New Drug Approvals

Home » IND Filed

Category Archives: IND Filed

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,296,073 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,821 other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,821 other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

SM 934, β-Aminoarteether maleate


str1

STR1

SM 934

  • Ethanamine, 2-[(decahydro-3,6,9-trimethyl-3,12-epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin-10-yl)oxy]-, [3R-(3α,5aβ,6β,8aβ,9α,10α,12β,12aR*)]-, (Z)-2-butenedioate (1:1)
  • 3,12-Epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin, ethanamine deriv.
  • SM 934
  • β-Aminoarteether maleate
CAS 133162-25-1
MF C17 H29 N O5 . C4 H4 O4
Ethanamine, 2-[(decahydro-3,6,9-trimethyl-3,12-epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin-10-yl)oxy]-, (3R,5aS,6R,8aS,9R,10S,11aR)-, (2Z)-2-butenedioate (1:1)

TLR7/9 signal transduction modulator

IND FILED

2.5 and 5 mg/kg, ig (MRL/lpr mice);
10 mg·kg−1·d−1, ig (NZB/W F1 mice)

Autoimmune diseases; SLE

SM934, an artemisinin derivative, possesses potent antiproliferative and antiinflammatory properties.

str1

In the present study, we investigated the immunosuppressive effects and underlying mechanisms of beta-aminoarteether maleate (SM934), a derivative of artemisinin, against T cell activation in vitro and in vivo. In vitro, SM934 significantly inhibited the proliferation of splenocytes induced by concanavalin A (Con A), lipopolysaccharide (LPS), mixed lymphocyte reaction (MLR), and anti-CD3 plus anti-CD28 (anti-CD3/28). SM934 significantly inhibited interferon (IFN)-gamma production and CD4(+) T cell division stimulated by anti-CD3/28. SM934 also promoted apoptosis of CD69(+) population in CD4(+) T cells stimulated by anti-CD3/28. Furthermore, SM934 inhibited interleukin (IL)-2 mediated proliferation and survival through blocking Akt phosphorylation in activated T cells. In ovalbumin (OVA)-immunized mice, oral administration of SM934 suppressed OVA-specific T cell proliferation and IFN-gamma production. SM934 treatment also significantly inhibited the sheep red blood cell (SRBC)-induced delayed type hypersensitivity (DTH) reactions in mice. Taken together, SM934 showed potent immunosuppressive activities in vitro and in vivo. Our results demonstrated that SM934 might be a potential therapeutic agent for immune-related diseases.

PATENT

http://www.google.co.in/patents/EP0362730A1?cl=en

Figure imgb0005

Figure imgb0006

PAPER

Volume 9, Issues 13–14, December 2009, Pages 1509–1517

Inflammatory Mediators Long Term after Sulfur Mustard Exposure (Sardasht-Iran Cohort Study)

SM934, a water-soluble derivative of arteminisin, exerts immunosuppressive functions in vitro and in vivo

  • a State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
  • b Department of Synthetic Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
  • c Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People’s Republic of China

  • Hou LF, He SJ, Wang JX, Yang Y, Zhu FH, Zhou Y, et al. SM934, a water-soluble derivative of arteminisin, exerts immunosuppressive functions in vitro and in vivo. Int Immunopharmacol 2009; 9: 1509–17. | Article |
  • Hou LF, He SJ, Li X, Yang Y, He PL, Zhou Y, et al. Oral administration of artemisinin analog SM934 ameliorates lupus syndromes in MRL/lpr mice by inhibiting Th1 and Th17 cell responses. Arthritis Rheum 2011; 63: 2445–55. | Article
  • Hou LF, He SJ, Li X, Wan CP, Yang Y, Zhang XH, et al. SM934 treated lupus-prone NZB x NZW F1 mice by enhancing macrophage interleukin-10 production and suppressing pathogenic T cell development. PLoS One 2012; 7: e 32424.
  • Wu Y, He S, Bai B, Zhang L, Xue L, Lin Z, et al. Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation. Cell Mol Immunol 2015 Mar 16. doi: 10.1038/cmi.2015.13. [Epub ahead of print].

/////////TLR7/9 signal transduction modulator, SM 934, IND FILED, 133162-25-1, β-Aminoarteether maleate

[C@@H]3(OC1O[C@@]4(CCC2C1(C(CC[C@H]2C)[C@H]3C)OO4)C)OCCN.C(=C/C(=O)O)/C(=O)O

Tianagliflozin IND filed by Tianjin Institute of Pharmaceutical research


str1

SCHEMBL9611990.png

str1

Tianagliflozin,

taigeliejing, 6-deoxydapagliflozin

Molecular Formula: C21H25ClO5
Molecular Weight: 392.8732 g/mol

IND Filing…Tianjin Institute of Pharmaceutical research

Tianjin Institute Of Pharmaceutical Research,

(3R,4S,5S,6R)-2-[4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl]-6-methyloxane-3,4,5-triol

1-[4-Chloro-3-(4-ethoxybenzyl)phenyl]-1,6-dideoxy-b-D-glucopyranose
D-​Glucitol, 1,​5-​anhydro-​1-​C-​[4-​chloro-​3-​[(4-​ethoxyphenyl)​methyl]​phenyl]​-​6-​deoxy-​, (1S)​-

1[4Chloro3(4ethoxybenzyl)phenyl]1,6dideoxyβdglucopyranose

6-deoxydapagliflozin
A SGLT-2 inhibitor potentially for the treatment of type 2 diabetes.

 

CAS N. 1461750-27-5

SCHEMBL9611990.png

str1

 https://static-content.springer.com/image/art%3A10.1007%2Fs00706-013-1053-0/MediaObjects/706_2013_1053_Fig1_HTML.gif

The structures of dapagliflozin and 6-deoxydapagliflozin (1)

,deletion of the 6-OH in the sugar moiety of dapagliflozin led to the discovery of a more potent SGLT2 inhibitor, 6-deoxydapagliflozin (1, ). In an in vitro assay, 1 was a more active SGLT2 inhibitor, with IC 50 = 0.67 nM against human SGLT2 (hSGLT2), as compared with 1.1 nM for dapagliflozin, leading to the identification of 1 as the most active SGLT2 inhibitor discovered so far in this field. Also in an in vivo assay, 1 also introduced more urinary glucose in a rat urinary glucose excretion test (UGE) and exhibited more potent blood glucose inhibitory activity in a rat oral glucose tolerance test (OGTT) than dapagliflozin.

Given the fact that 6-dexoydapagliflozin (1) is a very promising SGLT2 inhibitor that could be used to treat type 2 diabetes, led to preclinical trials
str1
 Tianjin Institute Of Pharmaceutical Research,天津药物研究院

SPECTRAL DATA of Tianagliflozin

1 as a white solid (3.65 g, 93 %). R f = 0.35 (EtOAc);

m.p.: 148–149 °C;

1H NMR (400 MHz, DMSO-d 6): δ = 7.35 (d, 1H, J = 8.4 Hz), 7.25 (s, 1H), 7.18 (d, 1H, J = 8.0 Hz), 7.08 (d, 2H, J = 8.4 Hz), 6.81 (d, 2H, J = 8.4 Hz), 4.95 (d, 1H, J = 5.2 Hz, OH), 4.90 (d, 1H, J = 4.4 Hz, OH), 4.79 (d, 1H, J = 5.6 Hz, OH), 3.92–4.01 (m, 5H), 3.24–3.29 (m, 1H), 3.18–3.22 (m, 1H), 3.09–3.15 (m, 1H), 2.89–2.95 (m, 1H), 1.29 (t, 3H, J = 7.0 Hz, CH2 CH 3 ), 1.15 (d, 3H, J = 6.0 Hz, CHCH 3 ) ppm;

13C NMR (100 MHz, DMSO-d 6): δ = 156.85, 139.65, 137.82, 131.83, 131.16, 130.58, 129.52, 128.65, 127.14, 114.26, 80.71, 77.98, 75.77, 75.51, 74.81, 62.84, 37.55, 18.19, 14.62 ppm;

IR (KBr): v¯¯¯ = 3,564 (w), 3,385 (s), 2,981 (s), 2,899 (s), 2,861 (s), 1,613 (m), 1,512 (s), 1,477 (m), 1,247 (s), 1,102 (s), 1,045 (s), 1,012 (s) cm−1;

HR–MS: calcd for C21H29ClNO5 ([M + NH4]+) 410.1729, found 410.1724.

PATENT

 CN 103864737

http://www.google.com/patents/CN103864737A?cl=en

PATENT

WO 2014094544

http://www.google.com/patents/WO2014094544A1?cl=en

Figure imgf000032_0001

Figure imgf000028_0006
Figure imgf000029_0001

-27-

Figure imgf000030_0001
Figure imgf000030_0002

1 D1 -6 Optionally, the step (7 ‘) is the step (7’) in place:

LS l- [4 – D (I- Dl- 6)

Figure imgf000041_0001

A.

Figure imgf000041_0002

(DMSO-d 6, 400 MHz), δ 7.35 (d, 1H, J = 8.0 Hz), 7.28 (d, 1H, J ‘. 2.0 Hz), 7.17 (dd, IH, / = 2.0 Hz and 8.4 Hz), 7.05 (d, 2H, J: 8.8 Hz), 6.79 (d, 2H, 8.8 Hz): 4.924,95 (m, 2H), 4,81 (d, IH, 6,0 Hz), 3.93- 3.99 (m, 5H), 3,85 (d, 1H, J = 10,4 Hz), 3,66 (dd, IH, 5,2 Hz and 11,6 Hz), 3.17-3,28 (m, 3H), 3.02-3.08 (m: IH), 1.28 (t, 3H, J = 7,0 Hz), 0,80 (s, 9H), -0.05 (s, 3H), -0.09 (s, 3H) .

PATENT

CN 104045614

[0066] The added 100mL dried over anhydrous methanol 0. 5g of sodium metal, nitrogen at room temperature with stirring, until the sodium metal disappeared. Followed by addition of 5. 2g (10mmol) of compound 6, stirring was continued at room temperature for 3 hours. To the reaction system was added 5g strong acid cation exchange resin, stirred at room temperature overnight, the reaction mixture until pH = 7. The resin was removed by suction, and the filtrate evaporated to dryness on a rotary evaporator, the residue was further dried on a vacuum pump to give the product I-D1-6, as a white foamy solid.

PATENT

 WO 2014139447

PATENT related

http://www.google.com/patents/WO2013044608A1?cl=en

http://link.springer.com/article/10.1007%2Fs40242-014-4043-9#/page-1

Med Chem. 2015;11(4):317-28.

Design of SGLT2 Inhibitors for the Treatment of Type 2 Diabetes: A History Driven by Biology to Chemistry.

Abstract

A brief history of the design of sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors is reviewed. The design of O-glucoside SGLT2 inhibitors by structural modification of phlorizin, a naturally occurring O-glucoside, in the early stage was a process mainly driven by biology with anticipation of improving SGLT2/SGLT1 selectivity and increasing metabolic stability. Discovery of dapagliflozin, a pioneering C-glucoside SGLT2 inhibitor developed by Bristol-Myers Squibb, represents an important milestone in this history. In the second stage, the design of C-glycoside SGLT2 inhibitors by modifications of the aglycone and glucose moiety of dapagliflozin, an original structural template for almost all C-glycoside SGLT2 inhibitors, was mainly driven by synthetic organic chemistry due to the challenge of designing dapagliflozin derivatives that are patentable, biologically active and synthetically accessible. Structure-activity relationships (SAR) of the SGLT2 inhibitors are also discussed.

http://www.ncbi.nlm.nih.gov/pubmed/25557661

Paper

Discovery of 6-Deoxydapagliflozin as a Highly Potent Sodium-dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes

http://www.ingentaconnect.com/content/ben/mc/2014/00000010/00000003/art00009?crawler=true

CLIP

str1

A facile synthesis of 6-deoxydapagliflozin

Keywords. Carbohydrates Drug research Hydrogenolysis Dapagliflozin SGLT2 inhibitor

https://static-content.springer.com/image/art%3A10.1007%2Fs00706-013-1053-0/MediaObjects/706_2013_1053_Sch3_HTML.gif

The synthetic route to the target compound 1 is shown in Scheme 3. The starting material methyl 2,3,4-tri-O-benzyl-6-deoxy-6-iodo-αd-glucopyranoside (3) was prepared from commercially available methyl αd-glucopyranoside (2) according to a known method [5, 6].

Iodide 3 was reductively deiodinated to give 4 in 91 % yield under hydrogenolytic conditions using 10 % Pd/C as catalyst in the presence of Et3N as base in THF/MeOH at room temperature.

when the iodide 3 was treated with Barton–McCombie reagent (n-Bu3SnH/AIBN) [7] in toluene at room temperature no reaction occurred; however, when the reaction was carried out at elevated temperatures, such as reflux, a complex mixture formed with only a trace amount (3 %, entry 1) of the desired product 4.

When the iodide 3 was treated with LiAlH4 in THF at 0 °C to room temperature, another complex mixture was produced with only a trace amount (2 %, entry 2) of 4.

When Pd(OH)2 was used as the hydrogenolysis catalyst instead of 10 % Pd/C, the desired 4 was indeed formed (14 %, entry 4), but most of the starting material was converted to a few more polar byproducts, which were believed to result from the cleavage of at least one of the benzyl groups.

pdf available

Monatshefte für Chemie – Chemical Monthly

December 2013, Volume 144, Issue 12, pp 1903-1910

http://download.springer.com/static/pdf/721/art%253A10.1007%252Fs00706-013-1053-0.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs00706-013-1053-0&token2=exp=1458808857~acl=%2Fstatic%2Fpdf%2F721%2Fart%25253A10.1007%25252Fs00706-013-1053-0.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1007%252Fs00706-013-1053-0*~hmac=bd1c3c2bdc3712f5540267c99f732b2f7588020a868aa23021792a2a2a58d65e

////////IND Filing, SGLT-2 inhibitor, type 2 diabetes, Tianagliflozin, taigeliejing, 6-deoxydapagliflozin, 1461750-27-5

Clc1c(cc(cc1)C2[C@@H]([C@H]([C@@H]([C@H](O2)C)O)O)O)Cc3ccc(cc3)OCC

CCOC1=CC=C(C=C1)CC2=C(C=CC(=C2)C3C(C(C(C(O3)C)O)O)O)Cl
c1(c(cc(cc1)C2OC(C(C(C2O)O)O)C)Cc3ccc(cc3)OCC)Cl
%d bloggers like this: