New Drug Approvals

Home » CLINICAL TRIALS

Category Archives: CLINICAL TRIALS

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,302,949 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,821 other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,821 other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Tianagliflozin IND filed by Tianjin Institute of Pharmaceutical research


str1

SCHEMBL9611990.png

str1

Tianagliflozin,

taigeliejing, 6-deoxydapagliflozin

Molecular Formula: C21H25ClO5
Molecular Weight: 392.8732 g/mol

IND Filing…Tianjin Institute of Pharmaceutical research

Tianjin Institute Of Pharmaceutical Research,

(3R,4S,5S,6R)-2-[4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl]-6-methyloxane-3,4,5-triol

1-[4-Chloro-3-(4-ethoxybenzyl)phenyl]-1,6-dideoxy-b-D-glucopyranose
D-​Glucitol, 1,​5-​anhydro-​1-​C-​[4-​chloro-​3-​[(4-​ethoxyphenyl)​methyl]​phenyl]​-​6-​deoxy-​, (1S)​-

1[4Chloro3(4ethoxybenzyl)phenyl]1,6dideoxyβdglucopyranose

6-deoxydapagliflozin
A SGLT-2 inhibitor potentially for the treatment of type 2 diabetes.

 

CAS N. 1461750-27-5

SCHEMBL9611990.png

str1

 https://static-content.springer.com/image/art%3A10.1007%2Fs00706-013-1053-0/MediaObjects/706_2013_1053_Fig1_HTML.gif

The structures of dapagliflozin and 6-deoxydapagliflozin (1)

,deletion of the 6-OH in the sugar moiety of dapagliflozin led to the discovery of a more potent SGLT2 inhibitor, 6-deoxydapagliflozin (1, ). In an in vitro assay, 1 was a more active SGLT2 inhibitor, with IC 50 = 0.67 nM against human SGLT2 (hSGLT2), as compared with 1.1 nM for dapagliflozin, leading to the identification of 1 as the most active SGLT2 inhibitor discovered so far in this field. Also in an in vivo assay, 1 also introduced more urinary glucose in a rat urinary glucose excretion test (UGE) and exhibited more potent blood glucose inhibitory activity in a rat oral glucose tolerance test (OGTT) than dapagliflozin.

Given the fact that 6-dexoydapagliflozin (1) is a very promising SGLT2 inhibitor that could be used to treat type 2 diabetes, led to preclinical trials
str1
 Tianjin Institute Of Pharmaceutical Research,天津药物研究院

SPECTRAL DATA of Tianagliflozin

1 as a white solid (3.65 g, 93 %). R f = 0.35 (EtOAc);

m.p.: 148–149 °C;

1H NMR (400 MHz, DMSO-d 6): δ = 7.35 (d, 1H, J = 8.4 Hz), 7.25 (s, 1H), 7.18 (d, 1H, J = 8.0 Hz), 7.08 (d, 2H, J = 8.4 Hz), 6.81 (d, 2H, J = 8.4 Hz), 4.95 (d, 1H, J = 5.2 Hz, OH), 4.90 (d, 1H, J = 4.4 Hz, OH), 4.79 (d, 1H, J = 5.6 Hz, OH), 3.92–4.01 (m, 5H), 3.24–3.29 (m, 1H), 3.18–3.22 (m, 1H), 3.09–3.15 (m, 1H), 2.89–2.95 (m, 1H), 1.29 (t, 3H, J = 7.0 Hz, CH2 CH 3 ), 1.15 (d, 3H, J = 6.0 Hz, CHCH 3 ) ppm;

13C NMR (100 MHz, DMSO-d 6): δ = 156.85, 139.65, 137.82, 131.83, 131.16, 130.58, 129.52, 128.65, 127.14, 114.26, 80.71, 77.98, 75.77, 75.51, 74.81, 62.84, 37.55, 18.19, 14.62 ppm;

IR (KBr): v¯¯¯ = 3,564 (w), 3,385 (s), 2,981 (s), 2,899 (s), 2,861 (s), 1,613 (m), 1,512 (s), 1,477 (m), 1,247 (s), 1,102 (s), 1,045 (s), 1,012 (s) cm−1;

HR–MS: calcd for C21H29ClNO5 ([M + NH4]+) 410.1729, found 410.1724.

PATENT

 CN 103864737

http://www.google.com/patents/CN103864737A?cl=en

PATENT

WO 2014094544

http://www.google.com/patents/WO2014094544A1?cl=en

Figure imgf000032_0001

Figure imgf000028_0006
Figure imgf000029_0001

-27-

Figure imgf000030_0001
Figure imgf000030_0002

1 D1 -6 Optionally, the step (7 ‘) is the step (7’) in place:

LS l- [4 – D (I- Dl- 6)

Figure imgf000041_0001

A.

Figure imgf000041_0002

(DMSO-d 6, 400 MHz), δ 7.35 (d, 1H, J = 8.0 Hz), 7.28 (d, 1H, J ‘. 2.0 Hz), 7.17 (dd, IH, / = 2.0 Hz and 8.4 Hz), 7.05 (d, 2H, J: 8.8 Hz), 6.79 (d, 2H, 8.8 Hz): 4.924,95 (m, 2H), 4,81 (d, IH, 6,0 Hz), 3.93- 3.99 (m, 5H), 3,85 (d, 1H, J = 10,4 Hz), 3,66 (dd, IH, 5,2 Hz and 11,6 Hz), 3.17-3,28 (m, 3H), 3.02-3.08 (m: IH), 1.28 (t, 3H, J = 7,0 Hz), 0,80 (s, 9H), -0.05 (s, 3H), -0.09 (s, 3H) .

PATENT

CN 104045614

[0066] The added 100mL dried over anhydrous methanol 0. 5g of sodium metal, nitrogen at room temperature with stirring, until the sodium metal disappeared. Followed by addition of 5. 2g (10mmol) of compound 6, stirring was continued at room temperature for 3 hours. To the reaction system was added 5g strong acid cation exchange resin, stirred at room temperature overnight, the reaction mixture until pH = 7. The resin was removed by suction, and the filtrate evaporated to dryness on a rotary evaporator, the residue was further dried on a vacuum pump to give the product I-D1-6, as a white foamy solid.

PATENT

 WO 2014139447

PATENT related

http://www.google.com/patents/WO2013044608A1?cl=en

http://link.springer.com/article/10.1007%2Fs40242-014-4043-9#/page-1

Med Chem. 2015;11(4):317-28.

Design of SGLT2 Inhibitors for the Treatment of Type 2 Diabetes: A History Driven by Biology to Chemistry.

Abstract

A brief history of the design of sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors is reviewed. The design of O-glucoside SGLT2 inhibitors by structural modification of phlorizin, a naturally occurring O-glucoside, in the early stage was a process mainly driven by biology with anticipation of improving SGLT2/SGLT1 selectivity and increasing metabolic stability. Discovery of dapagliflozin, a pioneering C-glucoside SGLT2 inhibitor developed by Bristol-Myers Squibb, represents an important milestone in this history. In the second stage, the design of C-glycoside SGLT2 inhibitors by modifications of the aglycone and glucose moiety of dapagliflozin, an original structural template for almost all C-glycoside SGLT2 inhibitors, was mainly driven by synthetic organic chemistry due to the challenge of designing dapagliflozin derivatives that are patentable, biologically active and synthetically accessible. Structure-activity relationships (SAR) of the SGLT2 inhibitors are also discussed.

http://www.ncbi.nlm.nih.gov/pubmed/25557661

Paper

Discovery of 6-Deoxydapagliflozin as a Highly Potent Sodium-dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes

http://www.ingentaconnect.com/content/ben/mc/2014/00000010/00000003/art00009?crawler=true

CLIP

str1

A facile synthesis of 6-deoxydapagliflozin

Keywords. Carbohydrates Drug research Hydrogenolysis Dapagliflozin SGLT2 inhibitor

https://static-content.springer.com/image/art%3A10.1007%2Fs00706-013-1053-0/MediaObjects/706_2013_1053_Sch3_HTML.gif

The synthetic route to the target compound 1 is shown in Scheme 3. The starting material methyl 2,3,4-tri-O-benzyl-6-deoxy-6-iodo-αd-glucopyranoside (3) was prepared from commercially available methyl αd-glucopyranoside (2) according to a known method [5, 6].

Iodide 3 was reductively deiodinated to give 4 in 91 % yield under hydrogenolytic conditions using 10 % Pd/C as catalyst in the presence of Et3N as base in THF/MeOH at room temperature.

when the iodide 3 was treated with Barton–McCombie reagent (n-Bu3SnH/AIBN) [7] in toluene at room temperature no reaction occurred; however, when the reaction was carried out at elevated temperatures, such as reflux, a complex mixture formed with only a trace amount (3 %, entry 1) of the desired product 4.

When the iodide 3 was treated with LiAlH4 in THF at 0 °C to room temperature, another complex mixture was produced with only a trace amount (2 %, entry 2) of 4.

When Pd(OH)2 was used as the hydrogenolysis catalyst instead of 10 % Pd/C, the desired 4 was indeed formed (14 %, entry 4), but most of the starting material was converted to a few more polar byproducts, which were believed to result from the cleavage of at least one of the benzyl groups.

pdf available

Monatshefte für Chemie – Chemical Monthly

December 2013, Volume 144, Issue 12, pp 1903-1910

http://download.springer.com/static/pdf/721/art%253A10.1007%252Fs00706-013-1053-0.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs00706-013-1053-0&token2=exp=1458808857~acl=%2Fstatic%2Fpdf%2F721%2Fart%25253A10.1007%25252Fs00706-013-1053-0.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs00706-013-1053-0*~hmac=bd1c3c2bdc3712f5540267c99f732b2f7588020a868aa23021792a2a2a58d65e

////////IND Filing, SGLT-2 inhibitor, type 2 diabetes, Tianagliflozin, taigeliejing, 6-deoxydapagliflozin, 1461750-27-5

Clc1c(cc(cc1)C2[C@@H]([C@H]([C@@H]([C@H](O2)C)O)O)O)Cc3ccc(cc3)OCC

CCOC1=CC=C(C=C1)CC2=C(C=CC(=C2)C3C(C(C(C(O3)C)O)O)O)Cl
c1(c(cc(cc1)C2OC(C(C(C2O)O)O)C)Cc3ccc(cc3)OCC)Cl

Lefucoxib (乐福昔布)


CID 16730197.pngC3

 

Lefucoxib (乐福昔布)

5-(3,4-dimethyl-phenyl)-1-methanesulfonyl-3-trifluoromethol-pyrazole

1 [4- (methylsulfonyl) phenyl] -3-trifluoromethyl-5- (3,4-dimethylphenyl) – pyrazole

CAS 849048-84-6

Molecular Formula: C19H17F3N2O2S
Molecular Weight: 394.41069 g/mol

IND FILED

Prostaglandin G/H Synthase 2 (PTGS2; COX-2) Inhibitors

A COX-2 inhibitor potentially for the treatment of rheumatoid arthritis.

cyclooxygenase-2 (COX-2) inhibitor

National Center of Biomedical Analysis

Example 1

1 [4- (methylsulfonyl) phenyl] -3-trifluoromethyl-5- (3,4-dimethylphenyl) – pyrazole (I1)

1- (3,4- two toluene-yl) -4,4,4-trifluoro-methyl – D-1,3-dione (IV1) of sodium metal was weighed 2.3g (0.1mol) was added 50ml of anhydrous toluene to prepare a sodium sand. After cooling, ethanol was added dropwise 12ml, and then heated at 60 ℃, complete reaction of sodium metal. After cooling to room temperature, was added 3,4-dimethylphenyl ethanone 23.8g (0.1mol) and trifluoroacetic ethyl acetate 20ml (0.2mol), reacted at 100 ℃ 5 hours. Toluene was distilled off under reduced pressure, a 10% aqueous hydrochloric acid was added, the pH was adjusted to 2-3, extracted with ethyl acetate, washed with water, dried over anhydrous MgSO4, ethyl acetate was distilled off under reduced pressure. Then under reduced pressure, distillation, collecting fractions 105-107 ℃ / 0.7mmHg, was 14.6g, 60% yield.

1- [4- (methylsulfonyl) phenyl] -3-trifluoromethyl-5- (3,4-dimethylphenyl) – pyrazole (I1) take the above-prepared substituted (IV1) 2.38g (0.01mol ), 15ml of ethanol, then added p-methanesulfonyl phenyl hydrazine salt alkoxide 2.3g (0.01ml). Was refluxed for 15 hours. Place the refrigerator overnight, the crystals were collected by filtration, recrystallized from ethanol, mp 129-31 ℃, to give 3.1 g.

Elemental analysis: C19H17F3N2O2S Calculated: C, 57.86; H, 4.34; N, 7.10 Found: C, 57.97; H, 4.29; N, 7.20MS (m / z): 395 (M + 1)

C4

 

CN101497585B Jan 31, 2008 Jan 12, 2011 中国科学院理化技术研究所 Method for photocatalytic synthesis of 1,3,5-trisubstituted-2-pyrazole derivative

How To Apply QbD Principles In Clinical Trials


 

 

 

 

By Frederic L. “Rick” Sax, M.D., global head for the Center for Integrated Drug Development, Quintiles.

The biopharmaceutical manufacturing industry has used quality by design (QbD) principles for decades. The essence of QbD is designing with the end in mind (in this case, the efficient manufacture of a high-quality drug product). This approach emphasizes that the operative word in QbD is not quality, but design.

read all at

http://www.pharmaceuticalonline.com/doc/how-to-apply-qbd-principles-in-clinical-trials-0001

 

\

 

FDA Guidance for Industry: Electronic Source Data in Clinical Investigations


 

FDA Guidance for Industry: Electronic Source Data in Clinical Investigations
The FDA published its new Guidance for Industry (GfI) – “Electronic Source Data in Clinical Investigations” in September 2013. The Guidance defines the expectations of the FDA concerning electronic source data generated in the context of clinical trials. Find out more about this Guidance.

 

http://www.gmp-compliance.org/enews_4288_FDA%20Guidance%20for%20Industry%3A%20Electronic%20Source%20Data%20in%20Clinical%20Investigations_8534,8457,8366,8308,Z-COVM_n.html

 

FDA Guidance for Industry: Electronic Source Data in Clinical Investigations

After more than 5 years and two draft versions, the final version of the Guidance for Industry (GfI) – “Electronic Source Data in Clinical Investigations” was published in September 2013. This new FDA Guidance defines the FDA’s expectations for sponsors, CROs, investigators and other persons involved in the capture, review and retention of electronic source data generated in the context of FDA-regulated clinical trials.

In an effort to encourage the modernization and increased efficiency of processes in clinical trials, the FDA clearly supports the capture of electronic source data and emphasizes the agency’s intention to support activities aimed at ensuring the reliability, quality, integrity and traceability of this source data, from its electronic source to the electronic submission of the data in the context of an authorization procedure.

The Guidance addresses aspects as data capture, data review and record retention. When the computerized systems used in clinical trials are described, the FDA recommends that the description not only focus on the intended use of the system, but also on data protection measures and the flow of data across system components and interfaces. In practice, the pharmaceutical industry needs to meet significant requirements regarding organisation, planning, specification and verification of computerized systems in the field of clinical trials. The FDA also mentions in the Guidance that it does not intend to apply 21 CFR Part 11 to electronic health records (EHR).

Author:
Oliver Herrmann
Q-Infiity

Source:
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM328691.pdf

Webinar:
https://collaboration.fda.gov/p89r92dh8wc

 

ISPE GAMP R and D and Clinical Systems SIG publish first Concept Paper


ISPE GAMP R&D and Clinical Systems SIG publish first Concept Paper
When changing from paper-based to computerized systems and processes in the field of Good Clinical Practice (GCP), validating these systems is of critical importance, as inspectors are increasingly focussing on this facet of clinical trials. The ISPE GAMP R&D and Clinical Systems SIG has published a Concept Paper on the application of GAMP 5 validation principles to the GCP field.  Read more here about the Concept Paper

http://www.gmp-compliance.org/enews_4287_ISPE%20GAMP%20R%26D%20and%20Clinical%20Systems%20SIG%20publish%20first%20Concept%20Paper_8457,8366,8308,Z-COVM_n.html

 

ISPE GAMP R&D and Clinical Systems SIG publish first Concept Paper

As the pharmaceutical industry increasingly transitions from paper-based to computerized processes, the validation of these systems is also becoming a focus of inspections in the field of clinical trials. This has resulted in an increased need for guidances and guidelines concerning GCP-regulated systems, especially since these systems play a crucial role in the life cycle of medicinal products.

Currently, there are only a few guidelines in existence which explicitly address validation activities in the field of GCP. At the same time, there is a paucity of information regarding the practical execution of regulatory requirements. Because the system landscape found in the GCP field is characterized by heterogeneous systems with multiple interfaces and system components of differing complexity and configurability, it is  necessary to find a validation approach that is flexible and scaleable.

GCP experts from the ISPE GAMP R&D and Clinical Systems SIG, led by Q-finity’s CEO, have published a Concept Paper with the intention of harmonizing the GAMP 5 validation principles with GCP requirements, using the example of an Electronic Data Capture (EDC) system. The Concept Paper addresses the particular challenges to be dealt with when validating GCP-regulated systems. In the GCP field, there is no tangible product that results from the processes in place. Instead, the “product” is data, which is collected, processed and retained in different system components. Since this data forms the basis for the final analysis of the clinical trial, and with data integrity and patient safety at stake, the systems through which the data flow must be reliable.

By demonstrating the validation approach with a practical example, the application of the GAMP 5 principles to the GCP field are presented in a very comprehensible and concrete fashion.

Author: Oliver Hermann; Q-finity
More information you will find here:
http://www.q-finity.de/misc/GAMP%20GCP%20Concept-paper.pdf

 

 

 

Monoclonal antibody (mAbs) 2013


2013——-29 monoclonal antibody (mAbs) drugs are in Phase III clinical development.

While around 350 therapeutic mAbs are currently in clinical development globally, only 28 had entered active Phase 2/3 or Phase 3 studies as of January 2013,  Additionally one mAb mixture was under evaluation in Phase III.

Historically, mAbs that target antigens relevant to cancer have comprised approximately 50% of the mAb clinical pipeline,

but in 2013 the picture has changed: 66% or 19 of the antibodies to watch in 2013 are for non-cancer indications.

The non-cancer mAbs include alirocumab (Regeneron; Sanofi, hypercholesterinemia);

AMG 145 (Amgen, hypercholesterinemia),

epratuzumab (UCB, SLE),

gantenerumab (Roche; Alzheimer’s disease),

gevokizumab (Xoma/Servier, Non-infectious uveitis),

itolizumab (Biocon, Plaque psoriasis), ixekizumab (Eli Lilly and Co., psoriasis),

lebrikizumab (Roche/Genentech, rheumatoid arthritis),

mepolizumab (GSK, Asthma, COPD etc.),

ocrelizumab (Roche/Genentech, multiple sclerosis),

reslizumab (Teva, Eosinophilic asthma), romosozumab (Amgen, Postmenopausal osteoporosis),

sarilumab (Regeneron; Sanofi, rheumatoid arthritis),

secukinumab (Novartis, rheuma, psoriasis),

sirukumab (Janssen R&D LLC, rheumatoid arthritis),

solanezumab (Eli Lilly and Co., Alzheimer’s disease),

tabalumab (Eli Lilly and Co., rheuma, SLE)

and

vedolizumab (Millenium, Ulcerative colitis; Crohn disease).

The mixture of actoxumab and bezlotoxumab (MK-3415A, Merck & Co.) is being evaluated in two Phase 3 studies as a treatment for Clostridium difficile infection.

The ten cancer mAbs are:

elotuzumab (Bristol-Myers Squibb, Abbott, multiple myeloma),

farletuzumab (Morphotek, ovarian cancer),

inotuzumab ozogamicin (Pfizer; UCB, ALL, NHL),

naptumomab estafenatox (Active Biotech, renal cell carcinoma),

necitumumab (ImClone LLC, NSCL),

nivolumab (Bristol-Myers Squibb, NSCL, renal cell carcinoma),

obinutuzumab (Roche/Genetech, Diffuse large B cell lymphoma, CLL, NHL),

onartuzumab (Roche/Genetech, NSCL cancer; gastric cancer),

racotumomab (CIMAB; Laboratorio Elea S.A.C.I.F. y A, NSCL),

and ramucirumab (ImClone LLC, Gastric; liver, breast, colorectal, NSCL cancers).

Sihuan Pharma’s clinical study application for oncology drug Pirotinib accepted by CFDA


The China Food and Drug Administration (CFDA) has accepted Sihuan Pharmaceutical’s application for clinical trial approval for its Pirotinib, a Category 1.1 innovative oncology drug developed by the company’s drug R&D team.

By developing Pirotinib, Sihuan Pharma has demonstrated its capability for the oncology products market. The company holds the largest cardio-cerebral vascular (CCV) drug franchise in China’s prescription market.

The new drug is a second generation (pan-HER) inhibitor intended to treat patients with lung and breast cancer.http://www.pharmaceutical-technology.com/news/newssihuan-pharmas-clinical-study-application-oncology-drug-pirotinib-accepted-cfda?WT.mc_id=DN_News

Access 4,000+ profiles of new drugs in development!


 

 

Sign up for a 5-day trial and learn why the Drugs in Clinical Trials Database is a cost-effective way to find detailed information on new drug therapies in hundreds of disease conditions worldwide, monitor drug performance, track competitors and find study opportunities.

http://www.centerwatch.com/drug-information/demo/?utm_source=DDD&utm_medium=web&utm_campaign=DDBSept2013&pos=2&adtype=text_ad&type=image&adcategory=paid

India approved 26 drugs without clinical trials


New Delhi: Officials in the Indian health ministry have admitted that about 26 new drug molecules were given approval since 2010 without conducting any proper clinical trials on local population to test their safety and efficacy. Despite strict instructions by the parliamentary standing committee on health, so many new drugs have continued to make their way into the market.

19 August 2013 Officials in the Indian health ministry has accepted that about 26 new drugs were permitted for sale in the country without holding any clinical trials on Indian patients to test their safety and efficacy –

Read more at: http://www.biospectrumasia.com/biospectrum/news/193708/india-approved-26-drugs-clinical-trials#.UhHPwaI3CSo

 

 

 

DR A.M. CRASTO

Pharmathene Will Proceed With Anthrax Vaccine Test


May 31, 2013 — PharmAthene Inc. said Thursday that the Food and Drug Administration will allow it to proceed with new clinical trials of its experimental anthrax vaccine SparVax.

http://www.pharmalive.com/pharmathene-will-proceed-with-anthrax-vaccine-test

%d bloggers like this: