 M NaOH (1.16 L, 1.16 mol) was added. The reaction mixture exothermed to 30 °C and was further warmed at 40 °C for 2 h. The solution was quenched with 1 M HCl (1.39 L, 1.39 mol) which resulted in an immediate precipitation which became thicker as the acid was added. The creamy suspension was allowed to cool to room temperature and was stirred overnight. The solid was collected by filtration (sintered-glass/poly pad). The filter-cake was washed with water (2 x 500-mL). The filter-cake was dried by suction for 1 h but remained wet. The damp solid was transferred to a 10-L Buchi flask for further drying (50 °C/20 torr), but was not effective. Further effort to dry by chasing with i-PrOH was also ineffective. Successful drying was accomplished after the damp solid was backfilled with i-PrOAc (3 L), the suspension was heated at 60 °C (homogenization), and re-concentrated to dryness (50 °C/20 torr) to afford dry 2-chloro-6-(3-(3,3,3-trifluoro-2,2-dimethylpropoxy)-1h-pyrazol-1-yl)nicotinic acid (408 g; 97% yield for two steps) as a fine, white powder. The product was further dried in a vacuum oven (50 °C/10 torr/N2 bleed) for 2 h but marginal weight loss was observed. 1H NMR (400 MHz, DMSO-d6) δ 13.64 (s, 1H), 8.49– 8.36 (m, 2H), 7.77 (d, J = 8.4 Hz, 1H), 6.26 (d, J = 2.8 Hz, 1H), 4.28 (s, 2H), 1.24 (s, 6H).19F NMR (376 MHz, DMSO-d6) δ -75.2. KF analysis: 0.04% water.

2. Preparation of Form A of Compound 1

[00303] The crystalline Form A of Compound 1 was obtained as a result of the following synthesis. Combined 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxamide(108 g, 207.3 mmol), (4S)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) (77.55 g, 518.2 mmol), was combined with K2CO3 (143.2 g, 1.036 mol) in DMSO (432.0 mL) and 1,2-

diethoxyethane (108.0 mL) in a 1-L RB flask with a reflux condenser. The resulting suspension was heated at 120°C and was stirred at temperature overnight. Then the reaction was diluted with DCM (1.080 L) and HCl (933.0 mL of 2 M, 1.866 mol) was slowly added. The liquid phases were separated, and the aqueous phase was extracted with DCM (540.0 mL).The organic phases were combined, washed with water (540.0 mL) (3 x), then dried with (Na2SO4) to afford an amber solution. Silica gel (25 g) was added and then the drying agent/silica gel was filtered off. The filter-bed was washed with DCM (3 x 50-mL). The organic phases were combined and concentrated (40 °C/40 torr) to afford crude N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide (198.6 g, 160% theory) as an off-white solid. The solid was diluted with MTBE (750 mL), warmed at 60 °C (external temperature), and mixed to a homogenous suspension. The suspension was cooled to 30 °C with stirring and the solid was collected by filtration, air-dried, and vacuum-dried to afford Compound 1 (111.1 g; 90 %) as a fine, white powder.

[00304] The crystalline Form A of Compound 1 was also obtained through the following procedure. A suspension of Compound 1 (150.0 g, 228.1 mmol) in iPrOH (480 mL) and water (120 mL) was heated at 82 °C to obtain a solution. The solution was cooled with a J-Kem controller at a cooling rate of 10 °C/h. Once the temperature reached 74 °C, the solution was seeded with a sample of Compound 1 in crystalline Form A. Crystallization occurred immediately. The suspension was cooled to 20 °C. The solid was collected by filtration, washed with i-PrOH (2 x 75 mL), air-dried with suction, and vacuum-dried (55 °C/300 torr/N2 bleed) to afford Compound 1, Form A (103.3 g) as a white powder.. The sample was cooled to ~5 °C, let stir for 1 h, and then the solid was collected by filtration (sintered glass/paper). the filter-cake was washed with i-PrOH (75 mL) (2 x), air-dried with suction, air-dried in a drying dish (120.6 g mostly dried), vacuum-dried (55 °C/300 torr/N2 bleed) for 4 h, and then RT overnight. Overnight drying afforded 118.3 g (87% yield) of a white powder.

PATENT

WO-2019113476

Example 1: Synthesis of (4S)-2,2,4-trimethylpyrrolidine hydrochloride

Step 1: methyl-2,4-dimethyl-4-nitro-pentanoate

[00110] Tetrahydrofuran (THF, 4.5 L) was added to a 20 L glass reactor and stirred under N2 at room temperature. 2-Nitropropane (1.5 kg, 16.83 mol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (1.282 kg, 8.42 mol) were then charged to the reactor, and the jacket temperature was increased to 50 °C. Once the reactor contents were close to 50 °C, methyl methacrylate (1.854 kg, 18.52 mol) was added slowly over 100 minutes. The reaction temperature was maintained at or close to 50 °C for 21 hours. The reaction mixture was concentrated in vacuo then transferred back to the reactor and diluted with methyl tert-butyl ether (MTBE) (14 L). 2 M HCl (7.5 L) was added, and this mixture was stirred for 5 minutes then allowed to settle. Two clear layers were visible– a lower yellow aqueous phase and an upper green organic phase. The aqueous layer was removed, and the organic layer was stirred again with 2 M HCl (3 L). After separation, the HCl washes were recombined and stirred with MTBE (3 L) for 5 minutes. The aqueous layer was removed, and all of the organic layers were combined in the reactor and stirred with water (3 L) for 5 minutes. After separation, the organic layers were concentrated in vacuo to afford a cloudy green oil. Crude product was treated with MgSO4 and filtered to afford methyl-2,4-dimethyl-4-nitro-pentanoate as a clear green oil (3.16 kg, 99% yield).

[00111] 1H NMR (400 MHz, Chloroform-d) δ 3.68 (s, 3H), 2.56– 2.35 (m, 2H), 2.11 – 2.00 (m, 1H), 1.57 (s, 3H), 1.55 (s, 3H), 1.19 (d, J = 6.8 Hz, 3H).

Step 2: Synthesis of methyl (2S)-2,4-dimethyl-4-nitro-pentanoate

[00112] A reactor was charged with purified water (2090 L; 10 vol) and then potassium phosphate monobasic (27 kg, 198.4 moles; 13 g/L for water charge). The pH of the reactor contents was adjusted to pH 6.5 (± 0.2) with 20% (w/v) potassium carbonate solution. The reactor was charged with racemic methyl-2,4-dimethyl-4-nitro-pentanoate (209 kg; 1104.6 moles), and Palatase 20000L lipase (13 L, 15.8 kg; 0.06 vol).

[00113] The reaction mixture was adjusted to 32 ± 2 °C and stirred for 15-21 hours, and pH 6.5 was maintained using a pH stat with the automatic addition of 20% potassium carbonate solution. When the racemic starting material was converted to >98% ee of the S-enantiomer, as determined by chiral GC, external heating was switched off. The reactor was then charged with MTBE (35 L; 5 vol), and the aqueous layer was extracted with MTBE (3 times, 400-1000L). The combined organic extracts were washed with aqueous Na2CO3 (4 times, 522 L, 18 % w/w 2.5 vol), water (523 L; 2.5 vol), and 10% aqueous NaCl (314 L, 1.5 vol). The organic layer was concentrated in vacuo to afford methyl (2S)-2,4-dimethyl-4-nitro-pentanoate as a mobile yellow oil (>98% ee, 94.4 kg; 45 % yield).

Step 3: Synthesis of (3S)-3,5,5-trimethylpyrrolidin-2-one

[00114] A 20 L reactor was purged with N2. The vessel was charged sequentially with DI water-rinsed, damp Raney® Ni (2800 grade, 250 g), methyl (2S)-2,4-dimethyl-4-nitro-pentanoate (1741g, 9.2 mol), and ethanol (13.9 L, 8 vol). The reaction was stirred at 900 rpm, and the reactor was flushed with H2 and maintained at ~2.5 bar. The reaction mixture was then warmed to 60 °C for 5 hours. The reaction mixture was cooled and filtered to remove Raney nickel, and the solid cake was rinsed with ethanol (3.5 L, 2 vol). The ethanolic solution of the product was combined with a second equal sized batch and concentrated in vacuo to reduce to a minimum volume of ethanol (~1.5 volumes). Heptane (2.5 L) was added, and the suspension was concentrated again to ~1.5 volumes. This was repeated 3 times; the resulting suspension was cooled to 0-5 °C, filtered under suction, and washed with heptane (2.5 L). The product was dried under vacuum for 20 minutes then transferred to drying trays and dried in a vacuum oven at 40 °C overnight to afford (3S)-3,5,5-trimethylpyrrolidin-2-one as a white solid (2.042 kg, 16.1 mol, 87 %). 1H NMR (400 MHz, Chloroform-d) δ 6.39 (s, 1H), 2.62 (ddq, J = 9.9, 8.6, 7.1 Hz, 1H), 2.17 (dd, J = 12.4, 8.6 Hz, 1H), 1.56 (dd, J = 12.5, 9.9 Hz, 1H), 1.31 (s, 3H), 1.25 (s, 3H), 1.20 (d, J = 7.1 Hz, 3H).

Step 4: Synthesis of (4S)-2,2,4-trimethylpyrrolidine hydrochloride

[00115] A glass lined 120 L reactor was charged with lithium aluminum hydride pellets (2.5 kg, 66 mol) and dry THF (60 L) and warmed to 30 °C. The resulting suspension was charged with (S)-3,5,5-trimethylpyrrolidin-2-one (7.0 kg, 54 mol) in THF (25 L) over 2 hours while maintaining the reaction temperature at 30 to 40 °C. After complete addition, the reaction temperature was increased to 60 – 63 °C and maintained overnight. The reaction mixture was cooled to 22 °C, then cautiously quenched with the addition of ethyl acetate (EtOAc) (1.0 L, 10 moles), followed by a mixture of THF (3.4 L) and water (2.5 kg, 2.0 eq), and then a mixture of water (1.75 kg) with 50 % aqueous sodium hydroxide (750 g, 2 equiv water with 1.4 equiv sodium hydroxide relative to aluminum), followed by 7.5 L water. After the addition was complete, the reaction mixture was cooled to room temperature, and the solid was removed by filtration and washed with THF (3 x 25 L). The filtrate and washings were combined and treated with 5.0 L (58 moles) of aqueous 37% HCl (1.05 equiv.) while maintaining the temperature below 30°C. The resultant solution was concentrated by vacuum distillation to a slurry. Isopropanol (8 L) was added and the solution was concentrated to near dryness by vacuum distillation. Isopropanol (4 L) was added, and the product was slurried by warming to about 50 °C. MTBE (6 L) was added, and the slurry was cooled to 2-5 °C. The product was collected by filtration and rinsed with 12 L MTBE and dried in a vacuum oven (55 °C/300 torr/N2 bleed) to afford (4S)-2,2,4-trimethylpyrrolidine•HCl as a white solid (6.21 kg, 75% yield). 1H NMR (400 MHz, DMSO-d6) δ 9.34 (br d, 2H), 3.33 (dd, J = 11.4, 8.4 Hz, 1H), 2.75 (dd, J = 11.4, 8.6 Hz, 1H), 2.50– 2.39 (m, 1H), 1.97 (dd, J = 12.7, 7.7 Hz, 1H), 1.42 (s, 3H), 1.38 (dd, J = 12.8, 10.1 Hz, 1H), 1.31 (s, 3H), 1.05 (d, J = 6.6 Hz, 3H).

Example 2: Synthesis of 5,5-dimethyl-3-methylenepyrrolidin-2-one

Example 2A

[00116] 2,2,6,6-tetramethylpiperidin-4-one (50.00 g, 305.983 mmol, 1.000 equiv), tributylmethyl ammonium chloride (2.89 g, 3.0 mL, 9.179 mmol, 0.030 equiv), chloroform (63.92 g, 43.2 mL, 535.470 mmol, 1.750 equiv), and DCM

(dichloromethane) (100.0 mL, 2.00 vol) were charged to a 1000 mL three-neck round bottom flask equipped with an overhead stirrer. The reaction mixture was stirred at 300 rpm, and 50 wt% NaOH (195.81 g, 133.2 mL, 2,447.863 mmol, 8.000 equiv) was added dropwise (via addition funnel) over 1.5 h while maintaining the temperature below 25 °C with intermittent ice/acetone bath. The reaction mixture was stirred at 500 rpm for 18 h, and monitored by GC (3% unreacted piperidinone after 18 h). The suspension was diluted with DCM (100.0 mL, 2.00 vol) and H2O (300.0 mL, 6.00 vol), and the phases were separated. The aqueous phase was extracted with DCM (100.0 mL, 2.00 vol). The organic phases were combined and 3 M hydrochloric acid (16.73 g, 153.0 mL, 458.974 mmol, 1.500 equiv) was added. The mixture was stirred at 500 rpm for 2 h. The conversion was complete after approximately 1 h. The aqueous phase was saturated with NaCl, H2O (100.0 mL, 2.00 vol) was added to help reduce the emulsion, and the phases were separated. The aqueous phase was extracted with DCM (100.0 mL, 2.00 vol) twice. H2O (100.0 mL, 2.00 vol) was added to help with emulsion separation. The organic phases were combined, dried (MgSO4), and concentrated to afford 32.6 g (85%) of crude 5,5-dimethyl-3-methylenepyrrolidin-2-one (19) as a pale orange clumpy solid. The crude was recrystallized from hot (90°C) iPrOAc (71.7 mL, 2.2 vol. of crude), cooled to 80 °C, and ~50 mg of crystalline 5,5-dimethyl-3-methylenepyrrolidin-2-one (19) was added for seeding. Crystallization started at 77 °C, the mixture was slowly cooled to ambient temperature, and aged for 2 h. The solid was collected by filtration, washed with 50/50 iPrOAc/heptane (20.0 mL, 0.40 vol) twice, and dried overnight in the vacuum oven at 40 °C to afford the desired product (23.70 g, 189.345 mmol, 62% yield) as a white sand colored crystalline solid.

1H NMR (400 MHz, CDCl3, 7.26 ppm) δ 7.33 (bs, 1H), 5.96– 5.95 (m, 1H), 5.31-5.30 (m, 1H), 2.6 (t, J = 2.5 Hz, 2H), 1.29 (s, 6H).

Example 2B

[00117] Step 1: Under a nitrogen atmosphere, 2,2,6,6-tetramethylpiperidin-4-one (257.4 kg, 1658.0 mol, 1.00 eq.), tri-butyl methyl ammonium chloride (14.86 kg, 63.0 mol, 0.038 eq.), chloroform (346.5 kg, 2901.5 mol, 1.75 eq.) and DCM (683.3 kg) were added to a 500 L enamel reactor. The reaction was stirred at 85 rpm and cooled to 15~17°C. The solution of 50wt% sodium hydroxide (1061.4 kg, 13264.0 mol, 8.00 eq.) was added dropwise over 40 h while maintaining the temperature between 15~25°C. The reaction mixture was stirred and monitored by GC.

[00118] Step 2: The suspension was diluted with DCM (683.3 kg) and water (1544.4 kg). The organic phase was separated. The aqueous phase was extracted with DCM (683.3 kg). The organic phases were combined, cooled to 10°C and then 3 M

hydrochloric acid (867.8 kg, 2559.0 mol, 1.5 eq.) was added. The mixture was stirred at 10~15 °C for 2 h. The organic phase was separated. The aqueous phase was extracted with DCM (683.3 kg x 2). The organic phases were combined, dried over Na2SO4 (145.0 kg) for 6 h. The solid was filtered off and washed with DCM (120.0 kg). The filtrate was stirred with active charcoal (55 kg) for 6 h. The resulting mixture was filtered and the filtrate was concentrated under reduced pressure (30~40°C, -0.1MPa). Then isopropyl acetate (338 kg) was added and the mixture was heated to 87~91°C, stirred for 1 h. Then the solution was cooled to 15 °C in 18 h and stirred for 1 h at 15 °C. The solid was collected by filtration, washed with 50% isopropyl acetate/hexane (80.0 kg x 2) and dried overnight in the vacuum oven at 50 °C to afford 5,5-dimethyl-3-methylenepyrrolidin-2-one as an off white solid, 55% yield.

Example 3: Synthesis of (S)-3,5,5-trimethyl-pyrrolidin-2-one from 5,5-dimethyl-3- methylenepyrrolidin-2-one

Example 3A – Use of Rh Catalyst

Step 1 – Preparation of Rh Catalyst Formation:

[00119] In a 3 L Schlenk flask, 1.0 l of tetrahydrofurn (THF) was degassed with an argon stream. Mandyphos Ligand SL-M004-1 (1.89 g) and [Rh(nbd)Cl]2 (98%, 0.35 g) (chloronorbornadiene rhodium(I) dimer) were added. The resulting orange catalyst solution was stirred for 30 min at room temperature to form a catalyst solution.

Step 2:

[00120] A 50 L stainless steel autoclave was charged with 5,5-dimethyl-3-methylenepyrrolidin-2-one (6.0 kg) and THF (29 L). The autoclave was sealed and the resulting suspension was flushed with nitrogen (3 cycles at 10 bar), and then released of pressure. Next the catalyst solution from Step 1 was added. The autoclave was flushed with nitrogen without stirring (3 cycles at 5 bar) and hydrogen (3 cycles at 5 bar). The pressure was set to 5 bar and a 50 L reservoir was connected. After 1.5 h with stirring at 1000 rpm and no hydrogen uptake the reactor was flushed again with nitrogen (3 cycles at 10 bar) with stirring and additional catalyst solution was added. The autoclave was again flushed to hydrogen with the above described procedure (3 x 5 bar N2, 3 x 5 bar H2) and adjusted to 5 bar. After 2 h, the pressure was released, the autoclave was flushed with nitrogen (3 cycles at 5 bar) and the product solution was discharged into a 60 L inline barrel. The autoclave was charged again with THF (5 L) and stirred with 1200 rpm for 5 min. The wash solution was added to the reaction mixture.

Step 3:

[00121] The combined solutions were transferred into a 60 L reactor. The inline barrel was washed with 1 L THF which was also added into the reactor. 20 L THF were removed by evaporation at 170 mbar and 40°C.15 L heptane were added. The distillation was continued and the removed solvent was continuously replaced by heptane until the THF content in the residue was 1% w/w (determined by NMR). The reaction mixture was heated to 89°C (turbid solution) and slowly cooled down again (ramp: 14°C/h). Several heating and cooling cycles around 55 to 65°C were made. The off-white suspension was transferred to a stirred pressure filter and filtered (ECTFE-pad, d = 414 mm, 60 my, Filtration time = 5 min). 10 L of the mother liquor was transferred back into the reactor to wash the crystals from the reactor walls and the obtained slurry was also added to the filter. The collected solid was washed with 2 x 2.5 l heptane, discharged and let dry on the rotovap at 40°C and 4 mbar to obtain the product, (S)-3,5,5-trimethyl-pyrrolidin-2-one; 5.48Kg (91%), 98.0% ee.

Example 3B – Use of Ru Catalyst

[00122] The reaction was performed in a similar manner as described above in Example 3A except the use of a Ru catalyst instead of a Rh catalyst.

[00123] Compound (15) (300 g) was dissolved in THF (2640 g, 10 Vol) in a vessel. In a separate vessel, a solution of [RuCl(p-cymene){(R)-segphos}]Cl (0.439g, 0.0002 eq) in THF (660 g, 2.5 Vol) was prepared. The solutions were premixed in situ and passed through a Plug-flow reactor (PFR). The flow rate for the Compound (15) solution was at 1.555 mL/min and the Ru catalyst solution was at 0.287 mL/min. Residence time in the PFR was 4 hours at 30 °C, with hydrogen pressure of 4.5 MPa. After completion of reaction, the THF solvent was distilled off to give a crude residue. Heptane (1026 g, 5 vol) was added and the resulting mixture was heated to 90 °C. The mixture was seeded with 0.001 eq. of Compound 16S seeds. The mixture was cooled to -15 °C at 20 °C/h. After cooling, heptane (410 g, 2 vol) was added and the solid product was recovered by filtration. The resulting product was dried in a vacuum oven at 35 °C to give (S)-3,5,5-trimethyl-pyrrolidin-2-one (281.77 g, 98.2 % ee, 92 % yield).

Example 3C – Analytical Measurements

[00124] Analytical chiral HPLC method for the determination of the conversion, chemoselectivity, and enantiomeric excess of the products from Example 3A and 3B was made under the following conditions

Instrument: Agilent Chemstation 1100

Column: Phenomenex Lux 5u Cellulose-2, 4.6 mm x 250 mm x 5 um, LHS6247 Solvent: Heptane/iPrOH (90:10)

Flow: 1.0 ml/min

Detection: UV (210 nm)

Temperature: 25°C

Sample concentration: 30 μl of reaction solution evaporated, dissolved in 1 mL heptane/iPrOH (80/20)

Injection volume: 10.0 μL, Run time 20 min

Retention times:

5,5–‐dimethyl–3–methylenepyrrolidin–‐2–‐one: 13.8 min (S)-3,5,5-trimethyl-pyrrolidin-2-one: 10.6 min

(R)-3,5,5-trimethyl-pyrrolidin-2-one: 12.4 min

Example 4: Synthesis of (S)-3,5,5-trimethyl-pyrrolidin-2-one from 5,5-dimethyl-3- methylenepyrrolidin-2-one

[00125] Mandyphos (0.00479 mmol, 0.12 eq) was weighed into a GC vial. In a separate vial Ru(Me-allyl)2(COD) (16.87 mg, 0.0528 mmol) was weighed and dissolved in DCM (1328 µL). In another vial HBF4•Et2O (6.6 µL) and BF3 ^Et2O (2.0 µL) were dissolved in DCM (240 µL). To the GC vial containing the ligand was added, under a flow of argon, the Ru(Me-allyl)2(COD) solution (100 µL; 0.00399 mmol, 0.1eq) and the HBF4•Et2O / BF3 ^Et2O solution (20 µL; 1 eq HBF4 ^Et2O and catalytic BF3 ^Et2O). The resulting mixtures were stirred under a flow of argon for 30 minutes.

[00126] 5,5-dimethyl-3-methylenepyrrolidin-2-one (5 mg, 0.0399 mmol) in EtOH (1 mL) was added. The vials were placed in the hydrogenation apparatus. The apparatus was flushed with H2 (3×) and charged with 5 bar H2. After standing for 45 minutes, the apparatus was placed in an oil bath at temperature of 45°C. The reaction mixtures were stirred overnight under H2.200 µL of the reaction mixture was diluted with MeOH (800 µL) and analyzed for conversion and ee.

1H NMR (400 MHz, Chloroform-d) δ 6.39 (s, 1H), 2.62 (ddq, J = 9.9, 8.6, 7.1 Hz, 1H), 2.17 (ddd, J = 12.4, 8.6, 0.8 Hz, 1H), 1.56 (dd, J = 12.5, 9.9 Hz, 1H), 1.31 (s, 3H), 1.25 (s, 3H), 1.20 (d, J = 7.1 Hz, 3H).

Table 1: IPC method for Asymmetric Hydrogenation

Example 5. Synthesis of (S)-2,2,4-trimethylpyrrolidine hydrochloride from (S)- 3,5,5-trimethyl-pyrrolidin-2-one

Example 5A

[00127] Anhydrous THF (100ml) was charged to a dry 750ml reactor and the jacket temperature was set to 50°C. Once the vessel contents were at 50°C LiAlH4pellets (10g, 263mmol, 1.34 eq.) were added. The mixture was stirred for 10 minutes, then a solution of (S)-3,5,5-trimethyl-pyrrolidin-2-one (16S) (25g, 197mmol) in anhydrous THF (100ml) was added dropwise over 45 minutes, maintaining the temperature between 50-60°C. Once the addition was complete the jacket temperature was increased to 68°C and the reaction stirred for 18.5hrs. The reaction mixture was cooled to 30°C then saturated sodium sulfate solution (20.9ml) was added dropwise over 30 minutes, keeping the temperature below 40°C. Vigorous evolution of hydrogen was observed and the reaction mixture thickened but remained mixable. The mixture thinned towards the end of the addition. The mixture was cooled to 20°C, diluted with iPrOAc (100ml) and stirred for an additional 10 minutes. The suspension was then drained and collected through the lower outlet valve, washing through with additional iPrOAc (50ml). The collected suspension was filtered through a celite pad on a sintered glass funnel under suction and washed with iPrOAc (2x50ml).

[00128] The filtrate was transferred back to the cleaned reactor and cooled to 0°C under nitrogen. 4M HCl in dioxane (49.1ml, 197mmol, 1eq.) was then added dropwise over 15 minutes, maintaining the temperature below 20°C. A white precipitate formed. The reactor was then reconfigured for distillation, the jacket temperature was increased to 100 °C, and distillation of solvent was carried out. Additional i-PrOAc (100 mL) was added during concentration, after >100 mL distillate had been collected. Distillation was continued until ~250 mL total distillate was collected, then a Dean-Stark trap was attached and reflux continued for 1 hour. No water was observed to collect. The reaction mixture was cooled to 20 °C and filtered under suction under nitrogen. The filtered solid was washed with i-PrOAc (100 mL), dried under suction in nitrogen, then transferred to a glass dish and dried in a vacuum oven at 40 °C with a nitrogen bleed. (S)-2,2,4-Trimethylpyrrolidine hydrochloride (17S•HCl) was obtained as a white solid (24.2g, 82%).

GC analysis (purity): >99.5%

GC chiral purity: 99.5%

Water content (by KF): 0.074%

Residual solvent (by 1H-NMR): 0.41%

Example 5B

[00129] To a glass lined 120 L reactor was charged LiAlH4 pellets (2.5 kg 66 mol, 1.2 equiv.) and dry THF (60 L) and warmed to 30 °C. To the resulting suspension was

charged (S)-3,5,5-trimethylpyrrolidin-2-one (7.0 kg, 54 mol) in THF (25 L) over 2 hours while maintaining the reaction temperature at 30 to 40 °C. After complete addition, the reaction temperature was increased to 60 – 63 °C and maintained overnight. The reaction mixture was cooled to 22 °C and sampled to check for completion, then cautiously quenched with the addition of EtOAc (1.0 L, 10 moles, 0.16 eq) followed by a mixture of THF (3.4 L) and water (2.5 kg, 2.0 eq) then followed by a mixture of water (1.75 kg) with 50 % aqueous sodium hydroxide (750 g, 2 eq water with 1.4 eq sodium hydroxide relative to aluminum), followed by 7.5 L water (6 eq“Fieser” quench). After the addition was completed, the reaction mixture was cooled to room temperature, and the solid was removed by filtration and washed with THF (3 x 25 L). The filtrate and washings were combined and treated with 5.0 L (58 moles) of aqueous 37% HCl (1.05 equiv.) while maintaining the temperature below 30°C.

[00130] The resultant solution was concentrated by vacuum distillation to a slurry in two equal part lots on the 20 L Buchi evaporator. Isopropanol (8 L) was charged and the solution reconcentrated to near dryness by vacuum distillation. Isopropanol (4 L) was added and the product slurried by warming to about 50 °C. Distillation from Isopropanol continued until water content by KF is≤ 0.1 %. Methyl tertbutyl ether (6 L) was added and the slurry cooled to 2-5 °C. The product was collected by filtration and rinsed with 12 L methyl tert-butyl ether and pulled dry with a strong nitrogen flow and further dried in a vacuum oven (55 °C/300 torr/N2bleed) to afford (S)-2,2,4-trimethylpyrrolidine•HCl as a white, crystalline solid (6.21 kg, 75% yield). 1H NMR (400 MHz, DMSO-d6) δ 9.34 (s, 2H), 3.33 (dd, J = 11.4, 8.4 Hz, 1H), 2.75 (dd, J = 11.4, 8.6 Hz, 1H), 2.50– 2.39 (m, 1H), 1.97 (dd, J = 12.7, 7.7 Hz, 1H), 1.42 (s, 3H), 1.38 (dd, J = 12.8, 10.1 Hz, 1H), 1.31 (s, 3H), 1.05 (d, J = 6.6 Hz, , 3H).

Example 5C

[00131] With efficient mechanical stirring, a suspension of LiAlH4 pellets (100 g 2.65 mol; 1.35 eq.) in THF (1 L; 4 vol. eq.) warmed at a temperature from 20 °C– 36 °C (heat of mixing). A solution of (S)-3,5,5-trimethylpyrrolidin-2-one (250 g; 1.97 mol) in THF (1 L; 4 vol. eq.) was added to the suspension over 30 min. while allowing the reaction temperature to rise to ~60 °C. The reaction temperature was increased to near reflux (~68 °C) and maintained for about 16 h. The reaction mixture was cooled to below 40 °C and cautiously quenched with drop-wise addition of a saturated aqueous solution of Na2SO4 (209 mL) over 2 h. After the addition was completed, the reaction mixture was cooled to ambient temperature, diluted with i-PrOAc (1 L), and mixed thoroughly. The solid was removed by filtration (Celite pad) and washed with i-PrOAc (2 x 500 mL). With external cooling and N2 blanket, the filtrate and washings were combined and treated with drop-wise addition of anhydrous 4 M HCl in dioxane (492 mL; 2.95 mol; 1 equiv.) while maintaining the temperature below 20 °C. After the addition was completed (20 min), the resultant suspension was concentrated by heating at reflux (74– 85 °C) and removing the distillate. The suspension was backfilled with i-PrOAc (1 L) during concentration. After about 2.5 L of distillate was collected, a Dean-Stark trap was attached and any residual water was azeotropically removed. The suspension was cooled to below 30 °C when the solid was collected by filtration under a N2 blanket. The solid is dried under N2 suction and further dried in a vacuum oven (55 °C/300 torr/N2 bleed) to afford 261 g (89% yield) of (S)-2,2,4-trimethylpyrrolidine•HCl as a white, crystalline solid. 1H NMR (400 MHz, DMSO-d6) δ 9.34 (s, 2H), 3.33 (dd, J = 11.4, 8.4 Hz, 1H), 2.75 (dd, J = 11.4, 8.6 Hz, 1H), 2.50– 2.39 (m, 1H), 1.97 (dd, J = 12.7, 7.7 Hz, 1H), 1.42 (s, 3H), 1.38 (dd, J = 12.8, 10.1 Hz, 1H), 1.31 (s, 3H), 1.05 (d, J = 6.6 Hz, 3H). 1H NMR (400 MHz, CDCl3) δ 9.55 (d, J = 44.9 Hz, 2H), 3.52 (ddt, J = 12.1, 8.7, 4.3 Hz, 1H), 2.94 (dq, J = 11.9, 5.9 Hz, 1H), 2.70– 2.51 (m, 1H), 2.02 (dd, J = 13.0, 7.5 Hz, 1H), 1.62 (s, 3H), 1.58– 1.47 (m, 4H), 1.15 (d, J = 6.7 Hz, 3H).

Example 5D

[00132] A 1L four-neck round bottom flask was degassed three times. A 2M solution of LiAlH4 in THF (100 mL) was charged via cannula transfer. (S)-3,5,5-trimethylpyrrolidin-2-one (19.0 g) in THF (150 mL) was added dropwise via an addition funnel over 1.5 hours at 50-60 °C, washing in with THF (19 mL). Upon completion of the addition, the reaction was stirred at 60 °C for 8 hours and allowed to cool to room temperature overnight. GC analysis showed <1% starting material remained.

[00133] Deionized water (7.6 mL) was added slowly to the reaction flask at 10-15 °C, followed by 15% potassium hydroxide (7.6 mL). Isopropyl acetate (76 mL) was added, the mixture was stirred for 15 minutes and filtered, washing through with isopropyl acetate (76 mL).

[00134] The filtrate was charged to a clean and dry 500 mL four neck round bottom flask and cooled to 0-5 °C. 36% Hydrochloric acid (15.1 g, 1.0 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (190 mL), was carried out to leave a residual volume of ~85 mL. Karl Fischer analysis = 0.11% w/w H2O. MTBE (methyl tertiary butyl ether) (19 mL) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (25 mL) and drying under vacuum at 40-45 °C to give crude (S)-2,2,4-trimethylpyrrolidine hydrochloride as a white crystalline solid (17.4 g, 78% yield). GC purity = 99.5%. Water content = 0.20% w/w. Chiral GC gave an ee of 99.0% (S).

Ruthenium content = 0.004 ppm. Lithium content = 0.07 ppm.

[00135] A portion of the dried crude (S)-2,2,4-trimethylpyrrolidine hydrochloride (14.3g) was charged to a clean and dry 250 mL four-neck round bottom flask with isopropanol (14.3 mL) and the mixture held at 80-85 °C (reflux) for 1 hour to give a clear solution. The solution was allowed to cool to 50 °C (solids precipitated on cooling) then MTBE (43 mL) was added and the suspension held at 50-55 °C (reflux) for 3 hours. The solids were filtered off at 10 °C, washing with MTBE (14 mL) and dried under vacuum at 40 °C to give recrystallised (S)-2,2,4-trimethylpyrrolidine hydrochloride (17S•HCl) as a white crystallised solid (13.5 g, 94% yield on recrystallisation, 73% yield). GC purity = 99.9%. Water content = 0.11% w/w. Chiral GC gave an ee of 99.6 (S). Ruthenium content = 0.001 ppm. Lithium content = 0.02 ppm.

Example 5E:

[00136] A reactor was charged with lithium aluminum hydride (LAH) (1.20 equiv.) and 2-MeTHF (2-methyltetrahydrofuran) (4.0 vol), and heated to internal temperature of 60 °C while stirring to disperse the LAH. A solution of (S)-3,5,5-trimethylpyrrolidin-2-one (1.0 equiv) in 2-MeTHF (6.0 vol) was prepared and stirred at 25 °C to fully dissolve the (S)-3,5,5-trimethylpyrrolidin-2-one. The (S)-3,5,5-trimethylpyrrolidin-2-one solution was added slowly to the reactor while keeping the off-gassing manageable, followed by rinsing the addition funnel with 2-MeTHF (1.0 vol) and adding it to the reactor. The reaction was stirred at an internal temperature of 60 ± 5 °C for no longer than 6 h. The internal temperature was set to 5 ± 5 °C and the agitation rate was increased. A solution of water (1.35 equiv.) in 2-MeTHF (4.0v) was prepared and added slowly to the reactor while the internal temperature was maintained at or below 25 °C. Additional water (1.35 equiv.) was charged slowly to the reactor while the internal temperature was maintained at or below 25 °C. Potassium hydroxide (0.16 equiv.) in water (0.40 vol) was added to the reactor over no less than 20 min while the temperature was maintained at or below 25 °C. The resulting solids were removed by filtration, and the reactor and cake were washed with 2-MeTHF (2 x 2.5 vol). The filtrate was transferred back to a jacketed

vessel, agitated, and the temperature was adjusted to 15 ± 5 °C. Concentrated aqueous HCl (35-37%, 1.05 equiv.) was added slowly to the filtrate while maintaining the temperature at or below 25 °C and was stirred no less than 30 min. Vacuum was applied and the solution was distilled down to a total of 4.0 volumes while maintaining the internal temperature at or below 55 °C, then 2-MeTHF (6.00 vol) was added to the vessel. The distillation was repeated until Karl Fischer analysis (KF) < 0.20% w/w H2O. Isopropanol was added (3.00 vol), and the temperature was adjusted to 70 °C (65– 75 °C) to achieve a homogenous solution, and stirred for no less than 30 minutes at 70 °C. The solution was cooled to 50 °C (47– 53 °C) over 1 hour and stirred for no less than 1 h, while the temperature was maintained at 50°C (47– 53 °C). The resulting slurry was cooled to -10 °C (-15 to -5°C) linearly over no less than 12 h. The slurry was stirred at -10 °C for no less than 2 h. The solids were isolated via filtration or centrifugation and were washed with a solution of 2-MeTHF (2.25 vol) and IPA (isopropanol) (0.75 vol). The solids were dried under vacuum at 45 ± 5 °C for not less than 6 h to yield (S)-2,2,4-trimethylpyrrolidine hydrochloride (17S•HCl).

Example 6: Phase Transfer Catalyst (PTC) Screens for the Synthesis of 5,5- dimethyl-3-methylenepyrrolidin-2-one

[00137] 2,2,6,6-tetramethylpiperidin-4-one (500.0 mg, 3.06 mmol, 1.0 eq.), PTC (0.05 eq.), and chloroform (0.64 g, 0.4 mL, 5.36 mmol, 1.75 eq.) were charged into a vial equipped with a magnetic stir bar. The vial was cooled in an ice bath and a solution of 50 wt% sodium hydroxide (0.98 g, 24.48 mmol, 8.0 eq.) was added dropwise over 2 min. The reaction mixture was stirred until completion as assessed by GC analysis. The reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H2O (3.0 mL, 6.0v). The phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v). The organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion and assessed by HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the

organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC. Reaction results are summarized in Table 2.

Table 2

Example 7: Solvent Screens for the Synthesis of 5,5-dimethyl-3- methylenepyrrolidin-2-one

[00138] 2,2,6,6-tetramethylpiperidin-4-one (500.0 mg, 3.06 mmol, 1.0 eq.), tetrabutylammonium hydroxide (0.12 g, 0.153 mmol, 0.050 eq), chloroform (0.64 g, 0.4 mL, 5.36 mmol, 1.75 eq.), and solvent (2 vol. or 4 vol., as shown in Table 3 below) were charged into a vial equipped with a magnetic stir bar. The vial was cooled in an ice bath and a solution of 50 wt% sodium hydroxide (0.98 g, 24.48 mmol, 8.0 eq.) was added drop wise over 2 min. The reaction mixture was stirred until completion and assessed by GC analysis. The reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H2O (3.0 mL, 6.0v). The phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v). The organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion, assessed by HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL,

2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC.

Reaction results are summarized in Table 3.

Table 3

Example 8: Base Screens for the Synthesis of 5,5-dimethyl-3-methylenepyrrolidin- 2-one

[00139] 2,2,6,6-tetramethylpiperidin-4-one (500.0 mg, 3.06 mmol, 1.0 eq.), tetrabutylammonium hydroxide (0.12 g, 0.153 mmol, 0.050 eq), and chloroform (0.64 g, 0.4 mL, 5.36 mmol, 1.75 eq.) were charged into a vial equipped with a magnetic stir bar. The vial was cooled in an ice bath, and a solution of an amount wt% sodium hydroxide as shown in Table 4 below in water (0.98 g, 24.48 mmol, 8.0 eq.) was added drop wise over 2 min. The reaction mixture was stirred until completion and assessed by GC analysis. The reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H2O (3.0 mL, 6.0v). The phases were separated and the aqueous phase is extracted with DCM (1.0 mL, 2.0v). The organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion, assessed by HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as

an internal HPLC standard. Solution yield was assessed by HPLC. Reaction results are summarized in Table 4.

Table 4

Example 9: Various Amounts of Phase Transfer Catalyst (PTC) for the Synthesis of 5,5-dimethyl-3-methylenepyrrolidin-2-one

[00140] In this experiment, various amounts of PTCs were tested as described below: Tetrabutylammonium hydroxide (0.01 eq.), TBAB (0.01 eq.), Tributylmethylammonium chloride (0.01 eq.), Tetrabutylammonium hydroxide (0.02 eq.), TBAB (0.02 eq.), Tributylmethylammonium chloride (0.02 eq.), Tetrabutylammonium hydroxide (0.03 eq.), TBAB (0.03 eq.), Tributylmethylammonium chloride (0.03 eq.).

[00141] 2,2,6,6-tetramethylpiperidin-4-one (500.0 mg, 3.06 mmol, 1.0 eq.), PTC (0.12 g, 0.153 mmol, 0.050 eq), and chloroform (1.75 eq.) were charged into a vial equipped with a magnetic stir bar. The vial was cooled in an ice bath, and a solution of 50 wt% sodium hydroxide (0.98 g, 24.48 mmol, 8.0 eq.) was added drop wise over 2 min. The reaction mixture was stirred until completion, assessed by GC analysis. The reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H2O (3.0 mL, 6.0v). The phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v). The organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion, assessed by

HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC. The reaction results are summarized in Table 5.

Table 5

Example 10: Preparation of 2,2,6,6-tetramethylpiperidin-4-one hydrochloride (14•HCl)

[00142] 2,2,6,6-tetramethyl-4-piperidinone (14) (30 g, 193.2 mmol, 1.0 eq) was charged to a 500 mL nitrogen purged three necked round bottomed flask equipped with condenser. IPA (300 mL, 10 vol) was added to the flask and the mixture heated to 60 °C until dissolved.

[00143] To the solution at 60 °C was added 5-6 M HCl in IPA (40 mL, 214.7 mmol, 1.1 eq) over 10 min and the resulting suspension stirred at 60 °C for 30 min then allowed to cool to ambient temperature. The suspension was stirred at ambient temperature overnight, then filtered under vacuum and washed with IPA (3 x 60 mL, 3 x 2 vol). The cream colored solid was dried on the filter under vacuum for 10 min.

[00144] The wet cake was charged to a 1 L nitrogen purged three necked round bottomed flask equipped with condenser. IPA (450 mL, 15 vol) was added to the flask and the suspension heated to 80 °C until dissolved. The mixture was allowed to cool slowly to ambient temperature over 3 h and the resulting suspension stirred overnight at ambient temperature.

[00145] The suspension was filtered under vacuum, washed with IPA (60 mL, 2 vol) and dried on the filter under vacuum for 30 min. The resulting product was dried in a vacuum oven at 40 °C over the weekend to give 2,2,6,6-tetramethylpiperidin-4-one hydrochloride (14•HCl) a white crystalline solid, 21.4 g, 64% yield.

Example 11: Synthesis of (S)-2,2,4-trimethylpyrrolidine hydrochloride (17S•HCl) from (S)-3,5,5-trimethyl-pyrrolidin-2-one (16S)

[00146] Each reactor was charged with (S)-3,5,5-trimethyl-pyrrolidin-2-one (16S) in THF, H2, and the catalyst shown in the below table. The reactor was heated to 200 °C and pressurized to 60 bar, and allowed to react for 12 hours. GC analysis showed that (S)-2,2,4-trimethylpyrrolidine was produced in the columns denoted by“+.”

[00147] A 2.5% solution of (S)-3,5,5-trimethyl-pyrrolidin-2-one (16S) in THF was flowed at 0.05 mL/min into a packed bed reactor prepacked with 2% Pt-0.5%Sn/SiO2 catalyst immobilized on silica gel. H2 gas was also flowed into the packed bed reactor at 20 mL/min. The reaction was carried out at 130 °C under 80 bar pressure with a WHSV (Weigh Hourly Space Velocity) of 0.01-0.02 h-1. The product feed was collected in a batch tank and converted to (S)-2,2,4-trimethylpyrrolidine HCl in batch mode: 36% Hydrochloric acid (1.1 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (4v), was carried out to leave a residual volume of 5v. Karl Fischer analysis < 0.2% w/w H2O. MTBE (methyl tertiary butyl ether) (1v) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (1.5v) and drying under vacuum at 40-45 °C to give (S)-2,2,4-trimethylpyrrolidine hydrochloride (17S•HCl) as a white crystalline solid (74.8% yield, 96.1% ee).

Alternate synthesis

[00148] A 2.5% solution of (S)-3,5,5-trimethyl-pyrrolidin-2-one (16S) in THF was flowed at 0.05 mL/min into a packed bed reactor prepacked with 4% Pt-2%Sn/TiO2catalyst immobilized on silica gel. H2 gas was also flowed into the packed bed reactor at 20 mL/min. The reaction was carried out at 200 °C under 50 bar pressure with a WHSV (Weigh Hourly Space Velocity) of 0.01-0.02 h-1. The product feed was collected in a batch tank and converted to (S)-2,2,4-trimethylpyrrolidine HCl in batch mode: 36% Hydrochloric acid (1.1 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (4v), was carried out to leave a residual volume of 5v. Karl Fischer analysis < 0.2% w/w H2O. MTBE (methyl tertiary butyl ether) (1v) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (1.5v) and drying under vacuum at 40-45 °C to give (S)-2,2,4-trimethylpyrrolidine hydrochloride (17S•HCl) as a white crystalline solid (88.5% yield, 29.6% ee).

Alternate synthesis

[00149] A 2.5% solution of (S)-3,5,5-trimethyl-pyrrolidin-2-one (16S) in THF was flowed at 0.05 mL/min into a packed bed reactor prepacked with 2% Pt-0.5%Sn/TiO2 catalyst immobilized on silica gel. H2 gas was also flowed into the packed bed reactor at 20 mL/min. The reaction was carried out at 150 °C under 50 bar pressure with a WHSV (Weigh Hourly Space Velocity) of 0.01-0.02 h-1. The product feed was collected in a batch tank and converted to (S)-2,2,4-trimethylpyrrolidine HCl in batch mode: 36% Hydrochloric acid (1.1 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (4v), was carried out to leave a residual volume of 5v. Karl Fischer analysis < 0.2% w/w H2O. MTBE (methyl tertiary butyl ether) (1v) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (1.5v) and drying under vacuum at 40-45 °C to give (S)-2,2,4-trimethylpyrrolidine hydrochloride (17S•HCl) as a white crystalline solid (90.9% yield, 98.0% ee).

Alternate synthesis

[00150] A 2.5% solution of (S)-3,5,5-trimethyl-pyrrolidin-2-one (16S) in THF was flowed at 0.03 mL/min into a packed bed reactor prepacked with 2% Pt-8%Sn/TiO2catalyst immobilized on silica gel. H2 gas was also flowed into the packed bed reactor at 40 mL/min. The reaction was carried out at 180 °C under 55 bar pressure with a residence time of 6 min. The product feed was collected in a batch tank and converted to (S)-2,2,4-trimethylpyrrolidine HCl in batch mode: 36% Hydrochloric acid (1.1 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (4v), was carried out to leave a residual volume of 5v. Karl Fischer analysis < 0.2% w/w H2O. MTBE (methyl tertiary butyl ether) (1v) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (1.5v) and drying under vacuum at 40-45 °C to give (S)-2,2,4-trimethylpyrrolidine hydrochloride (17S•HCl) as a white crystalline solid (90.4% yield, 96.8% ee).

Example 12: Preparation of N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3- trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4- trimethylpyrrolidin-1-yl]pyridine-3-carboxamide (Compound 1)


Compound 1

I. Preparation of Starting Materials:

A. Synthesis of 3,3,3-Trifluoro-2,2-dimethylpropionic acid (31), morpholine salt:

Step 1: tert-Butyl((1-ethoxy-2-methylprop-1-en-1-yl)oxy)dimethylsilane (28)

[00151] A 2L 3-necked round-bottom flask, equipped with a J-Kem thermocouple and an overhead stirrer, was purged with nitrogen for >20 minutes. Hexyllithium solution (2.3 M in hexanes; 1.05 equiv; 0.260 L, 597 mmol) was transferred into the flask via cannula. The flask was then cooled to–65°C in a dry ice/isopropyl alcohol bath and diisopropylamine (1.05 equiv; 0.842 L; 597mmol) was added via an addition funnel, and the internal temperature was maintained at–40 ±5 °C. Once the diisopropylamine addition was complete, tetrahydrofuran (THF) (0.423 L; 6.4 vol) was added to the reactor and the reaction was warmed to room temperature and stirred for 15 minutes. The solution was then cooled to–60 °C and ethyl isobutyrate (1.0 equiv; 0.754 L; 568 mmol) was added dropwise maintaining the temperature below–45 °C. 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) (0.9 equiv; 0.616 L; 511 mmol) was then added dropwise to the reaction flask and the temperature was maintained below–45 °C. In a separate flask, tert-butyldimethylsilyl chloride (TBSCl) (1.05 equiv; 89.9 g; 597 mmol) was dissolved in THF (2.2 vol w.r.t. TBSCl) and then added to the 2L reactor. The internal temperature was maintained at≤–30°C during the addition of the TBSCl solution. The resulting reaction mixture was allowed to warm to room

temperature and stirred overnight under inert atmosphere. The reaction solution was transferred to a 2L one-neck round-bottom flask. Additional THF (50 mL, x 2) was used to rinse and transfer. The solution was concentrated in vacuo to remove most of the THF. Hexanes were added to the concentrated tert-butyl((1-ethoxy-2-methylprop-1-en-1-yl)oxy)dimethylsilane (500 mL). The organic phase was washed with three times with water (500 mL x 3), to remove salts. The organic layer was dried over Na2SO4 (100 g). The solution was filtered and the waste cake washed with additional hexanes (100 mL). The resulting hexanes solution of tert-butyl((1-ethoxy-2-methylprop-1-en-1-yl)oxy)dimethylsilane was concentrated in vacuo. A quantitative 1H-NMR assay was performed with benzyl benzoate as an internal standard. The quantitative NMR assay indicated that 108.6 grams of tert-butyl((1-ethoxy-2-methylprop-1-en-1-yl)oxy)dimethylsilane (83% yield) was present, and that 1.2 mol% of ethyl isobutyrate relative to tert-butyl((1-ethoxy-2-methylprop-1-en-1-yl)oxy)dimethylsilane was also present. The resulting tert-butyl((1-ethoxy-2-methylprop-1-en-1-yl)oxy)dimethylsilane solution was used without further purification for the photochemical reaction of Step 2.  Step 2: 3,3,3-Trifluoro-2,2-dimethylpropionic acid (31), morpholine salt

[00152] Stock solution A: The concentrated tert-butyl((1-ethoxy-2-methylprop-1-en-1- yl)oxy)dimethylsilane (198 g; 0.86 mol) was dissolved in acetonitrile (895 g; 1.14 L; 5.8 vol) to give a cloudy, yellow solution that was then filtered. The density of the clear, filtered solution was measured to be 0.81 g/mL and the molar concentration was calculated to be 0.6 M. This is referred to as stock solution A (substrate).

[00153] Stock solution B: The catalyst and reagent solution was prepared by dissolving Ru(bpy)3Cl2 hexahydrate in acetonitrile, followed by adding ethanol and pyrrolidine to give a red-colored solution (density measured: 0.810 g/mL). The molar concentration of the catalyst was calculated to be 0.00172 M. The molar concentration of the solution with respect to EtOH/pyrrolidine was calculated to be ~2.3 M. See Table 6.

Table 6

(i) Photochemical Trifluoromethylation

[00154] CF3I gas was delivered to the reactor directly from the lecture bottle using a regulator and mass flow controller. Stock solutions A and B were pumped at 6.7 g/min and 2.07 g/min, respectively, to mix in a static mixer. The resulting solution was then combined with CF3I in a static mixer. The CF3I was metered into the reactor via a mass flow controller at 2.00 g/min (2 equiv). Liquid chromatography (LC) assay indicated that 1.0% of the tert-butyl((1-ethoxy-2-methylprop-1-en-1-yl)oxy)dimethylsilane was left unreacted. Details of the reaction parameters are shown in the table below. The reaction stream was passed through the 52 mL photoreactor while being irradiated with the 800 W 440-445 LED light source. The first 5 minutes of eluent was discarded. Thereafter the eluent was collected for a total of 3.05 hours. A total of ~2.3 L of solution was collected during the reaction (~1.06 mol). See Table 7.

Table 7

(ii) Saponification & Salt Formation

[00155] The saponication of the crude solution (4.1 L, from 1.60 mol tert-butyl((1-ethoxy-2-methylprop-1-en-1-yl)oxy)dimethylsilane) was carried out in a 5L 4-necked round-bottomed flask in 2 roughly equal size batches using 15 wt% NaOH (aq) (total ~320g NaOH) at 50 °C for 2-4 h. Upon completion of the reaction determined by gas chromatography (GC) analysis, the re-combined batches were cooled to room

temperature and hexanes (500 mL) and toluene (500 mL) were added to give a clear phase separation. The top organic layer was washed with half-brine (1 L) and combined with the first portion of the product-containing aqueous solution (4.5 L). The combined aqueous stream was washed with hexanes (500 mL) and concentrated to 2-3 L to remove a majority of volatile acetonitrile. To the aqueous phase was added concentrated HCl (1 L, 12 N) and the resulting mixture was extracted with hexanes (4 x 1 L). The combined hexanes extracts were washed with half brine (2 x 500 mL) and concentrated to give an oil (216 g). The oil was dissolved in THF (580 mL), and morpholine (120 mL, 1.0 equiv) was added slowly via an addition funnel. Upon completion of addition, the batch was seeded (0.5-1 g) with morpholine salt, and the seeds were held and allowed to thicken over 30 min. Hexanes (1660 mL) were added over ~ 2 h, and the mixture was aged for another 3 h. The batch was filtered, washed with hexanes (~500 mL) in portions and dried under vacuum/dry air flush to give 3,3,3-trifluoro-2,2-dimethylpropionic acid, morpholine salt as a white solid (283 g, 73%).1H NMR (400 MHz, CD3OD) δ 3.84-3.86 (m, 4H), 3.15-3.18 (m, 4H), 1.33 (s, 6H); 19F NMR (376 MHz, CD3OD): δ -75.90 (s, 3F).

B. Synthesis of 3,3,3-Trifluoro-2,2-dimethyl-propan-1-ol (5)

[00156] A 1 L 3 neck round bottom flask was fitted with a mechanical stirrer, a cooling bath, an addition funnel, and a J-Kem temperature probe. The vessel was charged with lithium aluminum hydride (LAH) pellets (6.3 g, 0.1665 mol) under a nitrogen atmosphere. The vessel was then charged with tetrahydrofuran (200 mL) under a nitrogen atmosphere. The mixture was allowed to stir at room temperature for 0.5 hours to allow the pellets to dissolve. The cooling bath was then charged with crushed ice in water and the reaction temperature was lowered to 0 oC. The addition funnel was charged with a solution of 3,3,3-trifluoro-2,2-dimethyl-propanoic acid (20 g, 0.1281 mol) in tetrahydrofuran (60 mL) and the clear pale yellow solution was added drop wise over 1 hour. After the addition was complete the mixture was allowed to slowly warm to room temperature and stirring was continued for 24 hours. The suspension was cooled to 0 oC with a crushed ice-water in the cooling bath and then quenched by the very slow and drop wise addition of water (6.3 ml), followed by sodium hydroxide solution (15 weight %; 6.3 mL) and then finally with water (18.9 mL). The reaction temperature of the resulting white suspension was recorded at 5 oC. The suspension was stirred at ~5 oC for 30 minutes and then filtered through a 20 mm layer of Celite. The filter cake was washed with tetrahydrofuran (2 x 100 mL). The filtrate was dried over sodium sulfate (150 g) and then filtered. The filtrate was concentrated under reduced pressure to provide a clear colorless oil (15 g) containing a mixture of the product 3,3,3-trifluoro-2,2-dimethyl-propan-1-ol in THF (73 % weight of product ~10.95g, and 27 wt.% THF as determined by 1H-NMR). The distillate from the rotary evaporation was distilled at atmospheric pressure using a 30 cm Vigreux column to provide 8.75 g of a residue containing 60 % weight of THF and 40 % weight of product (~3.5 g), which corresponds to 14.45 g (79% yield).1H NMR (400 MHz, DMSO-d6) δ 4.99 (t, J = 5.7 Hz, 1H), 3.38 (dd, J = 5.8, 0.9 Hz, 2H), 1.04 (d, J = 0.9 Hz, 6H).

C. Synthesis of tert-Butyl 3-oxo-2,3-dihydro-1H-pyrazole-1-carboxylate (22)

[00157] A 50L Syrris controlled reactor was started and the jacket was set to 20 °C, stirring at 150 rpm, reflux condenser (10 °C) and nitrogen purge. MeOH (2.860 L) and methyl (E)-3-methoxyprop-2-enoate (2.643 kg, 22.76 mol) were added and the reactor was capped. The reaction was heated to an internal temperature of 40 °C and the system was set to hold jacket temp at 40 °C. Hydrazine hydrate (1300 g of 55 %w/w, 22.31 mol) was added portion wise via addition funnel over 30 min. The reaction was heated to 60 ^C for 1 h. The reaction mixture was cooled to 20 ^C and triethylamine (2.483 kg, 3.420 L, 24.54 mol) was added portion wise, maintaining reaction temp <30 °C. A solution of Boc anhydride (di-tert-butyl dicarbonate) (4.967 kg, 5.228 L, 22.76 mol) in MeOH (2.860 L) was added portion wise maintaining temperature <45 °C. The reaction mixture was stirred at 20 ^C for 16 h. The reaction solution was partially concentrated to remove MeOH, resulting in a clear light amber oil. The resulting oil was transferred to the 50L reactor, stirred and added water (7.150 L) and heptane (7.150 L). The additions caused a small amount of the product to precipitate. The aqueous layer was drained into a clean container and the interface and heptane layer were filtered to separate the solid (product). The aqueous layer was transferred back to the reactor, and the collected solid was placed back into the reactor and mixed with the aqueous layer. A dropping funnel was added to the reactor and loaded with acetic acid (1.474 kg, 1.396 L, 24.54 mol), then began dropwise addition of acid. The jacket was set to 0 °C to absorb the quench exotherm. After addition (pH=5), the reaction mixture was stirred for 1 h. The solid was collected by filtration and washed with water (7.150 L) and washed a second time with water (3.575 L) and pulled dry. The crystalline solid was scooped out of the filter into a 20L rotovap bulb and heptane (7.150 L) was added. The mixture was slurried at 45 °C for 30 mins, and then 1-2 volumes of solvent was distilled off. The slurry in the rotovap flask was filtered and the solids washed with heptane (3.575 L) and pulled dry. The solid was further dried in vacuo (50 °C, 15 mbar) to give tert-butyl 5-oxo-1H-pyrazole-2-carboxylate (2921 g, 71%) as coarse solid.1H NMR (400 MHz, DMSO-d6) δ 10.95 (s, 1H), 7.98 (d, J = 2.9 Hz, 1H), 5.90 (d, J = 2.9 Hz, 1H), 1.54 (s, 9H).

II. Preparation of Compound I

Step A: tert-Butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate (23)

[00158] A mixture of 3,3,3-trifluoro-2,2-dimethyl-propan-1-ol (10 g, 70.36 mmol) and tert-butyl 3-hydroxypyrazole-1-carboxylate (12.96 g, 70.36 mmol) in toluene (130 mL) was treated with triphenyl phosphine (20.30 g, 77.40 mmol) followed by isopropyl N-

isopropoxycarbonyliminocarbamate (14.99 mL, 77.40 mmol) and the mixture was stirred at 110 °C for 16 hours. The yellow solution was concentrated under reduced pressure, diluted with heptane (100mL) and the precipitated triphenylphosphine oxide was removed by filtration and washed with heptane/toluene 4:1 (100mL). The yellow filtrate was evaporated and the residue purified by silica gel chromatography with a linear gradient of ethyl acetate in hexane (0-40%) to give tert-butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate (12.3 g, 57%) as an off white solid. ESI-MS m/z calc.308.13477, found 309.0 (M+1) +; Retention time: 1.84 minutes.1H NMR (400 MHz, DMSO-d6) δ 8.10 (d, J = 3.0 Hz, 1H), 6.15 (d, J = 3.0 Hz, 1H), 4.18 (s, 2H), 1.55 (s, 9H), 1.21 (s, 6H).

Step B: 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole (7)

[00159] tert-Butyl 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazole-1-carboxylate (13.5 g, 43.79 mmol) was treated with 4 M hydrogen chloride in dioxane (54.75 mL, 219.0 mmol) and the mixture was stirred at 45 °C for 1 hour. The reaction mixture was evaporated to dryness and the residue was extracted with 1 M aqueous NaOH (100ml) and methyl tert-butyl ether (100ml), washed with brine (50ml) and extracted with methyl tert-butyl ether (50ml). The combined organic phases were dried, filtered and evaporated to give 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole (9.0 g, 96%) as an off white solid. ESI-MS m/z calc.208.08235, found 209.0 (M+1) +; Retention time: 1.22 minutes.1H NMR (400 MHz, DMSO-d6) δ 11.91 (s, 1H), 7.52 (d, J = 2.2 Hz, 1H), 5.69 (t, J = 2.3 Hz, 1H), 4.06 (s, 2H), 1.19 (s, 6H).

Step C: tert-Butyl 2,6-dichloropyridine-3-carboxylate (25)

[00160] A solution of 2,6-dichloropyridine-3-carboxylic acid (10 g, 52.08 mmol) in THF (210 mL) was treated successively with di-tert-butyl dicarbonate (17 g, 77.89 mmol) and 4-(dimethylamino)pyridine (3.2 g, 26.19 mmol) and left to stir overnight at room temperature. At this point, HCl 1N (400 mL) was added and the mixture was stirred vigorously for about 10 minutes. The product was extracted with ethyl acetate (2x300mL) and the combined organics layers were washed with water (300 mL) and brine (150 mL) and dried over sodium sulfate and concentrated under reduced pressure to give 12.94 g (96% yield) of tert-butyl 2,6-dichloropyridine-3-carboxylate as a colorless oil. ESI-MS m/z calc.247.01668, found 248.1 (M+1) +; Retention time: 2.27 minutes.1H NMR (300 MHz, CDCl3) ppm 1.60 (s, 9H), 7.30 (d, J=7.9 Hz, 1H), 8.05 (d, J=8.2 Hz, 1H).

Step D: tert-Butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylate (26)

[00161] To a solution of tert-butyl 2,6-dichloropyridine-3-carboxylate (10.4 g, 41.9 mmol) and 3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)-1H-pyrazole (9.0 g, 41.93 mmol) in DMF (110 mL) were added potassium carbonate (7.53 g, 54.5 mmol) and 1,4-diazabicyclo[2.2.2]octane (706 mg, 6.29 mmol) and the mixture was stirred at room temperature for 16 hours. The cream suspension was cooled in a cold water bath and cold water (130 mL) was slowly added. The thick suspension was stirred at room temperature for 1 hour, filtered and washed with plenty of water to give tert-butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylate (17.6 g, 99%) as an off white solid. ESI-MS m/z calc.419.12234, found 420.0 (M+1) +; Retention time: 2.36 minutes.1H NMR (400 MHz, DMSO-d6) δ 8.44 (d, J = 2.9 Hz, 1H), 8.31 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 6.26 (d, J = 2.9 Hz, 1H), 4.27 (s, 2H), 1.57 (s, 9H), 1.24 (s, 6H).

Step E: 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (10)

[00162] tert-Butyl 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylate (17.6 g, 40.25 mmol) was suspended in isopropanol (85 mL) treated with hydrochloric acid (34 mL of 6 M, 201 mmol) and heated to reflux for 3 hours (went almost complete into solution at reflux and started to precipitate again). The suspension was diluted with water (51 mL) at reflux and left to cool to room temperature under stirring for 2.5 h. The solid was collected by filtration, washed with

isopropanol/water 1:1 (50mL), plenty of water and dried in a drying cabinet under vacuum at 45-50 °C with a nitrogen bleed overnight to give 2-chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (13.7 g, 91%) as an off white solid. ESI-MS m/z calc.363.05975, found 364.0 (M+1) +; Retention time: 1.79 minutes. 1H NMR (400 MHz, DMSO-d6) δ 13.61 (s, 1H), 8.44 (d, J = 2.9 Hz, 1H), 8.39 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 6.25 (d, J = 2.9 Hz, 1H), 4.28 (s, 2H), 1.24 (s, 6H).

Step F: 2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxamide (13)

[00163] 2-Chloro-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxylic acid (100 mg, 0.2667 mmol) and CDI (512 mg, 3.158 mmol) were combined in THF (582.0 µL) and the mixture was stirred at room temperature. Meanwhile, 1,3-dimethylpyrazole-4-sulfonyl chloride (62 mg, 0.3185 mmol) was combined with ammonia (in methanol) in a separate vial, instantly forming a white solid. After stirring for an additional 20 min, the volatiles were removed by evaporation, and 1 mL of dichloromethane was added to the solid residue, and was also evaporated. DBU (100 µL, 0.6687 mmol) was then added and the mixture stirred at 60 °C for 5 minutes, followed by addition of THF (1 mL) which was subsequently evaporated. The contents of the vial containing the CDI activated carboxylic acid in THF were then added to the vial containing the newly formed sulfonamide and DBU, and the reaction mixture was stirred for 4 hours at room temperature. The reaction mixture was diluted with 10 mL of ethyl acetate, and washed with 10 mL solution of citric acid (1 M). The aqueous layer was extracted with ethyl acetate (2x 10 mL) and the combined organics were washed with brine, dried over sodium sulfate, and concentrated to give 2-chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxamide as white solid (137 mg, 99%) that was used in the next step without further purification. ESI-MS m/z calc.520.09076, found 521.1 (M+1) +;

Retention time: 0.68 minutes.

Step G: N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide (Compound 1)

[00164] 2-Chloro-N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]pyridine-3-carboxamide (137 mg, 0.2630 mmol), (4S)-2,2,4-trimethylpyrrolidine (Hydrochloride salt) (118 mg, 0.7884 mmol), and potassium carbonate (219 mg, 1.585 mmol) were combined in DMSO (685.0 µL) and the mixture was heated at 130 ^C for 16 hours. The reaction was cooled to room temperature, and 1 mL of water was added. After stirring for 15 minutes, the contents of the vial were allowed to settle, and the liquid portion was removed via pipet and the remaining solids were dissolved with 20 mL of ethyl acetate and were washed with 1 M citric acid (15 mL). The layers were separated and the aqueous layer was extracted two additional times with 15 mL of ethyl acetate. The organics were combined, washed with brine, dried over sodium sulfate and concentrated. The resulting solid was further purified by silica gel chromatography eluting with a gradient of methanol in dichloromethane (0-10%) to give N-(1,3-dimethylpyrazol-4-yl)sulfonyl-6-[3-(3,3,3-trifluoro-2,2-dimethyl-propoxy)pyrazol-1-yl]-2-[(4S)-2,2,4-trimethylpyrrolidin-1-yl]pyridine-3-carboxamide (72 mg, 41%) as a white solid. ESI-MS m/z calc.597.2345, found 598.3 (M+1) +; Retention time: 2.1 minutes.1H NMR (400 MHz, DMSO) δ 12.36 (s, 1H), 8.37 (s, 1H), 8.22 (d, J = 2.8 Hz, 1H), 7.74 (d, J = 8.2 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.17 (d, J = 2.8 Hz, 1H), 4.23 (s, 2H), 3.81 (s, 3H), 2.56 (d, J = 10.4 Hz, 1H), 2.41 (t, J = 8.7 Hz, 1H), 2.32 (s, 3H), 2.18 (dd, J = 12.4, 6.1 Hz, 1H), 1.87 (dd, J = 11.7, 5.5 Hz, 1H), 1.55 (d, J = 11.2 Hz, 6H), 1.42 (t, J = 12.0 Hz, 1H), 1.23 (s, 6H), 0.81 (d, J = 6.2 Hz, 3H).

///////////VX-445, Elexacaftor, VX445, エレクサカフトル  , PHASE 3, CYSTIC FIBRIOSIS, VX 445

C[C@@H]1CN(c2nc(ccc2C(=O)NS(=O)(=O)c3cn(C)nc3C)n4ccc(OCC(C)(C)C(F)(F)F)n4)C(C)(C)C1

CC1CC(N(C1)C2=C(C=CC(=N2)N3C=CC(=N3)OCC(C)(C)C(F)(F)F)C(=O)NS(=O)(=O)C4=CN(N=C4C)C)(C)C

MITAPIVAT


Structure of MITAPIVAT

Mitapivat

MITAPIVAT

CAS 1260075-17-9

MF C24H26N4O3S
MW 450.55

8-Quinolinesulfonamide, N-[4-[[4-(cyclopropylmethyl)-1-piperazinyl]carbonyl]phenyl]-

N-[4-[[4-(Cyclopropylmethyl)-1-piperazinyl]carbonyl]phenyl]-8-quinolinesulfonamide

  • Originator Agios Pharmaceuticals
  • Class Antianaemics; Piperazines; Quinolines; Small molecules; Sulfonamides
  • Mechanism of Action Pyruvate kinase stimulants
  • Orphan Drug Status Yes – Inborn error metabolic disorders
  • New Molecular Entity Yes
  • Phase III Inborn error metabolic disorders
  • Phase II  Thalassaemia
  • 27 Feb 2019 Agios Pharmaceuticals plans a phase III trial for Inborn error metabolic disorders (Pyruvate kinase deficiency) (Treatment-experienced) in the US, Brazil, Canada, Czech Republic, Denmark, France, Germany, Ireland, Italy, Japan, South Korea, Netherlands, Portugal, Spain, Switzerland, Thailand, Turkey and United Kingdom in March 2019 (NCT03853798) (EudraCT2018-003459-39)
  • 11 Dec 2018 Phase-II clinical trials in Thalassaemia in Canada (PO) (NCT03692052)
  • 29 Aug 2018 Chemical structure information added

Activator of pyruvate kinase isoenzyme M2 (PKM2), an enzyme involved in glycolysis. Since all tumor cells exclusively express the embryonic M2 isoform of PK, it is hypothesized that PKM2 is a potential target for cancer therapy. Modulation of PKM2 might also be effective in the treatment of obesity, diabetes, autoimmune conditions, and antiproliferation-dependent diseases.

Agios Pharmaceuticals is developing AG-348 (in phase 3 , in June 2019), an oral small-molecule allosteric activator of the red blood cell-specific form of pyruvate kinase (PK-R), for treating PK deficiency and non-transfusion-dependent thalassemia.

SYN

WO 20100331307

str1

CAS 59878-57-8 TO CAS 57184-25-5

Eisai Co., Ltd., EP1508570,  Lithium aluminium hydride (770 mg, 20.3 mmol) was suspended in tetrahydrofuran (150 mL), 1-(cyclopropylcarbonyl)piperazine (1.56 g, 10.1 mmol) was gradually added thereto, and the reaction mixture was heated under reflux for 30 minutes. The reaction mixture was cooled to room temperature, and 0.8 mL of water, 0.8 mL of a 15percent aqueous solution of sodium hydroxide and 2.3 mL of water were seque ntially gradually added thereto. The precipitated insoluble matter was removed by filtration through Celite, and the filtrate was evaporated to give the title compound (1.40g) as a colorless oil. The product was used for the synthesis of (8E,12E,14E)-7-((4-cyclopropylmethylpiperazin-1-yl)carbonyl)oxy-3,6,16,21-tetrahydroxy-6,10,12,16,20-pentamethyl-18,19-epoxytricosa-8,12,14-trien-11-olide (the co mpound of Example 27) without further purification.1H-NMR Spectrum (CDCl3,400MHz) delta(ppm): 0.09-0.15(2H,m), 0.48-0.56(2H,m),0.82-0.93(1H,m),2.25(2H,d,J=7.2Hz) 2.48-2.65(4H,m),2.90-2.99(4H,m).

str1

CAS 91-22-5 TO CAD 18704-37-5

chlorosulfonic acid;

Russian Journal of Organic Chemistry, vol. 36, 6, (2000), p. 851 – 853

Yield : 52%1-Step Reaction

NMR

US2010/331307

dimethylsulfoxide-d6, 1H

1H NMR (400 MHz, DMSO-d6) δ: 1.2 (t, 2H), 1.3 (t, 2H), 1.31-1.35 (m, 1H), 2.40 (s, 2H), 3.68 (br s, 4H), 3.4-3.6 (m, 4H), 7.06 (m, 6H), 7.25-7.42 (m, 3H), 9.18 (s, 1H) 10.4 (s, 1H)

1H NMR (400 MHz, DMSO-d6) δ: 0.04-0.45 (m, 2H), 0.61-0.66 (m, 2H), 1.4-1.6 (m, 1H), 2.21-2.38 (m, 4H), 2.61 (d, 2H), 3.31-3.61 (br s, 4H), 6.94-7.06 (m, 4H), 7.40 (d, 2H), 7.56-7.63 (m, 2H), 8.28 (d, 1H), 9.18 (s, 1H), 10.4 (s, 1H)

Development Overview

Introduction

Mitapivat (designated AG 348), an orally available, first-in-class, small molecule stimulator of pyruvate kinase (PK), is being developed by Agios Pharmaceuticals for the treatment of pyruvate kinase deficiency (Inborn error metabolic disorders in development table) and thalassemia. Mitapivat is designed to activate the wild-type (normal) and mutated PK-R (the isoform of pyruvate kinase that is present in erythrocytes), in order to correct the defects in red cell glycolysis found within mutant cells. Clinical development is underway for inborn error metabolic disorders in the US, Spain and Denmark and for Thalassaemia in Canada.

Mitapivat emerged from Agios’ research programme focussed on the discovery of small molecule therapeutics for inborn metabolic disorders [see Adis Insight Drug Profile 800036791].

Key Development Milestones

In April 2017, the US FDA granted fast track designation to mitapivat for the treatment of pyruvate kinase deficiency 

In June 2018, Agios Pharmaceuticals initiated the phase III ACTIVATE trial to evaluate the efficacy and safety of orally administered mitapivat as compared with placebo in participants with pyruvate kinase deficiency (PKD), who are not regularly receiving blood transfusions (NCT03548220; AG348-C-006). The randomised, double-blind, placebo-controlled global trial intends to enrol 80 patients in the US, Canada, Denmark, France, Germany, Italy, Japan, South Korea, Netherlands, Poland, Portugal, Spain, Switzerland, Thailand and United Kingdom. The study design has two parts. Part 1 is a dose optimisation period where patients start at 5mg of mitapivat or placebo twice daily, with the flexibility to titrate up to 20mg or 50mg twice daily over a three month period to establish their individual optimal dose, as measured by maximum increase in hemoglobin levels. After the dose optimisation period, patients will receive their optimal dose for an additional three months in part 2. The primary endpoint of the study is the proportion of patients who achieve at least a 1.5 g/dL increase in haemoglobin sustained over multiple visits in part 2 of the trial 

In February 2018, Agios Pharmaceuticals initiated the phase III ACTIVATE-T trial to assess the efficacy and safety of mitapivat in regularly transfused adult subjects with pyruvate kinase deficiency (Inborn error metabolism disorders in development table) (EudraCT2017-003803-22; AG348-C-007). The open label trial will enrol approximately 20 patients in Denmark and Spain and will expand to Canada, France, Italy, Japan, the Netherlands, the UK and the US 

In December 2018, Agios Pharmaceuticals initiated a phase II study to assess the safety, efficacy, pharmacokinetics and pharmacodynamics of mitapivat (50mg and 100mg) for the treatment of patients with non-transfusion-dependent thalassemia (AG348-C-010; EudraCT2018-002217-35; NCT03692052). This study will include a 24-week core period followed by a 2-year extension period for eligible participants. The open-label trial intends to enrol approximately 17 patients. Enrolment has been initiated in Canada and may expand to the US and the UK 

Agios Pharmaceuticals, in June 2015 initiated the phase II DRIVE PK trial to evaluate the safety, efficacy, pharmacokinetics and pharmacodynamics of mitapivat in adult transfusion-independent patients with pyruvate kinase deficiency (Inborn error metabolism disorders in development table) (AG348-C-003; NCT02476916). The trial will include two arms with 25 patients each. The patients in the first arm will receive 50mg twice daily, and the patients in the second arm will receive 300mg twice daily. The study will include a six-month dosing period with the opportunity for continued treatment beyond six months based on safety and clinical activity. The open-label, randomised trial completed enrolment of targeted 52 patients in the US, in November 2016. Preliminary data from the trial was presented at the 21st Congress of the European Haematology Association (EHA-2016). Updated results were presented by Agios at the 58th Annual Meeting and Exposition of the American Society of Haematology in December 2016. Based on results of the DRIVE PK trial, Agios plans to develop a registration path for mitapivat. Updated data from the trial was presented at the 22nd Congress of the European Haematology Association (EHA-2017) 

In December 2017, Agios pharmaceuticals presented updated safety and efficacy data from this trial at the 59th Annual Meeting and Exposition of the American Society of Hematology (ASH- Hem 2017). Results showed that chronic daily dosing with mitapivat has been well tolerated and has resulted in clinically relevant, durable increases in Hb and reductions in markers of haemolysis across a range of doses 

In June 2018, Agios Pharmaceuticals completed a phase I trial in healthy male volunteers to assess the absorption, distribution, metabolism, excretion and absolute bioavailability of AG 348 (AG348-C-009; NCT03703505). Radiolabelled analytes of AG 348 ([14C]AG 348 and [13C6]AG 348) were administered in a single oral and intravenous dose on day 1. The open label trial was initiated in May 2018 and enrolled 8 volunteers in the US 

In November 2017, Agios Pharmaceuticals completed a phase I trial that evaluated the relative bioavailability and safety of the mitapivat tablet and capsule formulations after single-dose administration in healthy adults (AG348-C-005; NCT03397329). The open-label trial enrolled 26 subjects in the US and was initiated in October 2017 

In October 2017, Agios Pharmaceuticals completed a phase I trial that evaluated the pharmacokinetics, safety and effect on QTc interval of mitapivat in healthy volunteers (AG348-C-004; NCT03250598). This single-dose, open-label trial was initiated in August 2017 and enrolled 60 volunteers in the US

In November 2014, Agios completed a randomised, double-blind, placebo-controlled phase I trial that assessed the safety, pharmacokinetics and pharmacodynamics of multiple escalating doses of mitapivat in healthy volunteers (MAD; AG-348MAD; AG348-C-002; NCT02149966). Mitapivat was dosed daily for 14 days. The trial recruited 48 subjects in the US. In June 2015, positive results from the trial were presented at the 20th congress of the European Haematology Association (EHA-2015). Mitapivat showed a favourable pharmacokinetic profile with rapid absorption, low to moderate variability and a dose-proportional increase in exposure following multiple doses and serum hormone changes consistent with reversible aromatase inhibition were also observed 

Agios Pharmaceuticals completed a randomised, double-blind, placebo-controlled phase I clinical trial of mitapivat in August 2014 (AG-348 SAD; AG348-C-001; NCT02108106). The study evaluated the safety, pharmacokinetics and pharmacodynamics of single escalating doses of the agent in healthy volunteers. Potential metabolic biomarkers were also explored. The trial enrolled 48 participants in the US 

IND-enabling studies were conducted in 2013 In December 2013, Agios presented data from in vitro studies at the 55th Annual Meeting and Exposition of the American Society of Hematology (ASH-Hem-2013), showing that mitapivat activates a range of pyruvate kinase mutant proteins in blood samples taken from patients with pyruvate kinase deficiency. The company hypothesised that mitapivat may restore the glycolytic pathway activity and normalise erythrocyte metabolism in vivo The US FDA granted orphan designation for mitapivat for the treatment of pyruvate kinase deficiency. The designation was granted to Agios Pharmaceuticals, in March 2015.

Patent Information

As of January 2018, Agios Pharmaceuticals owned approximately six issued US patents, 65 issued foreign patents, five pending US patent applications and 55 pending foreign patent applications in a number of jurisdictions directed to PK deficiency programme, including mitapivat (AG 348). The patents are valid till at least 2030 

Patents

US 20100331307 A1
WO 2011002817 A1
WO 2012151451 A1
WO 2013056153 A1
WO 2014018851 A1
WO 2016201227 A1

WO2011002817

Mitapivat, also known as PKM2 activator 1020, is an activator of a pyruvate kinase PKM2, an enzyme involved in glycolysis. It was disclosed in a patent publication WO 2011002817 A1 as compound 78.

WO2019099651 ,

PATENT

WO-2019104134

Novel crystalline and amorphous forms of N-(4-(4-(cyclopropylmethyl)piperazine-1-carbonyl)phenyl)quinoline-8-sulfonamide (also known as mitapivat ) and their hemi-sulfate, solvates, hydrates, sesquihydrate, anhydrous and ethanol solvate (designated as Form A-J), processes for their preparation and compositions comprising them are claimed. Also claims are their use for treating pyruvate kinase deficiency, such as sickle cell disease, thalassemia and hemolytic anemia.

Pyruvate kinase deficiency (PKD) is a disease of the red blood cells caused by a deficiency of the pyruvate kinase R (PKR) enzyme due to recessive mutations of PKLR gene (Wijk et al. Human Mutation, 2008, 30 (3) 446-453). PKR activators can be beneficial to treat PKD, thalassemia (e.g., beta-thalessemia), abetalipoproteinemia or Bassen-Kornzweig syndrome, sickle cell disease, paroxysmal nocturnal hemoglobinuria, anemia (e.g., congenital anemias (e.g., enzymopathies), hemolytic anemia (e.g. hereditary and/or congenital hemolytic anemia, acquired hemolytic anemia, chronic hemolytic anemia caused by phosphoglycerate kinase deficiency, anemia of chronic diseases, non- spherocytic hemolytic anemia or hereditary spherocytosis). Treatment of PKD is supportive, including blood transfusions, splenectomy, chelation therapy to address iron overload, and/or interventions for other disease-related morbidity. Currently, however, there is no approved medicine that treats the underlying cause of PKD, and thus the etiology of life-long hemolytic anemia.

[0003] N-(4-(4-(cyclopropylmethyl)piperazine-l-carbonyl)phenyl)quinoline-8-sulfonamide, herein referred to as Compound 1, is an allosteric activator of red cell isoform of pyruvate kinase (PKR). See e.g., WO 2011/002817 and WO 2016/201227, the contents of which are incorporated herein by reference.


(Compound 1)

[0004] Compound 1 was developed to treat PKD and is currently being investigated in phase 2 clinical trials. See e.g., U.S. clinical trials identifier NCT02476916. Given its therapeutic benefits, there is a need to develo

Compound 1, i.e., the non-crystalline free base, can be prepared following the procedures described below.

Preparation of ethyl -4-(quinoline-8-sulfonamido) benzoate

EtO TV 

[00170] A solution containing ethyl-4-aminobenzoate (16. Og, 97mmol) and pyridine (l4.0g, l77mmol) in acetonitrile (55mL) was added over 1.2 hours to a stirred suspension of quinoline- 8 -sulfonyl chloride (20.0g, 88mmol) in anhydrous acetonitrile (100 mL) at 65°C. The mixture was stirred for 3.5 hours at 65 °C, cooled to 20°C over 1.5 hours and held until water (140 mL) was added over 1 hour. Solids were recovered by filtration, washed 2 times (lOOmL each) with acetonitrile/water (40/60 wt./wt.) and dried to constant weight in a vacuum oven at 85°C. Analyses of the white solid (30.8g, 87mmol) found (A) HPLC purity = 99.4% ethyl -4-(quinoline-8-sulfonamido) benzoate, (B) LC-MS consistent with structure, (M+l)= 357 (C18 column eluting 95-5, CH3CN/water, modified with formic acid, over 2 minutes), and (C) 1H NMR consistent with structure (400 MHz, DMSO-i 6) = d 10.71 (s, 1H), 9.09 (dd, 7 = 4.3, 1.6 Hz, 1H), 8.46 (ddt, 7 = 15.1, 7.3, 1.5 Hz, 2H), 8.26 (dd, 7 = 8.3, 1.4 Hz, 1H), 7.84 – 7.54 (m, 4H), 7.18 (dd, 7 = 8.6, 1.3 Hz, 2H), 4.26 – 4.07 (m, 2H), 1.19 (td, 7 = 7.1, 1.2 Hz, 3H).

Preparation of 4-(quinoline-8-sulfonamide) benzoic acid

Step 2

[00171] A NaOH solution (16.2g, l22mmol) was added over 30 minutes to a stirred suspension of ethyl -4-(quinoline-8-sulfonamido) benzoate (20. Og, 56.2mmol) in water (125 mL) at 75°C. The mixture was stirred at 75°-80°C for 3 hours, cooled 20°C and held until THF (150 mL) was added. Hydrochloric acid (11% HCL, 8lmL, l32mmol) was added over >1 hour to the pH of 3.0. The solids were recovered by filtration at 5°C, washed with water (2X lOOmL) and dried to constant weight in a vacuum oven at 85°C. Analysis of the white solid (16.7g, 51 mmol) found (A) HPLC puurity = >99.9% 4-(quinoline-8-sulfonamide)benzoic acid, LC-MS consistent with structure (M+l) = 329 (Cl 8 column eluting 95-5 CH3CN/water, modified with formic acid, over 2 minutes.) and 1H NMR consistent with structure (400 MHz, DMSO-76) = d 12.60 (s, 1H), 10.67 (s, 1H), 9.09 (dd, 7 = 4.2, 1.7 Hz, 1H), 8.46 (ddt, 7 = 13.1, 7.3, 1.5 Hz, 2H), 8.26 (dd, 7 = 8.2, 1.5 Hz, 1H), 7.77 -7.62 (m, 3H), 7.64 (d, 7 = 1.3 Hz, 1H), 7.16 (dd, 7 = 8.7, 1.4 Hz, 2H).

Preparation of l-(cyclopropylmethyl)piperazine dihydrochloride (4)

1 ) NaBH(OAc)3

2 3 acetone 4

[00172] To a 1 L reactor under N2 was charged tert-butyl piperazine- l-carboxylate (2) (100.0 g, 536.9 mmol), cyclopropanecarbaldehyde (3) (41.4 g, 590.7 mmol ), toluene (500.0 mL) and 2-propanol (50.0 mL). To the obtained solution was added NaBH(OAc)3 (136.6 g, 644.5 mmol) in portions at 25-35 °C and the mixture was stirred at 25 °C for 2 h. Water (300.0 mL) was added followed by NaOH solution (30%, 225.0 mL) to the pH of 12. The layers were separated and the organic layer was washed with water (100.0 mLx2). To the organic layer was added hydrochloric acid (37%, 135.0 mL, 1.62 mol) and the mixture was stirred at 25 °C for 6 h. The layers were separated and the aqueous layer was added to acetone (2.0 L) at 25 °C in lh. The resulted suspension was cooled to 0 °C. The solid was filtered at 0 °C, washed with acetone (100.0 mLx2) and dried to afford 4 (105.0 g) in 92% isolated yield. LC-MS (C18 column eluting 90-10 CH3CN/water over 2 minutes) found (M+l) =141. 1H NMR (400 MHz, DMSO-76) d 11.93 (br.s, 1H), 10.08 (br., 2H), 3.65 (br.s, 2H), 3.46 (br.s, 6H), 3.04 (d, / = 7.3 Hz, 2H), 1.14 – 1.04 (m, 1H), 0.65 – 0.54 (m, 2H), 0.45 – 0.34 (m, 2H) ppm.

Preparation of N-(4-(4-(cyclopropylmethyl)piperazine-l-carbonyl)phenyl)quinoline-8- sulfonamide (1)

[00173] To a 2 L reactor under N2 was charged 4-(quinoline-8-sulfonamido) benzoic acid (5) (100.0 g, 304.5 mmol) and DMA (500.0 mL). To the resulted suspension was added CDI (74.0 g, 456.4 mmol) in portions at 25 °C and the mixture was stirred at 25 °C for 2 h. To the resulted suspension was added l-(cyclopropylmethyl)piperazine dihydrochloride (4) (97.4 g, 457.0 mmol) in one portion at 25 °C and the mixture was stirred at 25 °C for 4 h. Water (1.0 L) was added in 2 h. The solid was filtered at 25 °C, washed with water and dried under vacuum at 65 °C to afford 1 (124.0 g) in 90 % isolated yield. LC-MS (C18 column eluting 90-10 CH3CN/water over 2 minutes) found (M+l) =451. 1H NMR (400 MHz, DMSO-76) d

10.40 (br.s, 1H), 9.11 (dd, 7 = 4.3, 1.6 Hz, 1H), 8.48 (dd, / = 8.4, 1.7 Hz, 1H), 8.40 (dt, /

7.4, 1.1 Hz, 1H), 8.25 (dd, 7 = 8.3, 1.3 Hz, 1H), 7.76 – 7.63 (m, 2H), 7.17 – 7.05 (m, 4H), 3.57 – 3.06 (m, 4H), 2.44 – 2.23 (m, 4H), 2.13 (d, J = 6.6 Hz, 2H), 0.79 – 0.72 (m, 1H), 0.45 – 0.34 (m, 2H), 0.07 – 0.01 (m, 2H) ppm.

[00174] Two impurities are also identified from this step of synthesis. The first impurity is Compound IM- 1 (about 0.11% area percent based on representative HPLC) with the following structure:


Compound IM-l)

Compound IM-l was generated due to the presence of N-methyl piperazine, an impurity in compound 2, and was carried along to react with compound 5. LC-MS found (M+l) =411.2;

(M-l)= 409.2. 1H NMR (400 MHz, DMSO-76) d 10.43 (brs, 1H) 9.13-9.12 (m, 1H), 8.52-8.50 (m, 1H), 8.43-8.41 (m, 1H), 8.26 (d, 7=4.0 Hz, 1 H), 7.73-7.70 (m, 2H), 7.15-7.097.69 (m, 4H), 3.60-3.25 (brs, 4H), 2.21 (brs, 4H), 2.13 (s, 3H).

[00175] The second impurity is Compound IM-2 (about 0.07% area percent based on the representative HPLC) with the following structure:


(Compound IM-2)

Compound IM-2 was due to the presence of piperazine, an impurity generated by

deprotection of compound 2. The piperazine residue was carried along to react with two molecules of compound 5 to give Compound IM-2. LC-MS found (M+l) =707. 1H NMR (400 MHz, CF3COOD) d 9.30-9.23 (m, 4H), 8.51 (s, 4H), 8.20-8.00 (m, 4H), 7.38-7.28 (m, 8H), 4.02-3.54 (m, 8H).

Solubility Experiments

[00176] Solubility measurements were done by gravimetric method in 20 different solvents at two temperatures (23 °C and 50 °C). About 20-30 mg of Form A, the synthesis of which is described below, was weighed and 0.75 mL solvent was added to form a slurry. The slurry was then stirred for two days at the specified temperature. The vial was centrifuged and the supernatant was collected for solubility measurement through gravimetric method. The saturated supernatant was transferred into pre- weighed 2 mL HPLC vials and weighed again (vial + liquid). The uncapped vial was then left on a 50 °C hot plate to slowly evaporate the solvent overnight. The vials were then left in the oven at 50 °C and under vacuum to remove the residual solvent so that only the dissolved solid remained. The vial was then weighed (vial + solid). From these three weights; vial, vial+liquid and vial+solid; the weight of dissolved solid and the solvent were calculated. Then using solvent density the solubility was calculated as mg solid/mL of solvent. Solubility data are summarized in Table 1.

Table 1

Optimized Crystalline Form A Hemisulfate Salt Scale-up Procedure

[00202] An optimized preparation of Form A as a hemisulfate sesquihydrate salt with and without seeding is provided below.

Preparation of l-(cyclopropylmethyl)-4-(4-(quinoline-8-sulfonamido)benzoyl)piperazin- 1-ium sulfate trihydrate (Form A) with seeding

[00203] To a 2 L reactor under N2 was charged N-(4-(4-(cyclopropylmethyl)piperazine-l-carbonyl)phenyl)quinoline-8-sulfonamide (5) (111.0 g, 246.4 mmol), and a pre-mixed process solvent of ethanol (638.6 g), toluene (266.1 g) and water (159.6 g). The suspension was stirred and heated above 60°C to dissolve the solids, and then the resulting solution was cooled to 50°C. To the solution was added an aqueous solution of H2S04 (2.4 M, 14.1 mL, 33.8 mmol), followed by l-(cyclopropylmethyl)-4-(4-(quinoline-8-sulfonamido)benzoyl)piperazin-l-ium sulfate trihydrate (6) (1.1 g, 2.1 mmol). After 1 h stirring, to the suspension was added an aqueous solution of H2S04 (2.4 M, 42.3 mL, 101.5 mmol) over 5 h. The suspension was cooled to 22°C and stirred for 8 h. The solids were filtered at 22°C, washed with fresh process solvent (2 x 175 g) and dried to give the product (121.6 g) in 94% isolated yield. LC-MS (C18 column eluting 90-10 CH3CN/water over 2 minutes) found (M+l) = 451. 1H NMR (400 MHz, DMSO-76) d 10.45 (s, 1H), 9.11 (dd, J =

4.2, 1.7 Hz, 1H), 8.50 (dd, 7 = 8.4, 1.7 Hz, 1H), 8.41 (dd, 7 = 7.3, 1.5 Hz, 1H), 8.27 (dd, 7 8.2, 1.5 Hz, 1H), 7.79 – 7.60 (m, 2H), 7.17 (d, / = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 3.44 (d, J = 8.9 Hz, 5H), 3.03 – 2.50 (m, 6H), 0.88 (p, J = 6.3 Hz, 1H), 0.50 (d, J = 7.6 Hz, 2H), 0.17 (d, 7 = 4.9 Hz, 2H).

Preparation of l-(cyclopropylmethyl)-4-(4-(quinoline-8-sulfonamido)benzoyl)piperazin- 1-ium sulfate trihydrate (Form A) without seeding

[00204] To a 50 L reactor was charged N-(4-(4-(cyclopropylmethyl)piperazine-l-carbonyl)phenyl)quinoline-8-sulfonamide (5) (1.20 kg, 2.66 mol) and water (23.23 L) at 28°C. While stirring the suspension, an aqueous solution of H2S04 (1.0 M, 261 g) was added dropwise over 2 h. The reaction was stirred at 25 – 30°C for 24 h. The solids were filtered and dried under vacuum below 30°C for 96 h to give the product (1.26 kg) in 90% isolated yield.

11. Reproduction and Preparation of Various Patterns

[00205] The patterns observed during the previous experiments were reproduced for characterization. Patterns B, D, E, F were reproducible. Pattern G was reproduced at lower crystallinity. Pattern I was reproduced, although, it was missing a few peaks. Refer to Table 20.

Table 20

Crystalline Free Base Form of Compound 1

[00215] The crystalline free-base form of Compound 1 can be prepared via the following method.

[00216] 14.8 kg S-l and 120 kg DMAc are charged into a round bottom under N2 protection and the reaction is stirred at 30 °C under N2 protection for 40min, to obtain a clear yellow solution. 7.5 kg CDI (1.02 eq.) is added and the reaction is stirred at 30 °C for 2.5h under N2 protection. 0.6 kg of CDI (0.08 eq.) at 30 °C was added and the mixture was stirred at 30 °C for 2h under N2 protection. The reaction was tested again for material consumption. 11.0 kg (1.14 eq.) l-(cyclopropylmethyl)piperazine chloride was charged in the round bottom at 30 °C and the reaction was stirred under N2 protection for 6h (clear solution). 7.5 X H20 was added dropwise over 2h, some solid formed and the reaction was stirred for lh at 30 °C. 16.8 X H20 was added over 2.5h and the reaction was stirred stir for 2.5h. 3.8 kg (0.25 X) NaOH (30%, w / w, 0.6 eq.) was added and the reaction was stirred for 3h at 30 °C. The reaction was filtered and the wet cake was rinsed with H20 / DMAc=44 kg / 15 kg. 23.35 kg wet cake was obtained (KF: 4%). The sample was re-crystallized by adding 10.0 X DMAc and stirred for lh at 70 °C, clear solution; 4.7 X H20 was added over 2h at 70 °C and the reaction was stirred 2h at 70 °C; 12.8 X H20 was added dropwise over 3h and stirred for 2h at 70 °C; the reaction was adjusted to 30 °C over 5h and stirred for 2h at 30 °C; the reaction was filtered and the wet cake was rinsed with DMAc / H20=l5 kg / 29 kg and 150 kg H20. 19.2 kg wet cake was obtained. The material was recrystallized again as follows. To the wet cake was added 10.0 X DMAc and the reaction was stirred for lh at 70 °C, clear solution.

16.4 X H20 was added dropwise at 70 °C and the reaction was stirred for 2h at 70 °C. The reaction was adjusted to 30 °C over 5.5h and stirred for 2h at 30 °C. The reaction was centrifuged and 21.75 kg wet cake was obtained. The material was dried under vacuum at 70°C for 25h. 16.55 kg of the crystalline free base form of compound 1 was obtained. Purity of 99.6%.

C Kung. Activators of pyruvate kinase M2 and methods of treating disease. PCT Int. Appl. WO 2013056153 A1. 
FG Salituro et al. Preparation of aroylpiperazines and related compounds as pyruvate kinase M2 modulators useful in treatment of cancer. U.S. Pat. Appl. US 20100331307 A1. 

Drug Properties & Chemical Synopsis

  • Route of administrationPO
  • FormulationTablet, unspecified
  • ClassAntianaemics, Piperazines, Quinolines, Small molecules, Sulfonamides
  • Mechanism of ActionPyruvate kinase stimulants
  • WHO ATC codeA16A-X (Various alimentary tract and metabolism products)B03 (Antianemic Preparations)B06A (Other Hematological Agents)
  • EPhMRA codeA16A (Other Alimentary Tract and Metabolism Products)B3 (Anti-Anaemic Preparations)B6 (All Other Haematological Agents)
  • Chemical nameN-[4-[4-(cyclopropylmethyl)piperazine-1-carbonyl]phenyl]quinoline-8-sulfonamide
  • Molecular formulaC24 H26 N4 O3 S

References

  1. Agios Reports First Quarter 2017 Financial Results.

    Media Release 

  2. Agios Announces Initiation of Global Phase 3 Trial (ACTIVATE) of AG-348 in Adults with Pyruvate Kinase Deficiency Who Are Not Regularly Transfused.

    Media Release 

  3. A Phase 3, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of AG-348 in Not Regularly Transfused Adult Subjects With Pyruvate Kinase Deficiency

    ctiprofile 

  4. Agios Provides Business Update on Discovery Research Strategy and Pipeline, Progress on Clinical Programs, Commercial Launch Preparations and Reports First Quarter 2018 Financial Results at Investor Day.

    Media Release 

  5. An Open-Label Study To Evaluate the Efficacy and Safety of AG-348 in Regularly Transfused Adult Subjects With Pyruvate Kinase (PK) Deficiency

    ctiprofile 

  6. A Phase 2, Open-label, Multicenter Study to Determine the Efficacy, Safety, Pharmacokinetics, and Pharmacodynamics of AG-348 in Adult Subjects With Non-transfusion-dependent Thalassemia

    ctiprofile 

  7. Agios Announces Key Upcoming Milestones to Support Evolution to a Commercial Stage Biopharmaceutical Company in 2017.

    Media Release 

  8. Agios to Present Clinical and Preclinical Data at the 20th Congress of the European Hematology Association.

    Media Release 

  9. Agios Announces Updated Data from Fully Enrolled DRIVE PK Study Demonstrating AG-348s Potential as the First Disease-modifying Treatment for Patients with Pyruvate Kinase Deficiency.

    Media Release 

  10. Agios Announces New Data from AG-348 and AG-519 Demonstrating Potential for First Disease-modifying Treatment for Patients with PK Deficiency.

    Media Release 

  11. Agios Provides Update on PKR Program.

    Media Release 

  12. AG-348 Achieves Proof-of-Concept in Ongoing Phase 2 DRIVE-PK Study and Demonstrates Rapid and Sustained Hemoglobin Increases in Adults with Pyruvate Kinase Deficiency.

    Media Release 

  13. Agios Reports New, Final Data from Phase 1 Multiple Ascending Dose (MAD) Study in Healthy Volunteers for AG-348, an Investigational Medicine for Pyruvate Kinase (PK) Deficiency.

    Media Release 

  14. Grace RF, Layton DM, Galacteros F, Rose C, Barcellini W, Morton DH, et al. Results Update from the DRIVE PK Study: Effects of AG-348, a Pyruvate Kinase Activator, in Patients with Pyruvate Kinase Deficiency. ASH-Hem-2017 2017; abstr. 2194.

    Available from: URL: https://ash.confex.com/ash/2017/webprogram/Paper102236.html

  15. A Phase 2, Open Label, Randomized, Dose Ranging, Safety, Efficacy, Pharmacokinetic and Pharmacodynamic Study of AG-348 in Adult Patients With Pyruvate Kinase Deficiency

    ctiprofile 

  16. A Phase I, Open-label Study to Evaluate the Absorption, Distribution, Metabolism, and Excretion and to Assess the Absolute Bioavailability of AG-348 in Healthy Male Subjects Following Administration of a Single Oral Dose of [14C]AG-348 and Concomitant Single Intravenous Microdose of [13C6]AG-348

    ctiprofile 

  17. A Phase 1, Randomized, Open-Label, Two-Period Crossover Study Evaluating the Relative Bioavailability and Safety of the AG-348 Tablet and Capsule Formulations After Single-Dose Administration in Healthy Adults

    ctiprofile 

  18. A Phase 1, Single-Dose, Open-Label Study to Characterize and Compare the Pharmacokinetics, Safety, and Effect on QTc Interval of AG-348 in Healthy Subjects of Japanese Origin and Healthy Subjects of Non-Asian Origin

    ctiprofile 

  19. Agios Pharmaceuticals Initiates Multiple Ascending Dose Trial in Healthy Volunteers of AG-348 for the Potential Treatment of PK Deficiency, a Rare, Hemolytic Anemia.

    Media Release 

  20. A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Multiple Ascending Dose, Safety, Pharmacokinetic, and Pharmacodynamic Study of Orally Administered AG-348 in Healthy Volunteers

    ctiprofile 

  21. Agios Initiates Phase 1 Study of AG-348, a First-in-class PKR Activator, for Pyruvate Kinase Deficiency.

    Media Release 

  22. A Phase I, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose, Safety, Pharmacokinetic and Pharmacodynamic Study of Orally Administered AG-348 in Healthy Volunteers

    ctiprofile 

  23. Agios Pharmaceuticals Reports First Quarter 2014 Financial Results.

    Media Release 

  24. Agios Pharmaceuticals Reports Third Quarter 2013 Financial Results.

    Media Release 

  25. Agios Pharmaceuticals to Present Preclinical Research at the 2013 American Society of Hematology Annual Meeting.

    Media Release 

  26. Agios Presents Preclinical Data from Lead Programs at American Society of Hematology Annual Meeting.

    Media Release 

  27. Agios Pharmaceuticals Form 10-K, February 2018. Internet-Doc 2018;.

    Available from: URL: https://www.sec.gov/Archives/edgar/data/1439222/000143922218000004/agio-123117x10k.htm

  28. Agios Outlines Key 2018 Priorities Expanding Clinical and Research Programs to Drive Long Term Value.

    Media Release 

  29. Grace RF, Layton DM, Galacteros F, Rose C, Barcellini W, Morton DH, et al. Effects of Ag-348, a Pyruvate Kinase Activator, in Patients with Pyruvate Kinase Deficiency: Updated Results from the Drive Pk Study. EHA-2017 2017; abstr. S451.

    Available from: URL: https://learningcenter.ehaweb.org/eha/2017/22nd/181738/rachael.f.grace.effects.of.ag-348.a.pyruvate.kinase.activator.in.patients.with.html?f=m3e1181l15534

  30. Agios Presents Updated Data from DRIVE PK Study Demonstrating AG-348 is Well-Tolerated and Results in Clinically Relevant, Rapid and Sustained Hemoglobin Increases in Patients with Pyruvate Kinase Deficiency.

    Media Release 

////////////MITAPIVAT, PHASE 3, Orphan Drug Status, Inborn error metabolic disorders, AGIOS

RISDIPLAM , リスジプラム


Risdiplam.svg

Image result for RISDIPLAM

RISDIPLAM

RG-7916, RO-7034067, リスジプラム

Formula
C22H23N7O
Cas
1825352-65-5
Mol weight
401.4643
US9969754

7-(4,7-diazaspiro[2.5]octan-7-yl)-2-(2,8-dimethylimidazo[1,2-b]pyridazin-6-yl)pyrido[1,2-a]pyrimidin-4-one

WHO 10614

RG-7916

HY-109101

RO7034067

CS-0039501

EX-A2074

RG7916

The compound was originally claimed in WO2015173181 , for treating spinal muscular atrophy (SMA). Roche , under license from PTC Therapeutics , and Chugai , are developing risdiplam (RO-7034067; RG-7916), a small-molecule survival motor neuron (SMN)2 gene splicing modulator and a lead from an SMN2 gene modulator program initiated by PTC Therapeutics in collaboration with the SMA Foundation , for the oral treatment of spinal muscular atrophy

The product was granted orphan drug designation in the U.S., E.U. and in Japan for the treatment of spinal muscular atrophy. In 2018, it also received PRIME designation in the E.U. for the same indication.

Risdiplam (RG7916RO7034067) is a highly potent, selective and orally active small molecule experimental drug being developed by F. Hoffmann-La RochePTC Therapeutics and SMA Foundation to treat spinal muscular atrophy (SMA). It is a pyridazine derivative that works by increasing the amount of functional survival of motor neuron protein produced by the SMN2 gene through modifying its splicing pattern.[1][2]

As of September 2018, risdiplam is undergoing late-stage clinical trials across the spectrum of spinal muscular atrophy[3][4][5] where it has shown promising preliminary results.[6][7]

PATENT

WO2015173181

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=B8D897794EC02E2BBFD5D2280B3E1883.wapp1nC?docId=WO2015173181&recNum=9&office=&queryString=&prevFilter=%26fq%3DOF%3AKR%26fq%3DICF_M%3A%22C07D%22%26fq%3DPAF_M%3A%22F.+HOFFMANN-LA+ROCHE+AG%22&sortOption=Pub+Date+Desc&maxRec=912

Example 20

7-(4,7-diazaspiro[2.5]octan-7-yl)-2-(2,8-dimethylimidazo[l,2-b]pyridazin-6- yl)pyrido[l,2-a]pyrimidin-4-one

In a sealed tube, 2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)-7-fluoro-pyrido[l,2-a]pyrimidin-4-one (Intermediate 2; 50 mg, 0.162 mmol), DIPEA (0.22 mL, 1.29 mmol, 4 eq.) and 4,7-diazaspiro[2.5]octane dihydrochloride (32 mg, 0.320 mmol, 3.0 eq.) were stirred in

DMSO (2 mL) at 130°C for 48 hours. The solvent was removed under high vacuum. The residue was taken up in CH2CI2 and washed with an aqueous saturated solution of NaHC03. The organic layer was separated and dried over Na2S04 and concentrated in vacuo. The crude was purified by column chromatography (Si02, CH2Cl2/MeOH=98/2 to 95/5) to afford the title product (12 mg, 18%) as a light yellow solid. MS m/z 402.3 [M+H+].

PATENT

WO-2019057740

Process for the preparation of risdiplam and its derivatives.

Scheme 1:

Scheme 3:

Scheme 4:

xample 1: tert-Butyl 7-(6-chloro-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate

5-Bromo-2-chloropyridine (85.0 g, 442 mmol), tert-butyl 4,7-diazaspiro[2.5]octane-4-carboxylate (102 g, 442 mmol) and Me-THF (722 g) were charged into a reaction vessel. After 10 minutes stirring, most of the solids were dissolved and [Pd(Xantphos)Cl2] (3.34 g) was added followed after 5 minutes by a solution of sodium tert-butanolate (56.3 g, 574 mmol) in Me-THF (173 g). The reaction mixture was stirred at 70 °C for 1.25 hours, cooled to room temperature and water (595 g) and 1-propylacetate (378 g) were added. After vigorous stirring, the phases were separated, the organic phase was washed with a second portion of water (425 g) and with a mixture of water (425 g) and brine (25 mL). The organic phase was treated with active charcoal (6.8 g), filtered and concentrated under reduced pressure to afford a brown oil, which was dissolved in tert-amyl-methyl-ether (347 g) at reflux. The solution was cooled slowly to room temperature. After stirring 18 hours at room temperature, n-heptane (205 g) was added and the suspension was further cooled to -10 °C. The precipitate was filtered off and dried under high vacuum to afford tert-butyl 7-(6-chloro-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate (110.9 g, 77.5%) as a beige solid.

Ή-ΝΜΡν (CDC13, 600 MHz): 7.95 (d, 1H); 7.18 – 7.14 (m, 1H); 7.13 – 7.09 (m, 1H); 3.79 – 3.63 (m, 2H); 3.24 – 3.12 (m, 2H); 2.96 (s, 2H); 1.47 (s, 9H); 1.11 – 1.04 (m, 2H); 0.90 -0.79 (m, 2H); LCMS: 324.15, 326.15 (M+H+)

Example 2: tert-butyl 7-(6-amino-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate

An autoclave equipped with an ascending pipe was filled with ammonia (78.7 g, 15 eq; 10 eq are sufficient) at -70 °C. Another autoclave was charged with tert-butyl 7-(6-chloro-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate (100 g, 309 mmol), sodium tert-butanolate (32.6 g, 340 mmol) and dioxane (800 mL). After 10 minutes stirring at room temperature under Ar, a solution of Pd2(dba)3 (1.41 g, 1.54 mmol) and tBuBrettPhos (1.50 g, 3.09 mmol) in dioxane (180 mL) was added. Thereafter, the connected ammonia vessel was warmed with a warm water bath and the connecting valve was opened. The autoclave was warmed to 30 °C and the reaction mixture stirred 5 hours at this temperature. The ammonia vessel was closed and disconnected. The excess ammonia was washed out of the autoclave with Argon. The reaction solution was poured into a separating funnel, the autoclave washed with ethyl acetate (300 mL) and water (100 mL) and these two solvent portions were added to the separating funnel. The biphasic mixture was further diluted with ethyl acetate (900 mL) and water (1000 mL). After vigorous stirring, the phases were separated. The organic phase was washed with a mixture of water (500 mL) and brine (10 mL). The combined aqueous phases were extracted twice with ethyl acetate (500 mL). The combined organic phases were treated with active charcoal (3.70 g, 309 mmol), filtered and the filtrate was concentrated under reduced pressure to afford a thick brown oil. This oil was dissolved in 1 -propyl acetate (160 mL) at 45-50°C and n-heptane (940 mL) was added drop wise within 1.5 hours. The suspension was cooled slowly to -5°C, stirred 4 hours at -5 °C and filtered. The precipitate was washed with cold n-heptane and dried under high vacuum at 50°C to afford tert-butyl 7-(6-amino-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate (81.4 g, 86.5%) as a beige solid.

Ή-ΝΜΡν (CDCb, 600 MHz): 7.71 (d, 1H); 7.12 (dd, 1H); 6.47 (d, 1H); 4.18 (br s, 2H); 3.74 – 3.58 (m, 2H); 3.09 – 2.94 (m, 2H); 2.81 (s, 2H); 1.52 – 1.39 (m, 9H); 1.17 – 0.98 (m, 2H); 0.92 – 0.75 (m, 2H); LCMS: 305.20 (M+H+)

Example 3: tert-butyl 7-(6-amino-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate

An autoclave was charged with tert-butyl 7-(6-chloro-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate (339 mg, 1 mmol), sodium tert-butanolate (109 mg, 1.1 mmol) and dioxane (5 mL). After 5 minutes stirring at room temperature under Argon [Pd(allyl)(tBuBrettPhos)]OTf (4 mg, 5 μιηοΐ) was added. Thereafter, the autoclave was closed and connected to an ammonia tank, the valve was open and ammonia (230 mg, 13.5 mmol) was introduced into the autoclave. The valve was closed and the autoclave disconnected. The autoclave was warmed to 30 °C and the reaction mixture stirred 4 hours at this temperature. Then the autoclave was opened and the excess ammonia was washed out of the autoclave with Argon. The reaction solution was poured into a flask and taken to dryness under reduced pressure. The residue was purified by chromatography over silica gel (eluent: dichloromethane/ethyl acetate to dichloromethane/methanol). After evaporation of the solvents tert-butyl 7-(6-amino-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate (283 mg, 93%) was isolated as a brown oil containing 4% dichloromethane and 3% ethyl acetate.

Example 4: tert-butyl 7-(6-nitro-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate

tert-Butyl 4,7-diazaspiro[2.5]octane-4-carboxylate oxalate salt (2.46 kg, 8.13 mol), 5-bromo-2-nitro-pyridine (1.50 kg, 7.39 mol) and dimethyl sulfoxide (7.80 L) were char; into a reaction vessel pre-heated to 35 °C. With stirring, and keeping the temperature below 40°C, lithium chloride (1.25 kg, 25.6 mol) was added portion- wise followed by tetramethylguanidine (2.98 kg, 25.9 mol). Dimethyl sulfoxide (450 mL) was used to rinse the feed line. The reaction mixture was stirred at 79 °C for 8 hours, cooled to 70°C and water (2.48 L) was added within 2 hours. After stirring at 70 °C for an additional 1 hour, the precipitate was filtered off and washed with water (4.5 L) three times. The precipitate was dissolved in ethyl acetate (15 L) and water (7.5 L) at reflux temperature. The phases were separated at 60°C and n-heptane (7.5 L) was added to the organic layer at 60°C within 30 minutes. The solution was cooled to 0°C in 2 hours and further stirred at 0°C for 1 hour. The precipitate was filtered off, washed with a mixture of ethyl acetate (750 mL)/n-heptane (375 mL) twice and dried under reduced pressure to afford 1.89 kg (76.4%) of tert-butyl 7-(6-nitro-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate as a yellow to light brown solid.

!H-NMR (CDCls, 600 MHz): 8.16 (d, 1H); 8.07 (d, 1H); 7.15 (dd, 1H); 3.80 – 3.72 (m, 2H); 3.49 – 3.41 (m, 2H); 3.23 (s, 2H); 1.48 (s, 9H); 1.16 – 1.08 (m, 2H); 0.92 – 0.85 (m, 2H); LCMS: 335.17 (M+H+)

Example 5: tert-butyl 7-(2-hydroxy-4-oxo-pyrido[l,2-a]pyrimidin-7-yl)-4,7-diazaspiro[2.5]octane-4-carboxylate

tert-Butyl 7-(6-amino-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate (80.0 g, 263 mmol) was dissolved in anisole (800 mL) and di-tert-butyl malonate (71.1 g, 315 mmol) was added. The solution was stirred 3.5 hours at 145 °C then cooled to room temperature. The precipitate was filtered off, washed with toluene (in portions, 320 mL in total) and dried under high vacuum at 50°C to afford tert-butyl 7-(2-hydroxy-4-oxo-pyrido[l,2-a]pyrimidin-7-yl)-4,7-diazaspiro[2.5]octane-4-carboxylate (65.6 g, 67%) as a light pink powder.

Ή-ΝΜΡν (CDCI3, 600 MHz): 8.46 (d, 1H); 7.74 (dd, 1H); 7.52 (d, 1H); 5.37 (s, 2H); 3.83 – 3.69 (m, 2H); 3.23 (t, 2H); 3.01 (s, 2H); 1.48 (s, 9H); 1.17 – 1.03 (m, 2H); 0.95 – 0.75 (m, 2H); LCMS: 373.19 (M+H+)

Example 6: tert-butyl 7-(2-hydroxy-4-oxo-pyrido[l,2-a]pyrimidin-7-yl)-4,7-diazaspiro[2.5]octane-4-carboxylate

tert-Butyl 7-(6-nitro-3-pyridyl)-4,7-diazaspiro[2.5]octane-4-carboxylate (950 g, 2.84 mol), Pt 1%, V 2% on active charcoal (95.1 g, 2 mmol) and ethyl acetate (9.5 L) were charged into an autoclave that was pressurized with hydrogen gas to 3 bar. The reaction mixture was stirred at room temperature for 6 hours. The excess hydrogen was vented. The reaction mixture was filtered, the catalyst was washed with ethyl acetate (0.95 L) three times. The filtrate was concentrated under reduced pressure and the solvent exchanged to anisole (add two portions of 2.85 L and 5.18 L) by distillation. Di tert-butyl malonate (921.7 g, 4.26 mol) was added and the charging line was rinsed with anisole (618 mL) and the reaction mixture was stirred at 125-135 °C for 8 hours. It may be necessary to distill off the by-product tert-butanol to reach this temperature. The progress of the reaction was followed eg.by HPLC. If the reaction stalls, the temperature is increased to 135-145°C and checked for progress after 1 hour. When the reaction was complete, the batch was cooled to room temperature and stirred at room temperature for 4 hours. The precipitate was filtered off, washed with toluene (3.55 L) and dried under vacuum at 60°C to afford tert-butyl 7-(2-hydroxy-4-oxo-pyrido[l,2-a]pyrimidin-7-yl)-4,7-diazaspiro[2.5]octane-4-carboxylate (861.0 g, 81.4%) as a yellow to light brown solid.

Example 7: tert-butyl 7-[4-oxo-2-(p-tolylsulfonyloxy)pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate

A reactor was charged with tert-butyl 7-(2-hydroxy-4-oxo-pyrido[l,2-a]pyrimidin-7-yl)-4,7-diazaspiro[2.5]octane-4-carboxylate (920 g, 2.47 mol) and then triethylamine (325 g, 3.21 mol), followed by tosyl chloride (527.1 g, 2.77 mol) and dichloromethane (4.6 L). The reaction mixture was stirred at 20-25 °C for at least three hours. Upon complete reaction, the organic solution was washed with a prepared solution of HC1 (32%, 247.8 mL) and water (4.6 L), followed by a prepared solution of sodium hydroxide (432.3 mL of a 30% stock solution) and water (3.9 L) in that order. The organic phase was finally washed with water (4.8 L) and then dichloromethane was nearly completely distilled off under reduced pressure at 50-55°C. Ethyl acetate (920 mL) was added and distilled twice at this temperature under reduced pressure, and then ethyl acetate (4.8 L) was added and the suspension cooled to 20-25 °C over two hours. n-Heptane (944.4 mL) was added and the mixture was cooled to 0-5 °C and then stirred for an additional 3 hours. The precipitate was filtered off, washed with a prepared solution of ethyl acetate (772.8 mL) and n-heptane (147.2 mL), and then twice with n-heptane (2.6 L). The solid was dried under vacuum at 45-50°C to afford 1122.6 g (86.3%) tert-butyl 7-[4-oxo-2-(p-tolylsulfonyloxy)pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate as yellow crystals.

!H-NMR (CDCls, 600 MHz): 8.32 (d, 1H); 8.00 – 7.89 (m, 2H); 7.66 (dd, 1H); 7.50 (d, 1H); 7.36 (d, 2H); 6.04 (s, 1H); 3.80 – 3.68 (m, 2H); 3.23 (t, 2H); 3.01 (s, 2H); 1.48 (s, 9H); 1.15 – 1.04 (m, 2H); 0.92 – 0.82 (m, 2H); LCMS: 527.20 (M+H+)

Example 8: 2,8-dimethyl-6-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)imidazo[l,2-b]pyridazine

6-Chloro-2,8-dimethylimidazo[l,2-b]pyridazine (40.0 g, 220 mmol), bis pinacol diborane (69.9 g, 275 mmol) and potassium acetate (43.2 g, 440 mmol) were suspended in acetonitrile (440 mL). The suspension was heated to reflux and stirred 30 minutes at reflux, then a suspension of PdCl2(dppf) (4.03 g, 5.51 mmol) and dppf (610 mg, 1.1 mmol) in acetonitrile (40 mL) was added. The vessel was rinsed with acetonitrile (20 mL), which were also poured into the reaction mixture. The orange suspension was further stirred at reflux, whereby acetonitrile (50 mL) were distilled off. After 4 hours, the reaction mixture was filtered off, the filter was washed with several portions of acetonitrile (in total 150 mL). The filtrate was diluted to obtain a volume of 700 mL. The 314 mmolar solution of 2,8-dimethyl-6-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)imidazo[l,2-b]pyridazine in acetonitrile was used as such in the next step.

Example 9: 2,8-dimethyl-6-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)imidazo[l,2-b]pyridazine

6-chloro-2,8-dimethylimidazo[l,2-b]pyridazine (29.0 g, 22.8 mmol), bis pinacol diborane (44.6, 25.1 mmol) and potassium acetate (31.3 g, 45.6 mmol) were suspended in 1-propyl acetate (365 mL). The suspension was heated to 80°C and a solution of

tricyclohexylphosphine (448 mg, 0.23 mmol) and Pd(OAc)2 (179 mg, 0.11 mmol) in 1-propyl acetate (37 mL) was added within 20 minutes. After 2.5 hours further stirring at 80°C, the suspension was cooled to 40°C and filtered at this temperature. The precipitate was washed with 1-propyl acetate (200 mL). The filtrate corresponds to 516.4 g of a 8.5% solution of 2,8-dimethyl-6-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)imidazo[l,2-b]pyridazine in 1 -propyl acetate.

Example 10: Isolation of 2,8-dimethyl-6-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)imidazo[ 1 ,2-b]pyridazine

In another experiment, the above solution obtained was cooled to 0-5 °C within 3 hours. The precipitate was filtered off, washed with cold 1 -propyl acetate and dried under high vacuum at 60°C to afford 2,8-dimethyl-6-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)imidazo[l,2-b]pyridazine (24. Og, 55%) as a colourless solid.

lH NMR (CDCls, 600 MHz, ) δ ppm 7.86 (d, J=0.7 Hz, 1 H), 7.20 (d, J=1.0 Hz, 1 H), 2.63 (d, J=1.0 Hz, 3 H), 2.51 (d, J=0.7 Hz, 3 H), 1.33 – 1.49 (m, 12 H)

Example 11: (step 6) tert-butyl 7-[2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)-4-oxo-pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate

tert-Butyl 7-[4-oxo-2-(p-tolylsulfonyloxy)pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5] octane-4-carboxylate (25 g, 47.5 mmol), 2,8-dimethyl-6-(4,4,5,5-tetramethyl- 1,3,2-dioxaborolan-2-yl)imidazo[l,2-b]pyridazine (314 mM in acetonitrile, 191 mL, 59.8 mmol), PdCi2(dppf) (868 mg, 1.19 mmol) and aqueous potassium carbonate 4.07 M (17.1 mL, 69.8 mmol) were charged into a reaction vessel. The reaction mixture was stirred at reflux for 3 hours, cooled overnight to room temperature and filtered. The precipitate was washed with several portions of acetonitrile (146 mL in total), then suspended in methyl-THF (750 mL) and methanol (75 mL). Aqueous sodium hydrogen carbonate 5% (250 mL) was added, the mixture was vigorously stirred at 35°C. The phases were separated, the organic phase was washed again with aqueous sodium hydrogen carbonate 5% (250 mL). The organic phase was treated with active charcoal for 1 hour at room temperature, filtered and the filtrate was concentrated under reduced pressure at 60 °C to a volume of 225 mL, heated to reflux then cooled to room temperature, stirred at room temperature for 16 hours, then cooled to 0°C and stirred at 0°C for 3 hours. The precipitate was filtered off, washed with n-heptane (60 mL) and dried under high vacuum at 55°C to afford tert-butyl 7-[2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)-4-oxo-pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate (20.13 g, 84.5%) as a yellow solid.

This solid could be recrystallized in the following manner: 15 g of the above solid was dissolved at reflux in toluene (135 mL) and ethanol (15 mL). The solution was slowly cooled to room temperature, stirred 16 hours at room temperature, then cooled to 0°C and stirred at 0°C for 4 hours. The precipitate was filtered off, washed with cold toluene and dried under high vacuum at 55°C to afford tert-butyl 7-[2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)-4-oxo-pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate (11.92 g, 79.5%) as a yellow-green solid.

!H-NMR (CDCls, 600 MHz): 8.44 (d, 1H); 7.93 (d, 1H); 7.96 – 7.89 (m, 1H); 7.80 (d, 1H); 7.76 – 7.72 (m, 1H); 7.70 – 7.63 (m, 1H); 7.38 (s, 1H); 3.85 – 3.69 (m, 2H); 3.28 (t, 2H); 3.07 (s, 2H); 2.74 (d, 3H); 2.55 (s, 3H); 1.49 (s, 9H); 1.16 – 1.09 (m, 2H); 0.93 – 0.86 (m, 2H); LCMS: 502.26 (M+H+)

Example 12: tert-butyl 7-[2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)-4-oxo-pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate

6-chloro-2,8-dimethylimidazo[l,2-b]pyridazine (4.14 g, 22.8 mmol), bis pinacol diborane (6.37g, 25.1 mmol) and potassium acetate (4.47 g, 45.6 mmol) were suspended in 1-propyl acetate (59 mL). The suspension was heated to 80°C and a solution of

tricyclohexylphosphine (63.9 mg, 0.23 mmol) and Pd(OAc)2 (25.6 mg, 0.11 mmol) in 1-propyl acetate (6 mL) was added within 20 minutes. After 2.5 hours further stirring at 80°C, the suspension was cooled to 40°C and filtered at this temperature. The precipitate was washed with 1-propyl acetate (32 mL). The filtrate corresponds to 74.6 g of a 8.5% solution of 2,8-dimethyl-6-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)imidazo[l,2-b]pyridazine in 1-propyl acetate.

A reaction vessel was charged with tert-butyl 7-[4-oxo-2-(p-tolylsulfonyloxy)pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate (10.0 g, 19.0 mmol), tricyclohexylphosphine (58.6 mg, 0.21 mmol) and Pd(OAc)2 (21.3 mg, 0.10 mmol) and 1-propyl acetate (42 mL) and a solution of potassium carbonate (5.25 g, 38.0 mmol) in water (19.0 mL) was added. The suspension was heated to 70°C and the solution of 2,8-dimethyl-6-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)imidazo[l,2-b]pyridazine in 1-propyl acetate was added within 30 minutes. The mixture was stirred for 2 hours at 70-75°C. The suspension was cooled to 40°C, water (10 mL) was added. The suspension was aged for 30 minutes. The crude product was filtered off and rinsed with 1-propyl acetate (41 mL). The crude product was taken up in toluene (100 mL), 5% aqueous NaHC03-solution (30 mL) and 1-propanol (20.0 mL). The mixture was heated to 60-65 °C, the phases were separated and the organic phase was washed with 2 more portions of water (30.0 mL). The organic phase was filtered on active charcoal, the filter washed with toluene (60.0 mL). The filtrate was concentrated under reduced pressure to a volume of ca. 120 mL, heated to reflux and 1-propanol (0.8 mL) was added to obtain a solution. The solution was cooled to 0-5°C within 4-6 hours, stirred at 0-5°C for 1 hour. The precipitate was filtered off, washed with toluene (30 mL) and dried under reduced pressure at 70-80°C to afford tert-butyl 7-[2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)-4-oxo-pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate (7.7 g, 80.8%) as a yellowish solid.

Example 13: 7-(4,7-diazaspiro[2.5]octan-7-yl)-2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)pyrido[l,2-a]pyrimidin-4-one di-hydrochloride salt

To prepare a solution of HC1 in in 1-propyl acetate/ 1-propanol, acetyl chloride (15.8 g, 199 mmol) was slowly added to a mixture of 1-propyl acetate (60 mL) and 1-propanol (30 mL) at 0°C, and stirring was pursued for an additional 2 hours at room temperature.

tert-Butyl 7-[2-(2,8-dimethylimidazo[ 1 ,2-b]pyridazin-6-yl)-4-oxo-pyrido[ 1 ,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate (20 g, 39.9 mmol) was suspended in 1-propyl acetate (60 mL) and 1-propanol (30 mL) at room temperature and the HC1 solution in 1-propyl acetate and 1-propanol was added. The reaction mixture was heated within 3 hours to 70°C and stirred 16 hours at this temperature, then cooled to 20°C. The precipitate was filtered off, washed with 1-propyl acetate (50 mL) in several portions and dried under vacuum at 55 °C to afford 7-(4,7-diazaspiro[2.5]octan-7-yl)-2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)pyrido[l,2-a]pyrimidin-4-one hydrochloride salt (18.8 g, 99%) as yellow crystals.

^-NMR (CDCls, 600 MHz): 8.34 (s, 1H); 8.22(s, 1H); 8.05 (s, 1H); 8.01 (dd, 1H); 7.80 (d, 1H); 7.16 (s, 1H); 3.71 – 3.67 (m, 2H); 3.64 – 3.59 (m, 2H); 3.52 (s, 2H); 2.69 (s, 3H); 2.54 (s, 3H); 1.23- 1.20 (m, 2H); 1.14 – 1.08 (m, 2H); LCMS: 402.20 (M+H+)

Example 14: 7-(4,7-diazaspiro[2.5]octan-7-yl)-2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)pyrido[ 1 ,2-a]pyrimidin-4-one

To a suspension of tert-butyl 7-[2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)-4-oxo-pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate (25 g, 50 mmol) in 1-propyl acetate (375 mL) was added a solution of HC1 in 1-propanol (prepared by adding slowly at 5°C acetyl chloride (18.0 mL) to 1-propanol (37.6 mL) and stirring 1 hour at room temperature). The stirred suspension was heated to 75°C within 10 hours and stirred a further 5 hours at 75 °C. Water (160.0 mL) was added and the phases were separated at 75°C. Aqueous sodium hydroxide 32% (27.8 mL) was added to the aqueous phase. The suspension obtained was cooled to room temperature within 5 hours and stirred one hour at room temperature. The precipitate was filtered off, washed with water (100.0 mL) and dried under reduced pressure at 50°C for 18 hours to afford 7-(4,7-diazaspiro[2.5]octan-7-yl)-2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)pyrido[l,2-a]pyrimidin-4-one (19.7 g, 98.3%) as yellow crystals.

!H-NMR (CDCb, 600 MHz): 8. 45 (d, 1H); 7.92 (d, 1H); 7.80 (s, 1H); 7.75 – 7.71 (m, 1H); 7.71 – 7.67 (m, 1H); 7.37 (s, 1H); 3.31 – 3.24 (m, 2H); 3.22 – 3.16 (m, 2H); 3.09 (s, 2H); 2.73 (s, 3H); 2.55 (s, 3H); 0.82- 0.76 (m, 2H); 0.71 – 0.63 (m, 2H); LCMS: 402.20

(M+H+)

Example 15: 7-(4,7-diazaspiro[2.5]octan-7-yl)-2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)pyrido[ 1 ,2-a]pyrimidin-4-one

A suspension of tert-butyl 7-[2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)-4-oxo-pyrido[l,2-a]pyrimidin-7-yl]-4,7-diazaspiro[2.5]octane-4-carboxylate (13.5 g, 26.9

in toluene (237.0 g) was stirred at 75°C and a 21.9% solution of HCl in 1-propanol (21.4 g, 134.5 mmol) was added within 2.5 hours. The reaction mixture was stirred further at 75 °C until complete conversion. The reaction mixture was cooled to 20-25°C. Water (70 g) was added. The biphasic mixture was stirred another 10 minutes at 20-25 °C and the phases were separated. The organic phase was extracted with water (17 g) twice and the combined aqueous phases were added into mixture of aqueous sodium hydroxide 28% (15.0 g) and water (45.0 g). The suspension obtained was cooled to 20°C. The precipitate was filtered off , washed with water (25 g) three times and dried under reduced pressure at 60°C to afford 7-(4,7-diazaspiro[2.5]octan-7-yl)-2-(2,8-dimethylimidazo[l,2-b]pyridazin-6-yl)pyrido[l,2-a]pyrimidin-4-one (9.5 g, 95.1%) as yellow crystals.

Example 16: 4-bromo-6-chloro-pyridazin-3-amine

3-amino-6-chloropyridazine (20 g, 154 mmol), sodium bicarbonate (25.9 g, 309 mmol) and methanol (158 g) were charged in a reaction vessel and cooled to 0-10°C. Bromine (34.5 g, 216 mmol) was added drop wise and the reaction mixture was stirred 3 days at room temperature. 10% Aqueous sodium sulfate was added. The suspension was filtered off. The filtrate was washed with ethyl acetate (300 mL) twice. The combined organic layers were dried and evaporated. A suspension of the residue in methanol (50 mL) was heated to reflux, water (120 mL) was added and the suspension was stirred 16 hours at room temperature. The precipitate was filtered off and dried. The residue was suspended in n-heptane (50 mL), stirred 2 hours at room temperature, filtered off and dried to afford 4-bromo-6-chloro-pyridazin-3-amine (14.5 g, 46.2%) as a light brown solid.

!H-NMR (CDCls, 600 MHz): 7.55 (s, 1H); 5.83-4.89 (m, 2H); LCMS: 209.93 (M+H+)

Example 17: 4-bromo-6-chloro-pyridazin-3-amine

3-amino-6-chloropyridazine (50 g, 360 mmol), acetic acid (5.8 g, 96.5 mmol), sodium acetate (28.7 g, 289.5 mmol) and methanol (395 g) were charged in a reaction vessel and heated to 25-35°C. Dibromodimethylhydatoin (66.0 g, 231.6 mmol) was added in several portions and the reaction mixture was stirred 3 hours at 30°C. Completion is checked by IPC and if the conversion is incomplete, dibromodimethylhydantoin is added (5.5g). At reaction completion, 38% aqueous sodium sulfate (77.2 mmol NaHS03) was added slowly. The suspension was concentrated under reduced pressure and water (500 g) was added slowly at 45°C, then 30% aqueous sodium hydroxide (31.5 g, 231.6 mmol NaOH) was added at 20°C to adjust pH to 7-8. The precipitate was filtered off, washed with water and dried under reduced pressure to afford 4-bromo-6-chloro-pyridazin-3-amine (50.2 g, 62.5%) as a grey solid.

Example 18: 6-chloro-4-methyl-pyridazin-3-amine

4-bromo-6-chloro-pyridazin-3-amine (3.0 g, 14.4 mmol) and

tetrakis(triphenylphosphine)palladium (1666 mg, 144 μιηοΐ) were suspended in THF (13.2 g) and a solution of zinc chloride in Me-THF (2.0 M, 9 mL, 18 mmol) was added. The reaction mixture was cooled to -5°C and methyllithium in diethoxymethane (3.1 M, 11.6 mL, 36 mmol) was added. The reaction mixture was stirred at 45°C for 4 hours. Sodium sulfate decahydrate (11.7 g, 36 mmol) was added at room temperature, the mixture was stirred 1.5 hours at 60°C, diluted with water (100 mL) and after 30 minutes the precipitate was filtered off. The precipitate was dissolved in aqueous HC1 2M (100 mL) and ethyl acetate (140 mL). The biphasic system was filtered, the phases were separated and the pH of the water layer adjusted to 7 with aqueous NaOH 32% (18 mL). The precipitate was filtered and dried. The solid obtained was digested twice in methanol (20 mL) at room temperature. The two filtrates were combined, evaporated and dried under high vacuum to afford 6-chloro-4-methyl-pyridazin-3-amine (1.2 g, 58.1%) as a red solid.

Ή-ΝΜΡν (CDCb, 600 MHz): 7.09 (d, 1H); 4.90 (br s, 2H), 2.17 (d, 3H)

Example 19: 6-chloro-4-methyl-pyridazin-3-amine

4-bromo-6-chloro-pyridazin-3-amine (30.02 g, 143 mmol) and THF (180 mL) were charged into a reaction vessel. Methylmagnesium chloride (22% in THF, 50.0 mL, 1.03 eq.) was added at 20°C over 60 minutes, followed by zinc chloride in Me-THF (25%, 37 mL, 0.50 eq.) and palladium tetrakis(triphenyphosphine) (1.66 g, lmol%). The reaction mixture was heated to 50°C and methylmagnesium chloride (22% in THF, 81 mL, 1.7 eq.) was added slowly. The reaction mixture was stirred at 50°C until complete conversion, then at 10°C for 14.5 hours and poured into a mixture of water (90 g), aqueous HCl 33% (52.5 g) and toluene (150 mL) maintained at 20-30°C. The aqueous phase was separated and the organic phase was extracted with a solution of aqueous HCl 33% (2.0 g) and water (45 g). The aqueous layers were combined and washed with toluene (30 mL) twice and the pH was adjusted by addition of 25% aqueous ammonia solution. When a pH of 2.4 was reached, seeding crystals were added, the mixture was stirred further for 15 minutes and thereafter the pH was brought to 4.0. The suspension was stirred at 20°C for 2 hours, the precipitate was filtered off, washed with water (20 mL) three times to afford crude 6-chloro-4-methyl-pyridazin-3-amine (29 g) as a brown solid.

29 g crude product was transferred to a reaction vessel and methanol (20 mL) was added. The mixture was refluxed for 30 minutes and 12 g water was added. The solution was cooled to 0°C and stirred for 2 hours at this temperature. The precipitate was filtered off, washed with water three times and dried under reduced pressure at 40°C to afford purified 6-chloro-4-methyl-pyridazin-3-amine (13.8 g, 66%) as a light brown solid.

Alternative purification:

50 g crude 6-chloro-4-methyl-pyridazin-3-amine were dissolved in methanol (250 mL) and active charcoal (4.0 g) and diatomaceous earth (2.5 g) were added. The suspension was stirred at 45°C for 1 hour, cooled to 30°C and potassium hydrogenophosphate (2.1 g) was added. The suspension was stirred at 30°C for another 90 minutes, filtered and the precipitate washed with methanol (100 mL). The filtrate was concentrated to a residual volume of 175 mL and water (120 mL) was added. The resulting suspension was heated

to reflux affording a solution which was cooled to 20°C resulting in a suspension. The precipitate was filtered off, washed with water (90 mL) and dried under reduced pressure to afford pure 6-chloro-4-methyl-pyridazin-3-amine (38 g, 76%) as a light yellow solid.

Example 20: 6-chloro-2,8-dimethyl-imidazo[l,2-b]pyridazine

6-chloro-4-methyl-pyridazin-3-amine (70.95 kg, 494.2 mol), sodium bromide (35 kg, 345.9 mol), isopropyl acetate (611 kg), isopropanol (28 kg and water (35 kg) were charged into a reaction vessel. The reaction mixture was stirred at 80-85 °C for 8 hours. Isopropyl acetate (310 kg) and water (420 kg) were added. 30% Aqueous NaOH was added at 45-55 °C and the system was stirred for 2 hours. The phases were separated at 25-35 °C. The organic layer was washed with water (370 kg), filtered on diatomite (7 kg) and the filter washed with isopropyl acetate (35 kg). The organic phase was extracted with two portions of 5.4% aqueous sulfuric acid (910 kg followed by 579 kg). The combined aqueous phases were basified with 30% aqueous NaOH (158 kg). The suspension was stirred 2 hours at 15-25 °C. The precipitate was isolated by centrifugation in three portions, each washed with water (31 kg). The wet solid was dissolved in isopropyl acetate (980 kg) at 25-35 °C, the solution washed with water (210 kg), three times. The organic phase was treated with active charcoal for 12 hours at 45-50 °C, concentrated to ca. 300 kg and heated to 70-80 °C to obtain a clear solution. This solution was cooled to 50-60 °C, stirred at this temperature for 1 hour, n-heptane (378 kg) was added and stirring was pursued for 1 hour. The mixture was cooled to -10- -5°C and stirred for another 3 hours. The precipitate was isolated by centrifuging, washed with n-heptane (33 kg) and dried under reduced pressure at 30-50 °C for 15 hours to afford 67.4 kg (76%) 6-chloro-2,8-dimethyl-imidazo[l,2-b]pyridazine as an off-white solid.

XH-NMR (CDCls, 600 MHz): 7.67 (s, 1H); 6.86 (s, 1H); 2.65 (s, 3H), 2.50 (s, 3H)

Paper

https://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.8b00741

Abstract Image

SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound 2 was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients. It was safe and well tolerated and increased SMN protein levels up to 2-fold in patients. Nevertheless, its development was stopped as a precautionary measure because retinal toxicity was observed in cynomolgus monkeys after chronic daily oral dosing (39 weeks) at exposures in excess of those investigated in patients. Herein, we describe the discovery of 1 (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization. This compound is undergoing pivotal clinical trials and is a promising medicine for the treatment of patients in all ages and stages with SMA.

 7-(4,7-diazaspiro[2.5]octan-7-yl)-2-(2,8-dimethylimidazo[1,2-b]pyridazin-6-yl)pyrido[1,2-a]pyrimidin-4-one 1 (12 mg, 18%) as a pale yellow solid. 1H NMR (600 MHz,CDCl3) δ ppm 8.45 (d, J = 2.4 Hz, 1H), 7.92 (d, J = 1.0 Hz, 1H), 7.73 (d, J = 9.6 Hz, 1H) 7.80 (s, 1H), 7.70 (dd, J = 9.7, 2.5 Hz, 1H), 7.38 (s, 1H), 3.31–3.22 (m, 2H), 3.20–3.16 (m, 2H), 3.08 (s, 2H), 2.74 (d, J = 0.9 Hz, 3H) 2.55 (s, 3H), 1.68 (br s, 1H), 0.77–0.75 (m, 2H), 0.67–0.64 (m, 2 H);

13C NMR (151 MHz,CDCl3) δ ppm 158.2, 156.3, 148.5, 147.2, 144.1, 142.2, 140.0, 135.6, 131.2, 126.7, 114.9, 114.7, 110.1, 99.3, 56.7, 49.9, 44.5, 36.5, 16.9, 15.0, 13.0. LC–HRMS: m/z = 402.2051 [(M + H)+ calcd for C22H24N7O, 402.2042; Diff 0.9 mDa].

References

  1. ^ Maria Joao Almeida (2016-09-08). “RG7916”. BioNews Services. Retrieved 2017-10-08.
  2. ^ Zhao, Xin; Feng, Zhihua; Ling, Karen K. Y; Mollin, Anna; Sheedy, Josephine; Yeh, Shirley; Petruska, Janet; Narasimhan, Jana; Dakka, Amal; Welch, Ellen M; Karp, Gary; Chen, Karen S; Metzger, Friedrich; Ratni, Hasane; Lotti, Francesco; Tisdale, Sarah; Naryshkin, Nikolai A; Pellizzoni, Livio; Paushkin, Sergey; Ko, Chien-Ping; Weetall, Marla (2016). “Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy”Human Molecular Genetics25 (10): 1885. doi:10.1093/hmg/ddw062PMC 5062580PMID 26931466.
  3. ^ “Genentech/Roche Releases Clinical Trial Update for RG7916”. CureSMA. 2017-09-15. Retrieved 2017-10-08.
  4. ^ “A Study to Investigate the Safety, Tolerability, Pharmacokinetics, Pharmacodynamics and Efficacy of RO7034067 in Infants With Type1 Spinal Muscular Atrophy (Firefish)”.
  5. ^ “A Study to Investigate the Safety, Tolerability, Pharmacokinetics, Pharmacodynamics and Efficacy of RO7034067 in Type 2 and 3 Spinal Muscular Atrophy Participants (Sunfish)”.
  6. ^ “Updated Preliminary Data from SMA FIREFISH Program in Type 1 Babies Presented at the CureSMA Conference”http://www.prnewswire.com. Retrieved 2018-09-11.
Risdiplam
Risdiplam.svg
Clinical data
Synonyms RG7916; RO7034067
Identifiers
CAS Number
PubChem CID
UNII
KEGG
Chemical and physical data
Formula C22H23N7O
Molar mass 401.474 g/mol g·mol−1
3D model (JSmol)

///////////RISDIPLAM, RG-7916, RO-7034067, リスジプラム , PHASE 3, PRIME designation, ORPHAN DRUG

76RS4S2ET1 (UNII code)

CC1=CC(=NN2C1=NC(=C2)C)C3=CC(=O)N4C=C(C=CC4=N3)N5CCNC6(C5)CC6

IMETELSTAT


Image result for IMETELSTAT

Image result for IMETELSTAT

2D chemical structure of 868169-64-6

IMETELSTAT

CAS 868169-64-6, N163L

Molecular Formula, C148-H211-N68-O53-P13-S13, Molecular Weight, 4610.2379,

Nucleic Acid Sequence

Sequence Length: 135 a 1 c 4 g 3 tmodified

DNA d(3′-amino-3′-deoxy-P-thio)(T-A-G-G-G-T-T-A-G-A-C-A-A) 5′-[O-[2-hydroxy-3-[(1-oxohexadecyl)amino]propyl] hydrogen phosphorothioate]

PHASE 3, GERON, Myelodysplasia

Image result for IMETELSTAT

ChemSpider 2D Image | Imetelstat sodium | C148H197N68Na13O53P13S13

IMETELSTAT SODIUM

CAS 1007380-31-5, GRN163L, GRN 163L Sodium Salt

Molecular Formula: C148H198N68Na13O53P13S13
Molecular Weight: 4895.941 g/mol

5′-(O-(2-hydroxy-3-((1-oxohexadecyl)amino)propyl)phosphorothioate)-d(3′-amino-3′-deoxy-p-thio)(t-a-g-g-g-t-t-a-g-a-c-a-a), sodium salt (13)

DNA, d(3′-amino-3′-deoxy-p-thio)(T-A-G-G-G-T-T-A-G-A-C-A-A), 5′-(o-(2-hydroxy-3-((1-oxohexadecyl)amino)propyl) hydrogen phosphorothioate), sodium salt (1:13)

UNII-2AW48LAZ4I, Antineoplastic

In 2014, Geron entered into an exclusive worldwide license and collaboration agreement with Janssen Biotech for the treatment of hematologic cancers. However, in 2018, the agreement was terminated and Geron regained global rights to the product.

In 2015, imetelstat was granted orphan drug status in the U.S. for the treatment of myelodysplastic syndrome, as well as in both the U.S. and the E.U. for the treatment of myelofibrosis. In 2017, fast track designation was received in the U.S. for the treatment of adult patients with transfusion-dependent anemia due to low or intermediate-1 risk myelodysplastic syndromes (MDS) who are non-del(5q) and who are refractory or resistant to treatment with an erythropoiesis stimulating agent (ESA).

Imetelstat Sodium is the sodium salt of imetelstat, a synthetic lipid-conjugated, 13-mer oligonucleotide N3′ P5′-thio-phosphoramidate with potential antineoplastic activity. Complementary to the template region of telomerase RNA (hTR), imetelstat acts as a competitive enzyme inhibitor that binds and blocks the active site of the enzyme (a telomerase template antagonist), a mechanism of action which differs from that for the antisense oligonucleotide-mediated inhibition of telomerase activity through telomerase mRNA binding. Inhibition of telomerase activity in tumor cells by imetelstat results in telomere shortening, which leads to cell cycle arrest or apoptosis.

Imetelstat sodium, a lipid-based conjugate of Geron’s first-generation anticancer drug, GRN-163, is in phase III clinical trials at Geron for the treatment of myelodysplastic syndrome, as well as in phase II for the treatment of myelofibrosis. 

Geron is developing imetelstat, a lipid-conjugated 13-mer thiophosphoramidate oligonucleotide and the lead in a series of telomerase inhibitors, for treating hematological malignancies, primarily myelofibrosis.

Imetelstat, a first-in-class telomerase inhibitor and our sole product candidate, is being developed for the potential treatment of hematologic myeloid malignancies. Imetelstat is currently in two clinical trials being conducted by Janssen under the terms of an exclusive  worldwide collaboration and license agreement.

Originally known as GRN163L, imetelstat sodium (imetelstat) is a 13-mer N3’—P5’ thio-phosphoramidate (NPS) oligonucleotide that has a covalently bound 5’ palmitoyl (C16) lipid group. The proprietary nucleic acid backbone provides resistance to the effect of cellular nucleases, thus conferring improved stability in plasma and tissues, as well as significantly improved binding affinity to its target. The lipid group enhances cell permeability to increase potency and improve pharmacokinetic and pharmacodynamic properties. The compound has a long residence time in bone marrow, spleen and liver. Imetelstat binds with high affinity to the template region of the RNA component of telomerase, resulting in direct, competitive inhibition of telomerase enzymatic activity, rather than elicit its effect through an antisense inhibition of protein translation. Imetelstat is administered by intravenous infusion.

Preclinical Studies with Imetelstat

A series of preclinical efficacy studies of imetelstat have been conducted by Geron scientists and academic collaborators. These data showed that imetelstat:

  • Inhibits telomerase activity, and can shorten telomeres.
  • Inhibits the proliferation of a wide variety of tumor types, including solid and hematologic, in cell culture systems and rodent xenograft models of human cancers, impacting the growth of primary tumors and reducing metastases.
  • Inhibits the proliferation of malignant progenitor cells from hematologic cancers, such as multiple myeloma, myeloproliferative neoplasms and acute myelogenous leukemia.
  • Has additive or synergistic anti-tumor effect in a variety of cell culture systems and xenograft models when administered in combination with approved anti-cancer therapies, including radiation, conventional chemotherapies and targeted agents.

Clinical Experience with Imetelstat

Over 500 patients have been enrolled and treated in imetelstat clinical trials.

PHASE 1

Six clinical trials evaluated the safety, tolerability, pharmacokinetics and pharmacodynamics both as a single agent and in combination with standard therapies in patients with solid tumors and hematologic malignancies:

  • Single agent studies of imetelstat were in patients with advanced solid tumors, multiple myeloma and chronic lymphoproliferative diseases. Combination studies with imetelstat were with bortezomib in patients with relapsed or refractory multiple myeloma, with paclitaxel and bevacizumab in patients with metastatic breast cancer, and with carboplatin and paclitaxel in patients with advanced non-small cell lung cancer (NSCLC).
  • Doses ranging from 0.5 mg/kg to 11.7 mg/kg were tested in a variety of dosing schedules ranging from weekly to once every 28 days.
  • The human pharmacokinetic profile was characterized in clinical trials of patients with solid tumors and chronic lymphoproliferative diseases. Single-dose kinetics showed dose-dependent increases in exposure with a plasma half-life (t1/2) ranging from 4-5 hours. Residence time in bone marrow is long (0.19-0.51 µM observed at 41-45 hours post 7.5 mg/kg dose).
  • Telomerase inhibition was observed in various tissues where the enzymes’s activity was measurable.

PHASE 2

Imetelstat was studied in two randomized clinical trials, two single arm proof-of-concept studies and an investigator sponsored pilot study:

  • Randomized trials were in combination with paclitaxel in patients with metastatic breast cancer and as maintenance treatment following a platinum-containing chemotherapy regimen in patients with NSCLC.
  • Single arm studies were as a single agent or in combination with lenalidomide in patients with multiple myeloma and as a single agent in essential thrombocythemia (ET) or polycythemia vera (PV).
  • An investigator sponsored pilot study was as a single agent in patients with myelofibrosis (MF) or myelodysplastic syndromes (MDS).

SAFETY AND TOLERABILITY

The safety profile of imetelstat across the Phase 1 and 2 trials has been generally consistent. Reported adverse events (AEs) and laboratory investigations associated with imetelstat administration included cytopenias, transient prolonged activated partial thromboplastin time (aPTT; assessed only in Phase 1 trials), gastrointestinal symptoms, constitutional symptoms, hepatic biochemistry abnormalities, and infusion reactions. Dose limiting toxicities include thrombocytopenia and neutropenia.

A Focus on Hematologic Myeloid Malignancies

Early clinical data from the Phase 2 clinical trial in ET and the investigator sponsored pilot study in MF suggest imetelstat may have disease-modifying activity by suppressing the proliferation of malignant progenitor cell clones for the underlying diseases, and potentially allowing recovery of normal hematopoiesis in patients with hematologic myeloid malignancies.

Results from these trials were published in the New England Journal of Medicine:

Current Clinical Trials

Imetelstat is currently being tested in two clinical trials: IMbark, a Phase 2 trial in myelofibrosis (MF), and IMerge, a Phase 2/3 trial in myelodysplastic syndromes (MDS).

IMbark

IMbark is the ongoing Phase 2 clinical trial to evaluate two doses of imetelstat in intermediate-2 or high-risk MF patients who are refractory to or have relapsed after treatment with a JAK inhibitor.

Internal data reviews were completed in September 2016, April 2017 and March 2018. The safety profile was consistent with prior clinical trials of imetelstat in hematologic malignancies, and no new safety signals were identified. The data supported 9.4 mg/kg as an appropriate starting dose in the trial, but an insufficient number of patients met the protocol defined interim efficacy criteria and new patient enrollment was suspended in October 2016. As of January 2018, median follow up was approximately 19 months, and median overall survival had not been reached in either dosing arm. In March 2018, the trial was closed to new patient enrollment. Patients who remain in the treatment phase of the trial may continue to receive imetelstat, and until the protocol-specified primary analysis, all safety and efficacy assessments are being conducted as planned in the protocol, including following patients, to the extent possible, until death, to enable an assessment of overall survival.

IMerge

IMerge is the ongoing two-part Phase 2/3 clinical trial of imetelstat in red blood cell (RBC) transfusion-dependent patients with lower risk MDS who are refractory or resistant to treatment with an erythropoiesis stimulating agent (ESA). Part 1 is a Phase 2, open-label, single-arm trial of imetelstat administered as a single agent by intravenous infusion, and is ongoing. Part 2 is designed to be a Phase 3, randomized, controlled trial, and has not been initiated.

Preliminary data as of October 2017 from the first 32 patients enrolled in the Part 1 (Phase 2) of IMerge were presented as a poster at the American Society of Hematology Annual Meeting in December 2017.

The data showed that among the subset of 13 patients who had not received prior treatment with either lenalidomide or a hypomethylating agent (HMA) and did not have a deletion 5q chromosomal abnormality (non-del(5q)), 54% achieved RBC transfusion-independence (TI) lasting at least 8 weeks, including 31% who achieved a 24-week RBC-TI. In the overall trial population, the rates of 8- and 24-week RBC-TI were 38% and 16%, respectively. Cytopenias, particularly neutropenia and thrombocytopenia, were the most frequently reported adverse events, which were predictable, manageable and reversible.

Based on the preliminary data from the 13-patient subset, Janssen expanded Part 1 of IMerge to enroll approximately 20 additional patients who were naïve to lenalidomide and HMA treatment and non-del(5q) to increase the experience and confirm the benefit-risk profile of imetelstat in this refined target patient population

PATENT

WO 2005023994

WO 2006113426
WO 2006113470

 WO 2006124904

WO 2008054711

WO 2008112129

US 2014155465

WO 2014088785

PATENT

WO 2016172346

http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20160312227.PGNR.

PATENT

WO2018026646

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018026646

Patients of acute myeloid leukemia (AML) have limited treatment options at diagnosis; treatment typically takes the form of chemotherapy to quickly reduce the leukemic cell burden. Invasive leukapheresis procedures to remove large numbers of leukocytes (normal and diseased) may be applied in parallel to chemotherapy to temporarily lower tumor cell burden. Induction phase chemotherapy can be successful but, most healthy cells residing in patient bone marrow are also killed, causing illness and requiring additional palliative therapy to ward off infection and raise leukocyte counts. Additional rounds of chemotherapy can be used in an attempt to keep patients in remission; but relapse is common.

[0005] Telomerase is present in over 90% of tumors across all cancer types; and is lacking in normal, healthy tissues. Imetelstat sodium is a novel, first-in-class telomerase inhibitor that is a covalently-lipidated 13-mer oligonucleotide (shown below) complimentary to the human telomerase RNA (hTR) template region. Imetelstat sodium does not function through an anti-sense mechanism and therefore lacks the side effects commonly observed with such therapies. Imetelstat sodium is the sodium salt of imetelstat (shown below):

Imetelstat sodium

Unless otherwise indicated or clear from the context, references below to imetelstat also include salts thereof. As mentioned above, imetelstat sodium in particular is the sodium salt of imetelstat.

[0006] ABT-199/venetoclax (trade name Venclexta) is an FDA approved Bcl-2 inhibitor for use in chronic lymphocytic leukemia (CLL) patients with dell7p who are relapsed/refractory. ABT-199 is also known as ABT 199, GDC0199, GDC-0199 or RG7601. The chemical name for ABT-199 is 4-[4-[[2-(4-chlorophenyl)-4,4-dimethylcyclohexen-l-yl]methyl]piperazin-l-yl]-N-[3-nitro-4-(oxan-4-ylmethylamino)phenyl]sulfonyl-2-(lH-pyrrolo[2,3-b]pyridin-5-yloxy)benzamide (Cas No. 1257044-40-8). Unless otherwise indicated or clear from the context, references below to ABT-199 also include pharmaceutically acceptable salts thereof. Specifically in the Examples however, ABT-199 was used in the free base form.

[0007] ABT-199, shown below in the free base form, is highly specific to Bcl-2, unlike other first generation inhibitors which show affinity for related Bel family members and induce greater side effects. Inhibition of Bcl-2 blocks the pro-apoptotic signals caused by damage to or abnormalities within cellular DNA and ultimately leads to programmed cell death in treated cells via the caspase cascade and apoptosis through the intrinsic pathway.

ABT-199 (shown in the free base form)

PATENT

WO-2019011829

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019011829&tab=PCTDESCRIPTION&maxRec=1000

Improved process for preparing imetelstat .  claiming use of a combination comprising a telomerase inhibitor, specifically imetelstat sodium and a Bcl-2 inhibitor, specifically ABT-199 for treating hematological cancer such as acute myeloid leukemia, essential thrombocythemia and polycythemia vera, specifically acute myeloid leukemia.

Imetelstat (SEQ ID NO: 1 ) is a N3′- P5′ thiophosphoramidate oligonucleotide covalently linked to a palmitoyl lipid moiety and has been described in WO-2005/023994 as compound (1 F). The sodium salt of imetelstat acts as a potent and specific telomerase inhibitor and can be used to treat telomerase-mediated disorders, e.g. cancer, including disorders such as myelofibrosis (MF), myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML).

The structure of imetelstat sodium is shown below :

The structure of imetelstat can also be represented as shown below

imetelstat

The LPT group represents the palmitoyi lipid that is covalently linked to the N3′- P5′ thiophosphor-amidate oligonucleotide. The base sequence of the thirteen nucleotides is as follows :

TAGGGTTAGACAA and is represented by the bases B1 to B13. The -NH-P(=S)(OH)-and -0-P(=S)(OH)- groups of the structure can occur in a salt form. It is understood that salt forms of a subject compound are encompassed by the structures depicted herein, even if not specifically indicated.

Imetelstat sodium can also be represented as follows

o H

LPT = CH3-(CH2)i4-C-N-CH2-(CHOH)-CH2-

The -NH-P(=S)(OH)- group and the thymine, adenine, guanine and cytosine bases can occur in other tautomeric arrangements then used in the figures of the description. It is understood that all tautomeric forms of a subject compound are encompassed by a structure where one possible tautomeric form of the compound is described, even if not specifically indicated.

Prior art

The synthetic scheme used in WO-2005/023994 to prepare imetelstat as compound (1 F) is described in Scheme 1 and Scheme 2. The synthesis of this oligonucleotide is achieved using the solid-phase phosphoramidite methodology with all reactions taking place on solid-phase support. The synthesis of imetelstat is carried out on controlled pore glass (LCAA-CPG) loaded with

3-palmitoylamido-1-0-(4, 4′-dimethoxytrityl)-2-0-succinyl propanediol. The oligonucleotide is assembled from the 5′ to the 3′ terminus by the addition of protected nucleoside 5′-phosphor-amidites with the assistance of an activator. Each elongation cycle consists of 4 distinct, highly controlled steps : deprotection, amidite coupling, sulfurization and a capping step.

Scheme 1 : imetelstat synthetic scheme cycle 1

3. Sulfurization

In Scheme 1 the solid-phase supported synthesis starts with removal of the acid-labile 4,4-dimethoxy-trityl (DMT) protecting group from the palmitoylamidopropanediol linked to the solid-phase support. The first phosphoramidite nucleotide is coupled to the support followed by sulfurization of the phosphor using a 0.1 M solution of phenylacetyl disulfide (PADS) in a mixture of acetonitrile and 2,6-lutidine (1 : 1 ratio). Then a capping step is applied to prevent any unreacted solid-phase support starting material from coupling with a phosphoramidite nucleotide in the following reaction cycles. Capping is done using an 18:1 :1 mixture of THF / isobutyric anhydride / 2,6-lutidine.

After the first cycle on the solid-phase support, chain elongation is achieved by reaction of the 3′-amino group of the support-bound oligonucleotide with an excess of a solution of the protected nucleotide phosphoramidite monomer corresponding to the next required nucleotide in the sequence as depicted in Scheme 2.

Scheme 2 : imetelstat synthetic scheme cycle 2-13

In Scheme 2 the first cycle is depicted of the chain elongation process which is achieved by deprotection of the 3′-amino group of the support-bound oligonucleotide (a), followed by a coupling reaction of the 3′-amino group of the support-bound oligonucleotide (b) with an excess of a solution of a 5′-phosphoramidite monomer corresponding to the next required nucleotide in the sequence of imetelstat. The coupling reaction is followed by sulfurization of the phosphor of the support-bound oligonucleotide (c) and a capping step (see Scheme 3) to prevent any unreacted solid-phase support starting material (b) from coupling with a 5′-phosphoramidite nucleotide in the following reaction cycles. The reaction cycle of Scheme 2 is repeated 12 times before the solid-phase support-bound oligonucleotide is treated with a 1 :1 mixture of ethanol and concentrated ammonia, followed by HPLC purification to obtain imetelstat.

Scheme 3

The capping step using an 18:1 : 1 mixture of THF / isobutyric anhydride / 2,6-lutidine is done to convert after the coupling step any remaining solid-phase support bound oligonucleotide (b) with a primary 3′-amino group into oligonucleotide (e) with a protected (or ‘capped’) 3′-amino group in order to prevent the primary 3′-amino group from coupling with a phosphoramidite nucleotide in the next reaction cycles.

WO-01/18015 discloses in Example 3 with SEQ ID No. 2 a N3’^P5′ thiophosphoramidate oligonucleotide and a process for preparing this oligonucleotide encompassing a capping step.

Herbert B-S et al. discusses the lipid modification of GRN163 (Oncogene (2005) 24, 5262-5268).

Makiko Horie et al. discusses the synthesis and properties of 2′-0,4′-C-ethylene-bridged nucleic acid oligonucleotides targeted to human telomerase RNA subunit (Nucleic Acids Symposium Series (2005) 49, 171-172).

Description of the invention

The coupling reaction in the solid-phase support bound process disclosed in WO-01/18015 and WO-2005/023994 include a capping step to prevent any unreacted primary 3′ amino groups on the support-bound oligonucleotide from reacting during subsequent cycles.

It has now surprisingly been found that the use of a capping step as described in the prior art is superfluous and that imetelstat can be prepared using a 3-step cycle without an additional capping step with nearly identical yield and purity compared to the prior art 4-step cycle that uses a specific capping step. Eliminating the capping step from each cycle benefits the overall process by reducing the number of cycle steps by 22% (from 54 to 42 steps) and consequent reduction of process time. Also, the solvent consumption is reduced due to the reduction of cycle steps which makes for a greener process.

Wherever the term “capping step” is used throughout this text, it is intended to define an additional chemical process step wherein the primary free 3′-amino group on the solid-phase support bound oligonucleotide is converted into a substituted secondary or tertiary 3′-amino group that is not capable of participating in the coupling reaction with a protected 3′-aminonucleoside-5′-0-cyanoethyl-N,N-diisopropylamino-phosphoramidite monomer in the ensuing coupling step.

In one embodiment, the present invention relates to a method of synthesizing an oligonucleotide N3′ – P5′ thiophosphoramidate of formula

imetelstat

the method comprises of

a) providing a first 3′-amino protected nucleotide attached to a solid-phase support of formula (A) wherein PG is an acid-labile protecting group;

b) deprotecting the protected 3′-amino group to form a free 3′-amino group;

c) reacting the free 3′-amino group with a protected 3′-aminonucleoside-5′-0-cyanoethyl-N,N- diisopropylaminophosphoramidite monomer of formula (B n) wherein n = 2 to form an internucleoside N3′- P5′-phosphoramidite linkage;

mer (B’n)

d) sulfurization of the internucleoside phosphoramidite group using an acyl disulfide to form a N3′- P5′ thiophosphoramidate;

e) repeating 1 1 times in successive order the deprotection step b), the coupling step c) with a protected 3′-aminonucleoside-5′-0-cyanoethyl-N,N-diisopropylamino-phosphoramidite monomer of formula (B n) wherein the protected nucleoside base B’ in monomer (B n) is successively the protected nucleobase B3 to B13 in the respective 1 1 coupling steps, and the sulfurization step d);

f) removing the acid-labile protecting group PG; and

g) cleaving and deprotecting imetelstat from the solid-phase support;

characterized in that no additional capping step is performed in any of the reaction steps a) to e).

In one embodiment, the present invention relates to a method of synthesizing the N3′ – P5′

thiophosphoramidate oligonucleotide imetelstat of formula

imetelstat

the method comprises of

a) providing a first 3′-amino protected nucleotide attached to a solid-phase support of formula (A) wherein PG is an acid-labile protecting group;

b) deprotecting the protected 3′-amino group to form a free 3′-amino group;

c) reacting the free 3′-amino group with a protected 3′-aminonucleoside-5′-0-cyanoethyl- Ν,Ν-diisopropylaminophosphoramidite monomer of formula (B n), wherein B n with n = 2 is protected A, to form an internucleoside N3′- P5′-phosphoramidite linkage;

mer

d) sulfurization of the internucleoside phosphoramidite group using an acyl disulfide to form a N3′- P5′ thiophosphoramidate;

e) repeating 1 1 times in successive order the deprotection step b), the coupling step c) with a protected 3′-aminonucleoside-5′-0-cyanoethyl-N,N-diisopropylamino-phosphoramidite monomer of formula (B n) wherein the nucleoside base B’ of monomer (B n) is protected B except when B is thymine, and wherein Bn is successively nucleobase B3 to B13 in the respective 1 1 coupling steps, and the sulfurization step d);

f) removing the acid-labile protecting group PG; and

g) deprotecting and cleaving imetelstat from the solid-phase support;

characterized in that no additional capping step is performed in any of the reaction steps a) to e).

In one embodiment, the present invention relates to a method of synthesizing the N3′ – P5′

thiophosphoramidate oligonucleotide imetelstat of formula

imetelstat

thymine

adenine

guanine


cytosine

9 H

LPT =CH3-(CH2)i4-C-N-CH2-(CHOH)-CH2-

the method comprises of

a) providing a first protected 3′-amino nucleotide attached to a solid-phase support of formula (A) wherein PG is an acid-labile protecting group;

b) deprotecting the PG-protected 3′-amino nucleotide to form a free 3′-amino nucleotide of formula (A’);

c) coupling the free 3′-amino nucleotide with a protected 3′-aminonucleoside-5′-0- cyanoethyl-N,N-diisopropylaminophosphoramidite monomer (B n), wherein B nwith n = 2 is protected A, to form an internucleoside N3′- P5′-phosphoramidite linkage;

monomer (B’n)

d) sulfurizing the N3′- P5′-phosphoramidite linkage using an acyl disulfide to form an internucleoside N3′- P5′ thiophosphoramidate linkage;

e) repeating 1 1 times in successive order:

the deprotecting step b);

the coupling step c) with a protected 3′-aminonucleoside-5′-0-cyanoethyl-N,N- diisopropylamino-phosphoramidite monomer (B n) wherein the nucleoside base B’ of monomer (B n) is protected B except when B is thymine, and wherein Bn is successively nucleobase B3 to B13 in the respective 1 1 coupling steps; and

the sulfurizing step d);

to produce a protected N3′ – P5′ thiophosphoramidate oligonucleotide imetelstat attached to the solid-phase support;

f) removing the 3′-terminal acid-labile protecting group PG from the protected N3′ – P5′ thiophosphoramidate oligonucleotide imetelstat; and

g) deprotecting and cleaving the protected N3′ – P5′ thiophosphoramidate oligonucleotide imetelstat from the solid-phase support to produce imetelstat;

characterized in that no additional capping step is performed in any of the reaction steps a) to e).

A wide variety of solid-phase supports may be used with the invention, including but not limited to, such as microparticles made of controlled pore glass (CPG), highly cross-linked polystyrene, hybrid controlled pore glass loaded with cross-linked polystyrene supports, acrylic copolymers, cellulose, nylon, dextran, latex, polyacrolein, and the like.

The 3′-amino protected nucleotide attached to a solid-phase support of formula (A)

can be prepared as disclosed in WO-2005/023994 wherein a controlled pore glass support loaded with 3-palmitoylamido-1-0-(4, 4′-dimethoxytrityl)-2-0-succinyl propanediol has been coupled with a protected 3′-aminonucleoside-5′-0-cyanoethyl-N,N-diisopropylaminophosphoramidite monomer of formula (B^ )

monomer (B’-| ) wherein B’-| = T

wherein PG is an acid-labile protecting group. Suitable acid-labile 3′-amino protecting groups PG are, but not limited to, e.g. triphenylmethyl (i.e. trityl or Tr), p-anisyldiphenylmethyl (i.e. mono-methoxytrityl or MMT), and di-p-anisylphenylmethyl (i.e. dimethoxytrityl or DMT).

The protected 3′-aminonucleoside-5′-0-cyanoethyl-N,N-diisopropylaminophosphoramidite monomers of formula (B n) have a 3′-amino protecting group PG which is an acid-labile group, such as triphenylmethyl (i.e. trityl or Tr), p-anisyldiphenylmethyl (i.e. monomethoxytrityl or MMT), or di-p-anisylphenylmethyl (i.e. dimethoxytrityl or DMT). Furthermore the nucleoside base B’ is protected with a base-labile protecting group (except for thymine).

ed A ed C ed A ed A

B’s = protected A G = guanine

B’g = protected G C = cytosine

The nucleotide monomers and B’2 to B’13 are used successively in the 13 coupling steps starting from the provision of a solid-phase support loaded with 3-palmitoylamido-1-0-(4, 4′-dimethoxytrityl)-2-0-succinyl propanediol and coupled to nucleotide monomer and the following cycle of 12 deprotection, coupling, and sulfurization reactions wherein the nucleotide monomers B’2 to B -I 3 are used.

The 3′-amino protecting group PG can be removed by treatment with an acidic solution such as e.g. dichloroacetic acid in dichloromethane or toluene.

The nucleoside base B’ in the protected 3′-aminonucleoside-5′-0-cyanoethyl-N,N-diisopropyl-aminophosphoramidite monomers of formula (B n) is protected with a base-labile protecting group which is removed in step g). Suitable base-labile protecting groups for the nucleoside base adenine, cytosine or guanine are e.g. acyl groups such as acetyl, benzoyl, isobutyryl, dimethyl-formamidinyl, or dibenzylformamidinyl. Under the reaction conditions used in oligonucleotide synthesis the thymine nucleoside base does not require protection. Such protected 3′- amino-nucleoside-5′-0-cyanoethyl-N,N-diisopropylaminophosphoramidite monomers of formula (B N) having a 3′-amino protected with an acid-labile group protecting group PG and a nucleoside base B’ protected with a base-labile protecting group are commercially available or can be prepared as described in WO-2006/014387.

The coupling step c) is performed by adding a solution of protected 3′-aminonucleoside-5′-0-cyanoethyl-N,N-diisopropylaminophosphoramidite monomer of formula (BN) and a solution of an activator (or a solution containing the phosphoramidite monomer (BN) and the activator) to the reaction vessel containing the free amino group of an (oligo)nucleotide covalently attached to a solid support. The mixture is then mixed by such methods as mechanically vortexing, sparging with an inert gas, etc. Alternately, the solution(s) of monomer and activator can be made to flow through a reaction vessel (or column) containing the solid-phase supported (oligo)nucleotide with a free 3′-amino group. The monomer and the activator either can be premixed, mixed in the valve-block of a suitable synthesizer, mixed in a pre-activation vessel and preequilibrated if desired, or they can be added separately to the reaction vessel.

Examples of activators for use in the invention are, but not limited to, tetrazole, 5-(ethylthio)-1 H-tetrazole, 5-(4-nitro-phenyl)tetrazole, 5-(2-thienyl)-1 H-tetrazole, triazole, pyridinium chloride, and the like. Suitable solvents are acetonitrile, tetrahydrofuran, dichloromethane, and the like. In practice acetonitrile is a commonly used solvent for oligonucleotide synthesis.

The sulfurization agent for use in step d) is an acyl disulfide dissolved in a solvent. Art know acyl disulfides are e.g. dibenzoyl disulphide, bis(phenylacetyl) disulfide (PADS), bis(4-methoxybenzoyl) disulphide, bis(4-methylbenzoyl) disulphide, bis(4-nitrobenzoyl) disulphide and bis(4-chlorobenzoyl) disulfide.

Phenylacetyl disulfide (PADS) is a commonly used agent for sulfurization reactions that it is best ‘aged’ in a basic solution to obtain optimal sulfurization activity (Scotson J.L. et al., Org. Biomol. Chem., vol. 14, 10840 – 10847, 2016). A suitable solvent for PADS is e.g. a mixture of a basic solvent such as e.g. 3-picoline or 2,6-lutidine with a co-solvent such as acetonitrile, toluene, 1-methyl-pyrrolidinone or tetrahydrofuran. The amount of the basic solvent to the amount of the co-solvent can be any ratio including a 1 :1 ratio. Depending upon the phosphite ester to be converted into its corresponding thiophospate, both ‘fresh’ and ‘aged’ PADS can be used however ‘aged’ PADS has been shown to improve the rate and efficiency of sulfurization. ‘Aged’ PADS solutions are freshly prepared PADS solutions that were maintained some time before usage in the sulfurization reaction. Aging times can vary from a few hours to 48 hours and the skilled person can determine the optimal aging time by analysing the sulfurization reaction for yield and purity.

For the preparation of imetelstat in accordance with the present invention, a PADS solution in a mixture of acetonitrile and 2,6-lutidine, preferably in a 1 :1 ratio, with an aging time of 4 to 14 hours is used. It has been found that when 2,6-lutidine is used, limiting the amount of 2,3,5-collidine (which is often found as an impurity in 2,6-lutidine) below 0.1 % improves the efficiency of sulfurization and less undesirable phosphor oxidation is observed.

In step g) imetelstat is deprotected and cleaved from the solid-phase support. Deprotection includes the removal of the β-cyanoethyl groups and the base-labile protecting groups on the nucleotide bases. This can be done by treatment with a basic solution such as a diethylamine (DEA) solution in acetonitrile, followed by treatment with aqueous ammonia dissolved in an alcohol such as ethanol.

The reaction steps a) to f) of the present invention are carried out in the temperature range of 10°C to 40°C. More preferably, these reactions are carried out at a controlled temperature ranging from 15°C to 30°C. In particular reaction step b) of the present invention is carried out in the temperature range of 15°C to 30°C; more in particular 17°C to 27°C. In particular reaction step d) of the present invention is carried out in the temperature range of 17°C to 25°C; more in particular 18°C to 22°C; even more in particular 19°C. The step g) wherein imetelstat is deprotected and cleaved from the solid-phase support is carried out at a temperature ranging from 30°C to 60°C. Depending upon the equipment and the specific reaction conditions used, the optimal reaction temperature for each step a) to g) within the above stated ranges can be determined by the skilled person.

After each step in the elongation cycle, the solid-phase support is rinsed with a solvent, for instance acetonitrile, in preparation for the next reaction.

After step g), crude imetelstat is obtained in its ammonium salt form which is then purified by a preparative reversed phase high performance liquid chromatography (RP-HPLC) by using either polymeric or silica based resins to get purified imetelstat in triethyl amine form. An excess of a sodium salt is added, and then the solution is desalted by diafiltration thereby yielding imetelstat sodium which is then lyophilized to remove water.

Experimental part

‘Room temperature’ or ‘ambient temperature’ typically is between 21-25 °C.

Experiment 1 (no capping step)

All the reagents and starting material solutions were prepared including 3% dichloroacetic acid (DCA) in toluene, 0.5 M 5-(ethylthio)-1 H-tetrazole in acetonitrile, 0.15 M of all 4 nucleotide monomers of formula (B n) in acetonitrile, 0.2 M phenyl acetyl disulfide (PADS) in a 1 :1 mixture of acetonitrile and 2,6-lutidine and 20% DEA (diethylamine) in acetonitrile.

The oligonucleotide synthesis was performed in the direction of 5′ to 3′ utilizing a repetitive synthesis cycle consisting of detritylation followed by coupling, and sulfurization performed at ambient temperature.

A column (diameter : 3.5 cm) was packed with a solid-support loaded with 3-palmitoylamido-1-0- (4, 4′-dimethoxytrityl)-2-0-succinyl propanediol (3.5 mmol based on a capacity of 400 μιηοΙ/g) that was coupled with the nucleotide monomer B Detritylation was achieved using 3% dichloroacetic acid (DCA) in toluene (amount is between 6.5 and 13.4 column volumes in each detritylation step) and the solid-support bound nucleotide was washed with acetonitrile (amount: 5 column volumes). Coupling with the next nucleotide monomer of formula (B n) was achieved by pumping a solution of 0.5 M 5-(ethylthio)-1 H-tetrazole in acetonitrile and 0.15 M of the next nucleotide monomer of formula (B n) in the sequence, dissolved in acetonitrile, through the column. The column was washed with acetonitrile (amount : 2 column volumes). Then sulfurization was performed by

pumping a solution of 0.2 M phenyl acetyl disulfide (PADS) in a 1 :1 mixture of acetonitrile and 2,6-lutidine mixture through the column followed by washing the column with acetonitrile (amount : 5 column volumes).

The synthesis cycle of detritylation, coupling with the next nucleotide monomer of formula (B n) and sulfurization was repeated 12 times, followed by detritylation using 3% dichloroacetic acid (DCA) in toluene (amount is between 6.5 and 13.4 column volumes).

Upon completion of the synthesis cycle, the crude oligonucleotide on the solid-support support was treated with a diethylamine (DEA) solution followed by treatment with ammonium hydroxide solution: ethanol (3: 1 volume ratio) at a temperature of 55°C. The reaction mixture was aged for

4 to 24 hours at 55°C, cooled to room temperature, and slurry was filtered to remove the polymeric support. The solution comprising imetelstat in its ammonium form was subjected to the HPLC analysis procedure of Experiment 3.

Experiment 2 (with capping step)

All the reagents and starting material solutions were prepared including 3% dichloroacetic acid (DCA) in toluene, 0.5 M 5-(ethylthio)-1 H-tetrazole in acetonitrile, 0.15 M of all 4 nucleotide monomers of formula (B n) in acetonitrile, 0.2 M phenyl acetyl disulfide (PADS) in a 1 :1 mixture of acetonitrile and 2,6-lutidine mixture, 20% N-methylimidazole (NMI) in acetonitrile as capping agent A, isobutryic anhydride in a 1 :1 mixture of acetonitrile and 2,6-lutidine mixture as capping agent B and 20% DEA in acetonitrile.

The oligonucleotide synthesis was performed in the direction of 5′ to 3′ utilizing a repetitive synthesis cycle consisting of detritylation followed by coupling, and sulfurization performed at ambient temperature.

A column (diameter : 3.5 cm) was packed with a solid-support loaded with 3-palmitoylamido-1-0-(4, 4′-dimethoxytrityl)-2-0-succinyl propanediol (3.5 mmol based on a capacity of 400 μιηοΙ/g) that was coupled with the nucleotide monomer B Detritylation was achieved using 3% dichloroacetic acid (DCA) in toluene (amount is between 6.5 and 13.4 column volumes in each detritylation step) and the solid-support bound nucleotide was washed with acetonitrile (amount : 5 column volumes). Coupling with the next nucleotide monomer of formula (B n) was achieved by pumping a solution of 0.5 M 5-(ethylthio)-1 H-tetrazole in acetonitrile and 0.15 M of the next nucleotide monomer of formula (B n) in the sequence, dissolved in acetonitrile, through the column. The column was washed with acetonitrile (amount : 2 column volumes). Then sulfurization was performed by pumping a solution of 0.2 M phenyl acetyl disulfide (PADS) in a 1 :1 mixture of acetonitrile and 2,6-lutidine mixture through the column followed by washing the column with acetonitrile (amount :

5 column volumes).

The sulfurization was followed by a capping step. Each capping in a given cycle used 37-47 equivalents (eq.) of the capping agent NMI, and 9-1 1 equivalents of the capping agent B isobutryic anhydride (IBA), and 1 .4-1.8 equivalents of 2,6 lutidine. Capping agents A and B were pumped through the column with separate pumps at different ratios such as 50:50, 35:65, 65:35.

The synthesis cycle of detritylation, coupling with the next nucleotide monomer of formula (B n) and sulfurization, and capping step was repeated 12 times, followed by detritylation using 3% dichloroacetic acid (DCA) in toluene (amount is between 6.5 and 13.4 column volumes).

Upon completion of the synthesis cycle, the crude oligonucleotide on the solid-support support was treated with a diethylamine (DEA) solution followed by treatment with ammonium hydroxide solution: ethanol (3: 1 volume ratio) at a temperature of 55°C. The reaction mixture was aged for 4 to 24 hours at 55°C, cooled to room temperature, and slurry was filtered to remove the polymeric support. The solution comprising imetelstat in its ammonium form was subjected to the HPLC analysis procedure of Experiment 3.

Experiment 3 : comparision of no-capping vs. capping

Imetelstat obtained in Experiment 1 and Experiment 2 was analysed by HPLC. The amount of the desired full length oligonucleotide having 13 nucleotides was determined and listed in the Table below for Experiment 1 and Experiment 2. Also, the total amount of shortmer, specifically the 12mer, was determined and listed in the Table below for Experiment 1 and Experiment 2.

HPLC analysis method :

column type: Kromasil C18, 3.5 μιτι particle size, 4.6 X 150 mm

eluent:

A: 14.4 mM TEA/386 mM HFIP (hexafluoroisopropanol) /100 ppm(w/v) Na2EDTA in water B: 50% MeOH, 50% EtOH containing 5% IPA

Gradient :

Step Run time (minutes) %B

1 0 10

2 5 10

3 12 26 (linear)

4 35 45 (linear)

5 40 50 (linear)

6 42 50

7 44 10 (linear)

8 50 10

Table : capping vs. no-capping experiments (Experiment 1 was run twice and results are listed as Experiment 1a and 1 b).

The HPLC analysis of Experiment 1 and Experiment 2 demonstrates that yield and purity are comparable for the no-capping experiment vs. the capping experiment.

Main peak % includes Full length oligonucleotide + PO impurities + depurinated impurities.

PO impurities are impurities including one or more oxophosphoramidate internucleoside linkages instead of thiophosphoramidate internucleoside linkages.

Solvent use and reaction time

0.45 L of acetonitrile/mmol is used to prepare capping agent A and capping agent B reagents which corresponds to approximately 25 % of the overall acetonitrile use during the preparation of the reagents. Since each chemical reaction step is followed by a solvent wash, after each capping step too, a solvent wash takes place which is equivalent to about 40 column volumes of the solvent. Considering that about 212 column volumes of the solvent wash is done for a given synthesis run, about 19 % of the wash solvent is used for the capping steps. Each capping step takes between 3 – 6 minutes. This corresponds to about 8 % of the overall synthesis time including the 13 cycles and DEA treatment.

Experiment 4 (detritylation temperature)

The detritylation temperature has an impact in terms of controlling n-1 and depurinated impurities. The temperature of the deblocking solution at the entrance of the synthesizer was chosen between 17.5 and 27 °C (at 3.5 mmol scale) and the selected temperature was kept the same for all detritylation steps. The acetonitrile washing was also kept at the same temperature of the deblocking solution. The % depurinated impurities increased linearly with temperature while n-1 was higher at lower temperatures.

Temperature n-1 % Depurinated Impurity %

17.5 10.7 5.3

19 7.6 6.4

22 5.4 8.7

25 6.1 10.8

27 5.3 12.3

Experiment 5 (sulfurization step temperature)

In the experiments below, the temperature (RT means room temperature) of the PADS solution used in the sulfurization reactions was tested for the % of less favourable PO impurities (these are impurities where phosphor oxidation occurred instead of sulfurization). Lower temperature results in lower PO %.

SEQ ID NO:1 – imetelstat and imetelstat sodium

5′-R-TAGGGTTAGACAA-NH2-3′

wherein R represents palmitoyl [(CH2)1 CH3] amide is conjugated through an aminoglycerol linker to the 5′-thiophosphate group of an N3′ – P5′ thiophosphoramidate (NPS) -linked oligonucleotide.

///////////IMETELSTAT,  GRN163L, PHASE 3, orphan drug, FAST TRACK

CCCCCCCCCCCCCCCC(=O)NCC(COP(=S)([O-])OCC1C(CC(O1)N2C=C(C(=O)NC2=O)C)NP(=S)([O-])OCC3C(CC(O3)N4C=NC5=C4N=CN=C5N)NP(=S)([O-])OCC6C(CC(O6)N7C=NC8=C7N=C(NC8=O)N)NP(=S)([O-])OCC9C(CC(O9)N1C=NC2=C1N=C(NC2=O)N)NP(=S)([O-])OCC1C(CC(O1)N1C=NC2=C1N=C(NC2=O)N)NP(=S)([O-])OCC1C(CC(O1)N1C=C(C(=O)NC1=O)C)NP(=S)([O-])OCC1C(CC(O1)N1C=C(C(=O)NC1=O)C)NP(=S)([O-])OCC1C(CC(O1)N1C=NC2=C1N=CN=C2N)NP(=S)([O-])OCC1C(CC(O1)N1C=NC2=C1N=C(NC2=O)N)NP(=S)([O-])OCC1C(CC(O1)N1C=NC2=C1N=CN=C2N)NP(=S)([O-])OCC1C(CC(O1)N1C=CC(=NC1=O)N)NP(=S)([O-])OCC1C(CC(O1)N1C=NC2=C1N=CN=C2N)NP(=O)(OCC1C(CC(O1)N1C=NC2=C1N=CN=C2N)N)[S-])O.[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+]

Esaxerenone エサキセレノン , эсаксеренон , إيساكسيرينون , 艾沙利 酮 ,


Esaxerenone.svg

1632006-28-0.png

ChemSpider 2D Image | esaxerenone | C22H21F3N2O4S

img

Esaxerenone

エサキセレノン , эсаксеренон إيساكسيرينون 艾沙利  酮 

CS-3150XL-550

Formula
C22H21F3N2O4S
CAS
1632006-28-0
Mol weight
466.4734

Pmda approved japan, 2019/1/8, Minebro

Antihypertensive, Aldosterone antagonist

N62TGJ04A1
UNII:N62TGJ04A1
эсаксеренон [Russian] [INN]
إيساكسيرينون [Arabic] [INN]
艾沙利酮 [Chinese] [INN]
1-(2-Hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
10230
1632006-28-0 [RN], 880780-76-7, 1072195-82-4 (+ isomer)   1072195-83-5 (- isomer)
1H-Pyrrole-3-carboxamide, 1-(2-hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-
  • Originator X-Ceptor Therapeutics
  • Developer Daiichi Sankyo Company
  • Class Antihyperglycaemics; Antihypertensives; Pyrroles; Small molecules; Sulfones
  • Mechanism of Action Mineralocorticoid receptor antagonists
  • Registered Hypertension
  • Phase III Diabetic nephropathies
  • No development reported Cardiovascular disorders; Heart failure
  • 09 Jan 2019 Registered for Hypertension in Japan (PO) – First global approval
  • 27 Nov 2018 Daiichi Sankyo completes a phase III trial in Diabetic nephropathies in Japan (PO) (JapicCTI-173696)
  • 08 Jun 2018 Efficacy and adverse events data from the phase III ESAX-HTN trial in Essential hypertension presented 28th European Meeting on Hypertension and Cardiovascular Protection (ESH-2018)

CS 3150, angiotensin II receptor antagonist,  for the treatment or prevention of such hypertension and heart disease similar to olmesartan , losartan, candesartan , valsartan,  irbesartan,  telmisartan, eprosartan,

 Cas name 1H-Pyrrole-3-carboxamide, 1-(2-hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-, (5S)-

CAS 1632006-28-0 for S conf

MF C22 H21 F3 N2 O4 S

MW 466.47

(S)-1-(2-hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide

CAS 1632006-28-0 for S configuration

1- (2-hydroxyethyl) -4-methyl -N- [4- (methylsulfonyl) phenyl] -5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxamide

(S) -1- (2- hydroxyethyl) -4-methyl -N- [4- (methylsulfonyl) phenyl] -5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxamide

(+/-)-1-(2-hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide, CAS 880780-76-7

(+)-1-(2-hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide..1072195-82-4

(-)-1-(2-hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide..1072195-83-5

How to synthesis Esaxerenone 1632006-28-0 – YouTube

Oct 31, 2018 – Uploaded by EOS Med Chem

Esaxerenone 1632006-28-0, FDA approved new drug will be a big potential drug. Original Route of Synthesis …

Esaxerenone, also known as CS-3150, XL-550, is a nonsteroidal antimineralocorticoid which was discovered by Exelixis and is now under development by Daiichi Sankyo Company for the treatment of hypertension, essential hypertension, hyperaldosteronism, and diabetic nephropathies. It acts as a highly selective silent antagonist of the mineralocorticoid receptor (MR), the receptor for aldosterone, with greater than 1,000-fold selectivity for this receptor over other steroid hormone receptors, and 4-fold and 76-fold higher affinity for the MR relative to the existing antimineralocorticoids spironolactone and eplerenone.
Image result for Esaxerenone SYNTHESIS

Esaxerenone (INN) (developmental code names CS-3150XL-550) is a nonsteroidal antimineralocorticoid which was discovered by Exelixis and is now under development by Daiichi Sankyo Company for the treatment of hypertensionessential hypertensionhyperaldosteronism, and diabetic nephropathies.[1][2][3] It acts as a highly selective silent antagonist of the mineralocorticoid receptor(MR), the receptor for aldosterone, with greater than 1,000-fold selectivity for this receptor over other steroid hormone receptors, and 4-fold and 76-fold higher affinity for the MR relative to the existing antimineralocorticoids spironolactone and eplerenone.[1][2][3] As of 2017, esaxerenone is in phase III clinical trials for hypertension, essential hypertension, and hyperaldosteronism and is in phase IIclinical trials for diabetic nephropathies.[1]

  • Mechanism of Action Mineralocorticoid receptor antagonists 

JAPAN PHASE 2……….Phase 2 Study to Evaluate Efficacy and Safety of CS-3150 in Patients with Essential Hypertension

http://www.clinicaltrials.jp/user/showCteDetailE.jsp?japicId=JapicCTI-121921

Phase II Diabetic nephropathies; Hypertension

  • 01 Jan 2015 Daiichi Sankyo initiates a phase IIb trial for Diabetic nephropathies in Japan (NCT02345057)
  • 01 Jan 2015 Daiichi Sankyo initiates a phase IIb trial for Hypertension in Japan (NCT02345044)
  • 01 May 2013 Phase-II clinical trials in Diabetic nephropathies in Japan (PO)
  •  Currently, angiotensin II receptor antagonists and calcium antagonists are widely used as a medicament for the treatment or prevention of such hypertension or heart disease.
     Mineralocorticoid receptor (MR) (aldosterone receptor) has been known to play an important role in the control of body electrolyte balance and blood pressure, spironolactone having a steroid structure, MR antagonists such as eplerenone, are known to be useful in the treatment of hypertension-heart failure.
     Renin – angiotensin II receptor antagonists are inhibitors of angiotensin system is particularly effective in renin-dependent hypertension, and show a protective effect against cardiovascular and renal failure. Also, the calcium antagonists, and by the function of the calcium channel antagonizes (inhibits), since it has a natriuretic action in addition to the vasodilating action, is effective for hypertension fluid retention properties (renin-independent) .
     Therefore, the MR antagonist, when combined angiotensin II receptor antagonists or calcium antagonists, it is possible to suppress the genesis of multiple hypertension simultaneously, therapeutic or prophylactic effect of the stable and sufficient hypertension irrespective of the etiology is expected to exhibit.
     Also, diuretics are widely used as a medicament for the treatment or prevention of such hypertension or heart disease. Diuretic agent is effective in the treatment of hypertension from its diuretic effect. Therefore, if used in combination MR antagonists and diuretics, the diuretic effect of diuretics, it is possible to suppress the genesis of multiple blood pressure at the same time, shows a therapeutic or prophylactic effect of the stable and sufficient hypertension irrespective of the etiology it is expected.
     1- (2-hydroxyethyl) -4-methyl -N- [4- (methylsulfonyl) phenyl] -5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxamide (hereinafter, compound ( I)) is, it is disclosed in Patent Documents 1 and 2, hypertension, for the treatment of such diabetic nephropathy are known to be useful.

CS-3150 (XL550) is a small-molecule antagonist of the mineralocorticoid receptor (MR), a nuclear hormone receptor implicated in a variety of cardiovascular and metabolic diseases. MR antagonists can be used to treat hypertension and congestive heart failure due to their vascular protective effects. Recent studies have also shown beneficial effects of adding MR antagonists to the treatment regimen for Type II diabetic patients with nephropathy. CS-3150 is a non-steroidal, selective MR antagonist that has the potential for the treatment of hypertension, congestive heart failure, or end organ protection due to vascular damage.

Useful as a mineralocorticoid receptor (MR) antagonist, for treating hypertension, cardiac failure and diabetic nephropathy. It is likely to be CS-3150, a non-steroidal MR antagonist, being developed by Daiichi Sankyo (formerly Sankyo), under license from Exelixis, for treating hypertension and diabetic nephropathy (phase 2 clinical, as of March 2015). In January 2015, a phase II trial for type 2 diabetes mellitus and microalbuminuria was planned to be initiated later that month (NCT02345057).

Exelixis discovered CS-3150 and out-licensed the compound to Daiichi-Sankyo. Two phase 2a clinical trials, one in hypertensive patients and the other in type 2 diabetes with albuminuria, are currently being conducted in Japan by Daiichi-Sankyo.

Mineralocorticoid receptor (MR) (aldosterone receptor) has been known to play an important role in the control of body electrolyte balance and blood pressure, spironolactone having a steroid structure, MR antagonists such as eplerenone, are known to be useful in the treatment of hypertension-heart failure.

CS-3150 (XL550) is a small-molecule antagonist of the mineralocorticoid receptor (MR), a nuclear hormone receptor implicated in a variety of cardiovascular and metabolic diseases. MR antagonists can be used to treat hypertension and congestive heart failure due to their vascular protective effects. Recent studies have also shown beneficial effects of adding MR antagonists to the treatment regimen for Type II diabetic patients with nephropathy. CS-3150 is a non-steroidal, selective MR antagonist that has the potential for the treatment of hypertension, congestive heart failure, or end organ protection due to vascular damage.

Exelixis discovered CS-3150 and out-licensed the compound to Daiichi-Sankyo. Two phase 2a clinical trials, one in hypertensive patients and the other in type 2 diabetes with albuminuria, are currently being conducted in Japan by Daiichi-Sankyo.

Daiichi Sankyo (formerly Sankyo), under license from Exelixis, is developing CS-3150 (XL-550), a non-steroidal mineralocorticoid receptor (MR) antagonist, for the potential oral treatment of hypertension and diabetic nephropathy, microalbuminuria ,  By October 2012, phase II development had begun ; in May 2014, the drug was listed as being in phase IIb development . In January 2015, a phase II trial for type 2 diabetes mellitus and microalbuminuria was planned to be initiated later that month. At that time, the trial was expected to complete in March 2017 .

Exelixis, following its acquisition of X-Ceptor Therapeutics in October 2004 , was investigating the agent for the potential treatment of metabolic disorders and cardiovascular diseases, such as hypertension and congestive heart failure . In September 2004, Exelixis expected to file an IND in 2006. However, it appears that the company had fully outlicensed the agent to Sankyo since March 2006 .

Description Small molecule antagonist of the mineralocorticoid receptor (MR)
Molecular Target Mineralocorticoid receptor
Mechanism of Action Mineralocorticoid receptor antagonist
Therapeutic Modality Small molecule

In January 2015, a multi-center, placebo-controlled, randomized, 5-parallel group, double-blind, phase II trial (JapicCTI-152774;  NCT02345057; CS3150-B-J204) was planned to be initiated later that month in Japan, in patients with type 2 diabetes mellitus and microalbuminuria, to assess the efficacy and safety of different doses of CS-3150 compared to placebo. At that time, the trial was expected to complete in March 2017; later that month, the trial was initiated in the Japan

By October 2012, phase II development had begun in patients with essential hypertension

By January 2011, phase I trials had commenced in Japan

Several patents WO-2014168103,

WO-2015012205 and WO-2015030010

XL-550, claimed in WO-2006012642,

PATENT

http://www.google.co.in/patents/EP2133330A1?cl=en

(Example 3)(+/-)-1-(2-hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide

  • After methyl 4-methyl-5-[2-(trifluoromethyl) phenyl]-1H-pyrrole-3-carboxylate was obtained by the method described in Example 16 of WO 2006/012642 , the following reaction was performed using this compound as a raw material.
  • Methyl 4-methyl-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxylate (1.4 g, 4.9 mmol) was dissolved in methanol (12 mL), and a 5 M aqueous sodium hydroxide solution (10 mL) was added thereto, and the resulting mixture was heated under reflux for 3 hours. After the mixture was cooled to room temperature, formic acid (5 mL) was added thereto to stop the reaction. After the mixture was concentrated under reduced pressure, water (10 mL) was added thereto to suspend the resulting residue. The precipitated solid was collected by filtration and washed 3 times with water. The obtained solid was dried under reduced pressure, whereby 4-methyl-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxylic acid (1.1 g, 83%) was obtained as a solid. The thus obtained solid was suspended in dichloromethane (10 mL), oxalyl chloride (0.86 mL, 10 mmol) was added thereto, and the resulting mixture was stirred at room temperature for 2 hours. After the mixture was concentrated under reduced pressure, the residue was dissolved in tetrahydrofuran (10 mL), and 4-(methylsulfonyl)aniline hydrochloride (1.0 g, 4.9 mmol) and N,N-diisopropylethylamine (2.8 mL, 16 mmol) were sequentially added to the solution, and the resulting mixture was heated under reflux for 18 hours. After the mixture was cooled to room temperature, the solvent was distilled off under reduced pressure, and acetonitrile (10 mL) and 3 M hydrochloric acid (100 mL) were added to the residue. A precipitated solid was triturated, collected by filtration and washed with water, and then, dried under reduced pressure, whereby 4-methyl-N-[4-(methylsulfonyl) phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide (1.4 g, 89%) was obtained as a solid.
    1H-NMR (400 MHz, DMSO-d6) δ11.34 (1H, brs,), 9.89 (1H, s), 7.97 (2H, d, J = 6.6 Hz), 7.87-7.81 (3H, m), 7.73 (1H, t, J = 7.4 Hz), 7.65-7.61 (2H, m), 7.44 (1H, d, J = 7.8 Hz), 3.15 (3H, s), 2.01 (3H, s).
  • Sodium hydride (0.12 g, 3 mmol, 60% dispersion in mineral oil) was dissolved in N,N-dimethylformamide (1.5 mL), and 4-methyl -N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide (0.47 g, 1.1 mmol) was added thereto, and then, the resulting mixture was stirred at room temperature for 30 minutes. Then, 1,3,2-dioxathiolane-2,2-dioxide (0.14 g, 1.2 mmol) was added thereto, and the resulting mixture was stirred at room temperature. After 1 hour, sodium hydride (40 mg, 1.0 mmol, oily, 60%) was added thereto again, and the resulting mixture was stirred for 30 minutes. Then, 1,3,2-dioxathiolane-2,2-dioxide (12 mg, 0.11 mmol) was added thereto, and the resulting mixture was stirred at room temperature for 1 hour. After the mixture was concentrated under reduced pressure, methanol (5 mL) was added to the residue and insoluble substances were removed by filtration, and the filtrate was concentrated again. To the residue, tetrahydrofuran (2 mL) and 6 M hydrochloric acid (2 mL) were added, and the resulting mixture was stirred at 60°C for 16 hours. The reaction was cooled to room temperature, and then dissolved in ethyl acetate, and washed with water and saturated saline. The organic layer was dried over anhydrous sodium sulfate and filtered. Then, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate), whereby the objective compound (0.25 g, 48%) was obtained.
    1H-NMR (400 MHz, CDCl3) δ: 7.89-7.79 (m, 6H), 7.66-7.58 (m, 2H), 7.49 (s, 1H), 7.36 (d, 1H, J = 7.4Hz), 3.81-3.63 (m, 4H), 3.05 (s, 3H), 2.08 (s, 3H).
    HR-MS (ESI) calcd for C22H22F3N2O4S [M+H]+, required m/z: 467.1252, found: 467.1246.
    Anal. calcd for C22H21F3N2O4S: C, 56.65; H, 4.54; N, 6.01; F, 12.22; S, 6.87. found: C, 56.39; H, 4.58; N, 5.99; F, 12.72; S, 6.92.

(Example 4)

Optical Resolution of Compound of Example 3

  • Resolution was performed 4 times in the same manner as in Example 2, whereby 74 mg of Isomer C was obtained as a solid from a fraction containing Isomer C (tR = 10 min), and 71 mg of Isomer D was obtained as a solid from a fraction containing Isomer D (tR = 11 min).
  • Isomer C: (+)-1-(2-hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
    [α]D 21: +7.1° (c = 1.0, EtOH) .
    1H-NMR (400 MHz, CDCl3) δ: 7.91 (s, 1H), 7.87-7.79 (m, 5H), 7.67-7.58 (m, 2H), 7.51 (s, 1H), 7.35 (d, 1H, J = 7.0 Hz), 3.78-3.65 (m, 4H), 3.05 (s, 3H), 2.07 (s, 3H).
    HR-MS (ESI) calcd for C22H22F3N2O4S [M+H]+, required m/z: 467.1252, found: 467.1260.
    Retention time: 4.0 min.
  • Isomer D: (-)-1-(2-hydroxyethyl)-4-methyl-N-[4-(methylsulfonyl)phenyl]-5-[2-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
    [α]D 21: -7.2° (c = 1.1, EtOH) .
    1H-NMR (400 MHz, CDCl3) δ: 7.88-7.79 (m, 6H), 7.67-7.58 (m, 2H), 7.50 (s, 1H), 7.36 (d, 1H, J = 7.5 Hz), 3.79-3.65 (m, 4H), 3.05 (s, 3H), 2.08 (s, 3H).
    HR-MS (ESI) calcd for C22H22F3N2O4S [M+H]+, required m/z: 467.1252, found: 467.1257.
    Retention time: 4.5 min.

……………………………………………….

WO 2014168103

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014168103

 Step B: pyrrole derivative compounds (A ‘)
[Of 16]
(Example 1) 2-bromo-1- [2- (trifluoromethyl) phenyl] propan-1-one
[Of 19]
 1- [2- (trifluoromethyl) phenyl] propan-1-one 75 g (370 mmol) in t- butyl methyl ether (750 mL), and I was added bromine 1.18 g (7.4 mmol). After confirming that the stirred bromine color about 30 minutes at 15 ~ 30 ℃ disappears, cooled to 0 ~ 5 ℃, was stirred with bromine 59.13 g (370 mmol) while keeping the 0 ~ 10 ℃. After stirring for about 2.5 hours, was added while maintaining 10 w / v% aqueous potassium carbonate solution (300 mL) to 0 ~ 25 ℃, was further added sodium sulfite (7.5 g), was heated to 20 ~ 30 ℃. The solution was separated, washed in the resulting organic layer was added water (225 mL), to give t- butyl methyl ether solution of the title compound and the organic layer was concentrated under reduced pressure (225 mL).
 1 H NMR (400 MHz, CDCl 3 ) delta: 1.91 (3H, D, J = 4.0 Hz), 4.97 (1H, Q, J = 6.7 Hz), 7.60 ~ 7.74 (4H, M).
(Example 2) 2-cyano-3-methyl-4-oxo-4- [2- (trifluoromethyl) phenyl] butanoate
[Of 20]
 2-bromo-1- [2- (trifluoromethyl) phenyl] propan-1 / t- butyl methyl ether solution (220 mL) in dimethylacetamide (367 mL), ethyl cyanoacetate obtained in Example 1 53.39 g (472 mmol), potassium carbonate 60.26 g (436 mmol) were sequentially added, and the mixture was stirred and heated to 45 ~ 55 ℃. After stirring for about 2 hours, 20 is cooled to ~ 30 ℃, water (734 mL) and then extracted by addition of toluene (367 mL), washed by adding water (513 mL) was carried out in the organic layer (2 times implementation). The resulting organic layer was concentrated under reduced pressure to obtain a toluene solution of the title compound (220 mL).
 1 H NMR (400 MHz, CDCl 3 ) delta: 1.33 ~ 1.38 (6H, M), 3.80 ~ 3.93 (2H, M), 4.28 ~ 4.33 (2H, M), 7.58 ~ 7.79 (4H, M).
(Example 3) 2-chloro-4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid ethyl
[Of 21]
 The 20 ~ 30 ℃ 2-cyano-3-methyl-4-oxo-4 was obtained [2- (trifluoromethyl) phenyl] butanoate in toluene (217 mL) by the method of Example 2 ethyl acetate (362 mL) Te, after the addition of thionyl chloride 42.59 g (358 mmol), cooled to -10 ~ 5 ℃, was blown hydrochloric acid gas 52.21 g (1432 mmol), further concentrated sulfuric acid 17.83 g (179 mmol) was added, and the mixture was stirred with hot 15 ~ 30 ℃. After stirring for about 20 hours, added ethyl acetate (1086 mL), warmed to 30 ~ 40 ℃, after the addition of water (362 mL), and the layers were separated. after it separated organic layer water (362 mL) was added for liquid separation, and further 5w / v% was added for liquid separation aqueous sodium hydrogen carbonate solution (362 mL).
 Subsequently the organic layer was concentrated under reduced pressure, the mixture was concentrated under reduced pressure further added toluene (579 mL), was added toluene (72 mL), and cooled to 0 ~ 5 ℃. After stirring for about 2 hours, the precipitated crystals were filtered, and washed the crystals with toluene which was cooled to 0 ~ 5 ℃ (217 mL). The resulting wet goods crystals were dried under reduced pressure at 40 ℃, the title compound was obtained (97.55 g, 82.1% yield).
 1 H NMR (400 MHz, CDCl 3 ) delta: 1.38 (3H, t, J = 7.1 Hz), 2.11 (3H, s), 4.32 (2H, Q, J = 7.1 Hz), 7.39 (1H, D, J = 7.3 Hz), 7.50 ~ 7.62 (2H, m), 7.77 (1H, d, J = 8.0 Hz), 8.31 (1H, br).
(Example 4) 4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid ethyl
[Of 22]
 Example obtained by the production method of the three 2-chloro-4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylate 97.32 g (293 mmol) in ethanol (662 mL), tetrahydrofuran (117 mL), water (49 mL), sodium formate 25.91 g (381 mmol) and 5% palladium – carbon catalyst (water content 52.1%, 10.16 g) was added at room temperature, heated to 55 ~ 65 ℃ the mixture was stirred. After stirring for about 1 hour, cooled to 40 ℃ less, tetrahydrofuran (97 mL) and filter aid (KC- flock, Nippon Paper Industries) 4.87 g was added, the catalyst was filtered and the residue using ethanol (389 mL) was washed. The combined ethanol solution was used for washing the filtrate after concentration under reduced pressure, and with the addition of water (778 mL) was stirred for 0.5 hours at 20 ~ 30 ℃. The precipitated crystals were filtered, and washed the crystals with ethanol / water = 7/8 solution was mixed with (292 mL). The resulting wet goods crystals were dried under reduced pressure at 40 ℃, the title compound was obtained (86.23 g, 98.9% yield).
 1 H NMR (400 MHz, CDCl 3 ) delta: 1.35 (3H, t, J = 7.1 Hz), 2.18 (3H, s), 4.29 (2H, M), 7.40 ~ 7.61 (4H, M), 7.77 (1H, d, J = 7.9 Hz), 8.39 (1H, br).
(Example 5) (RS) -1- (2- hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid ethyl
[Of 23]
 N to the fourth embodiment of the manufacturing method by the resulting 4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylate 65.15 g (219 mmol), N- dimethylacetamide ( 261 mL), ethylene carbonate 28.95 g (328.7 mmol), 4- dimethylaminopyridine 2.68 g (21.9 mmol) were sequentially added at room temperature, and heated to 105 ~ 120 ℃, and the mixture was stirred. After stirring for about 10 hours, toluene was cooled to 20 ~ 30 ℃ (1303 mL), and the organic layer was extracted by adding water (326 mL). Subsequently, was washed by adding water (326 mL) to the organic layer (three times). The resulting organic layer was concentrated under reduced pressure, ethanol (652 mL) was added, and was further concentrated under reduced pressure, ethanol (130 mL) was added to obtain an ethanol solution of the title compound (326 mL).
 1 H NMR (400 MHz, CDCl 3 ) delta: 1.35 (3H, t, J = 7.1 Hz), 1.84 (1H, Broad singlet), 2.00 (3H, s), 3.63 ~ 3.77 (4H, M), 4.27 (2H , m), 7.35 ~ 7.79 (5H, m).
(Example 6) (RS) -1- (2- hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid
[Of 24]
 Obtained by the method of Example 5 (RS) -1- (2- hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid ethyl / ethanol (321 mL) solution in water (128.6 mL), was added at room temperature sodium hydroxide 21.4 g (519 mmol), and stirred with heating to 65 ~ 78 ℃. After stirring for about 6 hours, cooled to 20 ~ 30 ℃, after the addition of water (193 mL), and was adjusted to pH 5.5 ~ 6.5, while maintaining the 20 ~ 30 ℃ using 6 N hydrochloric acid. was added as seed crystals to the pH adjustment by a liquid (RS) -1- (2- hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid 6.4 mg , even I was added to water (193mL). Then cooled to 0 ~ 5 ℃, again, adjusted to pH 3 ~ 4 with concentrated hydrochloric acid and stirred for about 1 hour. Then, filtered crystals are precipitated, and washed the crystals with 20% ethanol water is cooled to 0 ~ 5 ℃ (93 mL). The resulting wet product crystals were dried under reduced pressure at 40 ℃, to give the title compound (64.32 g, 95.0% yield). 1 H NMR (400 MHz, DMSO-D 6 ) delta: 1.87 (3H, s), 3.38 ~ 3.68 (4H, M), 7.43 ~ 7.89 (5H, M).
(Example 7)
(S) -1- (2- hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid quinine salt
(7-1) (S) -1- (2- hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid quinine salt
obtained by the method of Example 6 the (RS) -1- (2- hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid 50.00 g (160 mmol), N, N- dimethylacetamide (25 mL), ethyl acetate (85 mL) was added and dissolved at room temperature (solution 1).

 Quinine 31.05 g (96 mmol) in N, N- dimethylacetamide (25 mL), ethyl acetate (350 mL), was heated in water (15 mL) 65 ~ 70 ℃ was added, was added dropwise a solution 1. After about 1 hour stirring the mixture at 65 ~ 70 ℃, and slowly cooled to 0 ~ 5 ℃ (cooling rate standard: about 0.3 ℃ / min), and stirred at that temperature for about 0.5 hours. The crystals were filtered, 5 ℃ using ethyl acetate (100 mL) which was cooled to below are washed crystals, the resulting wet product crystals was obtained and dried under reduced pressure to give the title compound 43.66 g at 40 ℃ (Yield 42.9%). Furthermore, the diastereomeric excess of the obtained salt was 98.3% de. 1 H NMR (400 MHz, DMSO-D 6 ) delta: 1.30 ~ 2.20 (10H, M), 2.41 ~ 2.49 (2H, M), 2.85 ~ 3.49 (6H, M), 3.65 ~ 3.66 (1H, M), 3.88 (3H, s), 4.82 (1H, broad singlet), 4.92 ~ 5.00 (2H, m), 5.23 ~ 5.25 (1H, m), 5.60 (1H, br), 5.80 ~ 6.00 (1H, m), 7.36 ~ 7.92 (9H, M), 8.67 (1H, D, J = 4.6 Hz) (7-2) (S)-1-(2-hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3 diastereomeric excess of the carboxylic acid quinine salt HPLC measurements (% de)  that the title compound of about 10 mg was collected, and the 10 mL was diluted with 50v / v% aqueous acetonitrile me was used as a sample solution.

 Column: DAICEL CHIRALPAK IC-3 (4.6 mmI.D. × 250 mm, 3 μm)
mobile phase A: 0.02mol / L phosphorus vinegar buffer solution (pH 3)
mobile phase B: acetonitrile
solution sending of mobile phase: mobile phase A and I indicates the mixing ratio of mobile phase B in Table 1 below.
[Table 1]
  Detection: UV 237 nm
flow rate: about 0.8 mL / min
column temperature: 30 ℃ constant temperature in the vicinity of
measuring time: about 20 min
Injection volume: 5 μL
diastereomeric excess (% de), the title compound (retention time about 12 min), was calculated by the following equation using a peak area ratio of R-isomer (retention time of about 13 min).
% De = {[(the title compound (S body) peak area ratio) – (R body peak area ratio)] ÷ [(the title compound (S body) peak area ratio) + (R body peak area ratio)]} × 100
(Example 8)
(S) -1- (2- hydroxyethyl) -4-methyl -N- [4- (methylsulfonyl) phenyl] -5- [2- (trifluoromethyl) phenyl] -1H- pyrrole 3-carboxamide (Compound (A))
(8-1) (S)-1-(2-hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole -3 – carboxylic acid
obtained by the method of Example 7 (S) -1- (2- hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxylic acid (8α, 9R) -6′- methoxycinnamate Conan-9-ol 40.00 g (63 mmol) in ethyl acetate (400 mL), was added 2N aqueous hydrochloric acid (100 mL) was stirred at room temperature and separated . The resulting organic layer was concentrated under reduced pressure (120 mL), and added ethyl acetate (200 mL), and further concentrated under reduced pressure to obtain a solution containing the title compound (120 mL).
(8-2) N – {[4- (methylsulfonyl) phenyl] amino} oxamic acid 2 – ((S) -3- methyl-4 – {[4- (methylsulfonyl) phenyl] carbamoyl} -2- [ 2- (trifluoromethyl) phenyl] -1H- pyrrol-1-yl) ethyl
ethyl acetate (240 mL), was mixed tetrahydrofuran (80 mL) and oxalyl chloride 20.72 g (163 mmol), and cooled to 10 ~ 15 ℃ was. Then the resulting solution was added while keeping the 10 ~ 15 ℃ Example (8-1) and stirred for about 1 hour by heating to 15 ~ 20 ℃. After stirring, acetonitrile (120 mL) and pyridine 2.46 g (31 mmol) was added and the reaction mixture was concentrated under reduced pressure (120 mL), acetonitrile (200 mL) was added and further concentrated under reduced pressure (120 mL).
 After completion concentration under reduced pressure, acetonitrile (200 mL) was added and cooled to 10 ~ 15 ℃ (reaction 1).
 Acetonitrile (240mL), pyridine 12.39 g (157 mmol), 4- were successively added (methylsulfonyl) aniline 26.85 g (157 mmol), the reaction solution 1 was added while maintaining the 10 ~ 15 ℃, the 20 ~ 25 ℃ and the mixture was stirred and heated to about 1 hour.
 The resulting reaction solution in acetonitrile (40 mL), 2 N hydrochloric acid water (120 mL), was added sodium chloride (10.0 g) was stirred, and the layers were separated. Again, 2N aqueous hydrochloric acid to the organic layer (120 mL), was added sodium chloride (10.0 g) was stirred, and the layers were separated. After filtering the resulting organic layer was concentrated under reduced pressure (400 mL). Water (360 mL) was added to the concentrated liquid, after about 1 hour stirring, the crystals were filtered, washed with 50v / v% aqueous acetonitrile (120 mL), wet product of the title compound (undried product, 62.02 g) and obtained. 1 H NMR (500 MHz, DMSO-D 6 ) delta: 1.94 (s, 3H), 3.19 (s, 3H), 3.20 (s, 3H), 3.81 (t, 1H), 4.12 (t, 1H), 4.45 ( t, 2H, J = 5.81 Hz), 7.62 (t, 1H, J = 4.39 Hz), 7.74 (t, 2H, J = 3.68 Hz), 7.86 (dd, 3H), 7.92 (dd, 3H, J = 6.94 , 2.13 Hz), 7.97 (DD, 2H, J = 6.80, 1.98 Hz), 8.02 (DD, 2H), 10.03 (s, 1H), 11.19 (s, 1H)
(8-3) (S)-1- (2-hydroxyethyl) -4-methyl -N- [4- (methylsulfonyl) phenyl] -5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxamide (Compound (A))  ( the resulting wet product crystals 8-2), t- butyl methyl ether (200 mL), acetonitrile (40 mL), 48w / w potassium hydroxide aqueous solution (16 g) and water (200 mL) was added, I was stirred for about 2 hours at 25 ~ 35 ℃. After stirring, and the mixture is separated, the resulting organic layer was concentrated under reduced pressure (120 mL), ethanol (240 mL) was added and further concentrated under reduced pressure (120 mL). After completion concentration under reduced pressure, ethanol (36 mL), and heated in water (12 mL) was added 35 ~ 45 ℃, while maintaining the 35 ~ 45 ℃ was added dropwise water (280 mL), and was crystallized crystals. After cooling the crystal exudates to room temperature, I was filtered crystal. Then washed with crystals 30v / v% aqueous ethanol solution (80 mL), where it was dried under reduced pressure at 40 ℃, the title compound was obtained in crystalline (26.26 g, 89.7% yield). Moreover, the enantiomers of the resulting crystals was 0.3%.
1 H NMR (400 MHz, CDCl 3 ) delta: 1.74 (1H, Broad singlet), 2.08 (3H, s), 3.04 (3H, s), 3.63 ~ 3.80 (4H, M), 7.36 (1H, D, J = 7.2 Hz), 7.48 (1H, s), 7.58 ~ 7.67 (2H, M), 7.77 ~ 7.90 (6H, M).
(8-4) (S)-1-(2-hydroxyethyl) -4-methyl -N- [4- (methylsulfonyl) phenyl] -5- [2- (trifluoromethyl) phenyl] -1H- pyrrole -3- HPLC method for measuring the amount enantiomer carboxamide (%)  and collected the title compound of about 10 mg is, what was the 10 mL was diluted with 50v / v% aqueous acetonitrile to obtain a sample solution.
see
(Example 12) (S) -1- (2- hydroxyethyl) -4-methyl -N- [4- (methylsulfonyl) phenyl] -5- [2- (trifluoromethyl) phenyl] -1H- pyrrole 3-carboxamide (Compound (A)) Preparation of 2
(12-1) (S)-1-(2-hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H – pyrrole-3-carboxylic acid
obtained by the method of Example 7 (S) -1- (2- hydroxyethyl) -4-methyl-5- [2- (trifluoromethyl) phenyl] -1H- pyrrole 3-carboxylic acid (8α, 9R) -6′- methoxycinnamate Conan-9-ol 10.00 g (16 mmol) in t- butyl methyl ether (90 mL), water (10 mL) 36w / w% aqueous hydrochloric acid ( 5 mL) was added and stirring at room temperature and separated. The resulting organic layer was concentrated under reduced pressure (30 mL), was added ethyl acetate (50 mL), and further concentrated under reduced pressure to obtain a solution containing the title compound (30 mL).
(12-2) N – {[4- (methylsulfonyl) phenyl] amino} oxamic acid 2 – ((S) -3- methyl-4 – {[4- (methylsulfonyl) phenyl] carbamoyl} -2- [ 2- (trifluoromethyl) phenyl] -1H- pyrrol-1-yl) ethyl
ethyl acetate (50 mL), was mixed with tetrahydrofuran (20 mL) and oxalyl chloride 5.18 g (41 mmol), and cooled to 0 ~ 5 ℃ was.Then the resulting solution was added in Examples while maintaining the 0 ~ 5 ℃ (12-1), and the mixture was stirred for 6 hours at 0 ~ 10 ℃. After stirring, acetonitrile (30 mL) and pyridine 0.62 g (8 mmol) was added and the reaction mixture was concentrated under reduced pressure (30 mL), acetonitrile (50 mL) was added, and further concentrated under reduced pressure (30 mL).
 After concentration under reduced pressure end, is added acetonitrile (10 mL) and oxalyl chloride 0.10 g (1 mmol), and cooled to 0 ~ 5 ℃ (reaction 1).
 Acetonitrile (30mL), pyridine 3.15 g (40 mmol), 4- were successively added (methylsulfonyl) aniline 6.71 g (39 mmol), the reaction solution 1 was added while maintaining the 10 ~ 15 ℃, the 20 ~ 25 ℃ and the mixture was stirred and heated to about 1 hour.
 Insolubles from the resulting reaction solution was filtered, washed with acetonitrile (10 mL), and stirred for about 2 hours the addition of water (15 mL), followed by dropwise addition of water (75 mL) over about 1 hour . After about 1 hour stirring the suspension was filtered crystals were washed with 50v / v% aqueous acetonitrile (20 mL), wet product of the title compound (undried product, 15.78 g) to give a. 1 H NMR (500 MHz, DMSO-D 6 ) delta: 1.94 (s, 3H), 3.19 (s, 3H), 3.20 (s, 3H), 3.81 (t, 1H), 4.12 (t, 1H), 4.45 ( t, 2H, J = 5.81 Hz), 7.62 (t, 1H, J = 4.39 Hz), 7.74 (t, 2H, J = 3.68 Hz), 7.86 (dd, 3H), 7.92 (dd, 3H, J = 6.94 , 2.13 Hz), 7.97 (DD, 2H, J = 6.80, 1.98 Hz), 8.02 (DD, 2H), 10.03 (s, 1H), 11.19 (s, 1H)
(12-3) (S)-1- (2-hydroxyethyl) -4-methyl -N- [4- (methylsulfonyl) phenyl] -5- [2- (trifluoromethyl) phenyl] -1H- pyrrole-3-carboxamide (Compound (A))  ( the resulting wet product crystals 12-2), t- butyl methyl ether (50 mL), acetonitrile (10 mL), 48w / w potassium hydroxide aqueous solution (4 g) and water (50 mL) was added, 15 I was about 2 hours of stirring at ~ 25 ℃. After stirring, and the mixture is separated, the resulting organic layer was concentrated under reduced pressure (30 mL), was added ethanol (60 mL), was further concentrated under reduced pressure (30 mL). After completion concentration under reduced pressure, ethanol (14 mL), after addition of water (20 mL), was added a seed crystal, and was crystallized crystals. After dropwise over about 1 hour water (50 mL), and about 1 hour stirring, and crystals were filtered off. Then washed with crystals 30v / v% aqueous ethanol solution (10 mL), where it was dried under reduced pressure at 40 ℃, the title compound was obtained in crystal (6.36 g, 87.0% yield). Moreover, the enantiomers of the resulting crystals was 0.05%. Enantiomers amount, I was measured by the method of (Example 8-4). 1 H NMR (400 MHz, CDCl 3 ) delta: 1.74 (1H, Broad singlet), 2.08 (3H, s), 3.04 (3H, s), 3.63 ~ 3.80 (4H, M), 7.36 (1H, D, J = 7.2 Hz), 7.48 (1H, s), 7.58 ~ 7.67 (2H, m), 7.77 ~ 7.90 (6H, m).

Patent literature

Patent Document 1: International Publication WO2006 / 012642 (US Publication US2008-0234270)
Patent Document 2: International Publication WO2008 / 056907 (US Publication US2010-0093826)
Patent Document 3: Pat. No. 2,082,519 JP (US Patent No. 5,616,599 JP)
Patent Document 4: Pat. No. 1,401,088 JP (US Pat. No. 4,572,909)
Patent Document 5: US Pat. No. 3,025,292

Angiotensin II receptor 桔抗 agent

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015012205&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=FullText

Angiotensin II receptor 桔抗 agent used as the component (A), olmesartan medoxomil, olmesartan cilexetil, losartan, candesartan cilexetil, valsartan, biphenyl tetrazole compounds such as irbesartan, biphenyl carboxylic acid compounds such as telmisartan, eprosartan, agile Sultan, and the like, preferably, a biphenyl tetrazole compound, more preferably, olmesartan medoxomil, is losartan, candesartan cilexetil, valsartan or irbesartan, particularly preferred are olmesartan medoxomil, losartan or candesartan cilexetil, Most preferably, it is olmesartan medoxomil.
 Olmesartan medoxomil, JP-A-5-78328, US Patent No. 5,616,599
is described in Japanese or the like, its chemical name is (5-methyl-2-oxo-1,3-dioxolen-4-yl ) methyl 4- (1-hydroxy-1-methylethyl) -2-propyl-1 – in [2 ‘(1H- tetrazol-5-yl) biphenyl-4-ylmethyl] imidazole-5-carboxylate, Yes, olmesartan medoxomil of the present application includes its pharmacologically acceptable salt.
Olmesartan.pngOLMESARTAN
 Losartan (DUP-753) is, JP 63-23868, is described in US Patent No. 5,138,069 JP like, and its chemical name is 2-butyl-4-chloro-1- [2 ‘ – The (1H- tetrazol-5-yl) biphenyl-4-ylmethyl] -1H- is imidazol-5-methanol, application of losartan includes its pharmacologically acceptable salt (losartan potassium salt, etc.).
Skeletal formula
 LOSARTAN
 Candesartan cilexetil, JP-A-4-364171, EP-459136 JP, is described in US Patent No. 5,354,766 JP like, and its chemical name is 1- (cyclohexyloxycarbonyloxy) ethyl-2 ethoxy-1- [2 ‘one (1H- tetrazol-5-yl) -4-Bife~eniru ylmethyl] -1H- benzimidazole-7-carboxylate is a salt application of candesartan cilexetil, which is a pharmacologically acceptable encompasses.
 Valsartan (CGP-48933), the JP-A-4-159718, are described in EP-433983 JP-like, and its chemical name, (S) -N- valeryl -N- [2 ‘- (1H- tetrazol – It is a 5-yl) biphenyl-4-ylmethyl) valine, valsartan of the present application includes its pharmacologically acceptable ester or a pharmacologically acceptable salt thereof.
 Irbesartan (SR-47436), the Japanese Patent Publication No. Hei 4-506222, is described in JP WO91-14679 publication, etc., its chemical name, 2-N–butyl-4-spiro cyclopentane-1- [2′ The (tetrazol-5-yl) biphenyl-4-ylmethyl] -2-imidazoline-5-one, irbesartan of the present application includes its pharmacologically acceptable salts.
 Eprosartan (SKB-108566) is described in US Patent No. 5,185,351 JP etc., the chemical name, 3- [1- (4-carboxyphenyl-methyl) -2-n- butyl – imidazol-5-yl] The 2-thienyl – methyl-2-propenoic acid, present in eprosartan, the carboxylic acid derivatives, pharmacologically acceptable ester or a pharmacologically acceptable salt of a carboxylic acid derivative (eprosartan mesylate, encompasses etc.).
 Telmisartan (BIBR-277) is described in US Patent No. 5,591,762 JP like, and its chemical name is 4 ‘- [[4 Mechiru 6- (1-methyl-2-benzimidazolyl) -2 – is a propyl-1-benzimidazolyl] methyl] -2-biphenylcarboxylic acid, telmisartan of the present application includes its carboxylic acid derivative, a pharmacologically acceptable ester or a pharmacologically acceptable salt thereof of carboxylic acid derivatives .
 Agile Sultan, is described in Patent Publication No. 05-271228 flat JP, US Patent No. 5,243,054 JP like, and its chemical name is 2-ethoxy-1 {[2 ‘- (5-oxo-4,5-dihydro 1,2,4-oxadiazole-3-yl) biphenyl-4-yl] methyl} -1H- benzo [d] imidazole-7-carboxylic acid (2-Ethoxy-1 {[2 ‘- (5- oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl) biphenyl-4-yl] is a methyl} -1H-benzo [d] imidazole-7-carboxylic acid).

References

  1. Jump up to:a b c http://adisinsight.springer.com/drugs/800021527
  2. Jump up to:a b Yang J, Young MJ (2016). “Mineralocorticoid receptor antagonists-pharmacodynamics and pharmacokinetic differences”. Curr Opin Pharmacol27: 78–85. doi:10.1016/j.coph.2016.02.005PMID 26939027.
  3. Jump up to:a b Kolkhof P, Nowack C, Eitner F (2015). “Nonsteroidal antagonists of the mineralocorticoid receptor”. Curr. Opin. Nephrol. Hypertens24 (5): 417–24. doi:10.1097/MNH.0000000000000147PMID 26083526.

External links

Esaxerenone
Esaxerenone.svg
Clinical data
Routes of
administration
Oral
Drug class Antimineralocorticoid
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C22H21F3N2O4S
Molar mass 466.475 g/mol
3D model (JSmol)

///////////JAPAN 2019, Esaxerenone, Minebro, エサキセレノン ,Phase III, Diabetic nephropathies, HYPERTENSION. PHASE 3, N62TGJ04A1, UNII:N62TGJ04A1, эсаксеренон إيساكسيرينون 艾沙利  酮 CS-3150XL-550, CS 3150, XL 550

Relugolix レルゴリクス


Relugolix structure.png

ChemSpider 2D Image | Relugolix | C29H27F2N7O5S

737789-87-6.png

Relugolix (TAK-385), RVT 601

レルゴリクス

Formula
C29H27F2N7O5S
CAS
737789-87-6
Mol weight

UNII

623.6304
UNII-P76B05O5V6

2019/1/8  PMDA JAPAN APPROVED, Relumina

1-{4-[1-(2,6-Difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxy-3-pyridazinyl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea
Urea, N-[4-[1-[(2,6-difluorophenyl)methyl]-5-[(dimethylamino)methyl]-1,2,3,4-tetrahydro-3-(6-methoxy-3-pyridazinyl)-2,4-dioxothieno[2,3-d]pyrimidin-6-yl]phenyl]-N’-methoxy- 
737789-87-6 [RN]
9628
P76B05O5V6
Image result for Relugolix
  • Originator Takeda
  • Developer Myovant Sciences; Takeda; Takeda Oncology
  • Class Analgesics; Antineoplastics; Ketones; Pyrimidines; Small molecules
  • Mechanism of Action LHRH receptor antagonists
  • Preregistration Uterine leiomyoma
  • Phase III Pain; Prostate cancer
  • No development reported Solid tumours
  • 08 Nov 2018 Myovant announces intention to submit NDA for Uterine leiomyoma in Q3 of 2019
  • 08 Nov 2018 Myovant Sciences completes enrollment in the phase III LIBERTY 1 trial for Uterine leiomyoma (Combination therapy) in USA (PO)(NCT03049735)
  • 25 Oct 2018 Myovant Sciences completes enrolment in its phase III HERO trial for Prostate cancer (Late-stage disease) in Denmark, Australia, Austria, Belgium, Canada, United Kingdom, USA, Japan, Taiwan, Sweden, Spain, Slovakia, New Zealand, Netherlands, South Korea, Germany, France and Finland (PO) (NCT03085095)

Image result for Relugolix

Relugolix has been used in trials studying the treatment of Endometriosis, Prostate Cancer, Uterine Fibroids, and Androgen Deprivation Treatment-naïve Nonmetastatic Prostate Cancer.

Relugolix (developmental code names RVT-601TAK-385) is a gonadotropin-releasing hormone antagonist (GnRH antagonist) medication which is under development by Myovant Sciences and Takeda for the treatment of endometriosisuterine fibroids, and prostate cancer.[1][2][3][4][5][6][7] Unlike most other GnRH modulators, but similarly to elagolix, relugolix is a non-peptide and small-molecule compound and is orally active.[6][7] As of July 2018, it is in the pre-registration phase of development for uterine fibroids and is in phase III clinical trials for endometriosis and prostate cancer.[1]

Pharmacology

Pharmacodynamics

Relugolix is a selective antagonist of the gonadotropin-releasing hormone receptor (GnRHR) (IC50 = 0.12 nM).[6][7][8]

A single oral administration of relugolix at a dose of 3 mg/kg has been found to suppress luteinizing hormone (LH) levels for more than 24 hours in castrated cynomolgus monkeys, indicating a long duration of action.[6] The drug (80–160 mg/day) has been found to reduce testosterone levels to sustained castrate levels in men with once-daily administration.[8] Lower dosages (10–40 mg/day) are being studied in the treatment of endometriosis and uterine fibroids to achieve partial sex hormone suppression.[4] The reasoning behind partial suppression for these conditions is to reduce the incidence and severity of menopausal symptoms such as hot flushes and to avoid bone mineral density changes caused by estrogen deficiency that can eventually lead to osteoporosis.[4][9]

History

Relugolix was first described in 2004.[10][6] It superseded sufugolix, which was developed by the same group.[6]

Society and culture

Generic names

Relugolix is the generic name of the drug and its INN and USAN.[11] It is also known by its developmental code names RVT-601 and TAK-385.[1][11]

SYN

Journal of Medicinal Chemistry, 54(14), 4998-5012; 2011

PATENT

http://www.google.co.in/patents/EP1591446A1?cl=en

(Production Method 1)

  • Figure 00120001
    (Production method 2)

  • Figure 00130001
      • Example 83

http://www.google.co.in/patents/EP1591446A1?cl=en

    Production of N-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxy-3-pyridazinyl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl)phenyl)-N’-methoxyurea
  • Figure 01690002
  • The similar reaction as described in Example 4 by using the compound (100 mg, 0.164 mmol) obtained in Reference Example 54 and methyl iodide (0.010 ml, 0.164 mmol) gave the title compound (17.3 mg, 17 %) as colorless crystals.
    1 H-NMR(CDCl3) δ: 2.15 (6H, s), 3.6-3.8 (2H, m), 3.82 (3H, s), 4.18 (3H, s), 5.35 (2H, s), 6.92 (2H, t, J = 8.2 Hz), 7.12 (1H, d, J = 8.8 Hz), 7.2-7.65 (7H, m), 7.69 (1H, s).

PAPER

Discovery of 1-{4-[1-(2,6-difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea (TAK-385) as a potent, orally active, non-peptide antagonist of the human gonadotropin-releasing hormone receptor
J Med Chem 2011, 54(14): 4998. http://pubs.acs.org/doi/full/10.1021/jm200216q

1-{4-[1-(2,6-Difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea (16b)

Compound 16b was prepared in 44% yield from 15j by a procedure similar to that described for16a as colorless crystals, mp 228 °C (dec). 1H NMR (CDCl3): δ 2.15 (6H, s), 3.60–3.80 (2H, m), 3.82 (3H, s), 4.18 (3H, s), 5.35 (2H, s), 6.92 (2H, t, J = 8.2 Hz), 7.12 (1H, d, J = 8.8 Hz), 7.20–7.65 (7H, m), 7.69 (1H, s). LC–MS m/z: 624.0 [M + H+], 621.9 [M + H]. Anal. (C29H27F2N7O5S) C, H, N.

Abstract Imagetak 385

http://pubs.acs.org/doi/suppl/10.1021/jm200216q/suppl_file/jm200216q_si_001.pdf

PATENT

WO-2014051164

Method for the production of TAK-385 or its salt and crystals starting from 6-(4-aminophenyl)-1-(2,6-difluorobenzyl)-5-dimethylaminomethyl-3-(6-methoxypyridazin-3-yl) thieno[2,3-d] pyrimidine-2,4 (1H,3H)-dione or its salt. Takeda Pharmaceutical is developing relugolix (TAK-385), an oral LHRH receptor antagonist analog of sufugolix, for the treatment of endometriosis and uterine fibroids. As of April 2014, the drug is in Phase 2 trails. See WO2010026993 claiming method for improving the oral absorption and stability of tetrahydro-thieno[2,3-d]pyrimidin-6-yl]-phenyl)-N’-methoxy urea derivatives.

PATENT

https://patents.google.com/patent/WO2015062391A1/en

Endometriosis is a common estrogen-dependent gynecological diseases, often occurs in women during their childbearing years, and its mechanism is unclear. Complex and difficult to diagnose the cause of the symptoms of endometriosis is unknown, serious block to the discovery of effective therapies. Currently, endometriosis primarily by laparoscopy diagnosis, and treatment by surgery, or pill, or progesterone receptor agonists of GnRH reduce estrogen levels to control.

Currently the high incidence of endometriosis, Datamonitor 2009 year data show that only two countries, India and China, the number of female patients suffering from endometriosis had more than 68 million (31,288,000 India, China 3753.5 million) passengers, while the national prevalence of the number seven major markets have more than 17 million. Datamonitor expects 2009 to 2018, endometriosis market from 2009 to $ 764 million (US $ 596 billion and the EU $ 117 million, Japan US $ 051 million) in 2018 increased to US $ 1.156 billion (US 8.44 billion dollars, 206 million US dollars the European Union, Japan $ 106 million), while the Chinese market will have more room for growth.

Gonadotropin-releasing hormone (Gonadoliberin; gonadotropin releasing hormone; GnRH), also known as luteinizing hormone releasing hormone (LHRH), is synthesized by neuroendocrine cells of the hypothalamus hormones decapeptide (pGlu-His-Trp-Ser-Tyr-Gly- Leu-Arg-Pro-Gly-NH2), a central regulator of reproductive endocrine system. Which conveys the circulatory system through hypothalamus-pituitary portal to the pituitary, bind to the cells of the anterior pituitary GnRH receptor, such as gonadotropin luteinizing hormone (Luteinizing Hormone, LH) and FSH (Follicle-Stimulating Hormone, FSH ) secretion and release, regulation of normal development and corpus luteum of the ovary, hypothalamic – pituitary – gonadal axis plays an important role. GnRH receptors capable of activating the G protein coupled calcium phosphatidylinositol second messenger system exert their regulatory role, and LH is adjusted to produce steroids, FSH regulating development of the male and female follicle spermatogenesis.

LH and FSH are released into the circulation, and combined with the ovaries or testes specific cell receptors, stimulating the production of steroids. The presence of sex steroids, diseases such as endometriosis, uterine fibroids, prostate cancer and exacerbations, to be given long-acting GnRH receptor agonists and antagonists for treatment control peptides.

Peptide GnRH receptor antagonists include linear peptides (US 5,171,835) GnRH-derived, cyclic hexapeptide derivatives (US 2002/0065309), a bicyclic peptide derivative (Journal of Medicinal Chemistry, 1993; 36: 3265-73), etc. ; and GnRH receptor peptide agonists include leuprolide (leuprorelin, pGlu-His-Trp-Ser-Tyr-d-Leu-Leu-Arg-Pro-NHEt). However, there are many problems including oral absorbability, dosage form, dose volume, drug stability, sustained action, and metabolic stability of the peptide-type compound to be resolved. But the main reason small molecule GnRH receptor antagonists of peptide-based therapy is superior to the existing method is that small molecule GnRH receptor antagonist may be orally administered directly, convenient. Studies have shown that small molecule antagonists of endometriosis, precocious puberty, prostate cancer and other hormone-dependent diseases having a significant effect.

GnRH receptor agonist mediated indirect mechanisms of tumor suppression by long-term effects on the hypothalamic – pituitary – gonadal axis, leading to pituitary gonadotropins (FSH, LH) is reduced, thereby reducing the secretion of sex hormones and indirectly inhibit growth of tumor cells. And a GnRH receptor antagonist directly to inhibit the release of the pituitary gonadotropins, thereby inhibiting tumor cell growth.

Given the limitations of peptide GnRH receptor antagonists, non-peptide GnRH receptor antagonists have been proposed and into the development, clinical trials and launch phase, such as Elagolix (NBI-56418, or also known as ABT-620) is a Abbott and Neurocrine Biosciences Inc company co-developed small molecule GnRH receptor antagonist, is currently in phase III clinical stage, mainly used in the treatment of endometriosis (III phase) and uterine fibroids (II period). June 2012, data released results of a Phase II clinical endometrial endometriosis Houston, the 94th annual meeting of the Endocrine Society: 131 accepts elagolix (150 or 250mg qd), leuprorelin depot (3.75mg sc in, once a month, female patients with endometriosis endometrium 12 weeks) or placebo treatment, elagolix treatment groups in patients with serum hormone estrogen compared to leuprorelin therapy group and the placebo group was significantly reduced. At the same time, elagolix safety and tolerability have been well verified.

Relugolix also known as TAK-385, is a GnRH by the Japanese Takada Pharmaceutical company developed an oral small molecule receptor antagonist, for the treatment of endometriosis, uterine fibroids and prostate. 2011 entered endometriosis and uterine fibroids clinical phase II study, carried out a clinical study of prostate cancer in the same year.

It disclosed a series of current small molecule GnRH receptor antagonists including patent WO2006096785, WO2010026993, WO2011076687, WO2012175514 like.

Despite the large number of interesting studies have been conducted in this field, there remains a need to continue research and development of more effective small molecule GnRH receptor antagonists, the present invention provides a novel GnRH receptor antagonist structure, and found to have such a structure compounds having good activity, reproductive endocrine system effective to treat the disease.

PATENT

US 20120071486,  https://patentscope.wipo.int/search/en/detail.jsf?docId=US73518712&redirectedID=true

Example 83

Production of N-(4-(1-(2,6-difluorobenzyl)-5-((dimethylamino)methyl)-3-(6-methoxy-3-pyridazinyl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl)phenyl)-N′-methoxyurea

      The similar reaction as described in Example 4 by using the compound (100 mg, 0.164 mmol) obtained in Reference Example 54 and methyl iodide (0.010 ml, 0.164 mmol) gave the title compound (17.3 mg, 17%) as colorless crystals.
       1H-NMR (CDCl 3) δ: 2.15 (6H, s), 3.6-3.8 (2H, m), 3.82 (3H, s), 4.18 (3H, s), 5.35 (2H, s), 6.92 (2H, t, J=8.2 Hz), 7.12 (1H, d, J=8.8 Hz), 7.2-7.65 (7H, m), 7.69 (1H, s).

References

Discovery of TAK-385, a thieno[2,3-d]pyrimidine-2,4-dione derivative, as a potent and orally bioavailable nonpeptide antagonist of gonadotropin releasing hormone (GnRH) receptor
238th ACS Natl Meet (August 16-20, Washington) 2009, Abst MEDI 386

Discovery of 1-{4-[1-(2,6-difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea (TAK-385) as a potent, orally active, non-peptide antagonist of the human gonadotropin-releasing hormone receptor
J Med Chem 2011, 54(14): 4998. http://pubs.acs.org/doi/full/10.1021/jm200216q

References

  1. Jump up to:a b c http://adisinsight.springer.com/drugs/800028257
  2. ^ Goenka L, George M, Sen M (June 2017). “A peek into the drug development scenario of endometriosis – A systematic review”. Biomed. Pharmacother90: 575–585. doi:10.1016/j.biopha.2017.03.092PMID 28407578.
  3. ^ Dellis A, Papatsoris A (October 2017). “Therapeutic outcomes of the LHRH antagonists”. Expert Rev Pharmacoecon Outcomes Res17 (5): 481–488. doi:10.1080/14737167.2017.1375855PMID 28870102.
  4. Jump up to:a b c Streuli I, de Ziegler D, Borghese B, Santulli P, Batteux F, Chapron C (March 2012). “New treatment strategies and emerging drugs in endometriosis”. Expert Opin Emerg Drugsdoi:10.1517/14728214.2012.668885PMID 22439891.
  5. ^ Elancheran, R.; Maruthanila, V. L.; Ramanathan, M.; Kabilan, S.; Devi, R.; Kunnumakara, A.; Kotoky, Jibon (2015). “Recent discoveries and developments of androgen receptor based therapy for prostate cancer”. Med. Chem. Commun6 (5): 746–768. doi:10.1039/C4MD00416GISSN 2040-2503.
  6. Jump up to:a b c d e f Miwa K, Hitaka T, Imada T, Sasaki S, Yoshimatsu M, Kusaka M, Tanaka A, Nakata D, Furuya S, Endo S, Hamamura K, Kitazaki T (July 2011). “Discovery of 1-{4-[1-(2,6-difluorobenzyl)-5-[(dimethylamino)methyl]-3-(6-methoxypyridazin-3-yl)-2,4-dioxo-1,2,3,4-tetrahydrothieno[2,3-d]pyrimidin-6-yl]phenyl}-3-methoxyurea (TAK-385) as a potent, orally active, non-peptide antagonist of the human gonadotropin-releasing hormone receptor”. J. Med. Chem54 (14): 4998–5012. doi:10.1021/jm200216qPMID 21657270.
  7. Jump up to:a b c Nakata D, Masaki T, Tanaka A, Yoshimatsu M, Akinaga Y, Asada M, Sasada R, Takeyama M, Miwa K, Watanabe T, Kusaka M (January 2014). “Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: studies in human GnRH receptor knock-in mice”. Eur. J. Pharmacol723: 167–74. doi:10.1016/j.ejphar.2013.12.001PMID 24333551.
  8. Jump up to:a b MacLean D, Shi H, Suri A, Faessel H, and Saad F (2013). “Safety and Testosterone-Lowering Effects of the Investigational, Oral, GnRH Antagonist, TAK-385 in Healthy Male Volunteers: Results of a Phase 1 Inpatient/Outpatient Study”doi:10.1210/endo-meetings.2013.CN.1.SAT-318.
  9. ^ Struthers RS, Nicholls AJ, Grundy J, Chen T, Jimenez R, Yen SS, Bozigian HP (February 2009). “Suppression of gonadotropins and estradiol in premenopausal women by oral administration of the nonpeptide gonadotropin-releasing hormone antagonist elagolix”J. Clin. Endocrinol. Metab94 (2): 545–51. doi:10.1210/jc.2008-1695PMC 2646513PMID 19033369.
  10. ^ https://patents.google.com/patent/US7300935/
  11. Jump up to:a b https://chem.nlm.nih.gov/chemidplus/rn/737789-87-6
Relugolix
Relugolix structure.png
Relugolix molecule ball.png
Clinical data
Synonyms RVT-601; TAK-385
Routes of
administration
By mouth
Drug class GnRH antagonist
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C29H27F2N7O5S
Molar mass 623.630 g/mol
3D model (JSmol)

External links

///////////Relugolix, TAK-385, JAPAN 2019, Relumina, レルゴリクス , PHASE 3

CONC(=O)NC1=CC=C(C=C1)C1=C(CN(C)C)C2=C(S1)N(CC1=C(F)C=CC=C1F)C(=O)N(C2=O)C1=CC=C(OC)N=N1

Omecamtiv mecarbil オメカムティブメカビル


Omecamtiv mecarbil.svg

ChemSpider 2D Image | omecamtiv mecarbil | C20H24FN5O3

Image result for OMECAMTIV

Omecamtiv mecarbil

  • Molecular FormulaC20H24FN5O3
  • Average mass401.435 Da
4-[2-fluoro-3-[(6-methyl-3-pyridyl)carbamoylamino]benzyl]piperazine-1-carboxylic acid methyl ester
AMG 423
AMG-423
CK1827452
CK-1827452; CK1827452
Cladribine [BAN] [INN] [JAN] [USAN] [Wiki]
methyl 4-(2-fluoro-3-(3-(6-methylpyridin-3-yl)ureido)benzyl)piperazine-1-carboxylate
1-Piperazinecarboxylic acid, 4-[[2-fluoro-3-[[[(6-methyl-3-pyridinyl)amino]carbonyl]amino]phenyl]methyl]-, methyl ester
2M19539ERK
オメカムティブメカビル
873697-71-3 [RN]
9088
Methyl 4-(2-fluoro-3-{[(6-methyl-3-pyridinyl)carbamoyl]amino}benzyl)-1-piperazinecarboxylate

In January 2019, Cytokinetics and licensees Amgen and Servier are developing oral modified- and immediate-release formulations of the cardiac myosin activator omecamtiv mecarbil (phase III), the lead from a series of small-molecule, sarcomere-directed compounds, for the treatment of chronic heart diseases including high risk heart failure, stable heart failure and ischemic cardiomyopathy

Omecamtiv Mecarbil has been used in trials studying the treatment and basic science of Heart Failure, Echocardiogram, Pharmacokinetics, Chronic Heart Failure, and History of Chronic Heart Failure, among others.

Omecamtiv mecarbil, a small-molecule activator of cardiac myosin, is developed in phase III clinical trials by originator Cytokinetics and Amgen for the oral treatment of chronic heart failure.

WO2006009726 product patent of omecamtiv mecarbil expire in EU states until June 2025 and expire in the US in September 2027 with US154 extension.

  • Originator Cytokinetics
  • Developer Amgen; Cytokinetics; Servier
  • Class Esters; Heart failure therapies; Organic chemicals; Piperazines; Pyridines; Small molecules
  • Mechanism of Action Cardiac myosin stimulants
  • Phase III Chronic heart failure
  • Phase II Acute heart failure; Heart failure
  • No development reported Angina pectoris; Cardiomyopathies
  • 26 Apr 2018 Amgen and Cytokinetics plan the phase III METEORIC-HF trial in Heart failure by the end of 2018 (NCT03759392)
  • 18 Sep 2017 Pharmacodynamics data from the phase III COSMIC-HF trial Chronic heart failure released by Cytokinetics
  • 08 May 2017 Amgen completes the phase II trial in Heart failure in Japan (NCT02695420)

Omecamtiv mecarbil (INN), previously referred to as CK-1827452, is a cardiac-specific myosin activator. It is being studied for a potential role in the treatment of left ventricular systolic heart failure.[1]

Systolic heart failure involves a loss of effective actin-myosin cross bridges in the myocytes (heart muscle cells) of the left ventricle, which leads to a decreased ability of the heart to move blood through the body. This causes peripheral edema (blood pooling), which the sympathetic nervous system tries to correct[2] by overstimulating the cardiac myocytes, leading to left ventricular hypertrophy, another characteristic of chronic heart failure.

Current inotropic therapies work by increasing the force of cardiac contraction, such as through calcium conduction or modulating adrenoreceptors. But these are limited by adverse events, including arrhythmias related to increased myocardical oxygen consumption, desensitization of adrenergic receptors, and altering intracellular calcium levels.[3] Inotropes are also thought to be associated with worse prognosis.[4] Therefore, the novel mechanism of omecamtiv mecarbil may offer a useful new option for heart failure.

Mechanism of action

Cardiac myocytes contract through a cross-bridge cycle between the myofilaments, actin and myosin. Chemical energy in the form of ATP is converted into mechanical energy which allows myosin to strongly bind to actin and produce a power stroke resulting in sarcomere shortening/contraction.[5] Omecamtiv mecarbil specifically targets and activates myocardial ATPase and improves energy utilization. This enhances effective myosin cross-bridge formation and duration, while the velocity of contraction remains the same.[6]Specifically, it increases the rate of phosphate release from myosin, thereby accelerating the rate-determining step of the cross-bridge cycle, which is the transition of the actin-myosin complex from the weakly bound to the strongly bound state.[7][1] Furthermore, once myosin is bound to actin, it stays bound dramatically longer in the presence of omecamtiv mecarbil.[8][9] The combination of increased and prolonged cross-bridge formation prolongs myocardial contraction. Thus, the overall clinical result of omecamtiv mecarbil is an increase in left ventricular systolic ejection time and ejection fraction.[6][7]

There is a slight decrease in heart rate while myocardial oxygen consumption is unaffected. The increased cardiac output is independent of intracellular calcium and cAMP levels.[3][10] Thus omecamtiv mecarbil improves systolic function by increasing the systolic ejection duration and stroke volume, without consuming more ATP energy, oxygen or altering intracellular calcium levels causing an overall improvement in cardiac efficiency.[6]

Clinical trials

Experimental studies on rats and dogs, proved the efficacy and mechanism of action of omecamtiv mecarbil.[3] Current clinical studies on humans have shown there is a direct linear relationship between dose and systolic ejection time.[1][11][12] The dose-dependent effects persisted throughout the entire trial, suggesting that desensitization does not occur. The maximum tolerated dose was observed to be an infusion of 0.5 mg/kg/h. Adverse effects, such as ischemia, were only seen at doses beyond this level, due to extreme lengthening of systolic ejection time.[1] Thus due to the unique cardiac myosin activation mechanism, omecamtiv mecarbil could safely improve cardiac function within tolerated doses. Omecamtiv mecarbil effectively relieves symptoms and enhances the quality of life of systolic heart failure patients. It drastically improves cardiac performance in the short term; however, the hopeful long-term effects of reduced mortality have yet to be studied.[1][2]

PATENT

WO2006009726

PAPER

Synthesis of unsymmetrical diarylureas via pd-catalyzed C-N cross-coupling reactions
Org Lett 2011, 13(12): 3262

Synthesis of Unsymmetrical Diarylureas via Pd-Catalyzed C–N Cross-Coupling Reactions

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Org. Lett.201113 (12), pp 3262–3265
DOI: 10.1021/ol201210t

Abstract

Abstract Image

A facile synthesis of unsymmetrical N,N′-diarylureas is described. The utilization of the Pd-catalyzed arylation of ureas enables the synthesis of an array of diarylureas in good to excellent yields from benzylurea via a one-pot arylation–deprotection protocol, followed by a second arylation.

https://pubs.acs.org/doi/suppl/10.1021/ol201210t/suppl_file/ol201210t_si_001.pdf

Methyl 4-(2-fluoro-3-(3-(6-methylpyridin-3-yl)ureido)benzyl)piperazine-1- carboxylate (Omecamtiv Mecarbil).11 Following general procedure C, a mixture of methyl 4-(3-chloro-2-fluorobenzyl)piperazine-1-carboxylate (143.1 mg, 0.5 mmol), (2- Methylpyridin-5-yl)urea (90.6 mg, 0.6 mmol), Pd(OAc)2 (5 mol %), t-BuBrettPhos (15 mol %), Cs2CO3 (456.2 mg, 0.7 mmol), degassed water (4 mol %) and THF (1 mL) was heated to 65 °C for 6 h. The crude product was purified via flash chromatography (5-10% MeOH/DCM) to provide the title compound as a slightly brownish solid (164 mg, 82%),

mp = 180 °C.

1 H NMR (400 MHz, DMSO-d6 ) δ: 9.13 (s, 1H), 8.59 (d, J = 1.5 Hz, 1H), 8.47 (d, J = 2.3 Hz, 1H), 8.05 (t, J = 7.6 Hz, 1H), 7.83 (dd, J = 8.4, 2.4 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.09 (t, J = 7.9 Hz, 1H), 7.00 (t, J = 6.7 Hz, 1H), 3.57 (s, 3H), 3.55 (s, 2H), 3.35 (br, 4H), 2.40 (s, 3H), 2.36 (br, 4H) ppm.

13C NMR (101 MHz, DMSO-d6 ) δ: 155.0, 152.3, 151.1, 150.7 (d, J = 242.5 Hz), 139.2, 133.6, 127.3 (d, J = 10.9 Hz), 125.8, 124.1 (d, J = 13.3 Hz), 124.0 (d, J = 4.0 Hz), 123.8 (d, J = 3.8 Hz), 122.8, 119.5, 54.6, 52.2, 52.1, 43.4, 23.2 ppm (observed complexity is due to C–F splitting).

19F NMR (376 MHz, DMSO-d6 ) δ: -135.09.

IR (neat, cm-1 ): 3297, 2920, 2823, 1705, 1638, 1557, 1476, 1450, 1233, 1189, 1129, 779, 765.

Anal. Calcd. for C20H24FN5O3: C, 59.84; H, 6.03. Found: C, 59.64; H, 5.92.

PAPER

Morgan et al. ACS Med. Chem. Lett. 2010, 1, 472

Discovery of Omecamtiv Mecarbil the First, Selective, Small Molecule Activator of Cardiac Myosin

Abstract Image

We report the design, synthesis, and optimization of the first, selective activators of cardiac myosin. Starting with a poorly soluble, nitro-aromatic hit compound (1), potent, selective, and soluble myosin activators were designed culminating in the discovery of omecamtiv mecarbil (24). Compound 24 is currently in clinical trials for the treatment of systolic heart failure.

omecamtiv mecarbil as a white powder (3.64 kg, 90% yield).

IR (KBR) 3292, 2950, 2866, 2833, 1720, 1640, 1550, 1600, 1490, 1455, 1406, 1378, 1352, 1274, 1244, 1191, 1125, 815, 769, 725, 668 cm-1 ;

1H NMR (400 MHz, DMSO-d6) δ 9.12 (s, 1 H, 2-pyridyl H), 8.59 (d, 1 H, J = 2.5 Hz, Urea N-H), 8.47 (d, 1 H, J = 2.6 Hz, Urea N-H), 8.04 (dt, 1 H, J = 1.5 Hz, 7.8 Hz, phenyl H), 7.83 (dd, 1 H, J = 2.6 Hz, 8.4 Hz, 4-pyridyl H), 7.18 (d, 1 H, J = 8.4 Hz, 5-pyridyl H), 7.10 (app t, 1 H, J = 7.8 Hz, phenyl H), 7.02 (app p, 1 H, J = 1.5 Hz, 6.3 Hz, 7.8 Hz, phenyl H), 3.58 (s, 3 H, OCH3), 3.56 (m, 4 H, piperazine Hs), 2.41 (s, 3 H, pyridineCH3), 2.37 (br m, 4 H, piperazine Hs); 13C NMR (100 MHz, DMSO-d6) δ 155.0,152.3, 151.1 150.7, 139.1, 133.6, 127.3, 127.2, 125.8, 124.1, 123.7, 122.8, 119.5, 54.5, 52.2, 52.0, 43.4, 23.2;

Exact mass calcd for C20H24FN5O3 requires m/z 402.1926. Found m/z 402.1940.

Anal. Calcd. For C20H24FN5O3: C, 59.84; H, 6.03; N, 17.45. Found: C, 59.99; H, 6.07; N, 17.41.

PATENT

WO2016210240

PATENT

WO-2019006231

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019006231&tab=PCTDESCRIPTION&maxRec=1000

Process for the preparation of omecamtiv mecarbil and its new intermediates. Useful for the treatment of heart failure..

Scheme 1 :

Scheme 2

I

Scheme 3

I

Piper 


Scheme 5

Aminopyridine

(APYR) Commercially Available

Scheme 6


IPAc Reaction

.

Scheme 7

Scheme 8

Pi 
(PIPA)

[0043] Thus, provided herein is a method of synthesizing PIPA comprising admixing PIPN (which can comprise PIPN hydrochloride salt), an aqueous solution of an inorganic base, and toluene to form a PIPN freebase solution. The inorganic base can be sodium bicarbonate or sodium hydroxide, for example. In some embodiments, the inorganic base comprises sodium hydroxide. The PIPN freebase solution is then hydrogenated in the presence of a palladium catalyst in toluene and an alcohol solvent to form crude PIPA. The alcohol solvent can comprise ethanol or isopropanol. PIPA is then crystallized from a heptane and toluene solvent mixture.

[0044] In some specific embodiments, to a mixture of 1 equiv. PIPN-HCI and toluene (4V) is added 1 M aq. NaOH (3.3V) at 20 °C. Stirring is continued for 1 hour before the phases are separated. The organic layer is washed twice with a mixture of water (2.4V) and saturated brine (0.6V), then the organic layer is distilled to 3.8V. The solution is filtered, the reactor rinsed with toluene (1V) and the rinse solution filtered before the organic layers are combined. To the toluene layer is added Pd/C (0.7 wt%) and the heterogeneous mixture is charged into a hydrogenation vessel. Ethanol (1V) is added to the mixture. Hydrogenation is performed at 20 °C under 60 psig of hydrogen. After the reaction is complete, the mixture is filtered and rinsed with toluene (1V). The mixture is distilled to 2.4V, seeded with 1 mol% PIPA in heptane (0.1V) at 35 °C and then cooled to 20 °C. The addition of heptane (5.6V) is completed in 3 hours. The mixture is filtered and dried under vacuum and nitrogen to afford PIPA (90% yield, > 97.0 wt%, > 98.0 LCAP).

[0045] In some other specific embodiments, 1 N aqueous sodium hydroxide (3.3 volumes) is added to 1 equiv. of PIPN (hydrochloride salt) suspended in toluene (4 volumes). The biphasic mixture is agitated at 20 °C for 1 hour and the phases are allowed to separate. The organic layer is washed twice with a 0.9 M aqueous sodium chloride solution (3 volumes). The reaction mixture is azeotropically dried by concentration to approximately 3.8 volumes and polish filtered. The transfer line is rinsed with toluene (1 volume) and the rinse solution is combined with the PIPN solution.

Ethanol (1 volume) is added to the PIPN solution and hydrogenation of the starting material is carried out in the presence of 5% Pd/C (on activated carbon sold by BASF as Escat 1421, 0.7 wt% catalyst loading) using a pressure of 4 bars of hydrogen at 15 °C. Upon reaction completion, the mixture is filtered. The hydrogenation autoclave and filtered catalyst are rinsed with toluene (1V) and the rinse solution is combined with the reaction mixture. The solution is concentrated to 2.4 volumes and seeded with 1 mol% PIPA in heptane (0.1 volume) at 38 °C. The mixture is agitated for 30 minutes at 38 °C, cooled to 20 °C over the course of 2 hours, and agitated at that temperature for 30 minutes. Heptane is added (5.6 volumes) over the course of 3 hours and the mixture is agitated for 30 minutes. The mixture is filtered and dried on filter/drier. The cake is washed once with

heptane:toluene (7:3, 2 total volumes) and once with heptane (2 volumes). PIPA is isolated in 88% yield with > 98.0 wt% assay and > 98.0 LC area%.

[0046] Preparation of omecamtiv mecarbil dihvdrochloride hydrate: The prior process to prepare omecamtiv mecarbil dihydrochloride hydrate involved a telescoped procedure by which the

omecamtiv mecarbil is prepared as a solution in THF, and the solvent is subsequently exchanged for isopropanol. However, considering that the solubility of omecamtiv mecarbil in isopropanol at 20°C is about 10 mg/mL and the total volume of isopropanol at the end of the solvent exchange, 95% of the material is out of solution at the end of the solvent exchange, leading to the formation of a slurry that is difficult or impossible to stir. Distillation can no longer be performed once this slurry is formed due to poor mass transfer, leaving behind THF levels in the slurry that are above the in-process control (IPC) specification, e.g., greater than or equal to 1 GC area%. In practice, this leads to delays in the manufacturing due to necessary recharging of isopropanol until the mixture can be stirred, followed by additional distillation and analysis of residual THF. In addition, the ratio of isopropanol and water has to be verified using an in-process control considering the variable amounts of isopropanol at the end of the distillation and the influence of the solvent ratio (isopropanol/water) on the mother liquor losses upon filtration.

Scheme 9

95% yield

[0048] Thus, provided herein is a method of preparing omecamtiv mecarbil dihydrochloride hydrate via admixing PIPA, PCAR, and a trialkylamine (e.g., triethylamine or diisopropylethylamine) in acetonitrile and THF to form omecamtiv mecarbil. The omecamtiv mecarbil is isolated as the free base and then admixed with 2 to 3 molar equivalents of hydrochloric acid in isopropanol and water to form omecamtiv mecarbil dihydrochloride hydrate, which can optionally be crystallized from isopropanol and water. Isolation of the omecamtiv mecarbil free base can be performed via crystallization by addition of water and filtration. PIPA and PCAR can be prepared as disclosed above.

[0049] In some embodiments, PIPA (2.1 kg, 1 equiv) is charged to a reactor, followed by PCAR (1.1 equiv), then THF (2.5 V), and finally acetonitrile (2.5 V). To the resulting slurry is added N,N-diisopropylethylamine (1.2 equiv) and the batch is heated to 55 °C for 16 h. Water (5 V) is then added over 15 minutes and omecamtiv mecarbil freebase seeds (0.05 equiv) are charged to the reactor. The batch is agitated for 15 minutes and water (10 V) is added over 3 h. The batch is cooled to 20 °C over 1 h and filtered. The cake is washed with 3:1 watenacetonitrile (3 V) and then acetonitrile (3 x 3 V). The cake is dried in a filter/drier. Omecamtiv mecarbil freebase is isolated as a solid in 80% yield, with 99.9 LC area%, and 99.3 wt% assay.

[0050] Omecamtiv mecarbil freebase (2.6 kg, 1 equiv) is charged to a reactor followed by 2-propanol (2.6 V) and water (1.53 V). The batch is then heated to 45 °C. 6 M aqueous HCI (2.2 equiv) is added at a rate to keep batch temperature below 60 °C. The batch is heated to 60 °C for 30 minutes and filtered into a clean reactor at 60 °C. The original vessel is rinsed with an

isopropanokwater mixture (1 :1 , 0.1 volume total) and the rinse volume is added to the reaction mixture. The solution is cooled to 45 °C and a slurry of omecamtiv mecarbil dihydrochloride hydrate seed (0.05 or 0.03 equiv) in isopropanol (0.14 or 0.1 V) is charged to the reactor. The suspension is agitated for 1 h. Isopropanol (3.68 V) is charged to the reactor over 2 h. The mixture is warmed to 55 °C over 1 h and held for 30 minutes at that temperature. The mixture is cooled to 45 °C over 1 h. The mixture is agitated for 2 h and then isopropanol (7.37 V) is added to the reactor over 3 h. The mixture is agitated for 1 h and then cooled to 20 °C over 2 h. The mixture is wet milled until d90 specifications are met (e.g., < 110 μιτι) and the suspension is filtered. The wet cake is washed twice with isopropanokwater (95:5, 2V) . The wet cake is dried under vacuum until isopropanol levels are below 1000 ppm. The cake is optionally re-hydrated if necessary using e.g., a stream of humidified nitrogen, until the water content of the solids are between 3.0 and 4.2 wt%. The material can be recrystallized if it doesn’t meet specification. Omecamtiv mecarbil dihydrochloride hydrate is isolated as a solid in 91.3% yield, with 99.96 LC area%, and 100.1 wt% assay.

[0051] Omecamtiv Mecarbil Dihydrochloride Hydrate Preparation using Continuous Manufacturing: Provided herein is a method of preparing omecamtiv mecarbil dihydrochloride hydrate using a continuous manufacturing process. The general synthetic procedure is outlined in Scheme 10 below.

Scheme 10

Conditions For 100 a Demo Run

CH3CN (6 V), 21 °C

Assay Yield = 95.2 %

Conversion = 98.2 %

L-Urea LCAP = 0 %

PIPA Methyl Carbamate LCAP = 1.49 %

Production Rate of Omecamtiv Mecarbil = 15.29 g/h

PATENT

WO2019006235

PATENT

https://patents.google.com/patent/WO2014152270A1

The cardiac sarcomere is the basic unit of muscle contraction in the heart. The cardiac sarcomere is a highly ordered cytoskeletal structure composed of cardiac muscle myosin, actin and a set of regulatory proteins. The discovery and development of small molecule cardiac muscle myosin activators would lead to promising treatments for acute and chronic heart failure. Cardiac muscle myosin is the cytoskeletal motor protein in the cardiac muscle cell. It is directly responsible for converting chemical energy into the mechanical force, resulting in cardiac muscle contraction.

[0004] Current positive inotropic agents, such as beta-adrenergic receptor agonists or inhibitors of phosphodiesterase activity, increase the concentration of intracellular calcium, thereby increasing cardiac sarcomere contractility. However, the increase in calcium levels increase the velocity of cardiac muscle contraction and shortens systolic ejection time, which has been linked to potentially life-threatening side effects. In contrast, cardiac muscle myosin activators work by a mechanism that directly stimulates the activity of the cardiac muscle myosin motor protein, without increasing the intracellular calcium concentration. They accelerate the rate-limiting step of the myosin enzymatic cycle and shift it in favor of the force-producing state. Rather than increasing the velocity of cardiac contraction, this mechanism instead lengthens the systolic ejection time, which results in increased cardiac muscle contractility and cardiac output in a potentially more oxygen-efficient manner. [0005] U.S. Patent No. 7,507,735, herein incorporated by reference, discloses a genus of com ounds, including omecamtiv mecarbil (AMG 423, CK- 1827452), having the structure:

Figure imgf000003_0001

[0006] Omecamtiv mecarbil is a first in class direct activator of cardiac myosin, the motor protein that causes cardiac contraction. It is being evaluated as a potential treatment of heart failure in both intravenous and oral formulations with the goal of establishing a new continuum of care for patients in both the in-hospital and outpatient settings.

Manufacture of Omecamtiv Mecarbil dihydrochloride hydrate Synthetic Route to Omecamtiv Mecarbil

Figure imgf000016_0001

PiE§razine_Nitro^!C Piperazine Aniline

to IPA

Figure imgf000016_0002

omecamtiv mecarbil-2HCI-H20

Synthesis of the API SM Piperazine Nitro-HCl

Figure imgf000016_0003

Piperazine Carboxylate

Figure imgf000016_0004

88% overall [0081] In a 60 L reactor (containing no exposed Stainless steel, Hastelloy®, or other metal parts) equipped with a reflux/return condenser and scrubber charged with a 5N NaOH solution, a mechanically stirred mixture of FN-Toluene (2.0 kg, 12.89 mol, 1.0 equiv.), N- Bromosuccinimide (3.9 kg, 21.92 mol, 1.70 equiv.), benzoyl peroxide (125.0 g, 0.03 equiv., 0.39 mol, containing 25 wt% water), and acetic acid (7.0 L, 3.5 volumes) was heated to 85 °C under an atmosphere of nitrogen for 7 hours. A solution of H3PO3 (106.0 g, 1.29 mol, 0.1 equiv.) and acetic acid (200 mL, 0.1 volume), prepared in separate vessel, was added. The reaction mixture was agitated for 0.5 h and analysis of an aliquot confirmed complete decomposition of benzoyl peroxide (not detected, HPLC254 nm)- The reaction mixture was cooled to 22 °C. DI Water (8.0 L, 4 volumes) and toluene (16.0 L, 8 volumes) were charged, the biphasic mixture was agitated (20 min), and the layers were separated. Aqueous 1.6N NaOH (14.0 L, 7.0 volumes) was added to the organic layer at a rate allowing the batch temperature to stay under 25 °C and the pH of the resultant aqueous phase was measured (> 11). The biphasic mixture was filtered through a 5 μιη Teflon® cartridge line and the layers were separated. The filter line was washed with another 2L of toluene.

[0082] The assay yields were 2.5 % of FN-Toluene, 62.3 % of FN-Bromide and 30.0 % of Di-Bromide. The toluene solution contained no benzoyl peroxide, succinimide, or cc- bromoacetic acid and water content by KF titration was 1030 ppm (This solution could be held under nitrogen at room temperature for > 12 h without any change in the assay yield).

[0083] To this solution at room temperature was added diisopropylethylamine (880.0 g, 6.63 mol, 0.53 equiv.) followed by methanol (460 mL, 11.28 mol, 0.88 equiv.) and heated to 40 °C. A solution of diethylphosphite (820.0 g, 5.63 mol, 0.46 equiv.) in methanol (460 mL, 11.28 mol, 0.88 equiv.) was prepared and added to the reaction mixture at 40 °C through an addition funnel over a period of 1 hour at such a rate that the batch temperature was within 40 + 5 °C. The contents were stirred for a period of 3h at 40 °C from the start of addition and cooled to room temperature and held under nitrogen atmosphere for 12 hours. The assay yield of the reaction mixture was 2.5 % FN-Toluene 92.0% FN-Bromide and 0.2% Di-Bromide. This solution is used as such for the alkylation step.

[0084] Characterization for components of final product mixture (collected for pure compounds).

[0085] 2-Fluoro-3-Nitrotoluene (FN-Toluene): 1H NMR (400 MHz, CHLOROFORM- J) δ ppm 2.37 (s, 1 H), 7.13-7.20 (m, 1 H), 7.45-7.51 (m, 1 H), 7.79-7.85 (m, 1 H). 13C NMR (100 MHz, CHLOROFORM- d) δ ppm 14.3 (d, J = 5 Hz), 123.3 (d, J = 3 Hz), 123.6 (d, J = 5 Hz), 128.2 (d, J = 16 Hz), 136.7 (d, J = 5 Hz), 137.5 (broad), 153.7 (d, J = 261 Hz); 1- (bromomethyl)-2-fluoro-3-nitrobenzene (FN-Bromide): 1H NMR (400 MHz,

CHLOROFORM-J) δ ppm 4.56 (s, 1 H), 7.28-7.34 (m, 1 H), 7.69-7.76 (m, 1 H), 7.98-8.05 (m, 1 H). 13C NMR (100 MHz, CHLOROFORM- J) δ ppm 23.6 (d, / = 5 Hz), 124.5 (d, / = 5 Hz), 126.1 (d, / = 3 Hz), 128.5 (d, / = 14 Hz), 136.5 (d, / = 4 Hz), 137.7 (broad), 153.3 (d, / = 265 Hz). DSC: single melt at 53.59 °C. Exact Mass [C7H5BrFN02 + H]+: calc. = 233.9566, measured = 233.9561; l-(dibromomethyl)-2-fluoro-3-nitrobenzene (Dibromide): 1H NMR (400 MHz, CHLOROFORM- d) δ ppm 6.97 (s, 1 H), 7.39-7.45 (m, 1 H), 8.03-8.10 (m, 1 H), 8.16-8.21 (m, 1 H). 13C NMR (100 MHz, CHLOROFORM-J) δ ppm 29.2 (d, / = 7 Hz), 124.9 (d, / = 5 Hz), 127.1 (d, / = 2 Hz), 132.1 (d, / = 11 Hz), 135.7 (d, / = 2 Hz), 137.2 (broad), 149.8 (d, / = 266 Hz). DSC: single melt at 49.03 °C. Exact Mass [C7H4Br2FN02 + H]+: calc. = 311.8671, measured = 311.8666.

Piperazine Nitro-HCl:

[0086] To a mechanically stirred toluene solution (9 volumes) of FN-Bromide (prepared from previous step) in a 60 L reactor at 22 °C under an atmosphere of nitrogen,

diisopropylethylamine was charged (1.90 kg, 14.69 mol, 1.14 equiv.). To this mixture a solution of piperazine carboxylate methylester (Piperazine Carboxylate) (2.03 kg, 14.05 mol, 1.09 equiv.) in toluene (1.0 L, 0.5 volumes) was added at a rate allowing the batch temperature to stay under 30.0 °C (Exothermic. During the addition, jacket temperature was adjusted to 5 °C in order to maintain batch temperature below 30 °C. The mixture was agitated at 22 °C for 3 hours and analysis of an aliquot confirmed completion of the alkylation reaction (<1.0 LCAP FN-Bromide, HPLC254 nm). The reaction mixture was treated with aqueous NH4C1 (20 wt%, 10.0 L, 5 volumes; prepared from 2.0 kg of NH4C1 and 10.0 L of DI water), the biphasic mixture was agitated (30 min), and the layers were separated. The organic layer was sequentially washed with aqueous NaHC03 (9 wt%, 10.0 L, 5 volumes; prepared from 0.90 kg of NaHC03 and 10.0 L of DI water). The organic layer was filtered through a 5 μιη Teflon® cartridge line and transferred in a drum, washed the filter line with another 1.0 L toluene and the combined toluene solution (10.0 volumes) weighed, and assayed (HPLC) to quantify Piperazine Nitro free base. The assay yield for the Piperazine Nitro-freebase is 89.0%, FN-Toluene 2.5% and FN-Bromide 0.2% with FN-Bromide undetected. The total loss of product to the aqueous washes is < 1.0 %. This solution under nitrogen atmosphere is stable for more than 12h.

[0087] To a mechanically stirred toluene solution of Piperazine Nitro free base, prepared as described above, at 22 °C in a 60 L reactor under an atmosphere of nitrogen, IPA (19.4 L, 9.7 volumes) and DI water (1.0 L, 0.5 volume) were charged. The mixture was heated to 55 °C and 20% of the 1.4 equiv. of cone. HCl (Titrated prior to use and charge based on titer value; 276.0 mL, 3.21 mol) was charged. The contents were agitated for 15 min and

Piperazine Nitro-HCl seed (130.0 g, 0.39 mol, 0.03 equiv.) was charged as slurry in IPA (400 mL, 0.2 volume). The mixture was agitated for 30 min and the remaining cone. HCl (80% of the charge, 1.10 L, 12.82 mol) was added over a period of 4 hours. The mixture was stirred at 55 °C for 1 h, cooled to 20 °C in a linear manner over 1.5 hours, and agitated at this temperature for 12 hours. The supernatant concentration of Piperazine Nitro-HCl was measured (2.8 mg/g). The mixture was filtered through an aurora filter equipped with a 5 μιη Teflon® cloth. The mother liquor were transferred to a clean drum and assayed. The filter cake was washed twice with IPA (11.2 L, 5.6 volumes) and dried to constant weight (defined as < 1.0% weight loss for 2 consecutive TGA measurements over a period of 2 hours) on filter with vacuum and a nitrogen sweep (14 h). The combined losses of Piperazine Nitro- HCl in the mother liquors and the washes were 2.5 %. Piperazine Nitro-HCl was isolated 3.59 kg in 87.6% corrected yield with >99.5 wt% and 99.0% LCAP purity.

[0088] Methyl 4-(2-fluoro-3-nitrobenzyl)piperazine-l-carboxylate hydrochloride

(Piperazine Nitro-HCl): 1H NMR (300 MHz, DMSO-J) δ ppm 3.25 (br. s, 3 H), 3.52-3.66 (m, 8 H), 4.47 (s, 2 H), 7.44-7.63 (t, 1 H, J = 8 Hz), 7.98-8.15 (m, 1 H), 8.17-8.34 (m, 1 H). 13C NMR (75 MHz, DMSO-J) 5 ppm 50.3, 51.4, 52.8, 119.6 (d, J = 14 Hz), 125.1 (d, J = 5 Hz), 127.9, 137.4 (d, J = 8 Hz), 139.8 (d, J = 3 Hz), 152.2, 154.7, 155.7. DSC: melt onset at 248.4 °C. Exact Mass [Q3H16FN3O4 + H]+: calculated = 298.1203, measured = 298.1198. lternative processes for the synthesis of Piperazine Nitro:

Figure imgf000020_0001

2-fluoro-3-nitrobenzoic acid (2-fluoro-3-nitrophenyl)metlianol 2-fluoro-3-nitrobenzy? methanesulfonate

Figure imgf000020_0002

methyl 4-(2-fluoro-3-nitrobenzyl)piperazine-l -carboxylate hydrochloride

[0089] A mixture of NaBH4 ( 1.7 g, 44 mmol) in THF (68 mL) was treated 2-fluoro-3- nitrobenzoic acid (3.4 g, 18.4 mmol) and cooled to 0-5 °C. A solution of iodine (4.7 g, 18.4 mmol) in THF (12 mL) was then added drop wise at a rate to control off-gassing. The progress of the reaction was assessed by HPLC. After 2 hours HPLC assay indicated 4% AUC of 2-fluoro-3-nitrobenzoic acid remained. The mixture was quenched into 1 M HCl (30 mL) and extracted with MTBE (5 mL). The organics were then washed with 20% aqueous KOH solution and 10% sodium thiosulfate. The organics were dried with Na2S04, filtered over Celite and concentrated to afford (2-fluoro-3-nitrophenyl)methanol (2.8 g, 88%, 89% AUC by HPLC).

[0090] A solution of (2-fluoro-3-nitrophenyl)methanol (2.8 g, 16 mmol) in 2-MeTHF (26 mL) was treated with triethylamine (4.5 mL, 32 mmol) and cooled to 0-5 °C. The solution was then treated with methanesulfonyl chloride (1.6 mL, 21 mmol). The progress of the reaction was assessed by HPLC. After 30 minutes at 0-5 °C, the reaction was deemed complete. The mixture was quenched with water (14 mL) and the phases were separated. The organics were washed with brine, dried with Na2S04, filtered over Celite and

concentrated to afford 2-fluoro-3-nitrobenzyl methanesulfonate (3.3 g, 83.1%, 81% AUC by HPLC) as a yellow oil.

[0091] A solution of 2-fluoro-3-nitrobenzyl methanesulfonate (3.3 g, 13 mmol, AMRI lot # 46DAT067B) in toluene (33 mL), was treated with diisopropylethylamine (2.7 mL, 15 mmol) in one portion. A solution of methylpiperazine- 1 -carboxylate (2.1 g, 15 mmol) in toluene (1.1 mL) was added slowly via syringe to maintain between 23-29 °C. The reaction was stirred for 16 hours following the addition. An HPLC assay after this time showed that the reaction was complete. 20% Aqueous NH4C1 (11 mL) was added at 20-25 °C. The biphasic mixture was stirred for 15 minutes, and the phases were separated. This process was repeated using 9% aqueous sodium bicarbonate (11 mL). The toluene layer was then filtered over Celite at 20-25 °C. 2-propanol (50 mL) and water (1.1 mL) were added to the toluene solution and the mixture heated to 55-60 °C. The mixture was then treated with 37wt% HC1 (1.6 mL, 18.7 mmol) over 20 minutes. A precipitate was noted following the addition. When the addition was complete, the mixture was allowed to cool gradually to 20-25 °C and was stirred for hours before filtering and washing with IPA (2 bed volumes).

[0092] The cake was then dried at under vacuum to afford 4-(2-fluoro-3- nitrobenzyl)piperazine-l-carboxylate hydrochloride (2.41 g, 54%, 90% AUC by HPLC, 88 wt% by HPLC).

Piperazine Nitro Freebase:

[0093] In a 60 L reactor equipped with a reflux/return condenser, a mixture of Piperazine Nitro-HCl (2.0 kg, 5.99 mol, 1.0 equiv.) and isopropyl acetate (6.0 L, 3.0 volumes) was mechanically agitated at ambient temperature under an atmosphere of nitrogen. A solution of sodium bicarbonate (629 g, 7.49 mol, 1.25 equiv.) and water (7.5 L, 3.75 volume), prepared in separate vessel, was added. The biphasic mixture was agitated (15 min), and the layers were separated. The upper organic layer (containing product) was transferred to a separate vessel while the reactor was rinsed with water and isopropanol. The organic layer was then transferred through an inline 5 μιη Teflon® cartridge back into the clean 60 L reactor. The filter line was washed with 4.0 L (2.0 volumes) of isopropanol into the 60 L reactor. An additional 12.0 L (6.0 volumes) of isoproponal was added to the 60 L reactor and heated to 40 °C. Under reduced pressure (50 torr) the batch was concentrated down to approximately 6 L (3.0 volumes). The solution was cooled from 27 °C to 20 °C in a linear manner over 10 minutes. Water (4.0 L, 2.0 volumes) was added at 20 °C over 30 minutes followed by Piperazine Nitro Freebase seed (18 g, 0.06 mol, 0.01 equiv). The mixture was aged for 5 minutes and the remaining water (24.0 L, 12.0 volumes) was added over 90 minutes. After holding overnight at 20 °C, the supernatant concentration of Piperazine Nitro Freebase was measured (< 10 mg/mL). The mixture was filtered through an aurora filter equipped with a 12 μιη Teflon® cloth. The filter cake was washed with a mixture of water (3.3 L, 1.65 volumes) and isopropanol (700 mL, 0.35 volumes) and dried to constant weight (defined as < 1.0% weight loss for 2 consecutive TGA measurements over a period of 2 hours) on filter with vacuum and a nitrogen sweep (48 h). The combined losses of Piperazine Nitro Freebase in the mother liquors and the wash were aproximately 7.5 %. Piperazine Nitro Freebase was isolated 1.67 kg in 92.5% corrected yield with 100.0 wt% and 99.4% LCAP purity.

Synthesis of the API SM Phenyl Carbamate-HCl

Figure imgf000022_0001

Amino Pyridine Phenyl Carbamate-HCl

[0094] A 60 L, glass-lined, jacketed reactor set at 20 °C under nitrogen atmosphere and vented through a scrubber (containing 5N NaOH) was charged with 2.5 kg of Amino

Pyridine (1.0 equiv, 23.1 moles), followed by 25 L (19.6 kg, 10 vol) acetonitrile. After initiating agitation and (the endothermic) dissolution of the Amino Pyridine, the vessel was charged with 12.5 L of N-methyl-2-pyrolidinone (12.8 kg, 5 vol). An addition funnel was charged with 1.8 L (0.6 equiv, 13.9 moles) phenyl chloroformate which was then added over 68 minutes to the solution of the Amino Pyridine keeping the internal temperature < 30°C. The reaction was agitated for > 30 minutes at an internal temperature of 20 ± 5 °C. The vessel was then charged with 61 ± 1 g of seed as a slurry in 200 mL acetonitrile and aged for > 30 min. The addition funnel was charged with 1.25 L (0.45 equiv, 9.7 moles) of phenyl chloroformate which was then added over 53 minutes to the reaction suspension while again keeping the temperature < 30°C. The contents of the reactor were aged > 30 hours at 20 ± 5°C. After assaying the supernatant (< 15mg/g for both product and starting material), the solids were filtered using an Aurora filter equipped with a 12μιη Teflon cloth. The mother liquor was forwarded to a 2nd 60 L, glass-lined, jacketed reactor. The reactor and cake were rinsed with l x lO L of 5: 10 NMP/ ACN and 1 x 10 L ACN. The washes were forwarded to the 2nd reactor as well. The cake was dried under vacuum with a nitrogen bleed for > 24 hours to afford 5.65 kg (90.2% yield) of the product, Phenyl Carbamate-HCl as an off-white solid in 98.8 wt% with 99.2% LCAP purity.

[0095] Phenyl (6-methylpyridin-3-yl)carbamate hydrochloride (Phenyl Carbamate-HCl) 1H NMR (400 MHz, DMSO-J6) 5 ppm 11.24 (s, 1 H), 8.81 (s, 1 H), 8.41 (d, 1 Η, / = 8.8 Hz), 7.85 (d, l H, / = 8.8 Hz), 7.48 – 7.44 (m, 2 H), 7.32 – 7.26 (m, 3 H), 2.69 (s, 3 H); 13C NMR (100 MHz, DMSO- ) δ ppm 151.66, 150.01, 147.51, 136.14, 133.79, 129.99, 129.49, 127.75, 125.87, 121.70, 18.55: HR-MS : Calculated for Cuii W . 228.0899, M + H+ = 229.0972; Observed mass: 229.0961

Alternative Synthesis of Phenyl Carbamate HC1

[0096] 5-Amino-2-methylpyridine (53.2 kg, 1.0 equiv) and acetonitrile (334 kg, 8.0 mL/g) were charged to a nitrogen flushed glass-lined reactor. The contents of the reactor were stirred while warming to 25-30 °C. The mixture was then recirculated through a filter packed with activated carbon (11 kg, 20 wt ) for 3 h intervals while maintaining 25-30 °C.

Following each 3 h interval, a sample of the mixture was analyzed for color by comparison to a color standard and UV Absorbance at 440nm. Once a satisfactory result was achieved, the filter was blown out into the reactor and the filter was rinsed with acetonitrile (85 kg, 2.0 mL/g). The acetonitrile rinse was transferred into the reaction mixture. l-Methyl-2- pyrrolidinone (274 kg, 5.0 mL/g) was charged to the reaction mixture in the glass-lined reactor. Phenyl chloroformate (46.6 kg, 0.6 equiv) was slowly added to the mixture while maintaining 15-30 °C (typically 60-70 min). The reaction mixture was stirred for approximatly 60 minutes while maintaining 20-25 °C. Phenyl(6-methylpyridin-3- yl)carbamate hydrochloride (0.58 kg, 0.010 equiv) seed crystals were charged to the stirring mixture. The slurry was then stirred for approximatly 4 h at 20+ 5°C. Phenyl chloroformate (33.4 kg, 0.45 equiv) was slowly added to the slurry while maintaining 15-30 °C. The mixture was then allowed to age while stirring for 8+1 h whereupon concentration of 5- amino-2-methylpyridine (target <15 mg/mL) and phenyl (6-methylpyridin-3-yl)carbamate hydrochloride (target <15 mg/mL) were checked by HPLC. The batch was then filtered under vacuum and washed with a mixture of acetonitrile (112 kg, 2.68 mL/g) and l-methyl-2- pyrrolidinone (72 kg, 1.32 mL/g) followed by washing thrise with acetonitrile (167 kg, 4.0 mL/g). The solids were deliquored followed by transfering to a tray dryer maintained between 20-40°C and 1.3-0.65 psia until an LOD of <lwt was achieved, whereupon phenyl(6-methylpyridin-3-yl)carbamate hydrochloride 106.3 kg (81.6% yield) was isolated from the dryer. Methyl 4-(3-amino-2-fluorobenzyl)piperazine-l-carboxylate (Piperazine Aniline)

Neutralization

Figure imgf000024_0001

Piperazine NitrcHCI

+ NaCI (1 equiv)

+ C02 (1 equiv)

+ H20 (1 equiv)

+ NaHC03 (0.25 equiv)

Figure imgf000024_0002

[0097] To a 100-L jacketed glass-lined reactor were added methyl 4-(2-fluoro-3- nitrobenzyl)piperazine-l-carboxylate hydrochloride (2.00 kg, 1.00 equiv) and isopropyl acetate (6.00 L, 3.00 Vol with-respect to starting material). The resulting slurry was agitated under a nitrogen sweep. To the mixture was added dropwise over 45 + 30 min: 7.7 % w/w aqueous sodium bicarbonate solution (629 g, 1.25 equiv of sodium bicarbonate dissolved in 7.50 L water), maintaining an internal temperature of 20 + 5 °C by jacket control (NOTE: addition is endo thermic, and may evolve up to 1 equiv of carbon dioxide gas). The mixture was stirred for > 15 min, resulting in a clear biphasic mixture. Agitation was stopped and the layers were allowed to settle.

[0098] The bottom (aqueous) layer was drained and analyzed by pH paper to ensure that the layer is pH > 6. Quantititative HPLC analysis of the upper (organic) layer revealed 97- 100% assay yield of the methyl 4-(2-fluoro-3-nitrobenzyl)piperazine-l-carboxylate freebase (1.73 – 1.78 kg). The upper (organic) layer was transferred through an in-line filter into a 20- L Hastelloy® hydro genator, and the 100-L reactor and lines were rinsed with an additional aliquot of isopropyl acetate (2.00 L, 1.00 Vol). The hydrogenator was purged with nitrogen and vented to atmospheric pressure. To the reaction mixture was added a slurry of 5.0 wt% palladium on carbon (20.0 g, Strem/BASF Escat™ 1421, approx 50% water) in isopropyl acetate (400 mL), followed by a 400 mL rinse. The resulting reaction mixture was diluted with an additional aliquot of isopropyl acetate (1.2 L; total isopropyl acetate amount is 10.0 L, 5.00 Vol). The hydrogenator was purged three times with nitrogen (pressurized to 60 + 10 psig, then vented to atmospheric pressure), then pressurized to 60 + 5 psig with hydrogen. The reaction mixture was stirred at < 100 rpm at 30 + 5 °C while maintaining 60 + 5 psig hydrogen, for >2 hours until reaction was deemed complete. This temperature and pressure correspond to a measured kLa value of approx 0.40 in a 20-L Hydrogenator. End of reaction is determined by dramatic decrease in hydrogen consumption accompanied by a relief in the heat evolution of the reaction. To control potential dimeric impurities, the reaction is continued for at least 30 minutes after this change in reaction profile, and HPLC analysis is performed to confirm that >99.5% conversion of the hydroxyl-amine to the aniline is achieved.

[0099] At the end of reaction, the hydrogenator was purged with nitrogen twice

(pressurized to 60 + 10 psig, then vented to atmospheric pressure). The crude reaction mixture was filtered through a 5 μιη filter followed by a 0.45 μιη filter in series, into a 40-L glass-lined reactor. The hydrogenator and lines were washed with an additional aliquot of isopropyl acetate (2.00 L). Quantitative HPLC analysis of the crude reaction mixture revealed 95-100% assay yield (1.52 – 1.60 kg aniline product). The reaction mixture was distilled under reduced pressure (typically 250 – 300 mbar) at a batch temperature of 50 + 5 °C until the total reaction volume was approximately 8.00 L (4.00 Vol). The batch was subjected to a constant-volume distillation at 50 + 5 °C, 250 – 300 mbar, by adding heptane to control the total batch volume. After approximately 8.00 L (4.00 Vol) of heptane were added, GC analysis indicated that the solvent composition was approximately 50 % isopropyl acetate, 50% heptane. Vacuum was broken, and the internal batch temperature was maintained at 50 + 5 °C. To the reaction mixture was added a slurry of seed (20.0 grams of product methyl 4-(3-amino-2-fluorobenzyl)piperazine-l-carboxylate, in a solvent mixture of 80 mL heptane and 20 mL isopropyl acetate). The resulting slurry was allowed to stir at 50 + 5 °C for 2 + 1 hours, then cooled to 20 + 5 °C over 2.5 + 1.0 h. Additional heptane (24.0 L, 12.0 Vol) was added dropwise over 2 hours, and the batch was allowed to stir at 20 + 5 °C for > 1 hours (typically overnight). Quantitative HPLC analysis of this filtered supernatant revealed < 5 mg/mL product in solution, and the product crystals were 50 – 400 μιη birefringent rods. The reaction slurry was filtered at 20 °C onto a filter cloth, and the cake was displacement-washed with heptane (6.00 L, 2.00 Vol). The cake was dried on the filter under nitrogen sweep at ambient temperature for > 4 hours, until sample dryness was confirmed by LOD analysis (indicated <1.0 wt% loss). The product methyl 4-(3-amino-2- fluorobenzyl)piperazine-l-carboxylate (1.56 kg) was isolated as a pale-yellow powder in 86% yield at 99.8 wt% by HPLC with 100.0 LCAP2i0. [Analysis of the combined filtrates and washes revealed 108 grams (7.0%) of product lost to the mother liquors. The remaining mass balance is comprised of product hold-up in the reactor (fouling).] 1H NMR (DMSO-Jg, 400 MHz) δ: 6.81 (dd, J = 7.53, 7.82 Hz, 1H), 6.67 (m, 1H), 6.49 (m, 1H), 5.04 (s, 2H), 3.58 (s, 3H), 3.45 (m, 2H), 3.34 (m, 4H), 2.33 (m, 4H). 19F NMR (d6-DMSO, 376 MHz) δ: – 140.2. 13C NMR (d6-DMSO, 125 MHz) δ: 155.0, 150.5, 148.2, 136.2 (m), 123.7 (m), 117.6, 115.1, 73.7, 54.9 (m), 52.1 (m), 43.4. mp = 89.2 °C.

Alternate route to Piperazine Aniline

[00100] To a jacketed glass-lined reactor were added methyl 4-(2-fluoro-3- nitrobenzyl)piperazine-l-carboxylate hydrochloride (46.00 kg, 1.00 equiv) and isopropyl acetate (200 kg, 5.0 mL/g). The resulting slurry was agitated under a nitrogen sweep. To the mixture was added 7.4 % w/w aqueous sodium bicarbonate solution (1.25 equiv) while maintaining an internal temperature of 25 + 5 °C. The mixture was agitated for > 30 min, resulting in a clear biphasic mixture. Agitation was stopped and the bottom (aqueous) layer was discharged. Analysis of aqueous layer indicates pH >6. Water (92 kg, 2.0 mL/g) was charged the organic layer and agitated for >15 min. Agitation was then stopped and the bottom (water wash) layer was discharged. Water (92 kg, 2.0 mL/g) was charged the organic layer and agitated for > 15 min. Agitation was then stopped and the bottom (water wash) layer was discharged. The batch was distilled under reduced pressure while maintaining the batch temperature between 40-50 °C. The batch volume was held constant throughout the distillation by the continuous addition of isopropyl acetate. Once the water content of the batch was < 1,500 ppm, the solution was passed through an inline filter into a Hastelloy reactor containing 5.0 wt% palladium on carbon (BASF Escat 1421, 0.69 kg, 1.5 wt%). The jacketed glass-lined reactor was rinsed with isopropyl acetate (100 kg, 2.5 mL/g) and added to the Hastelloy reactor though the inline filter.

[00101] The batch was adjusted to approximately 25-35 °C (preferably 30 °C) and hydrogen gas was added to maintain about 4 barg with vigorous agitation. Hydrogenation was continued for 1 h after hydrogen uptake has ceased, and >99.0% conversion by HPLC were achieved. The palladium on carbon catalyst was collected by filtration and the supernatant was collected in a reactor. Isopropyl acetate (40 kg, 1.0 mL/g) was charged to the Hastelloy reactor and transferred through the filter and collected in the jacketed glass-lined reactor.

[00102] The batch was concentrated under reduced pressure while maintaining the batch temperature between 35-55 °C until the final volume was approximately 4.0 mL/g. Heptane (219 kg, 7.0 mL/g) was added to the jacketed glass-lined reactor while maintaining the batch between 50-60 °C, until 20-25% isopropyl acetate in heptane was achieved as measured by GC. The solution was cooled to between 40-50 °C and seeded with methyl 4-(3-amino-2- fluorobenzyl)piperazine-l-carboxylate (0.46 kg, 1.0 wt%) as a slurry in heptane (6.4 kg, 0.20 mL/g). The slurry was aged for approximately 2 h, whereupon, the batch was distilled under reduced pressure while maintaining the batch temperature between 35-45 °C. The batch volume was held constant throughout the distillation by the continuous addition of heptane (219 kg, 7.0 mL/g). The batch was then cooled to between 15-25 °C over approximately 3 h. Concentration of the supernatant was measured to be <5 mg/mL methyl 4-(3-amino-2- fluorobenzyl)piperazine-l-carboxylate by HPLC.

[00103] The batch was filtered and the resulting solids were successively washed with heptane (63 kg, 2.0 mL/g) then heptane (94 kg, 3.0 mL/g). The solids were dried on the filter with a stream of dry nitrogen with vacuum until an LOD of <_lwt% was achieved whereupon 33.88 kg (90.7% yield) was isolated from the filter dryer.

Omecamtiv Mecarbil Dihydrochloride Hydrate procedure

f lu

Figure imgf000027_0001

1) 2-PrOH (11 V)

2) Distill to 4V

3) Water (2.30 V)

4) 6N HCI (2.4 equiv)

5) 2-PrOH (16.5V)

6) Wet Mill

Figure imgf000027_0002

[00104] To a 15L glass lined reactor were charged methyl 4-(3-amino-2-fluoro- benzyl)piperazine-l-carboxylate (1,202 g, 4.50 mol), phenyl (6-methylpyridin-3- yl)carbamate hydrochloride (1,444 g, 5.40 mol), and tetrahydrofuran (4.81 L). The resulting slurry was agitated under a nitrogen sweep and N,N-diisopropylethylamine (1,019 L, 5.85 mol) was then charged to the slurry which resulted in a brown solution. The temperature of the solution was increased to 65 °C and agitated for 22 h, until <1% AUC piperazine aniline remained by HPLC analysis.

[0100] The batch was cooled to 50 °C and distilled under reduced pressure while maintaining the internal temperature of the vessel below 50 °C by adjusting vacuum pressure. 2-Propanol was added with residual vacuum at a rate to maintain a constant volume in the 15 L reactor. A total of 10.5 kg of 2-propanol was required to achieve <5% THF by GC. Water (2.77 kg) was then charged to the reactor followed by the addition of 6N HC1 (1.98 kg) at a rate to maintain the internal temperature below 60 °C. The reactor was brought to ambient pressure under a nitrogen sweep. The solution was then heated to 60 °C, and transferred to a 60L glass lined reactor through an inline filter. The 15L reactor was then rinsed with 1: 1 water/2-propanol (1.2L) which was sent through the inline filter to the 60L reactor.

[0101] The 60L reactor was adjusted to 45 °C and a slurry of seed (114 g, 0.23 mol) in 2- propanol (0.35 L) was added to the reactor resulting in a slurry. The batch was aged at 45 °C for 1 h, followed by the addition of 2-propanol (3.97 kg) through an inline filter over 2 h. The batch was heated to 55°C over 1 h and held for 0.25 h, then cooled back to 45°C over 1 h and held overnight at 45 °C. 2-propanol (11.71 kg) was then added through an inline filter to the batch over 3 h. The batch was aged for 1 h and then cooled to 20°C over 2 h and held at 20 °C for 0.5 h. The batch was then recirculated though a wet mill affixed with 1-medium and 2- fine rotor-stators operating at 56 Hz for 2.15 h, until no further particle size reduction was observed by microscopy.

[0102] The batch was then filtered through a 20″ Hastelloy® filter fitted with a 12 urn filter cloth under 500 torr vacuum. A wash solution of 95:5 2-propanol:water (1.82 L) was charged through an inline filter to the 60L reactor, then onto the filter. A second wash of 2- propanol (2.85L) was charged through an inline filter to the 60L reactor, then onto the filter. The batch was then dried under 5 psi humidified nitrogen pressure until <5,000 ppm 2- propanol, and 2.5-5% water remained. The final solid was discharged from the filter to afford 2.09 kg of methyl 4-(2-fluoro-3-(3-(6-methylpyridin-3-yl)ureido)benzyl)piperazine-l- carboxylate as an off-white crystalline solid in 89% yield at 99.88 wt% by HPLC, 100.0% AUC. Total losses to liquors was 0.10 kg (4.7%).

[0103] DSC: Tonset = 61.7 °C, Tmax = 95.0 °C; TGA = 2.2%, degradation onset = 222 °C; 1H HMR (D20, 500 MHz) δ 8.87 (s, 1H), 8.18 (d, J = 8.9 Hz, 1H), 7.83 (t, J = 1.5 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.35-7.29 (m, 2H), 4.48 (s, 2H), 4.24 (br s, 2H), 3.73 (s, 3H), 3.31 (br s, 6H), 2.68 (s, 3H); 13C HMR (D20, 150 MHz) δ 156.8, 154.2, 153.9 (J = 249 Hz), 147.8, 136.3, 136.1, 130.1, 129.4, 128.0, 127.2, 125.5 (J = 11.8 Hz), 125.1 (J = 4.2 Hz), 116.1 (J = 13.5 Hz), 53.54, 53.52, 53.49, 50.9, 40.5, 18.2.

Figure imgf000029_0001

[0104] A reaction vessel was charged methyl 4-(3-amino-2-fluorobenzyl)piperazine-l- carboxylate (2.5 g, 1.0 equiv), acetonitrile (25.0 mL, 10.0 mL/g) and l-methyl-2- pyrrolidinone (12.5 mL, 5.0 mL/g). The batch was cooled to 0 °C whereupon phenyl chloroformate (1.20 mL, 1.02 equiv) was added over approximately 5 min. After 45 minutes the resulting slurry resulted was allowed to warm to 20 °C. The solids were collected by filtration and rinsed twice with acetonitrile (10.0 mL, 4.0 mL/g). The solids were dried under a stream of dry nitrogen to afford methyl 4-(2-fluoro-3-

((phenoxycarbonyl)amino)benzyl)piperazine- l -carboxylate hydrochloride 2.8 g (71 % yield) as a white solid.

[0105] 4-(2-fluoro-3-((phenoxycarbonyl)amino)benzyl)piperazine-l-carboxylate hydrochloride: 1H NMR (400 MHz, DMSO-J6) δ ppm 3.08 (br. s., 2 H), 3.24 – 3.52 (m, 4 H), 3.62 (s, 3 H), 4.03 (d, J=11.25 Hz, 2 H), 4.38 (br. s., 2 H), 7.11 – 7.35 (m, 4 H), 7.35 – 7.49 (m, 2 H), 7.49 – 7.66 (m, 1 H), 7.80 (s, 1 H), 10.12 (br. s, 1 H), 11.79 (br. s, 1 H); HRMS = 388.1676 found, 388.1667 calculated. [0106] A reaction vessel was charged methyl 4-(2-fluoro-3-

((phenoxycarbonyl)amino)benzyl)piperazine-l-carboxylate hydrochloride (0.50 g, 1.0 equiv), 6-methylpyridin-3-amine (0.15 g, 1.2 equiv), tetrahydrofuran (2.0 mL, 4.0 mL/g) and

N,N-diisopropylethylamine (0.23 mL, 1.1 equiv). The batch was heated to 65 °C for 22 h, whereupon quantitative HPLC analysis indicated 0.438 g (92% assay yield) of omecamtiv mecarbil.

Alternative Omecamtiv Mecarbil Dihydrochloride Hydrate procedure

[0107] Omecamtiv Mecarbil, free base (3.0 kg, 1.0 equiv) was charged to a nitrogen purged jacketed vessel followed by water (4.6 L, 1.5 mL/g) and 2-propanol (6.1 L, 2.60 mL/g). The slurry was agitated and heated to approximately 40 °C, whereupon 6N HC1 (2.6 L, 2.10 equiv) was charged to the slurry resulting in a colorless homogenous solution. The solution was heated to between 60-65 °C and transferred through an inline filter to a 60L reactor pre -heated to 60 °C. The batch was cooled to 45 °C whereupon Omecamtiv Mecarbil dihydrochloride hydrate (150 g, 5.0 wt%) was charged to the vessel as a slurry in 95:5 (v/v) 2-Propanol/Water (600 mL, 0.20 mL/g). The resulting slurry was maintained at 45 °C for 0.5 h followed by cooling to approximately 20 °C then held for 3-16 h. 2-Propanol (33.0 L, 11.0 mL/g) was added over >2h followed by a >1 h isothermal hold at approximately 20 °C.

(Supernatant pH <7).

[0108] The batch was recirculated through a wet mill for 5-10 batch turnovers until sufficient particle reduction was achieve as compared to offline calibrated visual microscopy reference. The slurry was filtered by vacuum and the resulting solids were washed with two washes of 95:5 (v/v) 2-Propanol/Water (3.0 L, 1.0 mL/g) and a final cake wash with 2- Propanol (6.0 L, 2.0 mL/g). The cake was dried on the filter by pushing humidified nitrogen through the cake until <5,000 ppm 2-propanol and 2.5-5% water were measured by GC and KF analysis, respectively. Omecamtiv Mecarbil dihydrochloride hydrate was isolated as a colorless crystalline solid (3.40 kg, 93% yield). pH dependent release profiles

CLIP

J Am Chem Soc. 2012 July 11; 134(27): 11132–11135. doi:10.1021/ja305212v.

CLIP

Image result for OMECAMTIV
CLIP
PATENTS
Patent ID

Title

Submitted Date

Granted Date

US2017267638 COMPOUNDS, COMPOSITIONS AND METHODS
2017-04-06
US9643925 COMPOUNDS, COMPOSITIONS AND METHODS
2015-08-27
2016-04-28
US2016016906 SALT OF OMECAMTIV MECARBIL AND PROCESS FOR PREPARING SALT
2014-03-14
2016-01-21
US2016015628 HETEROCYCLIC COMPOUNDS AND THEIR USES
2014-03-14
2016-01-21
US9150564 COMPOUNDS, COMPOSITIONS AND METHODS
2014-09-18
2015-01-01
Patent ID

Title

Submitted Date

Granted Date

US8445495 Certain Chemical Entities, Compositions and Methods
2010-02-04
US2009247544 Certain Chemical Entities, Compositions and Methods
2009-10-01
US2007208000 Certain chemical entities, compositions and methods
2007-09-06
US2007161617 Certain chemical entities, compositions and methods
2007-07-12
US2007197505 Certain chemical entities, compositions and methods
2007-08-23
Patent ID

Title

Submitted Date

Granted Date

US7989455 Compounds, compositions and methods
2007-08-23
2011-08-02
US7507735 Compounds, compositions and methods
2006-01-19
2009-03-24
US2016186141 SMALL MOLECULE CELLULAR REPROGRAMMING TO GENERATE CARDIOMYOCYTES
2016-03-10
2016-06-30
US2014309235 HETEROCYCLIC COMPOUNDS AND THEIR USES
2014-03-14
2014-10-16
US8513257 Ureas and their use in the treatment of heart failure
2011-12-30
2013-08-20
Patent ID

Title

Submitted Date

Granted Date

US8871769 Ureas and their use in the treatment of heart failure
2013-07-19
2014-10-28
US8871768 Certain chemical entities, compositions and methods
2013-05-17
2014-10-28
US2009192168 Compounds, Compositions and Methods
2009-07-30
US8101617 Disubstituted ureas and uses thereof in treating heart failure
2009-04-16
2012-01-24
US8110595 Ureas and their use in the treatment of heart failure
2009-02-05
2012-02-07
Omecamtiv mecarbil
Omecamtiv mecarbil.svg
Clinical data
Synonyms CK-1827452
Routes of
administration
Intravenous infusion
ATC code
  • None
Legal status
Legal status
  • Investigational
Identifiers
CAS Number
PubChem CID
ChemSpider
KEGG
Chemical and physical data
Formula C20H24FN5O3
Molar mass 401.43 g/mol
3D model (JSmol)

/////////////Omecamtiv mecarbil, オメカムティブメカビル  , AMG 423, AMG-423, CK1827452, CK-1827452, K1827452, Cladribine, PHASE 3

SELETALISIB, селеталисиб , سيلستاليسيب , 司来利塞 ,


Image result for SELETALISIB

Thumb

ChemSpider 2D Image | Seletalisib | C23H14ClF3N6O

DB12706.png

SELETALISIB

CAS 1362850-20-1

UCB-5857 , Plaque psoriasis,Sjoegren’s syndrome,Immunodeficiency disorders

PHASE 3 UCB

23H14ClF3N6O , 482.85

Phosphatidylinositol 3 kinase delta (PI3Kδ) inhibitors

10023
1362850-20-1 [RN]
N-{(1R)-1-[8-Chlor-2-(1-oxido-3-pyridinyl)-3-chinolinyl]-2,2,2-trifluorethyl}pyrido[3,2-d]pyrimidin-4-amine
N—{(R)-1-[8-Chloro-2-(pyridin-3-yl)quinolin-3-yl]-2,2,2-trifluoroethyl}N-(1-oxypyrido-[3,2-d]pyrimidin-4-yl)amine
Pyrido[3,2-d]pyrimidin-4-amine, N-[(1R)-1-[8-chloro-2-(1-oxido-3-pyridinyl)-3-quinolinyl]-2,2,2-trifluoroethyl]-

3-{8-chloro-3-[(1R)-2,2,2-trifluoro-1-({pyrido[3,2-d]pyrimidin-4-yl}amino)ethyl]quinolin-2-yl}pyridin-1-ium-1-olate

селеталисиб [Russian] [INN]
سيلستاليسيب [Arabic] [INN]
司来利塞 [Chinese] [INN]
N-[(1R)-1-[8-chloro-2-(1-oxidopyridin-1-ium-3-yl)quinolin-3-yl]-2,2,2-trifluoroethyl]pyrido[3,2-d]pyrimidin-4-amine

Seletalisib has been used in trials studying the treatment and basic science of Primary Sjogren’s Syndrome.

  • Originator UCB
  • Class Anti-inflammatories; Small molecules
  • Mechanism of Action Immunomodulators; Phosphatidylinositol 3 kinase delta inhibitors
  • Phase III Immunodeficiency disorders
  • Phase II Sjogren’s syndrome
  • No development reported Plaque psoriasis
  • 05 Dec 2017 UCB Celltech terminates a phase II trial in Sjogren’s syndrome in France, Spain, United Kingdom, Greece, Sweden, Italy, due to enrolment challenges (PO) (NCT02610543) (EudraCT2014-004523-51)
  • 04 Nov 2017 No recent reports of development identified for phase-I development in Plaque-psoriasis in United Kingdom (PO, Capsule)
  • 14 Jun 2017 Pharmacokinetics and pharmacodynamics data from Preclinical and Clinical studies in Immunodeficiency disorders presented at the 18th Annual Congress of the European League Against Rheumatism (EULAR-2017)

SYN

US 9029392

https://patents.google.com/patent/US9029392B2/en

Example 27 N—{(R)-1-[8-Chloro-2-(pyridin-3-yl)quinolin-3-yl]-2,2,2-trifluoroethyl}N-(1-oxypyrido-[3,2-d]pyrimidin-4-yl)amine

A stirred solution of Example 1 (955 mg, 2.05 mmol) in DCM (40 mL) was cooled to 0° C. MCPBA (410 mg, 1.84 mmol) was added and the mixture was allowed to warm slowly to r.t. over 3 h. The reaction mixture was partitioned between DCM and saturated aqueous NaHCOsolution. The aqueous phase was extracted with further DCM and the combined organic fractions were washed with brine, dried Na2SO4) and evaporated in vacuo. The residue was purified by column chromatography (SiO2, 3-60% MeOH in EtOAc) to give the title compound (39 mg, 4%) as a yellow solid. δ(DMSO-d6) 9.64-9.52 (m, 1H), 9.30 (s, 1H), 9.06 (dd, J 4.2, 1.3 Hz, 1H), 8.78-8.71 (m, 2H), 8.67 (dd, J 4.9, 1.6 Hz, 1H), 8.64 (s, 1H), 8.16-8.01 (m, 4H), 7.75-7.69 (m, 1H), 7.52 (ddd, J 7.8, 4.9, 0.7 Hz, 1H), 6.65-6.52 (m, 1H). LCMS (ES+) 483 (M+H)+, RT 1.87 minutes.

AND

PATENT

WO 2012032334

PATENT

WO 2015181053

WO 2015181055

WO 2016170014

PATENT

WO 2017198590

A SPECIFIC TRIFLUOROETHYL QUINOLINE ANALOGUE FOR USE IN THE TREATMENT OF APDS

The present invention relates to the new therapeutic use of a known chemical compound. More particularly, the present invention concerns the use of a specific substituted quinoline derivative comprising a fluorinated ethyl side-chain in the treatment of activated phosphoinositide 3 -kinase delta syndrome (APDS).

N- {(R)- 1 -[8-Chloro-2-(l -oxypyridin-3-yl)quinolin-3-yl]-2,2,2-trifiuoroethyl} -pyrido[3,2-JJpyrimidin-4-ylamine is specifically disclosed in WO 2012/032334. The compounds described in that publication are stated to be of benefit as pharmaceutical agents, especially in the treatment of adverse inflammatory, autoimmune, cardiovascular, neurodegenerative, metabolic, oncological, nociceptive and ophthalmic conditions.

There is no specific disclosure or suggestion in WO 2012/032334, however, that the compounds described therein might be beneficial in the treatment of APDS.

Activated phosphoinositide 3-kinase delta syndrome (APDS), also known as

PASLI (pi ΙΟδ-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency), is a serious medical condition that impairs the immune system.

APDS patients generally have reduced numbers of white blood cells (lymphopenia), especially B cells and T cells, compromising their propensity to recognise and attack invading microorganisms, such as viruses and bacteria, and thereby prevent infection. Individuals affected with APDS develop recurrent infections, particularly in the lungs, sinuses and ears. Recurrent respiratory tract infections may gradually lead to bronchiectasis, a condition which damages the passages leading from the windpipe to the lungs (bronchi) and can cause breathing problems. APDS patients may also suffer from chronic active viral infections, including Epstein-Barr virus infections and cytomegalovirus infections.

APDS has also been associated with abnormal clumping of white blood cells, which can lead to enlarged lymph nodes (lymphadenopathy). Alternatively, the white blood cells can build up to form solid masses (nodular lymphoid hyperplasia), usually in the moist lining of the airways or intestines. Whilst lymphadenopathy and nodular lymphoid hyperplasia are benign (noncancerous), APDS also increases the risk of developing a form of cancer called B cell lymphoma.

APDS is a disorder of childhood, typically arising soon after birth. However, the precise prevalence of APDS is currently unknown.

Phosphoinositide 3-kinase delta (ΡΒΚδ) is a lipid kinase which catalyses the generation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). PI3K5 activates signalling pathways within cells, and is specifically found in white blood cells, including B cells and T cells. PI3K5 signalling is involved in the growth and division (proliferation) of white blood cells, and it helps direct B cells and T cells to mature (differentiate) into different types, each of which has a distinct function in the immune system.

APDS is known to occur in two variants, categorised as APDSl and APDS2.

APDSl is associated with a heterozygous gain-of- function mutation in the PIK3CD gene encoding the PI3K5 protein; whereas APDS2 is associated with loss-of-function frameshift mutations in the regulatory PIK3R1 gene encoding the p85a regulatory subunit of class I phosphoinositide 3-kinase (PI3K) peptides. Both mutations lead to hyperactivated PI3K signalling. See I. Angulo et ah, Science, 2013, 342, 866-871; C.L. Lucas et ah, Nature Immunol, 2014, 15, 88-97; and M-C. Deau et al, J. Clin. Invest., 2014, 124, 3923-3928.

There is currently no effective treatment available for APDS. Because of the seriousness of the condition, and the fact that it arises in infancy, the provision of an effective treatment for APDS would plainly be a highly desirable objective.

It has now been found that N-{(R)-l-[8-chloro-2-(l-oxypyridin-3-yl)quinolin-3-yl]- 2,2,2-trifluoroethyl}pyrido[3,2-(i]pyrimidin-4-ylamine is capable of inhibiting the elevation of PI3K signalling in T cells (lymphocytes) from both APDSl and APDS2 patients in the presence or absence of T cell receptor activation.

The present invention accordingly provides N-{(R)-l-[8-chloro-2-(l-oxypyridin-3-yl)quinolinB-yl]-2,2,2-trifluoroethyl}pyrido[3,2-JJpyrimidin-4-ylamine of formula (A):

or a pharmaceutically acceptable salt thereof, for use in the treatment and/or prevention of APDS.

The present invention also provides a method for the treatment and/or prevention of APDS, which method comprises administering to a patient in need of such treatment an effective amount of N-{(R)-l-[8-chloro-2-(l-oxypyridin-3-yl)quinolin-3-yl]-2,2,2-trifluoro-ethyl}pyrido[3,2-(i]pyrimidin-4-ylamine of formula (A) as depicted above, or a pharmaceutically acceptable salt thereof. The present invention also provides the use of N-{(R)-l-[8-chloro-2-(l-oxypyridin-3-yl)quinolin-3-yl]-2,2,2-trifluoroethyl}pyrido[3,2-JJpyrimidin-4-ylamine of formula (A) as depicted above, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment and/or prevention of APDS.

PAPER

Journal of Pharmacology and Experimental Therapeutics (2017), 361(3), 429-440.

http://jpet.aspetjournals.org/content/361/3/429

///////////////SELETALISIB, PHASE 3, UCB, селеталисиб سيلستاليسيب 司来利塞 

[O-][N+]1=CC(=CC=C1)C1=NC2=C(Cl)C=CC=C2C=C1[C@@H](NC1=NC=NC2=CC=CN=C12)C(F)(F)F

 

READ

ANTHONY MELVIN CRASTO

https://newdrugapprovals.org/

NDA

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO …..FOR BLOG HOME CLICK HERE

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

 Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

 amcrasto@gmail.com

CALL +919323115463  INDIA

Savolitinib


ChemSpider 2D Image | Savolitinib | C17H15N9

Savolitinib

CAS 1313725-88-0, Molecular Formula, C17-H15-N9, Molecular Weight, 345.3685

1H-1,2,3-Triazolo(4,5-b)pyrazine, 1-((1S)-1-imidazo(1,2-a)pyridin-6-ylethyl)-6-(1-methyl-1H-pyrazol-4-yl)-

  • AZD-6094
  • AZD6094
  • HMPL-504
  • HMPL504
  • Savolitinib
  • Savolitinib [INN]
  • UNII-2A2DA6857R
  • Volitinib
  • HM 5016504
1H-1,2,3-Triazolo[4,5-b]pyrazine, 1-[(1S)-1-imidazo[1,2-a]pyridin-6-ylethyl]-6-(1-methyl-1H-pyrazol-4-yl)-
1-[(1S)-1-(Imidazo[1,2-a]pyridin-6-yl)ethyl]-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2,3]triazolo[4,5-b]pyrazine [
2A2DA6857R
9935
Phase III, AstraZeneca
Hutchison China MediTech (Chi-Med), Cancer, kidney (renal cell carcinoma, papillary)

A c-Met kinase inhibitor with antineoplastic activity.

NCI: volitinib. An orally bioavailable inhibitor of the c-Met receptor tyrosine kinase with potential antineoplastic activity. Volitinib selectively binds to and inhibits the activation of c-Met in an ATP-competitive manner, and disrupts c-Met signal transduction pathways. This may result in cell growth inhibition in tumors that overexpress the c-Met protein. C-Met encodes the hepatocyte growth factor receptor tyrosine kinase and plays an important role in tumor cell proliferation, survival, invasion, and metastasis, and tumor angiogenesis; this protein is overexpressed or mutated in a variety of cancers.(NCI Thesaurus)

Savolitinib is an experimental small molecule inhibitor of c-Met. It is being investigated for the treatment of cancer by AstraZeneca.[1] It is in phase II clinical trials for adenocarcinomanon-small cell lung cancer, and renal cell carcinoma.[2]

Savolitinib is a first-in-class inhibitor of c-Met in phase III clinical development at at Hutchison China MediTech (Chi-Med) and AstraZeneca for the treatment of patients with MET-driven, unresectable and locally advanced or metastatic papillary renal cell carcinoma. Phase II trials are also under way for the oral treatment of locally advanced or metastatic pulmonary sarcomatoid carcinoma. AstraZeneca is conducting phase II clinical trials for the treatment of non-small cell lung cancer. Phase I/II trials are ongoing at Samsung Medical Center for the second-line treatment of advanced gastric adenocarcinoma patients with MET amplification.

In 2011, the drug was licensed to AstraZeneca by at Hutchison China MediTech (Chi-Med) for worldwide codevelopment and marketing rights for the treatment of cancer.

Image result for EPITINIB

SYNTHESIS

PAPER

Journal of Organic Chemistry (2018),

Abstract Image

A multidisciplinary approach covering synthetic, physical, and analytical chemistry, high-throughput experimentation and experimental design, process engineering, and solid-state chemistry is used to develop a large-scale (kilomole) Suzuki–Miyaura process. Working against clear criteria and targets, a full process investigation and optimization package is described highlighting how and why key decisions are made in the development of large-scale pharmaceutical processes.

Process Design and Optimization in the Pharmaceutical Industry: A Suzuki–Miyaura Procedure for the Synthesis of Savolitinib

AstraZeneca Pharmaceutical Technology and Development, Macclesfield SK10 2NA, United Kingdom
J. Org. Chem., Article ASAP
DOI: 10.1021/acs.joc.8b02351
Publication Date (Web): October 23, 2018
Copyright © 2018 American Chemical Society
This article is part of the Excellence in Industrial Organic Synthesis 2019 special issue.
Savolitinib (1) were added, and the resulting suspension was cooled to 0 °C over 8 h. After stirring for a further 4 h at 0 °C, the solid was collected via filtration, washed twice with cold s-BuOH (150 kg, 186 L), and dried in vacuo at 40 °C to give Savolitinib (1) as a white crystalline solid (105 kg, 304 mol, 76%): mp 205.9–208.8 °C; 1H NMR (400 MHz, DMSO-d6) δ 9.19 (s, 1H), 8.83 (s, 1H), 8.64 (s, 1H), 8.31 (s, 1H), 8.01 (s, 1H), 7.62–7.55 (m, 2H), 7.42 (dd, J = 1.7, 9.4 Hz, 1H), 6.45 (q, J= 7.1 Hz, 1H), 3.98 (s, 3H), 2.22 (d, J = 7.1 Hz, 3H); 13C {1H} NMR (DMSO-d6, 101 MHz) δ 147.9, 147.2, 143.9, 141.9, 138.5, 137.4, 133.7, 131.6, 125.4, 124.3, 123.9, 119.4, 117.1, 113.8, 55.5, 40.1, 39.1, 19.6 ppm; HRMS (ESI/Q-ToF) m/z [M + H – N2]+ calcd for C17H16N7 318.1462, found 318.1486.
NMR Summary S6 1H‐NMR
S7 13C‐NMR
S8 HSQC‐DEPT‐NMR
S9 COSY‐NMR
S10 HMBC‐13C/1H‐NMR
S11 NOESY‐NMR
S12 HRMS

PAPER

Journal of Medicinal Chemistry (2014), 57(18), 7577-7589

Abstract Image

HGF/c-Met signaling has been implicated in human cancers. Herein we describe the invention of a series of novel triazolopyrazine c-Met inhibitors. The structure–activity relationship of these compounds was investigated, leading to the identification of compound 28, which demonstrated favorable pharmacokinetic properties in mice and good antitumor activities in the human glioma xenograft model in athymic nude mice.

Discovery of (S)-1-(1-(Imidazo[1,2-a]pyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2,3]triazolo[4,5-b]pyrazine (Volitinib) as a Highly Potent and Selective Mesenchymal–Epithelial Transition Factor (c-Met) Inhibitor in Clinical Development for Treatment of Cancer

Hutchison MediPharma Limited, Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, China
J. Med. Chem.201457 (18), pp 7577–7589
DOI: 10.1021/jm500510f
Publication Date (Web): August 22, 2014
Copyright © 2014 American Chemical Society
*E-mail: weiguos@hmplglobal.com. Phone: (+86)-21-20673002.

Preparation of (S)-2-(4-(1-(1-(pyrazolo[1,5-a]pyridin-5-yl)ethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol (30) and (R)-2-(4-(1-(1-(pyrazolo[1,5-a]pyridin-5-yl)ethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol (31)

The racemic compound 44 (prepared by a procedure similar to that described for the synthesis of compound 2 using the corresponding 1-(pyrazolo[1,5-a]pyridin-5-yl)ethanamine instead of quinolin-6-ylmethanamine) (5 mg) was resolved by chiral HPLC to produce optically pure enantiomers 30 (1.0 mg) and 31 (1.9 mg). HPLC resolution conditions: Gilson system, Column: Dicel IA 20 × 250 mm; Mobile phase: n-Hexane/i-PrOH/DEA = 6/4/0.1; Flow rate: 8 mL/min; Detector: 254 nm). Compound 44: Purity: 95.8%, RT 9.28. MS (m/z): 376 (M + 1)+1H NMR (400 MHz, CD3OD) δ 9.07 (s, 1H), 8.49–8.47 (m, 2H), 8.26 (s, 1H), 7.93 (d, J = 2.4 Hz, 1H), 7.78 (s, 1H), 7.01 (dd, J = 7.2, 2.0 Hz, 1H), 6.62 (d, J = 2.4 Hz, 1H), 6.47 (q, J = 6.8 Hz, 1H), 4.33 (t, J = 4.2 Hz, 2H), 3.95 (t, J = 4.2 Hz, 2H), 2.25 (d, J = 6.8 Hz, 3H). Compound 30: MS (m/z): 376 (M + 1)+1H NMR (400 MHz, CD3OD) δ 9.08 (s, 1H), 8.50 (s,1 H), 8.50 (d, J = 7.2 Hz, 1H), 8.27 (s, 1H), 7.94 (d, J = 2.4 Hz, 1H), 7.79 (s, 1H), 7.01(dd, J = 7.2, 2.0 Hz, 1H), 6.62 (d, J = 1.6 Hz, 1H), 6.48 (q, J = 6.8 Hz, 1H), 4.33 (t, J = 4.2 Hz, 2H), 3.95(t, J = 4.2 Hz, 2H), 2.26 (d, J = 6.8 Hz, 3H). Purity: 98.1%, RT 18.44, ee: 96%. Compound 31: MS (m/z): 376 (M + 1)+1H NMR (400 MHz, CD3OD) δ 9.08 (s, 1H), 8.51 (s, 1H), 8.49 (d, J = 7.6 Hz, 1H), 8.27 (s, 1H), 7.94 (d, J = 2.4 Hz, 1H), 7.79 (s, 1H), 7.01 (dd, J = 7.2, 2.0 Hz,1H), 6.62 (d, J = 2.0 Hz, 1H), 6.48 (q, J = 6.8 Hz, 1H), 4.33 (t, J = 4.2 Hz, 2H), 3.95 (t, J = 4.2 Hz, 2H), 2.26 (d, J = 6.8 Hz, 3H). Purity: 90.7%, RT 24.22, ee: 81%. HPLC analysis conditions: Gilson system, Column: Chiralpak Ia 4.6 mm I.D. × 25 cm L; Mobile phase: n-Hexane/i-PrOH/DEA = 6/4/0.1; Flow rate: 1 mL/min; Detector: 254 nm.

PATENT

WO 2018175251

WO 2018055029

WO 2018024608

WO 2016087680

WO 2016081773

PATENT

JP 2016069348

PATENT

CN 105503906

The present invention provides a triazolopyrazine derivatives, the chemical name (S) -1- (l_ (imidazo [l, 2_a] pyrazin-6-yl) ethane-yl) -6-α _ -1H- pyrazol-4-yl-methyl) -1Η- [1,2,3] triazolo [4,5-b] pyrazine, of formula (I), the

Figure CN105503906AD00041

[0005] This compound is an inhibitor of the activity c -Me t, may be used for treatment or prevention of inhibition of c -Me t sensitive cancers. In the Chinese patent CN 102906092A (W02011 / 079804), discloses the synthesis and use triazolopyrazine derivatives. Prepared by repeating the above patent, the compound powder obtained by detecting an amorphous state. As those skilled in the art, although amorphous higher solubility and dissolution rate than polymorph in most cases, but it is unstable, hygroscopic, readily converted to stable crystalline form.Thus, without the presence of processing stability and poor storage stability shaped, and in the production process, the smaller the bulk density of the particles of amorphous, high surface free energy, are likely to cause aggregation, poor flowability, and a series of powerful elastic deformation of the formulation problem seriously affecting the clinical value of amorphous Drug triazolopyrazine derivatives.

PATENT

CN 105503905

PATENT

WO 2014174478

CN 102127096

PATENT

WO 2011079804

References

Savolitinib
Savolitinib.svg
Clinical data
Synonyms Volitinib
Identifiers
CAS Number
ChemSpider
KEGG
Chemical and physical data
Formula C17H15N9
Molar mass 345.37 g·mol−1
3D model (JSmol)

///////////////Savolitinib, Phase III, AZD-6094, AZD6094, HMPL-504, HMPL504, UNII-2A2DA6857R, Volitinib, HM 5016504

C[C@@H](c1ccc2nccn2c1)n3c4c(ncc(n4)c5cnn(c5)C)nn3

In some embodiments, the c-Met inhibitor is ARQ197 (Tivantinib). Tivantinib has the IUPAC name (3R,4R)-3-(5,6-Dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)-4-(1H-indol-3-yl)-2,5-pyrrolidinedione and the following chemical structure:

[0058] In some embodiments, the c-Met inhibitor is EMD1214063 (MSC2156119J; Tepotinib).

Tepotinib has the IUPAC name 3-(1-(3-(5-((1-methylpiperidin-4-yl)methoxy)pyrimidin-2-yl)benzyl)-1,6-dihydro-6-oxopyridazin-3-yl)benzonitrile and the following chemical structure:

[0059] In some embodiments, the c-Met inhibitor is GSK/1363089/XL880 (Foretinib). Foretinib has the IUPAC name N1’-[3-fluoro-4-[[6-methoxy-7-(3-morpholinopropoxy)-4-quinolyl]oxy]phenyl]-N1-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide and the following chemical structure:

[0060] In some embodiments, the c-Met inhibitor is XL184 (Cabozantinib). Cabozantinib has the IUPAC name N-(4-((6,7-Dimethoxyquinolin-4-yl)oxy)phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide and the following chemical structure:

[0061] In some embodiments, the c-Met inhibitor is HMPL-504/AZD6094/volitinib (Savolitinib). Volitinib has the IUPAC name (S)-1-(1-(imidazo[1,2-a]pyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2,3]triazolo[4,5-b]pyrazine and the following chemical structure:

[0062] In some embodiments, the c-Met inhibitor is MSC2156119J (EMD 1214063, Tepotinib).

Tepotinib has the IUPAC name Benzonitrile, 3-[1,6-dihydro-1-[[3-[5-[(1-methyl-4-piperidinyl)methoxy]-2-pyrimidinyl]phenyl]methyl]-6-oxo-3-pyridazinyl]- and the following chemical structure:

[0063] In some embodiments, the c-Met inhibitor is LY2801653 (Merestinib). Merestinib has the IUPAC name N-(3-fluoro-4-{[1-methyl-6-(1H-pyrazol-4-yl)-1H-indazol-5 yl]oxy}phenyl)-1-(4-fluorophenyl)-6-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide and the following chemical structure:

[0064] In some embodiments, the c-Met inhibitor is AMG 337. AMG 337 has the IUPAC name 7-methoxy-N-((6-(3-methylisothiazol-5-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl)-1,5-naphthyridin-4-amine and the following chemical structure:

[0065] In some embodiments, the c-Met inhibitor is INCB28060 (Capmatinib). Capmatinib has the IUPAC name 2-fluoro-N-methyl-4-[7-(quinolin-6-ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl]benzamide and the following chemical structure:

[0066] In some embodiments, the c-Met inhibitor is AMG 458. AMG 458 has the IUPAC name 1-(2-hydroxy-2-methylpropyl)-N-(5-((7-methoxyquinolin-4-yl)oxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide and the following chemical structure:

[0067] In some embodiments, the c-Met inhibitor is PF-04217903. PF-04217903 has the IUPAC name 2-(4-(1-(quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanol and the following chemical structure:

[0068] In some embodiments, the c-Met inhibitor is PF-02341066 (Crizotinib). Crizotinib has the IUPAC name (R)-3-(1-(2,6-dichloro-3-fluorophenyl)ethoxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine and the following chemical structure:

[0069] In some embodiments, the c-Met inhibitor is E7050 (Golvatinib). Golvatinib has the IUPAC name N-(2-fluoro-4-((2-(4-(4-methylpiperazin-1-yl)piperidine-1-carboxamido)pyridin-4-yl)oxy)phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide and the following chemical structure:

[0070] In some embodiments, the c-Met inhibitor is MK-2461. MK-2461 has the IUPAC name N-((2R)-1,4-Dioxan-2-ylmethyl)-N-methyl-N’-[3-(1-methyl-1H-pyrazol-4-yl)-5-oxo-5H-benzo[4,5]cyclohepta[1,2-b]pyridin-7-yl]sulfamide and the following chemical structure:

[0071] In some embodiments, the c-Met inhibitor is BMS-777607. BMS-777607 has the IUPAC name N-(4-((2-amino-3-chloropyridin-4-yl)oxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide and the following chemical structure:

[0072] In some embodiments, the c-Met inhibitor is JNJ-38877605. JNJ-38877605 has the IUPAC name 6-(difluoro(6-(1-methyl-1H-pyrazol-3-yl)-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)methyl)quinoline and the following chemical structure:

%d bloggers like this: