New Drug Approvals

Home » EU 2017

Category Archives: EU 2017

Advertisements
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 2,026,451 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,188 other followers

Follow New Drug Approvals on WordPress.com

Categories

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,188 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 year tenure till date Dec 2017, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 50 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 19 lakh plus views on New Drug Approvals Blog in 216 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

Verified Services

View Full Profile →

Categories

Flag Counter
Advertisements

Nusinersen sodium, ヌシネルセンナトリウム


ヌシネルセンナトリウム
Nusinersen Sodium

C234H323N61Na17O128P17S17 : 7500.89
[1258984-36-9 , ヌシネルセン]

Nusinersen sodium

C234H323N61O128P17S17.17Na, 7500.8854

UNII 4CHB7QQU1Q

ISIS 396443

Nusinersen sodium was approved by the US Food and Drug Administration (FDA) on Dec 23, 2016, and approved by the European Medicines Agency’s (EMA) on May 30, 2017, and approved by Pharmaceuticals and Medical Devices Agency of Japan (PMDA) on July 3, 2017.

JAPAN APPROVAL

2017/7/3 Nusinersen sodium Spinraza Biogen Japan

An antisense oligonucleotide that induces survival motor neuron (SMN) protein expression, it was approved by the U.S. FDA in December, 2016 as Spinraza for the treatment of children and adults with spinal muscular atrophy (SMA). It is adminstrated as direct intrathecal injection.Nusinersen sodium colored.svg

FREE FORM CAS: 1258984-36-9

Image result for nusinersen

CAS1258984-36-9

MFC234H340N61O128P17S17

ISIS-396443, ISIS-SMNRx, IONIS-SMNRx

RNA, (2′-0-(2-methoxyethyi))(p-thio)(m5u-c-a-c-m5u-m5u-m5u-c-a-m5ua- a-m5 u-g-c-m5u-g-g)

RNA, (2′-0-(2-METHOXYETHYI))(P-THIO)(M5U-C-A-C-M5U-M5U-M5U-C-A-M5UA- A-M5 U-G-C-M5U-G-G)

All-P-ambo-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiocytidylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioadenylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiocytidylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiocytidylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioadenylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioadenylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioadenylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioguanylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiocytidylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioguanylyl-(3’¨5′)-2′-O-(2-methoxyethyl)guanosine

ISIS-SMNRx is a drug that is designed to modulate the splicing of the SMN2 gene to significantly increase the production of functional SMN protein. The US regulatory agency has granted Orphan Drug Designation with Fast Track Status to nusinersen for the treatment of patients with SMA. The European regulatory agency has granted Orphan Drug Designation to nusinersen for the treatment of patients with SMA.

Nusinersen,[1] marketed as Spinraza,[3] is a medication used in treating spinal muscular atrophy (SMA),[4] a rare neuromuscular disorder. In December 2016, it became the first approved drug used in treating this disorder. Nusinersen has orphan drugdesignation in the United States and the European Union.[5]

Image result for nusinersen

FDA

FDA approves first drug for spinal muscular atrophy

New therapy addresses unmet medical need for rare disease

The U.S. Food and Drug Administration today approved Spinraza (nusinersen), the first drug approved to treat children and adults with spinal muscular atrophy (SMA), a rare and often fatal genetic disease affecting muscle strength and movement. Spinraza is an injection administered into the fluid surrounding the spinal cord.

Read more.

For Immediate Release

December 23, 2016

The U.S. Food and Drug Administration today approved Spinraza (nusinersen), the first drug approved to treat children and adults with spinal muscular atrophy (SMA), a rare and often fatal genetic disease affecting muscle strength and movement. Spinraza is an injection administered into the fluid surrounding the spinal cord.

“There has been a long-standing need for a treatment for spinal muscular atrophy, the most common genetic cause of death in infants, and a disease that can affect people at any stage of life,” said Billy Dunn, M.D., director of the Division of Neurology Products in the FDA’s Center for Drug Evaluation and Research. “As shown by our suggestion to the sponsor to analyze the results of the study earlier than planned, the FDA is committed to assisting with the development and approval of safe and effective drugs for rare diseases and we worked hard to review this application quickly; we could not be more pleased to have the first approved treatment for this debilitating disease.”

SMA is a hereditary disease that causes weakness and muscle wasting because of the loss of lower motor neurons controlling movement. There is wide variability in age of onset, symptoms and rate of progression. Spinraza is approved for use across the range of spinal muscular atrophy patients.

The FDA worked closely with the sponsor during development to help design and implement the analysis upon which this approval was based. The efficacy of Spinraza was demonstrated in a clinical trial in 121 patients with infantile-onset SMA who were diagnosed before 6 months of age and who were less than 7 months old at the time of their first dose. Patients were randomized to receive an injection of Spinraza, into the fluid surrounding the spinal cord, or undergo a mock procedure without drug injection (a skin prick). Twice the number of patients received Spinraza compared to those who underwent the mock procedure. The trial assessed the percentage of patients with improvement in motor milestones, such as head control, sitting, ability to kick in supine position, rolling, crawling, standing and walking.

The FDA asked the sponsor to conduct an interim analysis as a way to evaluate the study results as early as possible; 82 of 121 patients were eligible for this analysis. Forty percent of patients treated with Spinraza achieved improvement in motor milestones as defined in the study, whereas none of the control patients did.

Additional open-label uncontrolled clinical studies were conducted in symptomatic patients who ranged in age from 30 days to 15 years at the time of the first dose, and in presymptomatic patients who ranged in age from 8 days to 42 days at the time of first dose. These studies lacked control groups and therefore were more difficult to interpret than the controlled study, but the findings appeared generally supportive of the clinical efficacy demonstrated in the controlled clinical trial in infantile-onset patients.

The most common side effects found in participants in the clinical trials on Spinraza were upper respiratory infection, lower respiratory infection and constipation. Warnings and precautions include low blood platelet count and toxicity to the kidneys (renal toxicity). Toxicity in the nervous system (neurotoxicity) was observed in animal studies.

The FDA granted this application fast track designation and priority review. The drug also received orphan drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The sponsor is receiving a rare pediatric disease priority review voucher under a program intended to encourage development of new drugs and biologics for the prevention and treatment of rare pediatric diseases. A voucher can be redeemed by a sponsor at a later date to receive priority review of a subsequent marketing application for a different product. This is the eighth rare pediatric disease priority review voucher issued by the FDA since the program began.

Spinraza is marketed by Biogen of Cambridge, Massachusetts and was developed by Ionis Pharmaceuticals of Carlsbad, California.

Medical use

The drug is used to treat spinal muscular atrophy associated with a mutation in the SMN1 gene. It is administered directly to the central nervous system (CNS) using intrathecal injection.[2]

In clinical trials, the drug halted the disease progression. In around 60% of infants affected by type 1 spinal muscular atrophy, the drug also significantly improved motor function.[2]

Image result for Nusinersen sodium

Side effects

Like other antisense drugs, there is a risk of abnormalities in blood clotting and a reduction in platelets as well as a risk of kidney damage.[2]

In clinical trials, people treated with nusinersen had an increased risk of upper and lower respiratory infections and congestion, ear infections, constipation, pulmonary aspiration, teething, and scoliosis. One infant in a clinical trial had severe lowering of salt levels and several had rashes. There is a risk that growth of infants and children might be stunted. In older clinical trial subjects, the most common adverse events were headache, back pain, and adverse effects from the spinal injection.[2]

Some people may develop antibodies against the drug; as of December 2016 it was unclear what effect this might have on efficacy or safety.[2]

Pharmacology

Spinal muscular atrophy is caused by loss-of-function mutations in the SMN1 gene which codes for survival motor neuron (SMN) protein. Patients survive owing to low amounts of the SMN protein produced from the SMN2 gene. Nusinersen modulates alternate splicing of the SMN2 gene, functionally converting it into SMN1 gene, thus increasing the level of SMN protein in the CNS.[6]

The drug distributes to CNS and to peripheral tissues.[2]

The half-life is estimated to be 135 to 177 days in CSF and 63 to 87 days in blood plasma. The drug is metabolized via exonuclease (3’- and 5’)-mediated hydrolysis and does not interact with CYP450 enzymes.[2] The primary route of elimination is likely by urinary excretion for nusinersen and its metabolites.[2]

Chemistry

Nusinersen is an antisense oligonucleotide in which the 2’-hydroxy groups of the ribofuranosyl rings are replaced with 2’-O-2-methoxyethyl groups and the phosphate linkages are replaced with phosphorothioate linkages.[2][6]

History

Nusinersen was discovered in a collaboration between Adrian Krainer at Cold Spring Harbor Laboratory and Ionis Pharmaceuticals (formerly called Isis Pharmaceuticals).[7][8][9][10] Partial work was done at the University of Massachusetts Medical School funded by Cure SMA.[11]

Starting in 2012, Ionis partnered with Biogen on development and in 2015 Biogen acquired an exclusive license to the drug for a US$75 million license fee, milestone payments up to US$150 million, and tiered royalties thereafter; Biogen also paid the costs of development subsequent to taking the license.[12] The license to Biogen included licenses to intellectual property that Ionis had acquired from Cold Spring Harbor Laboratory and University of Massachusetts.[13]

In November 2016, the new drug application was accepted under the FDA’s priority review process on the strength of the Phase III trial and the unmet need, and was also accepted for review at the European Medicines Agency (EMA) at that time.[14][15] It was approved by the FDA in December 2016 and by EMA in May 2017 as the first drug to treat spinal muscular atrophy.[16][17] Subsequently, nusinersen was approved to treat SMA in Canada (July 2017),[18] Japan (July 2017),[19] Brasil (August 2017)[20] and Switzerland (September 2017).[21]

Controversy

Spinraza list price is US$125,000 per injection which puts the treatment cost at US$750,000 in the first year and US$375,000 annually after that. According to the New York Times, this places Spinraza “among the most expensive drugs in the world”.[15]

As of October 2017, Spinraza is reimbursed by health insurance providers in the United States and by the public healthcare systems in France (SMA type 1 and 2 patients only), Germany (all patients), Iceland (all patients), Italy (all patients) and Japan (SMA type 1 only).[3]

In October 2017, the authorities in Denmark recommended Spinraza for use only in a small subset of patients with SMA type 1 (young babies) and refused to offer it as a standard treatment in all other SMA patients quoting an “unreasonably high price” compared to the clinical effect.[22] Norwegian authorities rejected the funding in October 2017 because the price of the medicine was “unethically high”.[23] In February 2018 the funding was approved for patients under 18 years old.[23]

In January 2018 public funding of Spinraza was approved in Israel.

Nusinersen (formerly, IONIS-SMNRx, ISIS-SMNRx), intended to be marketed as Spinraza,[1] is an investigational drug for spinal muscular atrophy developed by Ionis Pharmaceuticals and Biogen with financial support from SMA Foundation and Cure SMA. It is a proprietary antisense oligonucleotide that modulates alternate splicing of the SMN2 gene, functionally converting it into SMN1 gene.

The drug is administered directly to the central nervous system using intrathecal injection once every 3–4 months.

Nusinersen has orphan drug designation in the United States and the European Union.[2]

In August 2016, a phase III trial in type 1 SMA patients was ended early due to positive efficacy data, with Biogen deciding to file for regulatory approval for the drug.[3]Consequently, the company submitted a New Drug Application to the FDA in September 2016[4] and a marketing authorisation application to the European Medicines Agency, under the centralised procedure,[5] in the following month. The company also announced an expanded access programme of nusinersen in type 1 SMA in selected countries.

In November 2016, a phase III clinical trial in type 2 SMA patients was halted after an interim analysis indicated the drug’s efficacy also in this SMA type.[6]

Image result for nusinersen

Image result for nusinersen

Image result for nusinersen

P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent.

References

  1. Jump up to:a b “International Nonproprietary Names for Pharmaceutical Substances (INN). Recommended International Nonproprietary Names: List 74” (PDF). World Health Organization. pp. 413–14. Retrieved 13 March 2017.
  2. Jump up to:a b c d e f g h i j k “Nusinersen US Label” (PDF). FDA. December 2016. For updates see FDA index page for NDA 209531
  3. Jump up to:a b “Nusinersen”. AdisInsight. Retrieved 1 January 2017.
  4. Jump up^ Ottesen, Eric W. (2017-01-01). “ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy”Translational Neuroscience8 (1): 1–6. doi:10.1515/tnsci-2017-0001ISSN 2081-6936PMC 5382937Freely accessiblePMID 28400976.
  5. Jump up^ “Nusinersen”. UK Specialist Pharmacy Service. Retrieved 31 December 2016.
  6. Jump up to:a b Zanetta, C; Nizzardo, M; Simone, C; Monguzzi, E; Bresolin, N; Comi, GP; Corti, S (1 January 2014). “Molecular Therapeutic Strategies for Spinal Muscular Atrophies: Current and Future Clinical Trials”. Clinical Therapeutics36 (1): 128–40. doi:10.1016/j.clinthera.2013.11.006PMID 24360800.
  7. Jump up^ Garber, K (11 October 2016). “Big win possible for Ionis/Biogen antisense drug in muscular atrophy”. Nature Biotechnology34 (10): 1002–1003. doi:10.1038/nbt1016-1002PMID 27727217.
  8. Jump up^ Wadman, Meredith (23 December 2016). “Updated: FDA approves drug that rescues babies with fatal neurodegenerative disease”Science.
  9. Jump up^ Offord, Catherine (December 1, 2016). “Oligonucleotide Therapeutics Near Approval”The Scientist.
  10. Jump up^ Tarr, Peter (24 December 2016). “CSHL FDA approval of life-saving SMA drug is hailed by its researcher-inventor at CSHL”Cold Spring Harbor Laboratory.
  11. Jump up^ “Therapeutic Approaches”http://www.curesma.org. Cure SMA. Retrieved 1 January 2017.
  12. Jump up^ “Biogen Shells Out $75M to Develop Ionis’ Nusinersen after Positive Phase III Results”Genetic Engineering News, August 1, 2016
  13. Jump up^ “Press release: Biogen and Ionis Pharmaceuticals Report Nusinersen Meets Primary Endpoint at Interim Analysis of Phase 3 ENDEAR Study in Infantile-Onset Spinal Muscular Atrophy | Biogen Media”Biogen. August 1, 2016.
  14. Jump up^ “Regulatory Applications for SMA Therapy Nusinersen Accepted in US, EU”. BioNews Services, LLC. Retrieved 2016-11-15.
  15. Jump up to:a b Katie Thomas (December 30, 2016). “Costly Drug for Fatal Muscular Disease Wins F.D.A. Approval”New York Times.
  16. Jump up^ Grant, Charley (2016-12-27). “Surprise Drug Approval Is Holiday Gift for Biogen”Wall Street JournalISSN 0099-9660. Retrieved 2016-12-27.
  17. Jump up^ “Spinraza (nusinersen)”European Medicines Agency. Retrieved 2017-10-27.
  18. Jump up^ “Biogen’s SPINRAZA™ (nusinersen) Receives Notice of Compliance from Health Canada for the Treatment of 5q Spinal Muscular Atrophy (SMA)”Cision. 2017-07-04.
  19. Jump up^ “Biogen to launch Spinraza in Japan soon”. 2017-07-10.
  20. Jump up^ “Remédio inédito para atrofia muscular espinhal é liberado” (in Portuguese). 2017-08-25.
  21. Jump up^ “Spinraza – Zulassung nun auch in der Schweiz” (in German). SMA Schweiz. 2017-09-30.
  22. Jump up^ Medicinrådet siger nej til lægemiddel til børn med muskelsvind: ‘Urimeligt’ dyrt Retrieved October 13 2017.
  23. Jump up to:a b Dette er uforståelig og utrolig urettferdig

Further reading

  • Finkel, Richard S; Chiriboga, Claudia A; Vajsar, Jiri; Day, John W; Montes, Jacqueline; De Vivo, Darryl C; Yamashita, Mason; Rigo, Frank; Hung, Gene; Schneider, Eugene; Norris, Daniel A; Xia, Shuting; Bennett, C Frank; Bishop, Kathie M (2016). “Treatment of infantile-onset spinal muscular atrophy with nusinersen: A phase 2, open-label, dose-escalation study”. The Lancet388 (10063): 3017. doi:10.1016/S0140-6736(16)31408-8.
Nusinersen
Nusinersen sodium colored.svg
Clinical data
Trade names Spinraza
Synonyms IONIS-SMNRx, ISIS-SMNRx
AHFS/Drugs.com Multum Consumer Information
License data
Routes of
administration
Injection into cerebrospinal fluid
ATC code
Legal status
Legal status
Pharmacokinetic data
Metabolism Exonuclease (3’- and 5’)-mediated hydrolysis
Biological half-life 135–177 days (in CSF), 63–87 days (in plasma)
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
Chemical and physical data
Formula C234H323N61Na17O128P17S17[2]
Molar mass 7501 Da[2]
3D model (JSmol)

////////////////Nusinersen sodium, Spinraza, ヌシネルセンナトリウム, FDA 2016, EU 2017, JAPAN 2017

CC1=CN(C(=O)NC1=O)C2C(C(C(O2)CO)OP(=S)(O)OCC3C(C(C(O3)N4C=C(C(=NC4=O)N)C)OCCOC)OP(=S)(O)OCC5C(C(C(O5)N6C=NC7=C6N=CN=C7N)OCCOC)OP(=S)(O)OCC8C(C(C(O8)N9C=C(C(=NC9=O)N)C)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=C(C(=O)NC1=O)C)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=C(C(=O)NC1=O)C)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=C(C(=O)NC1=O)C)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=C(C(=NC1=O)N)C)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=NC2=C1N=CN=C2N)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=C(C(=O)NC1=O)C)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=NC2=C1N=CN=C2N)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=NC2=C1N=CN=C2N)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=C(C(=O)NC1=O)C)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=NC2=C1N=C(NC2=O)N)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=C(C(=NC1=O)N)C)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=C(C(=O)NC1=O)C)OCCOC)OP(=O)(OCC1C(C(C(O1)N1C=NC2=C1N=C(NC2=O)N)OCCOC)OP(=S)(O)OCC1C(C(C(O1)N1C=NC2=C1N=C(NC2=O)N)OCCOC)O)S)OCCOC

Advertisements

ALOFISEL, darvadstrocel Cx-601


 

ALOFISEL

darvadstrocel

Cx-601

On 14 December 2017, the Committee for Medicinal Products for Human Use (CHMP) adopted a positive opinion, recommending the granting of a marketing authorisation for the medicinal product Alofisel, intended for the treatment of complex perianal fistulas in patients with Crohn’s disease. As Alofisel is an advanced therapy medicinal product, the CHMP positive opinion is based on an assessment by the Committee for Advanced Therapies. Alofisel was designated as an orphan medicinal product on 8 October 2009. The applicant for this medicinal product is Tigenix, S.A.U.

Alofisel will be available as a suspension for injection (5 million cells/ml). The active substance of Alofisel is darvadstrocel. Darvadstrocel contains expanded adipose stem cells which, once activated, impair proliferation of lymphocytes and reduce the release of pro-inflammatory cytokines at inflammation sites. This immunoregulatory activity reduces inflammation and may allow the tissues around the fistula tract to heal.

The benefits with Alofisel are its ability to improve the healing process of complex perianal fistulas in patients with Crohn’s disease. The most commonly reported side effects include anal abscess and fistula, as well as procedural pain and proctalgia.

The full indication is: “Alofisel is indicated for the treatment of complex perianal fistulas in adult patients with non-active/mildly active luminal Crohn’s disease, when fistulas have shown an inadequate response to at least one conventional or biologic therapy. Alofisel should be used after conditioning of fistula, see section 4.2.”

It is proposed that Alofisel be administered by specialist physicians experienced in the diagnosis and treatment of conditions for which Alofisel is indicated.

Detailed recommendations for the use of this product will be described in the summary of product characteristics (SmPC), which will be published in the European public assessment report (EPAR) and made available in all official European Union languages after the marketing authorisation has been granted by the European Commission.

Name Alofisel
INN or common name darvadstrocel
Therapeutic area Rectal Fistula
Active substance darvadstrocel
Date opinion adopted 14/12/2017
Company name Tigenix, S.A.U.
Status Positive
Application type Initial authorisation

New medicine to treat perianal fistulas in patients with Crohn’s disease

CHMP summary of positive opinion for Alofisel

Image result for ALOFISEL

Cx601

Cx601 is a local administration of expanded adipose-derived stem cells (eASCs) for the treatment of complex perianal fistulas in Crohn’s disease patients. The treatment is administered as a single dose and has been proven to have long-term efficacy in the healing of complex perianal fistulas in Crohn’s disease patients (ADMIRE-CD study completed in 2015 with positive 2 year follow-up data). The 24-week results of this trial were published in The Lancet in July 2016.

Cx601 has been designated as an orphan drug by the EMA and SwissMedic, in Switzerland.

On 4th July 2016, Takeda Pharmaceuticals acquired an exclusive right to develop and commercialize Cx601 for complex perianal fistulas in Crohn’s disease patients outside of the U.S. Takeda is a leading pharmaceutical company in the gastroenterology space. TiGenix retains full rights to the product in the US as well as to the development of Cx601 in other indications.

  • OriginatorCellerix
  • DeveloperLa Fundacion para la Investigacion Biomedica del Hospital Universitario La Paz; Takeda; TiGenix
  • ClassStem cell therapies
  • Mechanism of ActionCell replacements
  • Orphan Drug StatusYes – Rectal fistula
  • New Molecular EntityNo

Highest Development Phases

  • PreregistrationRectal fistula
  • No development reportedRectovaginal fistula

Most Recent Events

  • 15 Dec 2017Committee for Medicinal Products for Human Use (CHMP) and Committee for Advanced Therapies (CAT) recommend approval for darvadstrocel for Rectal fistula in European Union
  • 14 Dec 2017TiGenix in-licenses patents related to adipose-derived mesenchymal stem cells from Mesoblast
  • 16 Nov 2017Cx 601 is now called darvadstrocel

15/12/2017

New medicine to treat perianal fistulas in patients with Crohn’s disease

Alofisel is the tenth advanced therapy recommended for marketing authorisation

The European Medicines Agency (EMA) has recommended granting a marketing authorisation in the European Union (EU) for a new advanced therapy medicinal product (ATMP) for the treatment of complex perianal fistulas in patients with Crohn’s disease. Alofisel is the tenth ATMP that has received a positive opinion from the Agency’s Committee for Medicinal Products for Human Use (CHMP).

Crohn’s disease is a long-term condition that causes inflammation of the digestive system or gut. Apart from affecting the lining of the bowel, inflammation may also go deeper into the bowel wall. Perianal fistulas are common complications of Crohn’s disease and occur when an abnormal passageway develops between the rectum and the outside of the body. These can lead to incontinence (a lack of control over the opening of the bowels) and sepsis (blood infection). Complex fistulas are known to be more treatment resistant than simple fistulas. There is currently no cure for Crohn’s disease, so the aim of treatment is to stop the inflammatory process, relieve symptoms and avoid surgery wherever possible. Crohn’s disease can affect people of all ages, with a higher incidence in the younger population.

The active substance of Alofisel is darvadstrocel. Darvadstrocel contains expanded adipose stem cells which, once activated, impair proliferation of lymphocytes and reduce the release of pro-inflammatory cytokines at inflammation sites. This immunoregulatory activity reduces inflammation and may allow the tissues around the fistula tract to heal.

The benefits of Alofisel were studied in a main phase III clinical trial involving 212 patients. After 24 weeks of treatment, half of the patients treated with Alofisel (49.5%) were in remission, compared to a third of the patients under placebo. An extended ongoing follow-up study, which will cover a period of up to 104 weeks of treatment, has supported this result to date.

Although there is a moderate difference between the treatment groups, the effect is considered to be clinically meaningful when other treatment options for fistulas have failed. The most common side effects observed include anal abscess and fistula, as well as procedural pain and proctalgia.

Alofisel was assessed by the Committee for Advanced Therapies (CAT), EMA’s specialised scientific committee for ATMPs, such as gene or cell therapies. At its December 2017 meeting, the CAT recommended a positive opinion for Alofisel to the CHMP. The CHMP agreed with the CAT’s recommendation and adopted a positive opinion for the authorisation of Alofisel across the EU at its 11-14 December 2017 meeting.

Because complex perianal fistulas are rare, Alofisel was granted an orphan designation. As always at time of approval, this orphan designation will now be reviewed by EMA’s Committee for Orphan Medicinal Products (COMP) to determine whether the information available to date allows maintaining Alofisel’s orphan status and granting this medicine ten years of market exclusivity.

The opinion adopted by the CHMP is an intermediary step on Alofisel’s path to patient access. The CHMP opinion will now be sent to the European Commission for the adoption of a decision on an EU-wide marketing authorisation. Once a marketing authorisation has been granted, decisions about price and reimbursement will take place at the level of each Member State, taking into account the potential role/use of this medicine in the context of the national health system of that country.

Takeda and TiGenix announce that Cx601 (darvadstrocel) has received a positive CHMP opinion to treat complex perianal fistulas in Crohn’s disease

December 15, 2017 Osaka, Japan and Leuven, Belgium
  • First allogeneic stem cell therapy to receive positive CHMP opinion in Europe 
  • Cx601 offers potential new treatment option for patients who do not respond to current available therapies and are subject to numerous invasive surgeries1

Takeda Pharmaceutical Company Limited (TSE: 4502) (“Takeda”) and TiGenix NV (Euronext Brussels and NASDAQ: TIG) (“TiGenix”) today announced that the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA), in conjunction with the Committee for Advanced Therapies (CAT), has adopted a positive opinion recommending a marketing authorization (MA) for investigational compound Cx601 (darvadstrocel). Cx601 is expected to be indicated for the treatment of complex perianal fistulas in adult patients with non-active/mildly active luminal Crohn’s disease, when fistulas have shown an inadequate response to at least one conventional or biologic therapy.2 This recommendation marks the first allogeneic stem cell therapy to receive a positive CHMP opinion in Europe.

 

“Following today’s news, physicians and surgeons in Europe can look forward to offering these Crohn’s disease patients a novel and minimally invasive alternative treatment option in the future, which in clinical trials achieved higher combined remission and lower relapse rates* than the current standard of care,” said Professor Julian Panés, Head of the Gastroenterology Department at the Hospital Clinic of Barcelona (Spain) and President of the European Crohn’s and Colitis Organisation (ECCO). “Perianal fistulas are estimated to affect up to 28% of patients in the first two decades after Crohn’s disease diagnosis and Cx601 offers new hope for those suffering from this severe and debilitating condition.”

Cx601 was assessed by the CAT, the EMA’s specialized scientific committee for Advanced Therapy Medicinal Products (ATMP), such as gene or cell therapies. The positive CHMP opinion was based on results from TiGenix’s Phase III ADMIRE-CD pivotal trial. The ADMIRE-CD trial is a randomized, double-blind, controlled, Phase III trial designed to investigate the efficacy and safety of investigational compound Cx601.3 24-week results were published in The Lancet and showed that Cx601 achieved statistically significant superiority versus the control group in the primary efficacy endpoint of combined remission.**,1 In addition, the rates and types of treatment related adverse events (non-serious and serious) and number of discontinuations due to adverse events were comparable between Cx601 and control arms, the most common of which were anal abscess and proctalgia.1Further follow-up data indicated that Cx601 maintained long-term remission of treatment refractory complex perianal fistulas in patients with Crohn’s disease over 52 weeks.4

Dr. María Pascual, VP Regulatory Affairs and Corporate Quality at TiGenix, said, “We believe that this first approval recommendation for an allogeneic stem cell therapy in Europe reflects the maturity of our technology and its potential to offer new approaches for difficult to treat conditions. We have worked closely with the EMA and provided a robust data package from a well-designed clinical trial with challenging endpoints. In parallel, we will continue working hard to obtain regulatory approval in the U.S. and to develop Cx601 for additional indications, to fulfil our aim of allowing patients to benefit from the full potential of Cx601 across multiple geographies and diseases.”

The opinion will now be referred to the European Commission with a decision anticipated in the coming months. An MA will allow Cx601 to be marketed in all 28 member states of the EU, plus Norway, Iceland and Lichtenstein.

 

Cx601 has been licensed to Takeda for the exclusive development and commercialization outside of the U.S. Receipt of the MA will trigger a milestone payment from Takeda to TiGenix of €15 million. The companies have been working closely together to advance preparations for commercialization, with a potential start of the commercial launch by Takeda anticipated after MA is transferred from TiGenix to Takeda.

 

“Today’s positive CHMP opinion is a crucial step to bringing a new treatment option to patients with complex perianal fistulas in Crohn’s disease,” said Dr. Asit Parikh, Head of Takeda’s Gastroenterology Therapeutic Area Unit. “We would like to thank the scientific community and patients involved in the ADMIRE-CD trial for their support in helping us reach this important milestone. We remain committed to delivering innovative, therapeutic options for patients suffering from gastrointestinal disorders.”

Complex perianal fistulas are considered one of the most disabling complications of Crohn’s disease5 and can cause intense pain6 and swelling, infection and incontinence.1 Despite available therapies and surgical advancements, they currently remain challenging for clinicians to treat7 and have a significant negative impact on patient quality of life.6

 


* Relapse defined as reopening of any of the treated external openings with active drainage as clinically assessed, or development of perianal collection ≥2cm of the treated perianal fistula confirmed by centrally blinded pelvic MRI assessment in patients with clinical remission at any previous visit

** Combined remission defined as clinical assessment of closure of all treated external openings draining at baseline, despite gentle finger compression, and absence of collections >2cm confirmed by pelvic MRI

About TiGenix

TiGenix NV (Euronext Brussels and NASDAQ: TIG) is an advanced biopharmaceutical company developing novel therapies for serious medical conditions by exploiting the anti-inflammatory properties of allogeneic, or donor-derived, stem cells.

 

TiGenix´ lead product, Cx601, has successfully completed a European Phase III clinical trial for the treatment of complex perianal fistulas – a severe, debilitating complication of Crohn’s disease. Cx601 has been filed for regulatory approval in Europe and a global Phase III trial intended to support a future U.S. Biologic License Application (BLA) started in 2017. TiGenix has entered into a licensing agreement with Takeda, a global pharmaceutical company active in gastroenterology, under which Takeda acquired the exclusive right to develop and commercialize Cx601 for complex perianal fistulas outside the U.S. TiGenix’ second adipose-derived product, Cx611, is undergoing a Phase I/II trial in severe sepsis – a major cause of mortality in the developed world. Finally, AlloCSC-01, targeting acute ischemic heart disease, has demonstrated positive results in a Phase I/II trial in acute myocardial infarction (AMI). TiGenix is headquartered in Leuven (Belgium) and has operations in Madrid (Spain) and Cambridge, MA (USA). For more information, please visit http://www.tigenix.com.

 

About Cx601

Cx601 is a local administration of allogeneic (or donor derived) expanded adipose-derived stem cells (eASCs) for the treatment of complex perianal fistulas in adult Crohn’s disease patients that have previously shown an inadequate response to at least one conventional therapy or biologic therapy. Crohn’s disease is a chronic inflammatory disease of the intestine and complex perianal fistulas are a severe and debilitating complication for which there is currently no effective treatment. Cx601 was granted orphan drug designation by the European Commission in 2009 and by the U.S Food and Drug Administration (FDA) in 2017. TiGenix completed a European Phase III clinical trial (ADMIRE-CD) in August 2015 in which both the primary endpoint and the safety and efficacy profile were met, with patients receiving Cx601 showing a 44% greater probability of achieving combined remission compared to control (placebo).1 A follow-up analysis was completed at 52 weeks4 and 104 weeks post-treatment, confirming the sustained efficacy and safety profile of the product. The 24-week results of the Phase III ADMIRE-CD trial were published in The Lancet  in July 2016.1 Based on the positive 24 weeks Phase III study results, TiGenix submitted a Marketing Authorization Application to the European Medicines Agency (EMA). A global Phase III clinical trial (ADMIRE-CD II) intended to support a future U.S. Biologic License Application (BLA) started in 2017, based on a trial protocol that has been agreed with the FDA through a special protocol assessment procedure (SPA) (clinicaltrials.gov; NCT03279081). ADMIRE-CD II is a randomized, double-blind, placebo-controlled study designed to confirm the efficacy and safety of a single administration of Cx601 for the treatment of complex perianal fistulas in Crohn’s disease patients. In July 2016, TiGenix entered into a licensing agreement with Takeda, a global pharmaceutical company active in gastroenterology, under which Takeda acquired exclusive rights to develop and commercialize Cx601 for complex perianal fistulas in Crohn’s patients outside of the U.S.

 

Forward-looking information

This press release may contain forward-looking statements and estimates with respect to the anticipated future performance of TiGenix and the market in which it operates. Certain of these statements, forecasts and estimates can be recognised by the use of words such as, without limitation, “believes”, “anticipates”, “expects”, “intends”, “plans”, “seeks”, “estimates”, “may”, “will” and “continue” and similar expressions. They include all matters that are not historical facts. Such statements, forecasts and estimates are based on various assumptions and assessments of known and unknown risks, uncertainties and other factors, which were deemed reasonable when made but may or may not prove to be correct. Actual events are difficult to predict and may depend upon factors that are beyond the Company’s control. Therefore, actual results, the financial condition, performance or achievements of TiGenix, or industry results, may turn out to be materially different from any future results, performance or achievements expressed or implied by such statements, forecasts and estimates. Given these uncertainties, no representations are made as to the accuracy or fairness of such forward-looking statements, forecasts and estimates. Furthermore, forward-looking statements, forecasts and estimates only speak as of the date of the publication of this press release. TiGenix disclaims any obligation to update any such forward-looking statement, forecast or estimates to reflect any change in the Company’s expectations with regard thereto, or any change in events, conditions or circumstances on which any such statement, forecast or estimate is based, except to the extent required by Belgian law.

 

References

1 Panés J, García-Olmo D, Van Assche G, et al., Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomized, double-blind controlled trial. The Lancet. 2016; 388(10051): 1281-1290.

2 European Medicines Agency. Available at: http://www.ema.europa.eu/ema/. Accessed December 15, 2017.

3 Clinicaltrials.gov. Adipose Derived Mesenchymal Stem Cells for Induction of Remission in Perianal Fistulizing Crohn’s Disease (ADMIRE-CD). Available at: https://clinicaltrials.gov/ct2/show/NCT01541579?term=cx601 &rank=2. Published February 2012. Accessed December 15, 2017.

4 Panés J, García-Olmo D, Van Assche G, et al., Long-term efficacy and safety of Cx601, allogeneic expanded adipose-derived mesenchymal stem cells, for complex perianal fistulas in Crohn’s Disease: 52-week results of a phase III randomized controlled trial. ECCO 2017; Barcelona: Abstract OP009.

5 Marzo M, Felice C, Pugliese D, et al., Management of perianal fistulas in Crohn’s disease: An up-to-date review. World J Gastroenterol. 2015; 21(5): 1394-1395.

6 Mahadev S, Young JM, Selby W, et al., Quality of life in perianal Crohn’s disease: what do patients consider important? Dis Colon Rectum. 2011; 54(5): 579-585.

7 Geltzeiler C, Wieghard N and Tsikitis V. Recent developments in the surgical management of perianal fistula for Crohn’s disease. Ann Gastroenterol. 2014; 27(4): 320-330.

Notes

  • The applicant for Alofisel is Tigenix, S.A.U.
  1. AGA technical review on perianal Crohn’s disease 2003; 125(5):1508-1530
  2. TiGenix company presentation, June 2017 (http://tigenix.com/wp-content/themes/tigenix/images/TiGenix_Corporate_Presentation.pdf , accessed on June 22nd, 2017).
  3. Panes J et al. Long-term efficacy and safety of Cx601, allogeneic expanded adipose-derived mesenchymal stem cells, for complex perianal fistulas in Crohn’s disease: 52-week results of a Phase III randomized controlled trial. The 12th Congress of ECCO, February 15-18, 2017, Barcelona, Spain
  4. Cohen RD et al, 2008. Effects of fistula on healthcare costs and utilization for patients with Crohn’s disease treated in a managed care environment.
  5. nice.org.uk
  6. Gene therapy: understanding the science, assessing the evidence, and paying for the value: a report from the 2016 ICER membership policy summit. March 2017.
  7. Chaparro M. et al., 2013 Health care costs of complex perianal fistula in Crohn’s disease.
  8. Takeda’s press release, January 5, 2018.
  9. http://tigenix.com/wp-content/themes/tigenix/images/TiGenix_Corporate_Presentation.pdf

/////////////////ALOFISEL, darvadstrocel, Cx-601, eu 2017, ema 2017

PADELIPORFIN


Padeliporfin.png

2D chemical structure of 759457-82-4

PADELIPORFIN

759457-82-4; 457P824,

RN: 759457-82-4
UNII: EEO29FZT86

3-[(2S,3S,12R,13R)-8-acetyl-13-ethyl-20-(2-methoxy-2-oxoethyl)-3,7,12,17-tetramethyl-18-(2-sulfoethylcarbamoyl)-2,3,12,13-tetrahydroporphyrin-22,24-diid-2-yl]propanoic acid;palladium(2+)

 (SP-4-2)-[(7S,8S,17R,18R)-13-acetyl-18-ethyl-5-(2-methoxy-2-oxoethyl)-2,8,12,17-tetramethyl-3-[[(2-sulfoethyl)amino]carbonyl]-21H,23H-porphine-7-propanoato (4-)-kN21,kN22,kN23,kN24] palladate(2-)

Palladate(2-​)​, [(7S,​8S,​17R,​18R)​-​13-​acetyl-​18-​ethyl-​7,​8-​dihydro-​5-​(2-​methoxy-​2-​oxoethyl)​-​2,​8,​12,​17-​tetramethyl-​3-​[[(2-​sulfoethyl)​amino]​carbonyl]​-​21H,​23H-​porphine-​7-​propanoato(4-​)​-​κN21,​κN22,​κN23,​κN24]​-​, (SP-​4-​2)​-
Coordination Compound

Other Names

  • (SP-4-2)-[(7S,8S,17R,18R)-13-Acetyl-18-ethyl-7,8-dihydro-5-(2-methoxy-2-oxoethyl)-2,8,12,17-tetramethyl-3-[[(2-sulfoethyl)amino]carbonyl]-21H,23H-porphine-7-propanoato(4-)-κN21,κN22,κN23,κN24]palladate(2-)
Molecular Formula: C37H43N5O9PdS
Molecular Weight: 840.257 g/mol

img

Chemical Formula: C37H41K2N5O9PdS
Molecular Weight: 916.43

cas 698393-30-5

WST11; WST-11; WST 11; Stakel; padeliporfin; palladiumbacteriopheophorbide monolysine taurine.

Palladate(2-​)​, [(7S,​8S,​17R,​18R)​-​13-​acetyl-​18-​ethyl-​7,​8-​dihydro-​5-​(2-​methoxy-​2-​oxoethyl)​-​2,​8,​12,​17-​tetramethyl-​3-​[[(2-​sulfoethyl)​amino]​carbonyl]​-​21H,​23H-​porphine-​7-​propanoato(4-​)​-​κN21,​κN22,​κN23,​κN24]​-​, potassium (1:2)​, (SP-​4-​2)​-

Tookad : EPAR -Product Information

Tookad : EPAR – Summary for the public (English only) 29/11/2017

Product details

Pharmacotherapeutic group

Antineoplastic agents

Therapeutic indication

Tookad is indicated as monotherapy for adult patients with previously untreated, unilateral, low risk, adenocarcinoma of the prostate with a life expectancy ≥ 10 years and:

  • Clinical stage T1c or T2a;
  • Gleason Score ≤ 6, based on high-resolution biopsy strategies;
  • PSA ≤ 10 ng/mL;
  • 3 positive cancer cores with a maximum cancer core length of 5 mm in any one core or 1-2 positive cancer cores with ≥ 50 % cancer involvement in any one core or a PSA density ≥ 0.15 ng/mL/cm³.
Name Tookad
Agency product number EMEA/H/C/004182
Active substance padeliporfin di-potassium
International non-proprietary name(INN) or common name padeliporfin
Therapeutic area Prostatic Neoplasms
Anatomical therapeutic chemical (ATC) code L01XD07
Additional monitoring This medicine is under additional monitoring. This means that it is being monitored even more intensively than other medicines. For more information, see medicines under additional monitoring.
Marketing-authorisation holder STEBA Biotech S.A
Revision 0
Date of issue of marketing authorisation valid throughout the European Union 10/11/2017

Contact address:

STEBA Biotech S.A
7 place du theatre
L-2613 Luxembourg
Luxembourg

Padeliporfin is a vascular-acting photosensitizer consisting of a water-soluble, palladium-substituted bacteriochlorophyll derivative with potential antineoplastic activity. Upon administration, paldeliporfin is activated locally when the tumor bed is exposed to low-power laser light; reactive oxygen species (ROS) are formed upon activation and ROS-mediated necrosis may occur at the site of interaction between the photosensitizer, light and oxygen. Vascular-targeted photodynamic therapy (VTP) with padeliporfin may allow tumor-site specific cytotoxicity while sparing adjacent normal tissues.

WST-11 (Stakel) is a water-soluble bacteriochlorophyll (chemical structure shown below) derivative coordinated with palldium, which has maximum absorption wavelength in the near infrared (753 nm) and rapid clearance from the body ( t 1/2 = 0.37 hour for a 10-mg/kg drug dose in the rat and t 1/2 = 0.51 hour, 1 hour, and 2.65 hours for 1.25-, 2.5-, and 5-mg/kg drug doses, respectively. It binds to serum albumin and has potent antivascular activity through the generation of hydroxyl radicals when stimulated by the proper light wavelength.

Image result for PADELIPORFIN

Photodynamic therapy (PDT) is a non-surgical treatment of tumors in which non-toxic drugs and non-hazardous photosensitizing irradiation are combined to generate cytotoxic reactive oxygen species in situ. This technique is more selective than the commonly used tumor chemotherapy and radiotherapy. To date, porphyrins have been employed as the primary photosensitizing agents in clinics. However, current sensitizers suffer from several deficiencies that limit their application, including mainly: (1) relatively weak absorption in the visible spectral range which limits the treatment to shallow tumors; (2) accumulation and long retention of the sensitizer in the patient skin, leading to prolonged (days to months) skin phototoxicity; and (3) small or even no differentiation between the PDT effect on illuminated tumor and non-tumor tissues. The drawbacks of current drugs inspired an extensive search for long wavelength absorbing second-generation sensitizers that exhibit better differentiation between their retention in tumor cells and skin or other normal tissues.

In order to optimize the performance of the porphyrin drugs in therapeutics and diagnostics, several porphyrin derivatives have been proposed in which, for example, there is a central metal atom (other than Mg) complexed to the four pyrrole rings, and/or the peripheral substituents of the pyrrole rings are modified and/or the macrocycle is dihydrogenated to chlorophyll derivatives (chlorins) or tetrahydrogenated to bacteriochlorophyll derivatives (bacteriochlorins).

Due to their intense absorption in favorable spectral regions (650-850 nm) and their ready degradation after treatment, chlorophyll and bacteriochlorophyll derivatives have been identified as excellent sensitizers for PDT of tumors and to have superior properties in comparison to porphyrins, but they are less readily available and more difficult to handle.

Bacteriochlorophylls are of potential advantage compared to the chlorophylls because they show intense near-infrared bands, i.e. at considerably longer wavelengths than chlorophyll derivatives.

The spectra, photophysics, and photochemistry of native bacteriochlorophylls (Bchls) have made them optimal light-harvesting molecules with clear advantages over other sensitizers presently used in PDT. In particular, these molecules have a very high extinction coefficient at long wavelengths (λmax=760-780 nm, ε=(4-10)xl04 M-1cm-1), where light penetrates deeply into tissues. They also generate reactive oxygen species (ROS) at a high quantum yield (depending on the central metal).

Under normal delivery conditions, i.e. in the presence of oxygen at room temperature and under normal light conditions, the BChl moieties are labile and have somewhat lower quantum yields for triplet state formation, when compared with, e.g., hematoporphyrin derivative (HPD). However, their possible initiation of biological redox reactions, favorable spectral characteristics and their ready degradation in vivo result in the potential superiority of bacteriochlorophylls over other compounds, e.g. porphyrins and chlorophylls, for PDT therapy and diagnostics and for killing of cells, viruses and bacteria in samples and in living tissue. Chemical modification of bacteriochlorophylls is expected to further improve their properties, but this has been very limited due to lack of suitable methods for the preparation of such modified bacteriochlorophylls .

The biological uptake and PDT efficacy of metal-free derivatives of Bchl have been studied with the objective to manipulate the affinity of the sensitizers to the tumor cellular compartment. Cardinal to this approach is the use of highly lipophilic drugs that may increase the accumulation of the drug in the tumor cells, but also renders its delivery difficult. In addition, the reported biodistribution shows significant phototoxic drug levels in non-tumor tissues over prolonged periods (at least days) after administering the drug.

In applicant’s previous Israel Patent No. 102645 and corresponding EP 0584552, US 5,726,169, US 5,726,169, US 5,955,585 and US 6,147,195, a different approach was taken by the inventors. Highly efficient anti- vascular sensitizers that do not extravasate from the circulation after administration and have short lifetime in the blood were studied. It was expected that the inherent difference between vessels of normal and abnormal tissues such as tumors or other tissues that rely on neovessels, would enable relatively selective destruction of the abnormal tissue. Hence, it was aimed to synthesize Bchl derivatives that are more polar and, hence, have better chance to stay in the vascular compartment, where they convey the primary photodynamic effect. To this end, the geranylgeranyl residue at the C-17 position of Bchl a (Compound 1, depicted in Scheme 1 herein) has been replaced by various residues such as amino acids, peptides, or proteins, which enhance the sensitizer hydrophilicity. One particular derivative, Bchl-Ser (Scheme 1, Compound 1, wherein R is seryl), was found to be water-soluble and highly phototoxic in cell cultures. Following infraperitoneal injection, the Bchl-Ser cleared from the mouse blood and tissues bi-exponentially in a relatively short time (t1/2~2 and 16 h, respectively). Clearance from the circulation was even faster following intravenous injection. Under the selected treatment protocol (light application within minutes after drug injection), phototoxicity was predominantly conferred to the tumor vasculature (Rosenbach-

Belkin et al., 1996; Zilberstein et al., 2001 and 1997). However, unfortunately, like native Bchl, the Bchl-Ser derivative undergoes rapid photo-oxidation, forming the corresponding 2-desvinyl-2-acetyl-chlorophyllide ester and other products.

To increase the stability of the Bchl derivatives, the central Mg atom was replaced by Pd in the later applicant’s PCT Publication WO 00/33833 and US 6,569,846. This heavy atom was previously shown to markedly increase the oxidation potential of the Bchl macrocycle and, at the same time, to greatly enhance the intersystem-crossing (ISC) rate of the molecule to its triplet state. The metal replacement was performed by direct incorporation of Pd2+ ion into a Bpheid molecule, as described in WO 00/33833. Based on the pigment biodistribution and pharmacokinetics, it was assumed that the derivative Pd-Bpheid remained in the circulation for a very short time with practically no extravasation to other tissues, and is therefore a good candidate for vascular-targeting PDT that avoids skin phototoxicity. The treatment effect on the blood vessels was demonstrated by intravital microscopy of treated blood vessels and staining with Evans-Blue. Using a treatment protocol with a minimal drug-to-light interval, Pd-Bpheid (also designated Tookad) was found to be effective in the eradication of different tumors in mice, rats and other animal models and is presently entering Phase I/II clinical trials in patients with prostate cancer that failed radiation therapy (Chen et al, 2002; Schreiber et al., 2002; Koudinova et al., 2003).

Because of its low solubility in aqueous solutions, the clinical use of Pd-Bpheid requires the use of solubilizing agents such as Cremophor that may cause side effects at high doses. It would be highly desirable to render the Pd-Bpheid water-soluble while retaining its physico-chemical properties. Alternatively, it would be desirable to prepare Bchl derivatives that are cytophototoxic and, at the same time, more water-soluble than Pd-Bpheid itself. Such water solubility is expected to further enhance the drug retention in the circulation and, thereby, the aforementioned selectivity. In addition, having no need to use carriers such as detergents or lyposomes, may prevent side effects.

SYNTHESIS

START FROM CAS 17499-98-8, Phorbine, magnesium deriv., Bacteriochlorophyll aP

STR1

PADELIPORFIN

Paper

Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: Synthesis, solubility, phototoxicity and the effect of serum proteins
Photochemistry and Photobiology (2005), 81, (July/Aug.), 983-993

PAPER

Journal of Medicinal Chemistry (2014), 57(1), 223-237

Abstract Image

With the knowledge that the dominant photodynamic therapy (PDT) mechanism of 1a (WST09) switched from type 2 to type 1 for 1b (WST11) upon taurine-driven E-ring opening, we hypothesized that taurine-driven E-ring opening of bacteriochlorophyll derivatives and net-charge variations would modulate reactive oxygen species (ROS) photogeneration. Eight bacteriochlorophyll a derivatives were synthesized with varying charges that either contained the E ring (2a5a) or were synthesized by taurine-driven E-ring opening (2b5b). Time-dependent density functional theory (TDDFT) modeling showed that all derivatives would be type 2 PDT-active, and ROS-activated fluorescent probes were used to investigate the photogeneration of a combination of type 1 and type 2 PDT ROS in organic- and aqueous-based solutions. These investigations validated our predictive modeling calculations and showed that taurine-driven E-ring opening and increasing negative charge generally enhanced ROS photogeneration in aqueous solutions. We propose that these structure–activity relationships may provide simple strategies for designing bacteriochlorins that efficiently generate ROS upon photoirradiation.

Modulation of Reactive Oxygen Species Photogeneration of Bacteriopheophorbide a Derivatives by Exocyclic E-Ring Opening and Charge Modifications

 Department of Pharmaceutical Sciences, Leslie L. Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
 Ontario Cancer Institute and Techna Institute, UHN, 101 College Street, Toronto, Ontario M5G 1L7, Canada
§ Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
J. Med. Chem.201457 (1), pp 223–237
DOI: 10.1021/jm401538h
*Tel: 416-581-7666. Fax 416-581-7667. E-mail: gzheng@uhnresearch.ca.
Palladium 31-Oxo-15-methoxycarbonylmethyl-rhodobacteriochlorin 13′-(2-Sulfethyl)amide (1b)
……………… The dried crude product was dissolved in 200 μL of DMSO and purified by reverse-phase HPLC. The product was quantified spectrophotometrically, the identity was characterized using ESI+MS and UV–vis spectroscopy, and the purity was found to be >95% using HPLC–MS. This yielded 0.21 mg (250 nmol) of 1b(0.7% yield). ESI+MS: [M]+ = 840 m/z. UV–vis (MeOH, λmax): 748, 517, 385, 332 nm.
PATENT

CHEMICAL EXAMPLES

Example 1. Palladium 31-oxo-15-methoxycarbonylmethyl-Rhodobacteriochlorin 131-(2-sulfoethyl)amide dipotassium salt ( Compound 4)

Nine hundred and thirty five (935) mg of Pd-Bpheid (3) were dissolved in a 1 L round bottom flask with 120 ml of DMSO while stirring under Argon (bubbled in the solution). Taurine (1288 mg) was dissolved in 40 ml of 1M K2HPO4 buffer, and the pH of the solution was adjusted to 8.2 (with HCl ). This aqueous solution was added into the DMSO solution while stirring, and the Argon was bubbled in the solution for another 20 minutes. Then the reaction mixture was evaporated at 30°C for 3.5 hours under ~2 mbar and then for another 2 hours at 37°C to a complete dryness. The dry solids were dissolved in 300 ml of MeOH and the colored solution was filtered through cotton wool to get rid of buffer salts and taurine excess.

The progress of the reaction was determined by TLC (Rf of unreacted Pd- Bpheid is 0.8-0.85 and of the reaction (aminolysis) product is 0.08-0.1) and by following the optical absorption spectrum of the reaction mixture after liophylization and resolubihzation in MeOH. The absorption spectrum was characterized by a Qytransition shift from 756 nm (for Pd-Bpheid) to 747 nm (for the product 4) and by Qx shift from 534 nm of Pd-Bpheid to 519 nm (of the product 4). The MeOH was evaporated and the product 4 was purified by HPLC with ODS-A 250X20 S10P μm column (YMC, Japan). Solvent A: 95% 0.005 M phosphate buffer, pH 8.0 and 5% MeOH. Solvent B: 100% MeOH. The dry solid was dissolved in 42 ml of distilled water and injected in portions of 1.5 ml each .

The elution profile is described in Table 1. The product 4_(Scheme 1, see below) was eluted and collected at ~ 9-11 minutes. The main impurities, collected after at 4-7 min (ca 5-10%), corresponded to byproduct(s) with the proposed structure 7. Peaks at 22-25 min (ca 2-5%) possibly corresponded to the iso-form of the main product 4 and untreated Pd-Bpheid residues.

The solvent (aqueous methanol) was evaporated under reduced pressure. Then, the purified product 4 ]was re-dissolved in ~150 ml MeOH and filtered through cotton wool. The solvent was evaporated again and the solid pigment 4 was stored under Ar in the dark at -20°C. The reaction yield: ~90% (by weight, relative to 3).

The structure of product 4 was confirmed by electrospray mass spectroscopy. (ESI-MS, negative mode, Fig.2), (peaks at 875 (M–K-H), 859 (M–2K-H+Na), 837 (M–2K), 805 (M2K-H-OMe), 719) and 1H-NMR spectrum (Fig. 4 in MeOH-d4). Table 4 provides the shifts (in ppm units) of the major NMR peaks.

Optical absorption (UN-VIS) spectrum (MeOH): λ, 747 (1.00), 516 (0.13), 384 (0.41), 330 (0.50); ε747 (MeOH) is 1.2 x 105 mol-1 cm _1.

ΝMR (MeOH-d4): 9.38 (5-H, s), 8.78 (10-H, s), 8.59 (20-H, s), 5.31 and 4.95 (151-CH2, dd), 4.2-4.4 (7,8,17,18-H, m), 3.88 (153-Me, s), 3.52 (21-Me, s), 3.19 (121 -Me, s), 3.09 (32-Me, s), 1.92-2.41, 1.60-1.75 (171, 172-CH2, m), 2.19 (81-CH2, m), 1.93 (71-Me, d), 1.61 (181-Me, d), 1.09 (82-Me, t), 3.62, 3.05 (CH2‘s of taurine).

Octanol/water partition ratio is 40:60.

Example 2. Preparation of 31-oxo-15-methoxycarbonylmethyl- Rhodobacteriochlorin 131-(2-sulfoethyl)amide dipotassium salt (Compound 5) One hundred and sixty (160) mg of taurine were dissolved in 5 ml of 1M

K2HPO4 buffer, and the pH of the solution was adjusted to 8.2. This solution was added to 120 mg of compound 2 dissolved in 15 ml of DMSO, and the reaction and following purification were analogous to those described in previous Example.

Absorption spectrum (MeOH): λ, 750 (1.00), 519 (0.30), 354 (1.18) nm.

ESI-MS (-): 734 (M–2K).

ΝMR (MeOH-d4): 9.31 (5-H, s), 8.88 (10-H, s), 8.69 (20-H, s), 5.45 and 5.25 (151-CH2, dd), 4.35 (7,18-H, m), 4.06 (8,17-H, m), 4.20 and 3.61 (2-CH2, m of taurine), 3.83 (153-Me, s), 3.63 (21-Me, s), 3.52 (3-CH2, m oftaurine), 3.33 (121-Me, s), 3.23 (32-Me, s), 2.47 and 2.16 (171-CH2, m), 2.32 and 2.16 (81-CH2, m), 2.12 and 1.65 (172-CH2, m), 1.91 (71-Me, d), 1.66 (181– Me, d), 1.07 (82-Me, t).

Octanol/water partition ratio is 60:40.

Example 3. Preparation of copper(II) 31-oxo-15-methoxycarbonylmethyl- Rhodobacteriochlorin 131-(2-sulfoethyl)amide dipotassium salt (Compound 10)

Fifty (50) mg of compound 5 of Example 2 and 35 mg of copper (II) acetate were dissolved in 40 ml of methanol, and argon was bubbled into solution for 10 minutes. Then 500 mg of palmitoyl ascorbate was added, and the solution was stirred for 30 min. The absorption spectrum was characterized by a Qy transition shift from 750 nm (for 5) to 768 nm (for the product 10) and by Qx shift from 519 nm of 5 to 537 nm (of the product 10). Then the reaction mixture was evaporated, re-dissolved in acetone and filtered through cotton wool to get rid of acetate salt excess. The acetone was evaporated and the product was additionally purified by HPLC at the conditions mentioned above with the elution profile, described in Table 2.

The solvent (aqueous methanol) was evaporated under reduced pressure. Then, the purified pigment 10 was re-dissolved in methanol and filtered through cotton wool. The solvent was evaporated again and the solid pigment 10 was stored under Ar in the dark at -20°C. Reaction yield: -90%.

Absorption spectrum (MeOH): λ, 768 (1.00), 537 (0.22), 387 (0.71) and 342 (0.79) nm.

ESI-MS (-): 795 (M–2K).

Octanol/water partition ratio is 40:60.

Example 4. Preparation of zinc 31-oxo-15-methoxycarbonylmethyl-Rhodobacteriochlorin 131-(2-sulfoethyl)amide dipotassium salt (Compound 11)

Zn insertion into compound 5 was carried out with Zn acetate in acetic acid as previously described (US Patent No. 5,726,169). Final purification was carried out by HPLC in the same conditions as for compound 5 in Example 2 above.

Absorption spectrum (MeOH): λ, 762 (1.00), 558 (0.26), 390 (0.62) and 355 (0.84) nm.

Octanol/water partition ratio is 50:50.

Example 5. Preparation of manganese(III) 31-oxo-15-methoxycarbonylmethyl-Rhodobacteriochlorin 131-(2-sulfoethyl)amide dipotassium salt (Compound 12)

Mn insertion into compound 5 was carried out with Zn acetate in acetic acid as previously described (WO 97/19081; US 6,333,319) with some modifications. Thus, fifty (50) mg of compound 5 in 10 ml of DMF were stirred with 220 mg of cadmium acetate and heated under argon atmosphere at 110°C about 15 min (Cd-complex formation is monitored by shifting Qx transition absorption band from 519 to 585 nm in acetone). Then the reaction mixture was cooled and evaporated. The dry residue was re-dissolved in 15 ml of acetone and stirred with manganese (II) chloride to form the Mn(III)-product 12. The product formation is monitored by shifting Qx transition band from 585 to 600 nm and Qy transition band from 768 to 828 nm in acetone. The acetone was evaporated and the product 12 was additionally purified by HPLC in the conditions mentioned in Example 2 above with the elution profile described in Table 3 below where the] solvent system consists of: A – 5% aqueous methanol, B -methanol.

The solvent (aqueous methanol) was evaporated under reduced pressure and the solid pigment 12 was stored under Ar in the dark at -20°C.

Absorption spectrum (MeOH): λ, 828 (1.00), 588 (0.32) and 372 (0.80) nm. Octanol/water partition ratio is 5:95.

Example 6. Preparation of palladium bacteriopheophorbide a 17 -(3-sulfo-1-oxy- succinimide)ester sodium salt (Compound 6)

Fifty (50) mg of Pd-Bpheid (compound 2), 80 mg of N-hydroxy- sulfosuccinimide (sulfoNHS) and 65 mg of 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide (EDC) were mixed in 7 ml of dry DMSO for overnight at room temperature. Then the solvent was evacuated under reduced pressure. The dry residue was re-dissolved in chloroform (ca. 50 ml), filtered from insoluble material, and evaporated. The conversion was ab. 95%) (TLC). The product 6 was used later on without further chromatographic purification. ESI-MS (-): 890 (M–Na).

NMR (CDCl3): 9.19 (5-H, s), 8.49 (10-H, s), 8.46 (20-H, s), 5.82 (132-H, s), 4.04- 4.38 (7,8,17,18-H, m), 3.85 (134-Me, s), 3.47 (21-Me, s), 3.37 (^-Me, s), 3.09 (32– Me, s), 1.77 (71-Me, d), 1.70 (lδ’-Me, d), 1.10 (82-Me, t), 4.05 (CH2 of sNHS), 3.45 (CH ofs NHS).

Example 7. Preparation of palladium bacteriopheophorbide a 173-(3-sulfopropyl) amide potassium salt (Compound 7)

Ten (10) mg of compound 6 in 1 ml of DMSO was mixed with 20 mg of homotaurine (3-amino-1-propane-sulfonic acid) in 1 ml of 0.1 M K-phosphate buffer, pH 8.0 for overnight. Then the reaction mixture was partitioned in chloroform/water. The organic layer was dried over anhydrous sodium sulfate and evaporated. The dry residue was re-dissolved in chloroform-methanol (19:1) and applied to a chromatographic column with silica. The product 7 was obtained with chloroform-methanol (4:1) elution. The yield was about 80-90%.

ESI-MS (-): 834 (M-K) m/z.

NMR (MeOH-d4): 9.16 (5-H, s), 8.71 (10-H, s), 8.60 (20-H, s), 6.05 (132-H, s), 4.51, 4.39, 4.11, 3.98 (7,8,17,18-H, all m), 3.92 (134-Me, s), 3.48 (21-Me, s), 3.36 (121-Me, s), 3.09 (32-Me, s), 2.02-2.42 (171 arid 172-CH2, m), 2.15 ( 81-CH2, q), 1.81 (71-Me, d), 1.72 (181-Me, d), 1.05 (82-Me, t), 3.04, 2.68, and 2.32 (CH2‘s of homotaurine, m).

Example 8. Preparation of palladium 31-oxo-15-methoxycarbonylmethyl-Rhodo-bacteriochlorin 13 ,17 -di(3-sulfopropyl)amide dipotassium salt (Compound 8)

Ten (10) mg of compound 6 or 7 were dissolved in 3 ml of DMSO, mixed with 100 mg of homotaurine in 1 ml of 0.5 M K-phosphate buffer, pH 8.2, and incubated overnight at room temperature. The solvent was then evacuated under reduced pressure as described above, and the product 8 was purified on HPLC. Yield: 83%.

Absorption spectrum (MeOH): 747 (1.00), 516 (0.13), 384 (0.41), 330 (0.50), ε747 =1.3×105 modern-1.

ESI-MS(-):1011 (M–K), 994 (M–2K+Na),972 (M–2K), 775 (M–2K-CO2Me-homotaurineNHCH2CH2CH2SO3), 486 ([M-2K]/2)

NMR (MeOH-d4): 9.35 (5-H, s), 8.75 (10-H, s), 8.60 (20-H, s), 5.28 and 4.98 (15-1-CH2, dd), 4.38, 4.32, 4.22, 4.15 (7,8,17,18-H, all m), 3.85 (15~3-Me, s), 3.51 (21-Me, s), 3.18 (121-Me, s), 3.10 (32-Me, s 2.12-2.41 (171-CH2, m), 2.15-2.34 (81-CR2, m), 1.76-2.02 (172-CH2, m), 1.89 (71-Me, d), 1.61 (lδ^Me, d), 1.07 (82-Me, t). 3.82, 3.70,

3.20, 3.10, 2.78, 2.32, 1.90 (CH2‘s of homotaurine at C-131 and C-173)

Example 9. Palladium 31-(3-sulfopropylimino)-15-methoxycarbonylmethyl-Rhodo-bacteriochlorin 131,173-di(3-sulfopropyl)amide tripotassium salt (Compound 9)

Compound 9 was obtained from HPLC as a minor product during synthesis of 8.

Absorption spectrum (MeOH): 729 (1.00), 502 (0.10), 380 (0.69), 328 (0.57).

ESI-MS (30.4.2000): 1171 (M-K+H), 1153 (M–2K-H+Na), 1131 (M-2K), 566 ([M-K]/2), 364 ([M-3K]/3).

NMR (MeOH-d4): 8.71 (1H), 8.63 (1.5H), 8.23 (0.5H) (5-, 10- and 20-H, all-m), 5.30 and 4.88 (151-CH2, dd), 4.43 and 4.25 (7,8,17,18-H, m), 3.85 (15~3-Me, s), 3.31 (21-Me, s), 3.22 (121-Me, s), 3.17 (32-Me, m), 1.89-2.44 (171 and 172-CH2, m), 2.25 (81-CH2, m), 1.91 (71-Me, s), 1.64 (181– Me, s), 1.08 (82-Me, t), 4.12, 3.56, 3.22, 3.16, 2.80 and 2.68 (CH2‘s of homotaurine).

Example 10. Palladium 31-oxo-15-methoxycarbonylmethyl-Rhodobacteriochlorin 131-(2-sulfoethyl)amide, 173-(N-immunoglobulin G)amide potassium salt (Compound 13)

Ten (10) mg of compound 4 were reacted with 20 mg of sulfo-NHS and 15 mg of EDC in 1 ml of dry DMSO for 1 hour at room temperature, then rabbit IgG (0.6 mg) in PBS (2.5 ml) was added, and the mixture was further incubated overnight at room temperature. The mixture was evaporated to dryness, then re-dissolved in 1 ml of PBS and loaded on Sephadex G-25 column equilibrated with PBS. A colored band was eluted with 4-5 ml of PBS. The pigment/protein ratio in the obtained conjugate 13 was determined by optical density at 753 and 280 mn, respectively, and varied between 0.5/1 to 1/1 of pigment 13/protein.

Example 11. Preparation of palladium 31-oxo-15-methoxycarbonylmethyl-Rhodobacteriochlorin 131-(2-carboxyethyl)amide dipotassium salt (Compound

M)

The preparation and purification of the title compound 14 were carried out as described in Example 2, by reaction of compound 2 with 3-aminopropionic acid (β-alanine) (150 mg) instead of taurine. Yield: 85%.

Example 12. Preparation of palladium 31-oxo-15-methoxycarbonylmethyl-Rhodobacteriochlorin 131-(3-phosphopropyl)amide tripotassium salt (Compound

15)

The preparation and purification of the title compound 15 were carried out as described in Example 2, by reaction of compound 2 with 3 -amino- 1-propanephosphonic acid (180 mg) instead of taurine. Yield: 68%.

Example 13. Palladium 31-(3-sulfopropylamino)-15-methoxycarbonylmethyl-Rhodobacteriochlorin 131,173-di(3-sulfopropyl)amide tripotassium salt (Compound 16)

For reduction of the imine group in 31-(3-sulfopropylimino) to the correspondent 31-(3-sulfopropylamino) group, compound 9 (8 mg) was reacted by stirring with sodium cyanoborohydride (15 mg) in 5 ml of methanol overnight at room temperature. Then the reaction mixture was treated with 0.05 M HCl (5 ml), neutralized with 0.01 M KOH, and evaporated. The title product 16 was purified using HPLC conditions as described in Example 2. Yield: 80-90%).

PATENT
US 7947672

REFERENCES

1: Kessel D, Price M. Evaluation of DADB as a Probe for Singlet Oxygen Formation during Photodynamic Therapy. Photochem Photobiol. 2012 Feb 2. doi: 10.1111/j.1751-1097.2012.01106.x. [Epub ahead of print] PubMed PMID: 22296586.

2: Betrouni N, Lopes R, Puech P, Colin P, Mordon S. A model to estimate the outcome of prostate cancer photodynamic therapy with TOOKAD Soluble WST11. Phys Med Biol. 2011 Aug 7;56(15):4771-83. Epub 2011 Jul 13. PubMed PMID: 21753234.

3: Chevalier S, Anidjar M, Scarlata E, Hamel L, Scherz A, Ficheux H, Borenstein N, Fiette L, Elhilali M. Preclinical study of the novel vascular occluding agent, WST11, for photodynamic therapy of the canine prostate. J Urol. 2011 Jul;186(1):302-9. Epub 2011 May 20. PubMed PMID: 21600602.

4: Dandler J, Wilhelm B, Scheer H. Photochemistry of bacteriochlorophylls in human blood plasma: 1. Pigment stability and light-induced modifications of lipoproteins. Photochem Photobiol. 2010 Mar-Apr;86(2):331-41. Epub 2009 Nov 23. PubMed PMID: 19947966.

5: Dandler J, Scheer H. Inhibition of aggregation of [Pd]-bacteriochlorophyllides in mesoporous silica. Langmuir. 2009 Oct 20;25(20):11988-92. PubMed PMID: 19772311.

6: Ashur I, Goldschmidt R, Pinkas I, Salomon Y, Szewczyk G, Sarna T, Scherz A. Photocatalytic generation of oxygen radicals by the water-soluble bacteriochlorophyll derivative WST11, noncovalently bound to serum albumin. J Phys Chem A. 2009 Jul 16;113(28):8027-37. PubMed PMID: 19545111.

7: Moore CM, Pendse D, Emberton M. Photodynamic therapy for prostate cancer–a review of current status and future promise. Nat Clin Pract Urol. 2009 Jan;6(1):18-30. Review. PubMed PMID: 19132003.

8: Preise D, Oren R, Glinert I, Kalchenko V, Jung S, Scherz A, Salomon Y. Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity. Cancer Immunol Immunother. 2009 Jan;58(1):71-84. Epub 2008 May 17. PubMed PMID: 18488222.

9: Fleshker S, Preise D, Kalchenko V, Scherz A, Salomon Y. Prompt assessment of WST11-VTP outcome using luciferase transfected tumors enables second treatment and increase in overall therapeutic rate. Photochem Photobiol. 2008 Sep-Oct;84(5):1231-7. Epub 2008 Apr 8. PubMed PMID: 18399928.

10: Berdugo M, Bejjani RA, Valamanesh F, Savoldelli M, Jeanny JC, Blanc D, Ficheux H, Scherz A, Salomon Y, BenEzra D, Behar-Cohen F. Evaluation of the new photosensitizer Stakel (WST-11) for photodynamic choroidal vessel occlusion in rabbit and rat eyes. Invest Ophthalmol Vis Sci. 2008 Apr;49(4):1633-44. PubMed PMID: 18385085.

11: Fabre MA, Fuseau E, Ficheux H. Selection of dosing regimen with WST11 by Monte Carlo simulations, using PK data collected after single IV administration in healthy subjects and population PK modeling. J Pharm Sci. 2007 Dec;96(12):3444-56. PubMed PMID: 17854075.

12: Brandis A, Mazor O, Neumark E, Rosenbach-Belkin V, Salomon Y, Scherz A. Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: synthesis, solubility, phototoxicity and the effect of serum proteins. Photochem Photobiol. 2005 Jul-Aug;81(4):983-93. PubMed PMID: 15839743.

13: Mazor O, Brandis A, Plaks V, Neumark E, Rosenbach-Belkin V, Salomon Y, Scherz A. WST11, a novel water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution and vascular-targeted photodynamic activity using melanoma tumors as a model. Photochem Photobiol. 2005 Mar-Apr;81(2):342-51. PubMed PMID: 15623318.

14: Plaks V, Posen Y, Mazor O, Brandis A, Scherz A, Salomon Y. Homologous adaptation to oxidative stress induced by the photosensitized Pd-bacteriochlorophyll derivative (WST11) in cultured endothelial cells. J Biol Chem. 2004 Oct 29;279(44):45713-20. Epub 2004 Aug 31. PubMed PMID: 15339936.

////////PADELIPORFIN,  WST11, WST-11, WST 11, Stakel, padeliporfin, palladiumbacteriopheophorbide monolysine taurine, EU 2017, EMA 2017

CCC1C(C2=NC1=CC3=C(C(=C([N-]3)C(=C4C(C(C(=N4)C=C5C(=C(C(=C2)[N-]5)C(=O)C)C)C)CCC(=O)O)CC(=O)OC)C(=O)NCCS(=O)(=O)O)C)C.[Pd+2]

Tivozanib, ティボザニブ塩酸塩水和物


Tivozanib.svg

ChemSpider 2D Image | Tivozanib | C22H19ClN4O5

Tivozanib

  • Molecular FormulaC22H19ClN4O5
  • Average mass454.863 Da
AV951
AV951 (KRN951, Tivozanib)
AV-951; AV951;AV 951
AV-951|KRN-951|VEGFR tyrosine kinase inhibitor IV
KRN 951
1-{2-Chloro-4-[(6,7-diméthoxy-4-quinoléinyl)oxy]phényl}-3-(5-méthyl-1,2-oxazol-3-yl)urée
1-{2-Chloro-4-[(6,7-dimethoxy-4-quinolinyl)oxy]phenyl}-3-(5-methyl-1,2-oxazol-3-yl)urea
475108-18-0 [RN] FREE FORM
AV 951
N-(2-chloro-4-((6,7-dimethoxy-4-quinolyl)oxy)phenyl)-N’-(5-methyl-3-isoxazolyl)urea
  • N-[2-Chloro-4-[(6,7-dimethoxy-4-quinolinyl)oxy]phenyl]-N’-(5-methyl-3-isoxazolyl)urea
  • AV 951
  • KRN 951
  • Kil 8951
  • N-[2-Chloro-4-[(6,7-dimethoxy-4-quinolyl)oxy]phenyl]-N’-(5-methyl-3-isoxazolyl)urea
  • CAS HCL HYDRATE 682745-41-1
  • 682745-43-3  HCL

Tivozanib (AV-951) is an oral VEGF receptor tyrosine kinase inhibitor. It has completed a pivotal Phase 3 investigation for the treatment of first line (treatment naive) patients with renal cell carcinoma.[1] The results from this first line study did not lead to FDA approval, but Tivozanib was approved by the EMA in August 2017[2]

Originally developed at Kirin Brewery, in January 2007 AVEO Pharmaceuticals acquired an exclusive license to develop and commercialize tivozanib in all territories outside of Asia.

In 2010, orphan drug designation was assigned in the E.U. for the treatment of renal cell carcinoma. In 2011, the compound was licensed to Astellas Pharma and AVEO Pharmaceuticals on a worldwide basis for the treatment of cancer

Tivozanib is an orally bioavailable inhibitor of vascular endothelial growth factor receptors (VEGFRs) 1, 2 and 3 with potential antiangiogenic and antineoplastic activities. Tivozanib binds to and inhibits VEGFRs 1, 2 and 3, which may result in the inhibition of endothelial cell migration and proliferation, inhibition of tumor angiogenesis and tumor cell death. VEGFR tyrosine kinases, frequently overexpressed by a variety of tumor cell types, play a key role in angiogenesis.

Tivozanib was originally developed by Kyowa Hakko Kirin and in 2007 AVEO Pharmaceutical acquired all the rights of the compound outside Asia. In December 2015, AVEO reached an agreement with EUSA Pharma, which acquired exclusive rights to tivozanib for advanced renal cell carcinoma in Europe, South America, Asia, parts of the Middle East and South Africa.

Tivozanib is an inhibitor of vascular endothelial growth factor (VEGF) receptors 1, 2, and 3 for first-line treatment of patients with advanced renal cell carcinoma in advanced disease or without VEGFR and mTOR inhibitors and progression after cytokine therapy Advanced renal cell carcinoma patients. Fotivda® is an oral capsule containing 890 μg and 1340 μg of Tivozanib per tablet. The recommended dose is 1 day, each 1340μg, taking three weeks, withdrawal for a week.

Image result for tivozanib

Image result for TIVOZANIB EMAImage result for TIVOZANIB EMA

  • CAS HCL HYDRATE 682745-41-1

ティボザニブ塩酸塩水和物;

Pharmacotherapeutic group

Antineoplastic agents

Therapeutic indication

Fotivda is indicated for the first line treatment of adult patients with advanced renal cell carcinoma (RCC) and for adult patients who are VEGFR and mTOR pathway inhibitor-naïve following disease progression after one prior treatment with cytokine therapy for advanced RCC.

Treatment of advanced renal cell carcinoma

Fotivda : EPAR -Product Information

http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004131/human_med_002146.jsp&mid=WC0b01ac058001d124

http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/004131/WC500239035.pdf

str6

Tivozanib is synthesized in three main steps using well defined starting materials with acceptable specifications.
Adequate in-process controls are applied during the synthesis. The specifications and control methods for intermediate products, starting materials and reagents have been presented. The critical process parameters are duly justified, methodology is presented and control is adequate.
The characterisation of the active substance and its impurities are in accordance with the EU guideline on chemistry of new active substances. Potential and actual impurities were well discussed with regards to their origin and characterised.
The active substance is packaged in a low-density polyethylene (LDPE) bag which complies with the EC
directive 2002/72/EC and EC 10/2011 as amended.

Product details

NAME Fotivda
AGENCY PRODUCT NUMBER EMEA/H/C/004131
ACTIVE SUBSTANCE tivozanib
INTERNATIONAL NON-PROPRIETARY NAME(INN) OR COMMON NAME tivozanib hydrochloride monohydrate
THERAPEUTIC AREA Carcinoma, Renal Cell
ANATOMICAL THERAPEUTIC CHEMICAL (ATC) CODE L01XE

Publication details

MARKETING-AUTHORISATION HOLDER EUSA Pharma (UK) Limited
REVISION 0
DATE OF ISSUE OF MARKETING AUTHORISATION VALID THROUGHOUT THE EUROPEAN UNION 24/08/2017

Contact address:

EUSA Pharma (UK) Limited
Breakspear Park, Breakspear Way
Hemel Hempstead, HP2 4TZ
United Kingdom

Mechanism

An oral quinoline urea derivative, tivozanib suppresses angiogenesis by being selectively inhibitory against vascular endothelial growth factor.[3] It was developed by AVEO Pharmaceuticals.[4] It is designed to inhibit all three VEGF receptors.[5]

Results

Phase III results on advanced renal cell carcinoma suggested a 30% or 3 months improvement in median PFS compared to sorafenibbut showed an inferior overall survival rate of the experimental arm versus the control arm.[5][6] The Food and Drug Administration‘s Oncologic Drugs Advisory Committee voted in May 2013 13 to 1 against recommending approval of tivozanib for renal cell carcinoma. The committee felt the drug failed to show a favorable risk-benefit ratio and questioned the equipose of the trial design, which allowed control arm patients who used sorafenib to transition to tivozanib following progression disease but not those on the experimental arm using tivozanib to transition to sorafenib. The application was formally rejected by the FDA in June 2013, saying that approval would require additional clinical studies.[6]

In 2016 AVEO Oncology published data in conjunction with the ASCO meeting showing a geographical location effect on Overall Survival in the Pivotal PhIII trial[7]

In 2016 AVEO Oncology announced the start of a second Pivotal PhIII clinical study in Third Line advanced RCC patients. [8]

In 2016 EUSA Pharma and AVEO Oncology announced that Tivozanib had been submitted to the European Medicines Agency for review under the Centralised Procedure. [9]

In June 2017 the EMA Scientific Committee recommended Tivozanib for approval in Europe, with approval expected in September.[10]

In August 2017 the European Commission (EC) formally approved Tivozanib in Europe.[11]

SYNTHESIS

Heterocycles, 92(10), 1882-1887; 2016

STR1

CLIP

 

Paper

Heterocycles (2016), 92(10), 1882-1887

Short Paper | Regular issue | Vol 92, No. 10, 2016, pp. 1882 – 1887
Published online: 5th September, 2016

DOI: 10.3987/COM-16-13555
■ A New and Practical Synthesis of Tivozanib

Chunping Zhu, Yongjun Mao,* Han Wang, and Jingli Xu

*College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Songjiang, Shanghai, 201620, China

Abstract

New and improved synthetic route of tivozanib is described on a hectogram scale. An reduction cyclization process to prepare the key intermediate 6,7-dimethoxyquinolin-4-ol from the 3-(dimethylamino)-1-(2-nitrophenyl)prop-2- en-1-one compound at H2/Ni condition is adopted in good result. Commercial available materials, simple reaction and operation are used, including nitration, condensation, hydrogenation, chlorination and so on, to give the final product in 28.7% yield over six steps and 98.9% purity (HPLC).

Image result for tivozanib

PAPER

https://www.sciencedirect.com/science/article/pii/S0960894X15003054

Bioorganic & Medicinal Chemistry Letters

Volume 25, Issue 11, 1 June 2015, Pages 2425-2428
STR1
HC-1144 (yield: 69.0% ) as a white solid. 1H NMR (400 MHz, CD3OD): δ 8.33 (d, J=5.2 Hz, 1H,), 8.17(d, J=9.2 Hz, 1H), 7.47 (s, 1H), 7.29 (d, J=2.4 Hz, 1H), 7.23 (s, 1H), 7.10(m, 1H), 6.47(d, J=5.2 Hz, 1H), 6.28 (brs, 1H), 2.30 (s, 3H). MS (ESI, m/z): 461 [M+H]+.

PAPER

J MED CHEM 2005 48 1359

STR1 STR2 str3

PATENT

WO 2002088110

KUBO, Kazuo; (JP).
SAKAI, Teruyuki; (JP).
NAGAO, Rika; (JP).
FUJIWARA, Yasunari; (JP).
ISOE, Toshiyuki; (JP).
HASEGAWA, Kazumasa; (JP)

Scheme 1 and Scheme 2

Skiing

PATENT

WO 2004035572

MATSUNAGA, Naoki; (JP).
YOSHIDA, Satoshi; (JP).
YOSHINO, Ayako; (JP).
NAKAJIMA, Tatsuo; (JP)

Preparation example: Preparation of N- {2-chloro-1- [(6,7-dimethoxy- 14 1 quinolyl) oxyl] phenyI} – N, – (5-methyl- 3 -isoxazolyl) urea ) Nitration process:

3, 4-Dimethoxyacetophenone (1 500 g) was dissolved in 5:: L 0 ° C of 17% nitric acid (1400 g), and 67% nitric acid (843 0 g) and sodium nitrite g) at a temperature of 5 to 10 ° C. over a period of 2 to 3 hours. After completion of dropping, the mixture was stirred at 5 to 10 ° C. for 1 to 2 hours. Cold water (7. 5 L) was added and after stirring for 30 minutes, filtration and washing with water (30 L). The filtrate was added to water (7. 5 L), neutralized with sodium bicarbonate water, filtered, and washed with water (7 L). The filtrate was dried under reduced pressure to obtain 3, 4-dimethoxy-6-nitroacetophenone (2164 g) (yield = 87.9%).

‘H-NMR (400 MHz, CD C 1 3 / p pm); 62. 5 0 (s, 3 H), 3. 9 7 (s, 3H), 3. 9 9 (s, 3 H), 6. 76 (s, 1 H), 7.6 2 (s, 1 H)

(2) Reduction process:

Methanol (5. 4 L), acetic acid (433 g:), 5% palladium / power monobonn (162 g) was added to 3, 4-dimethoxy-6-nitroacetophenone (1082 g) and hydrogen gas The mixture was stirred for 8 hours under pressure (2 Kg / cm 2, 40 ° C. The reaction solution was filtered, washed with methanol (1 L), and the filtrate was neutralized with aqueous sodium hydroxide solution and concentrated under reduced pressure Water (10 L) was added to the concentrate, stirred overnight, filtered and washed with water (7 L) Toluene (4 L) was added to the filtrate, heated to 80 ° C., 1 After stirring for a while, the residue was concentrated under reduced pressure and the residue was filtered, washed with toluene (300 mL), dried under reduced pressure to give 2-amino-4,5-dimethoxa Cetophenone (576 g) was obtained (yield = 6.1%).

‘H-NM (400 MHz, CD C 1 3 / p pm); 62. 5 6 (s, 3 H), 3. 84 (s, 3H), 3. 88 (s, 3 H), 6. 10 ( s, 1 H), 7.11 (s, 1 H)

(3) Cyclization step:

Tetrahydrofuran (THF) (5. 3 L) and sodium methoxide (3 1 3 g) were added to 2-amino-4, 5-dimethoxyacetophenone (33 7 g) and the mixture was stirred at 20 ° C for 30 minutes. At 0 ° C, ethyl formate (858 g) was added and stirred at 20 ° C for 1 hour. Water (480 mL) was added at 0 ° C. and neutralized with 1 N hydrochloric acid. After filtering the precipitate, the filtrate was washed with slurry with water (2 L). After filtration, the filtrate was dried under reduced pressure to obtain 6, 7-dimethoxy-141 quinolone (3 52 g) (yield = 8.15%).

‘H-NMR (400 MHz, DMS 0 – d 6 / ppm); 63. 8 1 (s, 3 H), 3. 84 (s, 3 H), 5. 94 (d, 1 H), 7. 0 1 (s, 1 H), 7. 43 (s, 1 H), 7. 76 (d, 1 H)

(4) Clovalization process

Toluene (3 L) and phosphorus oxychloride (1300 g) were added to 6, 7-dimethoxy-1-quinolone (105 g), and the mixture was stirred under heating reflux for 1 hour. It was neutralized with aqueous sodium hydroxide solution at 0 ° C. The precipitate was filtered, and then the filtrate was washed with water (10 L) for slurry. After filtering, the filtrate was dried under reduced pressure to obtain 4 1 -chloro- 16, 7-dimethoxyquinoline (928 g) (yield – 87.6 %) c ‘H-NMR (400 MHz, DMS 0 – d 6 / ppm); 63. 9 5 (s, 3 H), 3. 9 6 (s, 3 H), 7. 3 5 (s, 1 H), 7. 43 (s, 1 H) , 7. 54 (d, 1 H), 8. 59 (d, 1 H)

(5) Phenol site introduction step:

4-Amino-3-chlorophenol · HC 1 (990 g) was added to N, N-dimethylacetamide (6. 6 L). Potassium t-butoxide (145 2 g) was added at 0 ° C. and the mixture was stirred at 20 ° C. for 30 minutes. 4-Chloro-6, 7-dimethoxyquinoline (82 5 g) was added thereto, followed by stirring at 115 ° C for 5 hours. After cooling the reaction solution to room temperature, water (8. 3 L) and methanol (8.3 L) were added and the mixture was stirred for 2 hours. After filtration of the precipitate, the filtrate was washed with slurry with water (8. 3 L), filtered, and the filtrate was dried under reduced pressure to give 4- [(4-amino-3-chlorophenol) 6, 7-Dimethoxyquinoline (8 52 g) was obtained (yield = 6 9. 9%).

‘H-NMR (400MH z, DMS 0 – d 6 / ppm); 63. 9 2 (s, 3 H), 3. 93 (s, 3 H), 5. 4 1 (s, 2 H), 6 (D, 1 H), 6. 89 (d, 1 H), 6. 98 (dd, 1 H), 7. 19 (d, 1 H), 7. 36 (s, 1 H) , 7. 48 (s, 1 H), 8. 43 (d, 1 H)

(6) Ureaization process:

To 3 – amino – 5 – methylisoxazole (377 g), pyridine (1 2 1 5:), N, N – dimethylacetamide (4 L) at 0 ° C was added chlorobutyl carbonate phenyl

(60 1 g) was added dropwise and the mixture was stirred at 20 ° C. for 2 hours. 4- [(4-amino-1-chlorophenol) oxy] -6, 7-dimethoxyquinoline (84 7 g) was added to the reaction solution, and the mixture was stirred at 80 ° C. for 5 hours. The reaction solution was cooled to 5 ° C, then added with MeOH (8. 5 L) and water (8. 5 L) and neutralized with aqueous sodium hydroxide solution. After filtering the precipitate, the filtrate was washed with water (8. 5 L) for slurry. After filtration, the filtrate was dried under reduced pressure to give N- {2-chloro-4- [(6,7-dimethoxy-4-quinolyl) oxy] phenyl] – N, 1- -isoxazolyl) urea (1002 g) was obtained (yield = 86.1%).

‘H-NMR (400 MHz, DMS 0 – d 6 / ppm); 62.37 (s, 3 H), 3. 92 (s, 3 H), 3. 94 (s, 3 H), 6. 7 (s, 1 H), 7. 48 (s, 1 H), 7 (s, 1 H), 6. 54 (d, . 5 1 (d, 1 H), 8. 2 3 (d, 1 H), 8. 49

(d, 1 H), 8. 77 (s, 1 H), 1 0.16 (s, 1 H)

PATENT

WO 2011060162

WO 2017037220

CN 106967058

CN 104072492

CN 102532116

CN 102408418

PAPER

Advanced Materials Research Vols. 396-398 (2012) pp 1490-1492

STR1

Synthesis of the compounds

The synthesis of 6,7-Dimethoxy-4-quinolinone (2a) The 33.7g (0.173mol) of 2-amino-4,5-dimethoxy acetophenone, 150 ml of methanol and 95.5g (0.69mol) of anhydrous potassium carbonate were added to the 500 ml flask and stirred about 1 h at room temperature. Then, the ethyl formate (75.8g, 0.861mol) was dropped the admixture and reactioned about 2 h in the same temperature. The admixture was filtrated and the 35.2 g white powder compound 2a (C11H11NO3) was obtained with the yield of 81.5% and m.p. 124-125. 1H-NMR (DMSO-d6/ppm): δ 3.81 (s, 3H), 3.84 (s,3H), 5.94 (d,1H), 7.01 (s,1H), 7.43 (s,1H), 7.76 (d,1H). ESI-MS: 206 (M+ +1).

The synthesis of 4-chloro-6,7-dimethoxy-quinoline (2b)The 100 ml of toluene, 15 g (0.103 mol) of phosphorus trichloride and 10.6 g (0.52 mol) compound 2a were added to the 250 ml of three bottles, the obtained mixture was refluxed about 2 h. Then, the reaction mixture was cooled to the room temperature, filtrated and the solid was dried. The 9.3 g similar white powder compound 2b (C11H10ClNO2 ) was obtained with the yield of 96.9% and m.p.138-140 ℃ . 1H-NMR (DMSO-d6/ppm): δ 3.95 (s,3H) , 3.96 (s,3H), 7.35 (s,1H), 7.43 (s,1H), 7.54 (d,1H), 8.59(d,1H). ESI-MS: 225 (M+ +1).

The synthesis of 4-[(4-Amino-3-phenol) oxy]-6,7-dimethoxy-quinoline (2c) The 60 ml of N, N-dimethylformamide, 8.9g (0.05 mol) of 4-amino-3-chlorophenol hydrochloride, 14.5g (0.105 mol) of potassium carbonate and 8.3 g (0.037 mol) compounds 2b were added to the 250 ml of three bottles, the obtained mixture was refluxed about 2 h. Then, the reaction mixture was cooled to the room temperature and the 100 ml of anhydrous ethanol was added. The obtained mixture was stirred about 1 h and filtrated. The filtered product was then dried under the reduced pressure to give the 8.5 g similar white powder compound 2c (C17H15ClN2O3) with the yield of 69.9%. 1H-NMR (DMSO-d6/ppm): δ 3.92 (s,3H), 3.93 (s,3H), 5.41 (s,2H), 6.41 (d,1H), 6.89 (d,1H), 6.98 (dd,1H), 7.19 (d,1H), 7.36 (s,1H), 7.48 (s,1H), 8.43(d,1H). ESI-MS: 331 (M+ +1).

The synthesis of N-{2-chloro-4-[(6,7-dimethoxy-4-quinolyl)oxy]phenyl} -N’- (5-methyl-3- isoxazole-yl) urea (2d) The 100 ml of N,N-dimethylformamide, 5.0g (0.051mol) of 3-amino-5- methylisoxa -zole, 7.98 g (0.051mol) of phenyl chloroformate and 17g (0.051mol) compound 2c were added to the 250 ml of three bottles. The mixture was refluxed about 5 h, cooled to room temperature, added the 100 ml of anhydrous ethanol. The obtained mixture was stirred 1 h and filtrated. The filtered product was slurried in water for washing. The slurry was filtered, and the filtered product was then dried under the reduced pressure to give the 20.0g white crystal compound 2d (C22H19ClN4O5) with the yield of 86.1% and the purity of more than 98.5 %. 1H-NMR (DMSO-d6/ppm): δ 2.37 (s,3H), 3.92 (s,3H), 3.94 (s,3H), 6.50 (s,1H), 6.54 (d,1H), 7.26 (dd,1H), 7.39 (s,1H), 7.48 (s,1H), 7.51 (d,1H), 8.23 (d,1H), 8.49 (d,1H), 8.77 (s,1H), 10.16(s,1H). ESI-MS: 456 (M+ +1).

Conclusions Tivozanib was synthesized through the cyclization, chlorinated, condensation reaction with 2-amino-4,5-dimethoxy acetophenone as the starting material. The total yield was 47.5% and the product purity of more than 98.5 %. The synthetic routs and methods of tivozanib are feasible to industrial production owing to the cheap raw materials, mild reaction conditions, stable technology and high yield.

PATENT

https://patents.google.com/patent/CN102532116B/en

Example

Figure CN102532116BD00063

[0035] In 250ml three-neck flask, 80ml of chloroform and 22. 0g (0. 16mol) of anhydrous aluminum chloride at room temperature were successively added dropwise l〇.2g (0. 13mol) acetyl chloride, 13.8g (0. i mole) phthalic dimethyl ether, dropwise, stirred at room temperature until the reaction end point (GLC trace). The reaction solution was poured into 500ml diluted hydrochloric acid, with stirring, the organic phase was separated, the aqueous phase was extracted with chloroform and the combined organic phases were dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give 15. Og of white powder Compound Ia (CltlH12O3), mp 48-52 ° C, 83% yield. HKcnT1): 1673,1585,1515,1418 1H-NMR (CDCl3 / ppm):! S 2. 55 (s, 3H), 3.73 (s, 3H), 3.73 (s, 3H), 6.77 (s, lH) , 7.26 (s, lH), 7.31 (s, lH).

[0036] The two 3 Synthesis of 4-dimethoxy-6-nitroacetophenone (Compound lb) Example

[0037] CN 102532116 B specification 4/6

Figure CN102532116BD00071

[0038] In 500ml three-neck flask, was added IOOml formic acid and 18g (0 • lmol) compound la, KTC hereinafter 60ml of concentrated nitric acid was added dropwise, dropwise, warmed to 60-70 ° C, stirred for 30min. The reaction mixture was poured into 500ml ice water bath and stirred, suction filtered to give a pale yellow powder 36.9g Compound lb (CltlH11NO5), mp 135-137 ° C, in 82% yield. 1H-NMR (CDCl3 / ppm): S 2. 50 (s, 3H), 3 97 (s, 3H), 3 99 (s, 3H), 6 76 (s, 1H), 7. 62 (… s, 1H).

Example tri-2-amino-4, Synthesis of 5-dimethoxy acetophenone (Compound Ic), [0039] Embodiment

Figure CN102532116BD00072

[0041] In 250ml three-neck flask, 36ml of water was added and 7g (0. 125mol) of reduced iron powder was heated and refluxed for LH, was slowly added 5. 6g (0. 025mol) LB compound, stirred for 3h, filtered off with suction, the filtrate is cooled, to give a yellow powder 7g compound Ic (C10H13NO3), mp 106-108 ° C, in 96% yield.1H-NMR (CDCl3Zppm): S 2. 56 (s, 3H), 3.84 (s, 3H), 3.88 (s, 3H), 6.10 (s, lH), 7.11 (s, lH).

Synthesis of four 6, 7-dimethoxy-4-quinolinone (Compound Id), [0042] Example

Figure CN102532116BD00073

[0045] A 33. 7g (0 • 173mol) Compound lc, 150ml methanol and 95. 5g (0 • 69mol) of anhydrous potassium carbonate were added to a 500ml three-necked flask, LH stirred at room temperature, was added dropwise 75. 8g (0. 861mol) ethyl, the reaction incubated 2h. Suction filtration and dried, to give 35. 2g of a white powder compound Id (C11H11NO3), mp 124-125 ° C, yield 81.5%. 1H-NMR (DMSO-Cl6Zppm): 8 3.81 (s, 3H), 3.84 (s, 3H), 5.94 (d, 1H), 7.01 (s, 1H), 7.43 (s, lH), 7.76 (d, lH ).

[0046] Example 4- five-chloro-6, 7-dimethoxy-quinoline (compound Ie) Synthesis of

[0047] CN 102532116 B specification 5/6

Figure CN102532116BD00081

[0049] The IOOml toluene, 10. 6g (0 • 52mol) Compound Id and 15g (0 • 103mol) phosphorus trichloride force the opening into a 250ml three-necked flask and heated at reflux for 2h, cooled suction filtration and dried to give 9 . 3g white powder compound Ie (C11H10ClNO2), mp 138-14 (TC, yield 87. 6% .1H-NMR (DMS〇-d6 / ppm): 8 3. 95 (s, 3H), 3.96 ( s, 3H), 7.35 (s, lH), 7.43 (s, lH), 7.54 (d, lH), 8.59 (d, lH).

Six 4 [0050] Example – [(4-amino-phenol) oxy] -6, 7-dimethoxy-quinoline (compound If) Synthesis of

Figure CN102532116BD00082

[0053] In 250ml three-neck flask, was added 60ml of N, N- dimethylformamide, 8. 9g (0 • 05mol) 4- amino-3-chlorophenol hydrochloride, 14.5g (0.105mol) of potassium carbonate and (0.037 mol) compound le 8.3g, was heated refluxed for 2h. Cooled to room temperature, IOOml ethanol, stirred, filtered off with suction, and dried to give compound 8. 5g If (C17H15ClN2O3), a yield of 69. gQ / jH-NMlUDMSO-dyppm): S 3.92 (s, 3H), 3.93 ( s, 3H), 5.41 (s, 2H), 6.41 (d, 1H), 6.89 (d, 1H), 6.98 (dd, 1H), 7.19 (d, 1H), 7.36 (s, 1H), 7.48 (s , 1H), 8.43 (d, 1H).

-N’- (5- methyl-3-isobutyl – [0054] Example seven N- {[(6,7- dimethoxy-4-quinolyl) oxy] phenyl} -42- chloro oxazolyl) urea (compound Ig) synthesis of

Figure CN102532116BD00083

[0056] The IOOml of N, N- dimethylformamide, 5. Og (0.051mol) of 3-amino-5-methylisoxazole, 7. 98g (0 • 051mol) and phenyl chloroformate 17g (0 • 051mol) If a compound was added to 250ml three-necked flask, the reaction was heated at reflux for 5h, cooled to room temperature, ethanol was added IOOml, stirring, filtration, and dried to give 20. Og compound Ig (C22H19ClN4O5), yield 86 . 1%. 1H-NMR (DMS0-d6 / ppm): S 2.37 (s, 3H), 3.92 (s, 3H), 3.94 (s, 3H), 6.50 (s, lH), 6.54 (d, lH), 7.26 (dd , lH), 7.39 (s, lH), 7.48 (s, lH), 7.51 (d, lH), 8.23 ​​(d, lH), 8.49 (d, lH), 8.77 (s, lH), 10.16 (s, lH).

Claims (3)
translated from Chinese
1. An antitumor drugs Si tivozanib to synthesis, the method as follows: The lOOmL of N, N- dimethylformamide, 5 Og of 3-amino-5-methylisoxazole, 7 . 98g phenyl chloroformate and 17g 4- [(4- amino-3-chlorophenol) oxy] -6, 7-dimethoxy-quinoline was added to 250mL three-necked flask, the reaction was heated at reflux for 5h, cooled to rt, lOOmL ethanol was added, stirred, filtered off with suction, and dried to give 20. Og tivozanib, yield 86.1%, the reaction is:
Figure CN102532116BC00021
Wherein the 4- [(4-amino-3-chlorophenol) oxy] -6, 7-dimethoxy-quinoline is obtained by the following synthesis method: in 250mL three-neck flask, was added 60mL of N, N- dimethylformamide, 8. 9g 4- amino-3-chloro-phenol hydrochloride, 14. 5g of potassium carbonate and 8. 3g 4- chloro-6, 7-dimethoxy quinoline, was heated at reflux for 2h cooled to room temperature, 100mL of absolute ethanol was added, stirred, filtered off with suction, and dried to obtain 8. 5g 4 – [(4_-amino-3-chlorophenol) oxy] -6, 7-dimethoxy quinoline, close was 69.9%, the reaction is:
Figure CN102532116BC00022
Said 4-chloro-6, 7-dimethoxy-quinoline is obtained by the following synthesis method: A mixture of 100mL of toluene, 10 6g 6, 7- dimethoxy-4-quinolone and 15g trichloride phosphorus is added to 250mL three-necked flask and heated at reflux for 2h, cooled suction filtration, and dried to give an off-white powder 9. 3g 4- chloro-6, 7-dimethoxy quinoline, a yield of 87.6%, the reaction formula:
Figure CN102532116BC00023
6, 7-dimethoxy-4-quinolone was synthesized by the following method: 33. 7g 2- amino-4, 5-dimethoxy acetophenone, 150 mL of methanol, and 95. 5g anhydrous potassium carbonate was added to the 500mL three-necked flask, stirred at room temperature LH, 75. 8g of ethyl dropwise, the reaction incubated 2h, filtered off with suction, and dried to give 35. 2g of white powder 6, 7-dimethoxy-4 – quinolinone, a yield of 81.5%, the reaction is:
Figure CN102532116BC00031
The 2-amino-4,5-dimethoxy acetophenone is synthesized by the following method: In the 250mL three-neck flask, was added 36mL of water and 7g reduced iron powder was heated and refluxed for LH, was slowly added 5. 6g 3, 4-dimethoxy-6-nitroacetophenone, stirred for 3h, filtered off with suction, the filtrate was cooled to give a yellow powder 7g of 2-amino-4,5-dimethoxy acetophenone, yield 96 %, the reaction is:
Figure CN102532116BC00032
2. The synthesis method according to claim 1, wherein: said 3,4-dimethoxy-6-nitroacetophenone is 3, 4-dimethoxy acetophenone nitration obtained by a reaction of reaction formula:
Figure CN102532116BC00033
3. The method of synthesis according to claim 2, wherein: said 3,4-dimethoxy acetophenone in the catalyst, to give the phthalimido ether is reacted with acetyl chloride by Friedel The reaction is:

References

  1.  Tivozanib is currently being evaluated in the pivotal Phase 3 TIVO-3 trial, a randomized, controlled, multi-center, open-label study to compare tivozanib to sorafenib in subjects with refractory advanced RCC. FDA approval is expected in 2018. A Study of Tivozanib (AV-951), an Oral VEGF Receptor Tyrosine Kinase Inhibitor, in the Treatment of Renal Cell Carcinoma, clinicaltrials.gov
  2.  http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004131/human_med_002146.jsp&mid=WC0b01ac058001d124.
  3.  Campas, C., Bolos, J., Castaner, R (2009). “Tivozanib”Drugs Fut34 (10): 793.
  4.  Aveo Kidney Cancer Drug Shows Success; Shares Up, By John Kell, Dow Jones Newswires[dead link]
  5.  “Phase III Results Lead Aveo and Astellas to Plan Regulatory Submissions for Tivozanib”. 3 Jan 2012.
  6. “FDA Rejects Renal Cancer Drug Tivozanib”. MedPage Today. June 30, 2013.
  7.  http://meetinglibrary.asco.org/content/165081-176
  8.  http://investor.aveooncology.com/phoenix.zhtml?c=219651&p=irol-newsArticle&ID=2172669
  9.  http://www.eusapharma.com/files/EUSA-Pharma-file-tivozanib-in-EU-March-2016.pdf
  10.  “AVEO Pharma surges 48% on recommendation for European approval of its cancer drug”Market Watch. June 28, 2017. Retrieved June 28, 2017.
  11.  “AVEO Oncology Announces FOTIVDA® (tivozanib) Approved in the European Union for the Treatment of Advanced Renal Cell Carcinoma” (PDF). AVEO Oncology. August 28, 2017. Retrieved February 9, 2018.
Patent ID

Patent Title

Submitted Date

Granted Date

US2017112821 Multi-Tyrosine Kinase Inhibitors Derivatives and Methods of Use
2017-01-09
US2014275183 AGENT FOR REDUCING SIDE EFFECTS OF KINASE INHIBITOR
2014-05-29
2014-09-18
US8969344 Method for assay on the effect of vascularization inhibitor
2012-09-21
2015-03-03
US2012252829 TIVOZANIB AND CAPECITABINE COMBINATION THERAPY
2012-03-30
2012-10-04
US8815241 Use of Combination of Anti-Angiogenic Substance and c-kit Kinase Inhibitor
2011-12-01
Patent ID

Patent Title

Submitted Date

Granted Date

US2009053236 USE OF COMBINATION OF ANTI-ANGIOGENIC SUBSTANCE AND c-kit KINASE INHIBITOR
2009-02-26
US7166722 N-{2-chloro-4-[(6, 7-dimethoxy-4-quinolyl)oxy]phenyl}-n’-(5-methyl-3-isoxazolyl)urea salt in crystalline form
2006-03-09
2007-01-23
US7211587 Quinoline derivatives and quinazoline derivatives having azolyl group
2004-11-18
2007-05-01
US6821987 Quinoline derivatives and quinazoline derivatives having azolyl group
2003-05-08
2004-11-23
US2017191137 Method For Predicting Effectiveness Of Angiogenesis Inhibitor
2017-03-16
Patent ID

Patent Title

Submitted Date

Granted Date

US9006256 ANTITUMOR AGENT FOR THYROID CANCER
2011-08-25
US2015168424 IGFBP2 Biomarker
2014-12-01
2015-06-18
US7998973 Tivozanib and Temsirolimus in Combination
2011-05-19
2011-08-16
US8216571 FULLY HUMAN ANTI-VEGF ANTIBODIES AND METHODS OF USING
2011-04-28
2012-07-10
US2011014117 ANTI-IGF1R
2011-01-20
ivozanib
Tivozanib.svg
Names
IUPAC name

1-{2-Chloro-4-[(6,7-dimethoxyquinolin-4-yl)oxy]phenyl}-3-(5-methylisoxazol-3-yl)urea
Other names

AV-951
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
KEGG
PubChem CID
UNII
Properties
C22H19ClN4O5
Molar mass 454.87 g·mol−1
Pharmacology
L01XE34 (WHO)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

////////Tivozanib, ema 2017, ASP-4130, AV-951, KRN-951, Kil-8951, Fotivda, Tivopath, orphan drug, ティボザニブ塩酸塩水和物,

CC1=CC(=NO1)NC(=O)NC2=C(C=C(C=C2)OC3=C4C=C(C(=CC4=NC=C3)OC)OC)Cl

Novel Drug Approvals for 2017, A Review/Compilation


CDSCOImage result for FDA EMA

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO, Novel Drug Approvals for 2017, A Review Compilation (USFDA, EMA, PMDA, CDSCO).

Any errors in this compilation, email  amcrasto@gmail.com, Call +919323115463

Some gaps will be filled up soon keep watching……………..

INDEX, NAME (click on the title,  it contains link)

SECTION A; USFDA Approvals

1 Abaloparatide

2 Abemaciclib

3 ACALABRUTINIB

4 ANGIOTENSIN II

5 AVELUMAB

6 BENRALIZUMAB

7 BENZNIDAZOLE

8 BETRIXABAN

9 BRIGATINIB

10 BRODALUMAB

11 CERLIPONASE ALPA

12 COPANLISIB

13 DEFLAZACORT

14 Delafloxacin

15 Deutetrabenazine

16DUPILUMAB

17 DURVALUMAB

18 EDAVARONE

19 EMICIZUMAB

20 Enasidenib

21 ERTUGLIFLOZIN

22 ETELCALCETIDE

23 GLECAPREVIR

24 GUSELKUMAB

25 INOTUZUMAB OZOGAMICIN

26 LATANOPROSTENE

27 LETERMOVIR

28 MACIMORELIN ACETATE

29 MEROPENEM

30 MIDOSTAURIN

31 NALDEMEDINE

32 NERATINIB

33 NETARSUDIL

34 NIRAPARIB

35 Ocrelizumab

36 OZENOXACIN

37 PIBRENTASVIR

38 PLECANATIDE

39 RIBOCICLIB

40  SARILUMAB

41 SECNIDAZOLE

42 SAFINAMIDE

43 SEMAGLUTIDE

44 SOFOSBUVIR

45 TELOTRISTAT ETHYL

46 VABORBACTAM

47 VALBENAZINE

48 VESTRONIDASE ALFA-VJBK

49 VELPATASVIR

50 VOXILAPREVIR

INDEX, FORMULATION NAME

USFDA

•Aliqopa (COPANLISIBto treat adults with relapsed follicular lymphoma — a slow-growing type of nonHodgkin lymphoma (a cancer of the lymph system) — who have received at least two prior systemic therapies;

• ALUNBRIG, BRIGATINIBTo treat patients with anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib

• Austedo, Deutetrabenazine For the treatment of chorea associated with Huntington’s disease

• Bavencio (avelumab) for the treatment of patients 12 years and older with a rare and aggressive form of cancer called metastatic Merkel cell carcinoma, including those who have not received prior chemotherapy;

•BAXDELLA, Delafloxacin, BACTERIAL INFECTIONS

• Benznidazole to treat children ages 2 to 12 years with Chagas disease, a parasitic infection that can cause serious heart illness after years of infection, and can also affect swallowing and digestion. This is the first treatment approved in the United States for this rare disease;

• Besponsa (inotuzumab ozogamicin) for the treatment of adults with a type of cancer of the blood called relapsed or refractory B-cell precursor acute lymphoblastic leukemia;

BEVYXXA, BETRIXABAN, For the prophylaxis of venous thromboembolism (VTE) in adult patients hospitalized for an acute medical illness

• BRINEURA, CERLIPONASE ALFATo treat a specific form of Batten disease

• Calquence (ACALABRUTINIB) to treat adults with mantle cell lymphoma who have received at least one prior therapy. Mantle cell lymphoma is a particularly aggressive cancer;

• DUPIXENT, (DUPILUMAB) To treat adults with moderate-to-severe eczema (atopic dermatitis)

• Emflaza (deflazacort) to treat patients age 5 years and older with Duchenne muscular dystrophy, a rare genetic disorder that causes progressive muscle deterioration and weakness;

• FASENRA, BENRALIZUMAB, For add-on maintenance treatment of patients with severe asthma aged 12 years and older, and with an eosinophilic phenotype

• Giapreza (angiotensin II), for the treatment of hypotension in adults with distributive or vasodilatory shock (dangerously low blood pressure despite adequate heart function) whose blood pressure remains low despite receiving fluids and treatment with drugs called vasopressors;

•  HEMLIBRA EMICIZUMAB To prevent or reduce the frequency of bleeding episodes in adult and pediatric patients with hemophilia A who have developed antibodies called Factor VIII (FVIII) inhibitors.

• Idhifa (enasidenibfor the treatment of adults with relapsed or refractory acute myeloid leukemia, a form of blood cancer, who have a specific genetic mutation;

• IMFINZI, DURVALUMAB To treat patients with locally advanced or metastatic urothelial carcinoma

• Ingrezza (valbenazineto treat adults with tardive dyskinesia, a side effect of some antipsychotic medications whereby patients can experience uncontrollable stiff, jerky movements of their face and body, and other uncontrolled movements such as eye-blinking, sticking out the tongue, and arm-waving;

•  KEVZARA SARILUMAB, RHEUMATOID ARTHRITIS

• KISQALI, RIBOCICLIB, To treat postmenopausal women with a type of advanced breast cancer

• Macrilen  macimorelin acetate, For the diagnosis of adult growth hormone deficiency

• Mavyret (glecaprevir and pibrentasvir) to treat adults with chronic hepatitis C virus genotypes 1-6 without cirrhosis (liver disease) or with mild cirrhosis, including patients with moderate to severe kidney disease, as well as those who are on hemodialysis;

• Mepsevii (vestronidase alfa-vjbk) to treat patients with Sly syndrome or mucopolysaccharidosis type 7 – a rare genetic disorder where an enzyme deficiency results in skeletal abnormalities, developmental delay, enlarged liver and spleen, and narrowed airways, which can lead to respiratory infections;

 Nerlynx (neratinib) for the extended adjuvant treatment — a form of therapy administered after an initial treatment to further lower the risk of the cancer coming back — of early-stage, human epidermal growth factor receptor 2 (HER2)-positive breast cancer;

 OCREVUS, OCRELIZUMAB, To treat patients with relapsing and primary progressive forms of multiple sclerosis

 OZEMPIC SEMAGLUTIDE To improve glycemic control in adults with type 2 diabetes mellitus

PARSABIV, ETELCALCETIDE, To treat secondary hyperparathyroidism in adult patients with chronic kidney disease undergoing dialysis

• Prevymis (letermovir) for prevention of an infection called cytomegalovirus (CMV) in patients who are receiving a bone marrow transplant. CMV disease can cause serious health issues in these patients;

 Radicava (edaravoneto treat patients with amyotrophic lateral sclerosis, commonly referred to as Lou Gehrig’s disease, a rare disease that attacks and kills the nerve cells that control voluntary muscles;

• RHOPRESSA, NETARSUDIL To treat glaucoma or ocular hypertension

• Rydapt (midostaurin) to treat adults newly diagnosed with a form of blood cancer known as acute myeloid leukemia who have a specific genetic mutation called FLT3, in combination with chemotherapy;

• Siliq (brodalumab) to treat adults with moderate-to-severe plaque psoriasis, a chronic disorder in which the body’s immune system sends out faulty signals that speed growth of skin cells that then accumulate, causing red, flaky patches that can appear anywhere on the body;

•SOLOSEC, SECNIDAZOLE To treat bacterial vaginosis

•  STEGLATRO ERTUGLIFLOZIN To improve glycemic control in adults with type 2 diabetes mellitus

• Symproic (Naldemedine) for the treatment of opioid-induced constipation in adults with chronic noncancer pain; • Tremfya (guselkumab) for the treatment of adults with moderate-to-severe plaque psoriasis;

• Trulance (plecanatide) to treat adults with chronic idiopathic constipation, which is a persistent condition of constipation due to unknown origin;

• TYMLOS, Abaloparatide, To treat osteoporosis in postmenopausal women at high risk of fracture or those who have failed other therapies

• Vabomere (vaborbactam and meropenem) for treatment of adults with complicated urinary tract infections, including pyelonephritis (kidney infection) caused by bacteria;

• Verzenio (abemaciclib) to treat adults who have hormone receptor (HR)-positive, HER2-negative advanced or metastatic breast cancer that has progressed after taking therapy that alters a patient’s hormones (endocrine therapy);

• Vosevi (sofosbuvir/velpatasvir/voxilaprevir) to treat adults with chronic hepatitis C virus genotypes 1-6 without cirrhosis (liver disease) or with mild cirrhosis;

• VYZULTA LATANOPROSTENE To treat intraocular pressure in patients with open-angle glaucoma or ocular hypertension.

• Xadago (safinamide) as an add-on treatment for patients with Parkinson’s disease who are currently taking levodopa/carbidopa and experiencing “off” episodes;

XERMELO, TELOTRISTAT ETHYL combined with somatostatin analog (SSA) therapy to treat adults with carcinoid syndrome diarrhea that SSA therapy alone has inadequately controlled, and;

• XEPI OZENOXACIN TO TREAT IMPETIGO

XERMELO, TELOTRISTAT ETHYL, To treat carcinoid syndrome diarrhea

• Zejula (niraparib) for the maintenance treatment (intended to delay cancer growth) of adults with recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer, whose tumors have completely or partially shrunk (complete or partial response, respectively) in response to platinum-based chemotherapy

USFDA

No. Drug
Name
Active Ingredient Approval Date FDA-approved use on approval date
46. Giapreza angiotensin II 12/21/2017

Press Release
Drug Trials Snapshot

To increase blood pressure in adults with septic or other distributive shock
45. Macrilen macimorelin acetate 12/20/2017

Drug Trials Snapshot

For the diagnosis of adult growth hormone deficiency
44. Steglatro ertugliflozin 12/19/2017

Drug Trials Snapshot

To improve glycemic control in adults with type 2 diabetes mellitus
43. Rhopressa netarsudil 12/18/2017

Drug Trials Snapshot

To treat glaucoma or ocular hypertension
42. Xepi ozenoxacin 12/11/2017 To treat impetigo
Drug Trials Snapshot
41. Ozempic semaglutide 12/5/2017

Drug Trials Snapshot

To improve glycemic control in adults with type 2 diabetes mellitus
40. Hemlibra emicizumab 11/16/2017

Press Release
Drug Trials Snapshot

To prevent or reduce the frequency of bleeding episodes in adult and pediatric patients with hemophilia A who have developed antibodies called Factor VIII (FVIII) inhibitors.
39. Mepsevii vestronidase alfa-vjbk 11/15/2017

Press Release
Drug Trials Snapshot

To treat pediatric and adult patients with an inherited metabolic condition called mucopolysaccharidosis type VII (MPS VII), also known as Sly syndrome.
38. Fasenra  benralizumab 11/14/2017 For add-on maintenance treatment of patients with severe asthma aged 12 years and older, and with an eosinophilic phenotype
Drug Trials Snapshot
37. Prevymis letermovir 11/8/2017 To prevent infection after bone marrow transplant
Drug Trials Snapshot
36. Vyzulta latanoprostene bunod ophthalmic solution 11/2/2017 To treat intraocular pressure in patients with open-angle glaucoma or ocular hypertension.
Drug Trials Snapshot
35. Calquence acalabrutinib 10/31/2017 To treat adults with mantle cell lymphoma
Press Release
Drug Trials Snapshot
34. Verzenio abemaciclib 9/28/2017 To treat certain advanced or metastatic breast cancers
Press Release
Drug Trials Snapshot
33. Solosec secnidazole 9/15/2017 To treat bacterial vaginosis
Drug Trials Snapshot
32. Aliqopa copanlisib 9/14/2017 To treat adults with relapsed follicular lymphoma
Press Release
Drug Trials Snapshot
31. benznidazole benznidazole 8/29/2017 To treat children ages 2 to 12 years old with Chagas disease
Press Release
Drug Trials Snapshot
30. Vabomere meropenem and vaborbactam 8/29/2017 To treat adults with complicated urinary tract infections
Press Release
Drug Trials Snapshot
29. Besponsa inotuzumab ozogamicin 8/17/2017 To treat adults with relapsed or refractory acute lymphoblastic leukemia
Press Release
Drug Trials Snapshot
28. Mavyret glecaprevir and pibrentasvir 8/3/2017 To treat adults with chronic hepatitis C virus
Press Release
Drug Trials Snapshot
27. Idhifa enasidenib 8/1/2017 To treat relapsed or refractory acute myeloid leukemia
Press Release
Drug Trials Snapshot
26. Vosevi sofosbuvirvelpatasvir and voxilaprevir 7/18/2017 To treat adults with chronic hepatitis C virus
Press Release
Drug Trials Snapshot
25. Nerlynx neratinib maleate 7/17/2017 To reduce the risk of breast cancer returning
Press Release
Drug Trials Snapshot
24. Tremfya guselkumab 7/13/2017 For the treatment of adult patients with moderate-to-severe plaque psoriasis
Drug Trials Snapshot
23. Bevyxxa betrixaban 6/23/2017 For the prophylaxis of venous thromboembolism (VTE) in adult patients hospitalized for an acute medical illness
Drug Trials Snapshot
22. Baxdela delafloxacin 6/19/2017 To treat patients with acute bacterial skin infections
Drug Trials Snapshot
21. Kevzara sarilumab 5/22/2017 To treat adult rheumatoid arthritis
Drug Trials Snapshot
20. Radicava edaravone 5/5/2017 To treat patients with amyotrophic lateral sclerosis (ALS)
Press Release
Drug Trials Snapshot
19. Imfinzi durvalumab 5/1/2017 To treat patients with locally advanced or metastatic urothelial carcinoma
Web Post
Drug Trials Snapshot
18. Tymlos abaloparatide 4/28/2017 To treat osteoporosis in postmenopausal women at high risk of fracture or those who have failed other therapies
Drug Trials Snapshot
17. Rydapt midostaurin 4/28/2017 To treat acute myeloid leukemia
Press Release Chemistry Review(s) (PDF)
Drug Trials Snapshot
16. Alunbrig brigatinib 4/28/2017 To treat patients with anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib
Drug Trials Snapshot
15. Brineura cerliponase alfa 4/27/2017 To treat a specific form of Batten disease
Press Release
Drug Trials Snapshot
14. Ingrezza valbenazine 4/11/2017 To treat adults with tardive dyskinesia
Press Release Chemistry Review(s) (PDF)Drug Trials Snapshot
13. Austedo deutetrabenazine 4/3/2017 For the treatment of chorea associated with Huntington’s disease
Drug Trials Snapshot,  Chemistry Review(s) (PDF)
12. Ocrevus ocrelizumab 3/28/2017 To treat patients with relapsing and primary progressive forms of multiple sclerosis
Press Release
Drug Trials Snapshot
11. Dupixent dupilumab 3/28/2017 To treat adults with moderate-to-severe eczema (atopic dermatitis)
Press Release
Drug Trials Snapshot
10. Zejula niraparib 3/27/2017 For the maintenance treatment for recurrent epithelial ovarian, fallopian tube or primary peritoneal cancers
Press Release
Drug Trials Snapshot
9. Symproic naldemedine 3/23/2017

For the treatment of opioid-induced constipation
Drug Trials Snapshot

8. Bavencio avelumab 3/23/2017 To treat metastatic Merkel cell carcinoma
Press Release
Drug Trials Snapshot
7. Xadago safinamide 3/21/2017 To treat Parkinson’s disease
Press Release
Drug Trials SnapshotChemistry Review(s) (PDF)
6. Kisqali ribociclib 3/13/2017 To treat postmenopausal women with a type of advanced breast cancer
Drug Trials Snapshot
5. Xermelo telotristat ethyl 2/28/2017 To treat carcinoid syndrome diarrhea
Press Release
Drug Trials Snapshot
4. Siliq brodalumab 2/15/2017 To treat adults with moderate-to-severe plaque psoriasis
Press Release
Drug Trials Snapshot
3. Emflaza deflazacort 2/9/2017 To treat patients age 5 years and older with Duchenne muscular dystrophy (DMD)
Press Release
Drug Trials Snapshot
2. Parsabiv etelcalcetide 2/7/2017 To treat secondary hyperparathyroidism in adult patients with chronic kidney disease undergoing dialysis
Drug Trials Snapshot
1. Trulance plecanatide 1/19/2017 To treat Chronic Idiopathic Constipation (CIC) in adult patients.
Press Release
Drug Trials Snapshot

* This information is currently accurate. In rare instances, it may be necessary for FDA to change a drug’s new molecular entity (NME) designation or the status of its application as a novel new biologics license application (BLA).  For instance, new information may become available which could lead to a reconsideration of the original designation or status.  If changes must be made to a drug’s designation or the status of an application as a novel BLA, the Agency intends to communicate the nature of, and the reason for, any revisions as appropriate.

USFDA 2017
2017/12/21 Angiotensin II Giapreza La Jolla Pharmaceutical
2017/12/20 Ertugliflozin Steglatro Merck Sharp Dohme
2017/12/20 Macimorelin acetate Macrilen Aeterna Zentaris GmbH
2017/12/18 Netarsudil mesylate Rhopressa Aerie Pharmaceuticals
2017/12/11 Ozenoxacin Xepi Ferrer Internacional S.A.
2017/12/5 Semaglutide Ozempic Novo Nordisk Inc
2017/11/16 Emicizumab Hemlibra Genentech BLA
2017/11/15 Vestronidase alfa Mepsevii Ultragenyx Pharmaceutical BLA
2017/11/14 Benralizumab Fasenra AstraZeneca AB BLA
2017/11/8 Letermovir Prevymis Merck Sharp Dohme
2017/11/2 Latanoprostene bunod Vyzulta Bausch & Lomb Incorporated
2017/10/31 Acalabrutinib Calquence AstraZeneca Pharmaceuticals LP
2017/9/28 Abemaciclib Verzenio Eli Lilly
2017/9/15 Secnidazole Solosec Symbiomix Therapeutics
2017/9/14 Copanlisib Aliqopa Bayer Healthcare Pharmaceuticals
2017/8/29 Benznidazole Chemo Research
2017/8/29 Meropenem – Vaborbactam Vabomere Rempex Pharmaceuticals
2017/8/17 Inotuzumab ozogamicin Besponsa Wyeth Pharmaceuticals BLA
2017/8/3 Glecaprevir – Pibrentasvir Mavyret AbbVie
2017/8/1 Enasidenib Idhifa Celgene Corporation
2017/7/18 Sofosbuvir – Velpatasvir – Voxilaprevir Vosevi Gilead Sciences
2017/7/17 Neratinib maleate Nerlynx Puma Biotechnology
2017/7/13 Guselkumab Tremfya Janssen Biotech BLA
2017/6/23 Betrixaban Bevyxxa Portola Pharmaceuticals
2017/6/19 Delafloxacin meglumine Baxdela Melinta Therapeutics
2017/5/22 Sarilumab Kevzara Sanofi Synthelabo BLA
2017/5/5 Edaravone Radicava Mitsubishi Tanabe Pharma America
2017/5/1 Durvalumab Imfinzi AstraZeneca UK BLA
2017/4/28 Abaloparatide Tymlos Radius Health
2017/4/28 Midostaurin Rydapt Novartis Pharmaceuticals
2017/4/28 Brigatinib Alunbrig Ariad Pharmaceuticals
2017/4/27 Cerliponase alfa Brineura BioMarin Pharmaceutical BLA
2017/4/11 Valbenazine Ingrezza Neurocrine Biosciences
2017/4/3 Deutetrabenazine Austedo Teva Pharmaceuticals
2017/3/28 Ocrelizumab Ocrevus Genentech BLA
2017/3/28 Dupilumab Dupixent Regeneron Pharmaceuticals BLA
2017/3/27 Niraparib Zejula Tesaro
2017/3/23 Naldemedine tosylate Symproic Shionogi
2017/3/23 Avelumab Bavencio EMD Serono BLA
2017/3/23 Safinamide mesylate Xadago Newron Pharmaceuticals
2017/3/21 Ribociclib Kisqali Novartis Pharmaceuticals
2017/2/28 Telotristat ethyl Xermelo Lexicon Pharmaceuticals
2017/2/15 Brodalumab Siliq Valeant Pharmaceuticals BLA
2017/2/9 Deflazacort Emflaza Marathon Pharmaceuticals
2017/2/8 Etelcalcetide hydrochloride Parsavib KAI Pharmaceuticals
2017/1/19 Plecanatide Trulance Synergy Pharmaceuticals

1 Abaloparatide

RADIUS

str1

Tymlos

FDA 4/28/2017

To treat osteoporosis in postmenopausal women at high risk of fracture or those who have failed other therapies
Drug Trials Snapshot

Image result for AbaloparatideImage result for Abaloparatide

link……..https://newdrugapprovals.org/2018/02/13/abaloparatide-%D0%B0%D0%B1%D0%B0%D0%BB%D0%BE%D0%BF%D0%B0%D1%80%D0%B0%D1%82%D0%B8%D0%B4-%D8%A3%D8%A8%D8%A7%D9%84%D9%88%D8%A8%D8%A7%D8%B1%D8%A7%D8%AA%D9%8A%D8%AF-%E5%B7%B4%E7%BD%97%E6%97%81/

2 Abemaciclib

ELI LILLY

Verzenio abemaciclib FDA 9/28/2017 To treat certain advanced or metastatic breast cancers
Press Release
Drug Trials Snapshot

LINK https://newdrugapprovals.org/2015/10/19/abemaciclib-bemaciclib/

Image result for abemaciclibImage result for abemaciclib

3 Acalabrutinib

Calquence FDA APPROVED

10/31/2017

To treat adults with mantle cell lymphoma
Press Release
Drug Trials Snapshot

Image result for AcalabrutinibImage result for AcalabrutinibImage result for Acalabrutinib

LINK……….https://newdrugapprovals.org/2018/02/02/acalabrutinib-acp-196-%D0%B0%D0%BA%D0%B0%D0%BB%D0%B0%D0%B1%D1%80%D1%83%D1%82%D0%B8%D0%BD%D0%B8%D0%B1-%D8%A3%D9%83%D8%A7%D9%84%D8%A7%D8%A8%D8%B1%D9%88%D8%AA%D9%8A%D9%86%D9%8A%D8%A8-%E9%98%BF/

4 Angiotensin II

LA JOLLA

Giapreza angiotensin II 12/21/2017 To increase blood pressure in adults with septic or other distributive shock
Press Release
Drug Trials Snapshot

Image result for angiotensin IIImage result for GIAPREZA

LINK https://newdrugapprovals.org/2017/12/22/fda-approves-drug-giapreza-angiotensin-ii-to-treat-dangerously-low-blood-pressure/

5 AVELUMAB

MERCK

Image result for AVELUMABImage result for AVELUMAB

Bavencio FDA 3/23/2017 To treat metastatic Merkel cell carcinoma
Press Release
Drug Trials Snapshot

LINK…..https://newdrugapprovals.org/2017/03/24/fda-approves-first-treatment-bavencio-avelumabfor-rare-form-of-skin-cancer/

6 BENRALIZUMAB

ASTRA ZENECA

Fasenra benralizumab

FDA 11/14/2017

For add-on maintenance treatment of patients with severe asthma aged 12 years and older, and with an eosinophilic phenotype
Drug Trials Snapshot

Image result for BENRALIZUMAB

7 Benznidazole

CHEMO RESEARCH

Image result for BENZNIDAZOLE

Image result for BENZNIDAZOLEImage result for BENZNIDAZOLE

benznidazole FDA

8/29/2017

To treat children ages 2 to 12 years old with Chagas disease
Press Release
Drug Trials Snapshot

LINK…https://newdrugapprovals.org/2017/08/30/fda-approves-first-u-s-treatment-benznidazole-for-chagas-disease/

8 BETRIXABAN

PORTOLA PHARMA

Image result for betrixaban

Bevyxxa FDA

6/23/2017

For the prophylaxis of venous thromboembolism (VTE) in adult patients hospitalized for an acute medical illness
Drug Trials Snapshot

Image result for betrixabanImage result for betrixaban

STR2STR1

LINK…….https://newdrugapprovals.org/2013/03/05/phase-3-portola-pharma-betrixaban-long-acting-oral-direct-factor-xa-inhibitor/

9 BRIGATINIB

Figure imgf000127_0001

TAKEDA

Image result for BRIGATINIBImage result for BRIGATINIB

Alunbrig FDA

4/28/2017

To treat patients with anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib
Drug Trials Snapshot

LINK..https://newdrugapprovals.org/2017/01/20/brigatinib-%D0%B1%D1%80%D0%B8%D0%B3%D0%B0%D1%82%D0%B8%D0%BD%D0%B8%D0%B1-%D8%A8%D8%B1%D9%8A%D8%BA%D8%A7%D8%AA%D9%8A%D9%86%D9%8A%D8%A8-%E5%B8%83%E6%A0%BC%E6%9B%BF%E5%B0%BC/

10 BRODALUMAB

VALEANT PHARMA

Siliq FDA

2/15/2017

To treat adults with moderate-to-severe plaque psoriasis
Press Release
Drug Trials Snapshot

Image result for BRODALUMAB

LINK ,,,,https://newdrugapprovals.org/2017/02/16/fda-approves-new-psoriasis-drug-siliq-brodalumab/

11 CERLIPONASE ALFA

Image resultImage result for cerliponase alfaImage result for cerliponase alfa

Brineura FDA 4/27/2017 To treat a specific form of Batten disease
Press Release
Drug Trials Snapshot

LINK….https://newdrugapprovals.org/2017/04/28/fda-approves-first-treatment-for-a-form-of-batten-disease-brineura-cerliponase-alfa/

12 Copanlisib

Aliqopa FDA APPROVED

9/14/2017

To treat adults with relapsed follicular lymphoma
Press Release
Drug Trials Snapshot

Copanlisib dihydrochloride.png

Image result for copanlisibImage result for copanlisib

LINK…..https://newdrugapprovals.org/2017/11/20/copanlisib/

13  DEFLAZACORT

MARATHON PHARMA

Image result for deflazacort

Emflaza FDA 2/9/2017 To treat patients age 5 years and older with Duchenne muscular dystrophy (DMD)
Press Release
Drug Trials Snapshot

LINK……https://newdrugapprovals.org/2017/02/17/deflazacort/

14 DELAFLOXACIN

Baxdela FDA APPROVED

6/19/2017

To treat patients with acute bacterial skin infections

Image result for delafloxacin

Image result for delafloxacinImage result for delafloxacin

LINK……..https://newdrugapprovals.org/2018/01/25/delafloxacin/

15 Deutetrabenazine

TEVA

Deutetrabenazine.svg

Image result for deutetrabenazineImage result for deutetrabenazineImage result for deutetrabenazine

LINK……………https://newdrugapprovals.org/2015/08/15/sd-809-deutetrabenazine-nda-submitted-by-teva/

Austedo FDA 4/3/2017 For the treatment of chorea associated with Huntington’s disease
Drug Trials Snapshot   Chemistry Review(s) (PDF)

STR1STR2str3

16 DUPILUMAB

SANOFI/REGENERON

Image result for DUPILUMABImage result for DUPILUMAB

Dupixent FDA 3/28/2017 To treat adults with moderate-to-severe eczema (atopic dermatitis)
Press Release
Drug Trials Snapshot

LINK…….https://newdrugapprovals.org/2017/03/29/fda-approves-new-eczema-drug-dupixent-dupilumab/

17 DURVALUMAB

ASTRA ZENECA

Image result for DURVALUMAB

Imfinzi

durvalumab FDA 5/1/2017To treat patients with locally advanced or metastatic urothelial carcinoma
Web Post
Drug Trials Snapshot

18 EDAVARONE

Image result for EDARAVONE

MITSUBISHI TANABE

Radicava FDA 5/5/2017 To treat patients with amyotrophic lateral sclerosis (ALS)
Press Release
Drug Trials Snapshot

Image result for EDARAVONEImage result for EDARAVONE

LINK………https://newdrugapprovals.org/2017/05/06/fda-approves-drug-to-treat-als-radicava-edaravone-%D1%8D%D0%B4%D0%B0%D1%80%D0%B0%D0%B2%D0%BE%D0%BD-%D8%A5%D9%8A%D8%AF%D8%A7%D8%B1%D8%A7%D9%81%D9%88%D9%86-%E4%BE%9D%E8%BE%BE%E6%8B%89%E5%A5%89/

19 EMICIZUMAB

ROCHE

Image result for EMICIZUMAB

Hemlibra emicizumab FDA 11/16/2017 To prevent or reduce the frequency of bleeding episodes in adult and pediatric patients with hemophilia A who have developed antibodies called Factor VIII (FVIII) inhibitors.
Press Release

Drug Trials Snapshot

LINK https://newdrugapprovals.org/2017/11/17/fda-approves-new-treatment-hemlibra-emicizumab-kxwh-to-prevent-bleeding-in-certain-patients-with-hemophilia-a/

Image result for EMICIZUMAB

20 Enasidenib

Enasidenib.png

Image result for EnasidenibImage result for Enasidenib

Idhifa FDA

8/1/2017

To treat relapsed or refractory acute myeloid leukemia
Press Release
Drug Trials Snapshot

Image result for Enasidenib

LINK……https://newdrugapprovals.org/2017/08/02/enasidenib-%D1%8D%D0%BD%D0%B0%D1%81%D0%B8%D0%B4%D0%B5%D0%BD%D0%B8%D0%B1-%D8%A5%D9%8A%D9%86%D8%A7%D8%B3%D9%8A%D8%AF%D9%8A%D9%86%D9%8A%D8%A8-%E4%BC%8A%E9%82%A3%E5%B0%BC%E5%B8%83/

21 Ertugliflozin

MERCK

Image result for ERTUGLIFLOZIN

Steglatro ertugliflozin FDA

12/19/2017

To improve glycemic control in adults with type 2 diabetes mellitus
Drug Trials Snapshot

LINK https://newdrugapprovals.org/2014/02/10/ertugliflozin/

Image result for ERTUGLIFLOZIN

22 ETELCALCETIDE

Amgen

Parsabiv FDA APPROVED

2/7/2017

To treat secondary hyperparathyroidism in adult patients with chronic kidney disease undergoing dialysis
Drug Trials SnapshotSYNTHESIS LINK……..https://cen.acs.org/articles/96/i4/the-year-in-new-drugs-2018.html

Image result for ETELCALCETIDEImage result for ETELCALCETIDE

SYNTHESIS LINK……..https://cen.acs.org/articles/96/i4/the-year-in-new-drugs-2018.html

23 GLECAPREVIR

ABBVIE

Image result for GLECAPREVIR

Mavyret glecaprevir and pibrentasvir FDA 8/3/2017 To treat adults with chronic hepatitis C virus
Press Release
Drug Trials Snapshot

LINK https://newdrugapprovals.org/2016/10/05/glecaprevir-abt-493/

Image result for GLECAPREVIRImage result for GLECAPREVIRImage result for GLECAPREVIR

24 GUSELKUMAB

JOHNSON AND JOHNSON

Tremfya

guselkumab

FDA 7/13/2017

For the treatment of adult patients with moderate-to-severe plaque psoriasis
Drug Trials Snapshot

Image result for GUSELKUMABImage result for GUSELKUMAB

25 Inotuzumab ozogamicin

PFIZER

Image result for inotuzumab ozogamicin

Image result for inotuzumab ozogamicinImage result for inotuzumab ozogamicin

Besponsa FDA

8/17/2017

To treat adults with relapsed or refractory acute lymphoblastic leukemia
Press Release
Drug Trials Snapshot

LINK….https://newdrugapprovals.org/2015/10/23/fda-grants-breakthrough-status-for-pfizers-leukaemia-drug-inotuzumab-ozogamicin/

26 LATANOPROSTENE

VALEANT

Image result for LATANOPROSTENE

latanoprostene bunod ophthalmic solution

FDA 11/2/2017

To treat intraocular pressure in patients with open-angle glaucoma or ocular hypertension.
Drug Trials Snapshot

Image result for LATANOPROSTENE

LINK https://newdrugapprovals.org/2014/09/27/nicox-stock-leaps-on-positive-ph-iii-glaucoma-drug-data-%E8%8B%B1%E6%96%87%E5%90%8D%E7%A7%B0/

27 LETERMOVIR

MERCK

Image result for LETERMOVIR

Prevymis FDA 11/8/2017 To prevent infection after bone marrow transplant
Drug Trials Snapshot

LINK https://newdrugapprovals.org/2016/05/16/letermovir-aic-246/

Image result for LETERMOVIRImage result for LETERMOVIR

 

28 Macimorelin acetate

AETERNA ZENTARIS

Macrilen macimorelin acetate FDA

12/20/2017

For the diagnosis of adult growth hormone deficiency
Drug Trials Snapshot

LINK https://newdrugapprovals.org/2014/01/07/aeterna-zentaris-submits-new-drug-application-to-fda-for-macimorelin-acetate-aezs-130-for-evaluation-of-aghd-2/

 Image result for macimorelin acetate

29 MEROPENEM

Image result for MEROPENEM


30 MIDOSTAURIN

NOVARTIS

Image result for MIDOSTAURIN

Rydapt FDA

4/28/2017

To treat acute myeloid leukemia
Press Release
Drug Trials Snapshot

STR1 STR2

LINK…….https://newdrugapprovals.org/2017/04/29/fda-approves-new-combination-treatment-for-acute-myeloid-leukemia-rydapt-midostaurin/

31 Naldemedine

FDA 3/23/2017, Symproic, For the treatment of opioid-induced constipation

Image result for naldemedine

Image result for naldemedineImage result for naldemedine

LINK……..https://newdrugapprovals.org/2018/01/24/naldemedine-%E3%83%8A%E3%83%AB%E3%83%87%E3%83%A1%E3%82%B8%E3%83%B3%E3%83%88%E3%82%B7%E3%83%AB%E9%85%B8%E5%A1%A9/

32 NERATINIB MALEATE

PUMA BIOTECH

Image result for NERATINIB

Image result for NERATINIBImage result for NERATINIBImage result for NERATINIB

Nerlynx FDA 7/17/2017 To reduce the risk of breast cancer returning
Press Release
Drug Trials Snapshot

LINK…https://newdrugapprovals.org/2014/04/11/neratinib-hki-272-puma-presents-positive-results-from-phase-ii-trial-of-its-investigational-drug-pb272/

33 NETARSUDIL

Rhopressa FDA APPROVED

12/18/2017

To treat glaucoma or ocular hypertension

Image result for Netarsudil

Image result for Netarsudil

LINK……https://newdrugapprovals.org/2018/01/29/netarsudil/

34 NIRAPARIB

TESARO

Zejula FDA 3/27/2017 For the maintenance treatment for recurrent epithelial ovarian, fallopian tube or primary peritoneal cancers
Press Release
Drug Trials Snapshot

Figure imgf000023_0001Image result for TESARO

Image result for NIRAPARIB

LINK…https://newdrugapprovals.org/2016/12/22/niraparib-mk-4827/

35 OCRELIZUMAB

ROCHE

Ocrevus FDA 3/28/2017 To treat patients with relapsing and primary progressive forms of multiple sclerosis
Press Release
Drug Trials Snapshot

Image result for ocrelizumabImage result for ocrelizumab

LINK..https://newdrugapprovals.org/2017/03/30/fda-approves-new-drug-to-treat-multiple-sclerosis-ocrevus-ocrelizumab/

36 OZENOXACIN

MEDIMETRIX

Image result for ozenoxacin

LINK https://newdrugapprovals.org/2014/03/28/ozenoxacin-in-phase-3-topical-formulation-in-the-treatment-of-impetigo/

Image result for ozenoxacin

Xepi ozenoxacin FDA

12/11/2017

To treat impetigo
Drug Trials Snapshot

37 Pibrentasvir

ABBVIE

Image result for PIBRENTASVIR

Mavyret glecaprevir and pibrentasvir FDA 8/3/2017 To treat adults with chronic hepatitis C virus
Press Release
Drug Trials Snapshot

LINK https://newdrugapprovals.org/2016/06/08/abt-530-pibrentasvir/

Image result for PIBRENTASVIRImage result for PIBRENTASVIR

38 PLECANATIDE

Plecanatide 普卡那肽 ليكاناتيد плеканатид

SYNERGY PHARMA

Image result for PLECANATIDEImage result for PLECANATIDE

Trulance FDA APPROVED

1/19/2017

To treat Chronic Idiopathic Constipation (CIC) in adult patients.
Press Release
Drug Trials Snapshot

LINK ….https://newdrugapprovals.org/2016/04/21/plecanatide-%E6%99%AE%E5%8D%A1%E9%82%A3%E8%82%BD-%D9%84%D9%8A%D9%83%D8%A7%D9%86%D8%A7%D8%AA%D9%8A%D8%AF-%D0%BF%D0%BB%D0%B5%D0%BA%D0%B0%D0%BD%D0%B0%D1%82%D0%B8%D0%B4/

39 RIBOCICLIB

NOVARTIS

2D chemical structure of 1374639-75-4

Structure..link for correct structure

Kisqali FDA 3/13/2017 To treat postmenopausal women with a type of advanced breast cancer
Drug Trials Snapshot

Image result for RIBOCICLIB

LINK https://newdrugapprovals.org/2015/10/19/ribociclib/

40  SARILUMAB

SANOFI /REGENERON

Kevzara sarilumab FDA 5/22/2017 To treat adult rheumatoid arthritis
Drug Trials Snapshot

LINK https://newdrugapprovals.org/2013/11/25/late-stage-success-for-sanofiregeneron-ra-drug-sarilumab/

Image result for SARILUMABImage result for SARILUMAB

41 SECNIDAZOLE

SYMBIOMIX

Secnidazole.svg

Solosec FDA 9/15/2017 To treat bacterial vaginosis
Drug Trials Snapshot

Image result for SECNIDAZOLE

link….https://newdrugapprovals.org/2017/11/03/secnidazole-%D1%81%D0%B5%D0%BA%D0%BD%D0%B8%D0%B4%D0%B0%D0%B7%D0%BE%D0%BB-%D8%B3%D9%8A%D9%83%D9%86%D9%8A%D8%AF%D8%A7%D8%B2%D9%88%D9%84-%E5%A1%9E%E5%85%8B%E7%A1%9D%E5%94%91/

42 SAFINAMIDE

NEWRON PHARMA

Image result for safinamide

Image result for safinamideImage result for safinamide

STR1

Xadago FDA 3/21/2017 To treat Parkinson’s disease
Press Release
Drug Trials Snapshot

LINK…https://newdrugapprovals.org/2017/03/22/fda-approves-drug-xadago-safinamide-%D1%81%D0%B0%D1%84%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D0%B4-%D8%B3%D8%A7%D9%81%D9%8A%D9%86%D8%A7%D9%85%D9%8A%D8%AF-%E6%B2%99%E9%9D%9E%E8%83%BA-to-treat-parkins/

43 Semaglutide

NOVO NORDISK

Image result for SEMAGLUTIDE

Ozempic semaglutide FDA

12/5/2017

To improve glycemic control in adults with type 2 diabetes mellitus
Drug Trials Snapshot

LINK https://newdrugapprovals.org/2013/07/22/a-survey-of-promising-late-stage-diabetes-drugs/

Image result for SEMAGLUTIDE

44 SOFOSBUVIR

LINK https://newdrugapprovals.org/2013/12/11/us-approves-breakthrough-hepatitis-c-drug-sofosbuvir-all-about-drugs/

45 TELOTRISTAT ETHYL

LEXICON

LX1606 Hippurate.png

Xermelo FDA

2/28/2017

To treat carcinoid syndrome diarrhea
Press Release
Drug Trials Snapshot

Image result for Lexicon Pharmaceuticals, Inc.STR1

46 VABORBACTAM

THE MEDICINES CO

Image result for Vaborbactam

Vabomere meropenem and vaborbactam FDA

8/29/2017

To treat adults with complicated urinary tract infections
Press Release
Drug Trials Snapshot

Image result for VABOMERE

LINK     https://newdrugapprovals.org/2017/09/05/vaborbactam-%D0%B2%D0%B0%D0%B1%D0%BE%D1%80%D0%B1%D0%B0%D0%BA%D1%82%D0%B0%D0%BC-%D9%81%D8%A7%D8%A8%D9%88%D8%B1%D8%A8%D8%A7%D9%83%D8%AA%D8%A7%D9%85-%E6%B3%95%E7%A1%BC%E5%B7%B4%E5%9D%A6/

47 VALBENAZINE

NEUROCRINE

Image result for valbenazine

Image result for VALBENAZINEImage result for VALBENAZINEImage result for VALBENAZINE

Ingrezza FDA

4/11/2017

To treat adults with tardive dyskinesia
Press Release
Drug Trials Snapshot

LINK…………..https://newdrugapprovals.org/2017/04/12/fda-approves-first-drug-ingrezza-valbenazine-to-treat-tardive-dyskinesia/

48 Vestronidase alfa-vjbk

ULTRAGENYX

Mepsevii vestronidase alfa-vjbk FDA 11/15/2017 To treat pediatric and adult patients with an inherited metabolic condition called mucopolysaccharidosis type VII (MPS VII), also known as Sly syndrome.
Press Release
Drug Trials Snapshot

Image result for vestronidase alfa-vjbkImage result for vestronidase alfa-vjbk

LINK…https://newdrugapprovals.org/2017/11/16/fda-approves-mepsevii-vestronidase-alfa-vjbk-for-treatment-for-rare-genetic-enzyme-disorder/

49 VELPATASVIR

LINK https://newdrugapprovals.org/2016/07/30/velpatasvir-gs-5816-gilead-sciences-%D0%B2%D0%B5%D0%BB%D0%BF%D0%B0%D1%82%D0%B0%D1%81%D0%B2%D0%B8%D1%80-%D9%81%D8%A7%D9%84%D8%A8%D8%A7%D8%AA%D8%A7%D8%B3%D9%81%D9%8A%D8%B1-%E7%BB%B4%E5%B8%95/

50 VOXILAPREVIR

GILEAD

Image result for VOXILAPREVIR

Image result for VOXILAPREVIR

Vosevi sofosbuvir, velpatasvir and voxilaprevir FDA 7/18/2017 To treat adults with chronic hepatitis C virus
Press Release
Drug Trials Snapshot

LINK https://newdrugapprovals.org/2017/07/19/voxilaprevir-%D9%81%D9%88%D9%83%D8%B3%D9%8A%D9%84%D8%A7%D8%A8%D8%B1%D9%8A%D9%81%D9%8A%D8%B1-%E4%BC%8F%E8%A5%BF%E7%91%9E%E9%9F%A6-%D0%B2%D0%BE%D0%BA%D1%81%D0%B8%D0%BB%D0%B0%D0%BF%D1%80%D0%B5%D0%B2/

SECTION B; EMA approvals

European Medicines Agency’s – Human medicines: Highlights of 2017

Advances in medicines authorizations are essential for public health as they have the potential to improve treatment of diseases. In 2017, EMA recommended 92 medicines for marketing authorization. Of these, 35 had a new active substance, which has never been authorized in the European Union (EU) before. Many of these medicines represent a significant improvement in their therapeutic areas; they include medicines for children, for rare diseases and advanced therapies42. Amongst the 35 new active substances (NAS) that EMA recommended, 11 were new drugs and biologics to treat cancer, 05 to treat neurological disorders, 04 for infectious diseases, 04 for immunology/rheumatology, 03 for endocrinology, 02 each for Uro-nephrology, haematology, and dermatology, 01 for Pneumonology, and 01 for hepatology/gastroenterology class of drugs.

STR1 STR2 str3 str4 str5

STR1 STR2

EUROPE

2017/11/16 Niraparib Zejula Tesaro UK Limited O NME
2017/11/10 Adalimumab Cyltezo Boehringer Ingelheim International GmbH B
2017/11/10 Miglustat Miglustat Gen.Orph Gen.Orph G
2017/11/10 Ritonavir Ritonavir Mylan MYLAN S.A.S G
2017/11/10 Padeliporfin Tookad STEBA Biotech S.A
2017/11/10 Guselkumab Tremfya Janssen-Cilag International N.V. BLA
2017/9/27 Dupilumab Dupixent sanofi-aventis groupe BLA
2017/9/21 Darunavir / Cobicistat / Emtricitabine / Tenofovir alafenamide Symtuza Janssen-Cilag International N.V.
2017/9/21 Atezolizumab Tecentriq Roche Registration Limited BLA
2017/9/18 Avelumab Bavencio Merck Serono Europe Limited O BLA
2017/9/18 Entecavir Entecavir Mylan Mylan S.A.S G
2017/9/18 Lacosamide Lacosamide Accord Accord Healthcare Ltd G
2017/9/18 Midostaurin Rydapt Novartis Europharm Ltd O NME
2017/9/18 Telotristat ethyl Xermelo Ipsen Pharma O NME
2017/9/5 Trientine Cuprior GMP-Orphan SA
2017/9/5 Efavirenz / Emtricitabine / Tenofovir disoproxil Efavirenz/Emtricitabine/Tenofovir disoproxil Mylan Mylan S.A.S G
2017/8/24 Tivozanib hydrochloride monohydrate Fotivda EUSA Pharma (UK) Limited NME
2017/8/24 Adalimumab Imraldi Samsung Bioepis UK Limited (SBUK) B
2017/8/24 Nitisinone Nitisinone MDK (previously Nitisinone MendeliKABS) MendeliKABS Europe Ltd G
2017/8/22 Ribociclib Kisqali Novartis Europharm Ltd NME
2017/8/22 Cladribine Mavenclad Merck Serono Europe Limited
2017/7/26 Glecaprevir / Pibrentasvir Maviret AbbVie Limited NME
2017/7/26 Sofosbuvir / Velpatasvir / Voxilaprevi Vosevi Gilead Sciences International Ltd NME
2017/7/19 Insulin lispro Insulin lispro Sanofi sanofi-aventis groupe B
2017/7/19 Patiromer sorbitex calcium Veltassa Vifor Fresenius Medical Care Renal Pharma France NME
2017/7/17 Efavirenz / Emtricitabine / Tenofovir disoproxil Efavirenz/Emtricitabine/Tenofovir disoproxil Zentiva Zentiva k.s. G
2017/7/17 Brodalumab Kyntheum LEO Pharma A/S BLA
2017/7/17 beclometasone / formoterol / glycopyrronium bromide Trimbow Chiesi Farmaceutici S.p.A.
2017/7/13 Rituximab Blitzima Celltrion Healthcare Hungary Kft. B
2017/7/13 Cariprazine Reagila Gedeon Richter
2017/7/10 Spheroids of human autologous matrix-associated chondrocytes Spherox CO.DON AG
2017/7/6 Cenegermin Oxervate Dompe farmaceutici s.p.a. O BLA
2017/6/29 Inotuzumab ozogamicin Besponsa Pfizer Limited O BLA
2017/6/23 Etanercept Erelzi Sandoz GmbH
2017/6/23 Sarilumab Kevzara Sanofi-Aventis Groupe NME
2017/6/23 Dimethyl fumarate Skilarence Almirall S.A
2017/6/23 Carglumic acid Ucedane Lucane Pharma G
2017/6/15 Rituximab Rixathon, Riximyo B Sandoz GmbH
2017/6/2 Pentosan polysulfate sodium Elmiron bene-Arzneimittel GmbH
2017/6/2 Nonacog beta pegol Refixia Novo Nordisk A/S BLA
2017/5/30 Cerliponase alfa Brineura BioMarin International Limited O E BLA
2017/5/30 Nusinersen Spinraza Biogen Idec Ltd O NME
2017/5/24 Meningococcal group b vaccine (recombinant, adsorbed) Trumenba Pfizer Limited
2017/5/22 Ivabradine Ivabradine Accord Accord Healthcare Ltd G
2017/5/8 Dinutuximab beta Dinutuximab beta Apeiron Apeiron Biologics AG O E
2017/4/28 Emtricitabine – tenofovir disoproxil mixt Emtricitabine/Tenofovir disoproxil Krka d.d. KRKA, d.d., Novo mesto G
2017/4/24 Parathyroid hormone Natpar Shire Pharmaceuticals Ireland Ltd O C BLA
2017/4/20 Edoxaban Roteas Daiichi Sankyo Europe GmbH
2017/3/22 Tofacitinib citrate Xeljanz Pfizer Limited NME
2017/3/20 Umeclidinium Rolufta GlaxoSmithKline Trading Services Limited
2017/3/3 Chlormethine Ledaga Actelion Registration Ltd. O
2017/2/27 Pregabalin Pregabalin Zentiva Zentiva k.s. G
2017/2/17 Rituximab Truxima Celltrion Healthcare Hungary Kft. B
2017/2/13 Etanercept Lifmior Pfizer Limited
2017/2/13 Baricitinib Olumiant Eli Lilly Nederland B.V. NME
2017/1/19 Mercaptamine Cystadrops Orphan Europe S.A.R.L. O
2017/1/18 Bezlotoxumab Zinplava Merck Sharp & Dohme Limited NME
2017/1/11 Teriparatide Movymia STADA Arzneimittel AG B
2017/1/11 Insulin glargine / lixisenatide Suliqua Sanofi-Aventis Groupe
2017/1/9 Insulin aspart Fiasp Novo Nordisk A/S
2017/1/9 Tadalafil Tadalafil Mylan S.A.S G
2017/1/9 Tenofovir alafenamide Vemlidy Gilead Sciences International Ltd
2017/1/4 Lonoctocog alfa Afstyla CSL Behring GmbH BLA
2017/1/4 Darunavir Darunavir Mylan Mylan S.A.S. G
2017/1/4 Insulin glargine Lusduna Merck Sharp & Dohme Limited B
2017/1/4 Teriparatide Terrosa Gedeon Richter Plc. B

SECTION B; EMA Approvals

Combined drugs  USFDA+EMA +PMDA  list are listed below. trying to simplify search

1 Abaloparatide   USFDA

2 Abemaciclib  USFDA

3 ACALABRUTINIB USFDA

3A ALOFISEL        EMA

3B AMENAMEVIR  JAPAN

4 ANGIOTENSIN II USFDA

4A Atezolizumab            EMA

5 AVELUMAB      USFDA+EMA

6 BENRALIZUMAB     USFDA+EMA

6A BARICITINIB   JAPAN

7 BENZNIDAZOLE USFDA

8 BETRIXABAN USFDA

9 BRIGATINIB USFDA

10 BRODALUMAB    USFDA+EMA

10A BUROSUMAB           EMA

10B CARIPRAZINE HYDROCHLORIDE        EMA

11 CERLIPONASE ALPA    USFDA+EMA

12 COPANLISIB USFDA

13 DEFLAZACORT USFDA

14 Delafloxacin USFDA

15 Deutetrabenazine USFDA

16DUPILUMAB    USFDA+EMA

17 DURVALUMAB   USFDA

18 EDAVARONE   USFDA

19 EMICIZUMAB USFDA

20 Enasidenib USFDA

21 ERTUGLIFLOZIN USFDA

22 ETELCALCETIDE USFDA

22A FORODESINE   JAPAN

22B FLUCICLOVINE  EMA

23 GLECAPREVIR    USFDA+EMA

24 GUSELKUMAB    USFDA+EMA

25 INOTUZUMAB OZOGAMICIN     USFDA+EMA

26 LATANOPROSTENE USFDA

27 LETERMOVIR    USFDA+EMA

27A Utetium lu 177 dotatate        EMA

28 MACIMORELIN ACETATE USFDA

29 MEROPENEM USFDA

30 MIDOSTAURIN     USFDA+EMA

31 NALDEMEDINE USFDA

32 NERATINIB USFDA

33 NETARSUDIL USFDA

34 NIRAPARIB    USFDA+EMA

34A NONACOG        EMA

34B NUCINERSEN        EMA   +Japan

35 Ocrelizumab    USFDA+EMA

35A OXERVATE         EMA

36 OZENOXACIN USFDA

36A PATIROMER        EMA

36B PADELIPORFIN        EMA

36C PEMAFIBRATE  JAPAN

37 PIBRENTASVIR     USFDA+EMA

38 PLECANATIDE USFDA

38A PRALATREXATE    JAPAN

39 RIBOCICLIB      USFDA+EMA

39A ROLAPITANT         EMA

39BRURLOCTOCOG        EMA

40  SARILUMAB    USFDA+EMA

41 SECNIDAZOLE USFDA

42 SAFINAMIDE USFDA

43 SEMAGLUTIDE    USFDA+EMA

43A SODIUM ZIRCONIUM CYCLOCYLICATE        EMA

44 SOFOSBUVIR    USFDA+EMA

44A SPHEROX       EMA

45 TELOTRISTAT ETHYL    USFDA+EMA

45A TIVOZANIB        EMA

45B TOFACITINIB      EMA

45C TRUMENBA        EMA

46 VABORBACTAM USFDA

47 VALBENAZINE  USFDA

48 VESTRONIDASE ALFA-VJBK USFDA

49 VELPATASVIR    USFDA+EMA

50 VOXILAPREVIR     USFDA+EMA

Drugs EMA list missed out in usfda list

3A ALOFISEL

link………https://newdrugapprovals.org/2018/03/02/alofisel-darvadstrocel-cx-601/

4A Atezolizumab

WILL BE UPDATED

10A BUROSUMAB

WILL BE UPDATED

10B CARIPRAZINE HYDROCHLORIDE

WILL BE UPDATED

22B FLUCICLOVINE

Image result for FLUCICLOVINE

LINK https://newdrugapprovals.org/2016/05/28/fda-approves-new-diagnostic-imaging-agent-fluciclovine-f-18-to-detect-recurrent-prostate-cancer/

SEE EMA

Axumin : EPAR – Summary for the public EN = English 06/07/2017

http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004197/human_med_002100.jsp&mid=WC0b01ac058001d124

Marketing-authorisation holder Blue Earth Diagnostics Ltd
Revision 0
Date of issue of marketing authorisation valid throughout the European Union 22/05/2017

Contact address:

Blue Earth Diagnostics Ltd
215 Euston Road
London NW1 2BE
United Kingdom

27A Lutetium lu 177 dotatate

WILL BE UPDATED

34A NONACOG

WILL BE UPDATED

34B NUCINERSEN

EMA AND JAPAN 2017 APPROVED

Nusinersen sodium colored.svg

Image result for Nusinersen sodium

LINK …….https://newdrugapprovals.org/2018/03/14/nusinersen-sodium-%E3%83%8C%E3%82%B7%E3%83%8D%E3%83%AB%E3%82%BB%E3%83%B3%E3%83%8A%E3%83%88%E3%83%AA%E3%82%A6%E3%83%A0/

35A OXERVATE

WILL BE UPDATED

36A PATIROMER

WILL BE UPDATED

36B PADELIPORFIN

img

NAME Tookad
AGENCY PRODUCT NUMBER EMEA/H/C/004182
ACTIVE SUBSTANCE padeliporfin di-potassium
INTERNATIONAL NON-PROPRIETARY NAME(INN) OR COMMON NAME padeliporfin
THERAPEUTIC AREA Prostatic Neoplasms
ANATOMICAL THERAPEUTIC CHEMICAL (ATC) CODE L01XD07
ADDITIONAL MONITORING This medicine is under additional monitoring. This means that it is being monitored even more intensively than other medicines. For more information, see medicines under additional monitoring.
MARKETING-AUTHORISATION HOLDER STEBA Biotech S.A
REVISION 0
DATE OF ISSUE OF MARKETING AUTHORISATION VALID THROUGHOUT THE EUROPEAN UNION 10/11/2017

Contact address:

STEBA Biotech S.A
7 place du theatre
L-2613 Luxembourg
Luxembourg

Image result for PADELIPORFIN

38A PRALATREXATE 

Pralatrexate.png

Japan approved 2017

2017/7/3 PMDA JAPAN Pralatrexate Difolta Mundipharma NME

LINK https://newdrugapprovals.org/2018/03/16/pralatrexate-%E3%83%97%E3%83%A9%E3%83%A9%E3%83%88%E3%83%AC%E3%82%AD%E3%82%B5%E3%83%BC%E3%83%88/

39A ROLAPITANT

WILL BE UPDATED

39B RURLOCTOCOG

WILL BE UPDATED

 43A SODIUM ZIRCONIUM

WILL BE UPDATED

 44A SPHEROX

WILL BE UPDATED

45A TIVOZANIB

Image result for TIVOZANIB EMAImage result for TIVOZANIB EMA

Pharmacotherapeutic group

Antineoplastic agents

Therapeutic indication

Fotivda is indicated for the first line treatment of adult patients with advanced renal cell carcinoma (RCC) and for adult patients who are VEGFR and mTOR pathway inhibitor-naïve following disease progression after one prior treatment with cytokine therapy for advanced RCC.

Treatment of advanced renal cell carcinoma

Fotivda : EPAR -Product Information

http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004131/human_med_002146.jsp&mid=WC0b01ac058001d124

http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/004131/WC500239035.pdf

str6

Tivozanib is synthesized in three main steps using well defined starting materials with acceptable
specifications.
Adequate in-process controls are applied during the synthesis. The specifications and control methods for
intermediate products, starting materials and reagents have been presented. The critical process
parameters are duly justified, methodology is presented and control is adequate.
The characterisation of the active substance and its impurities are in accordance with the EU guideline on
chemistry of new active substances. Potential and actual impurities were well discussed with regards to
their origin and characterised.
The active substance is packaged in a low-density polyethylene (LDPE) bag which complies with the EC
directive 2002/72/EC and EC 10/2011 as amended.

Product details

Name Fotivda
Agency product number EMEA/H/C/004131
Active substance tivozanib
International non-proprietary name(INN) or common name tivozanib hydrochloride monohydrate
Therapeutic area Carcinoma, Renal Cell
Anatomical therapeutic chemical (ATC) code L01XE

Publication details

Marketing-authorisation holder EUSA Pharma (UK) Limited
Revision 0
Date of issue of marketing authorisation valid throughout the European Union 24/08/2017

Contact address:

EUSA Pharma (UK) Limited
Breakspear Park, Breakspear Way
Hemel Hempstead, HP2 4TZ
United Kingdom

LINK………https://newdrugapprovals.org/2018/02/26/tivozanib-%E3%83%86%E3%82%A3%E3%83%9C%E3%82%B6%E3%83%8B%E3%83%96%E5%A1%A9%E9%85%B8%E5%A1%A9%E6%B0%B4%E5%92%8C%E7%89%A9/

45B TOFACITINIB

WILL BE UPDATED

45C TRUMENBA

WILL BE UPDATED

SECTION C JAPANFORODOS

STR1

SECTION C  New Drugs JAPAN

https://www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0002.html

STR1

STR1

STR2

JAPAN 2017

2017/9/27 Avelumab (genetical recombination) Bavencio Merck Serono BLA
2017/9/27 Glecaprevir – pibrentasvir mixt Maviret Abbvie NME
2017/9/27 Daratumumab (genetical recombination) Darzalex Janssen Pharmaceutical BLA
2017/9/27 Belimumab (genetical recombination) Benlysta GlaxoSmithKline BLA
2017/9/27 Bezlotoxumab (genetical recombination) Zinplava MDS BLA
2017/9/27 Palbociclib Ibrance Pfizer NME
2017/9/27 Lonoctocog alfa (genetical recombination) Afstyla CSL Behring BLA
2017/9/27 Rupatadine fumarate Rupafin Teikoku seiyaku NME
2017/9/27 Sarilumab (genetical receombination) Kevzara Sanofi BLA
2017/9/27 Flutemetamol (18F) Vizamyl Nihon Medi-Physics NME
2017/7/3 Nusinersen sodium Spinraza Biogen Japan
2017/7/3 Romidepsin Istodax Celgene NME
2017/7/3 Pralatrexate Difolta Mundipharma NME
2017/7/3 Amenamevir Amenalief Maruho NME
2017/7/3 Baricitinib Olumiant Lilly NME
2017/7/3 Pemafibrate Parmodia Kowa NME
2017/3/30 Human prothrombin complex, freeze-dried concentrated Kcentra CSL Behring
2017/3/30 Ixazomib citrate Ninlaro Takeda NME
2017/3/30 Forodesine hydrochloride Mundesine Mundipharma
2017/3/30 Aflibercept beta (genetical recombination) Zaltrap Sanofi
2017/3/30 Hydromorphone hydrochloride Narusus, Narurapid DaiichiSankyo-pp
2017/3/30 Naldemedine tosylate Symproic Shionogi NME
2017/3/30 Guanfacine hydrochloride Intuniv Shionogi

3B AMENAMEVIR

Originally developed by Astellas, the drug was licensed to Maruho. Amenamevir treats herpes zoster by inhibiting the activity of the helicase-primer enzyme during viral DNA replication and blocking the virus’s proliferation.

Amenalief® is an oral film-coated tablet containing 200 mg of amenamevir per tablet. Recommended dose of 1 day, 400mg each time, after meals.

LINK https://newdrugapprovals.org/2018/03/12/amenamevir-%E3%82%A2%E3%83%A1%E3%83%8A%E3%83%A1%E3%83%93%E3%83%AB/

22A FORODESINE HYDROCHLORIDE

LINK  https://newdrugapprovals.org/2018/03/06/forodesine-hydrochloride/

6A BARICITINIB   JAPAN

Originally developed by Incyte, Baricitinib was later licensed to and for sale by Lilly under the trade name Olumiant®. Baricitinib is an irreversible inhibitor of Janus kinase 1 (JAK1) and Janus kinase 2 (JAK2). Olumiant® is approved for the treatment of mild to moderate rheumatoid arthritis in adult patients who are not responsive or intolerant to other anti-arthritic drugs. This product can be used alone or in combination with methotrexate.

Olumiant® is a film-coated tablet containing 2 mg or 4 mg per tablet. Recommended oral dose is 4mg daily, with meals or fasting food, you can take any time period.

2017/7/3PMDA   Baricitinib Olumiant Lilly

LINK https://newdrugapprovals.org/2013/06/17/lilly-and-partner-incyte-corp-have-presented-more-promising-data-on-their-investigational-jak-inhibitor-baricitinib-for-rheumatoid-arthritis/

36C PEMAFIBRATE 

LINK   https://newdrugapprovals.org/2016/04/24/pemafibrate/

SECTION D

CDSCO INDIA


http://www.cdsco.nic.in/forms/list.aspx?lid=2034&Id=11 http://www.cdsco.nic.in/forms/list.aspx?lid=2034&Id=11

str1


 

KEEP WATCHING UNDER CONSTRUCTION AND WILL BE PASTED SOON………………………………………..

KEEP WATCHING UNDER CONSTRUCTION AND WILL BE PASTED SOON………………………………………..

KEEP WATCHING UNDER CONSTRUCTION AND WILL BE PASTED SOON………………………………………..

KEEP WATCHING UNDER CONSTRUCTION AND WILL BE PASTED SOON………………………………………..

REFERENCES

http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2018/01/news_detail_002886.jsp&mid=WC0b01ac058004d5c1

http://www.ema.europa.eu/docs/en_GB/document_library/Report/2018/01/WC500242079.pdf

“NEW DRUG APPROVALS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Facebook FACEBOOK

Join me on twitterFollow amcrasto on Twitter
Join me on google plus Googleplus

Join me on Researchgate

Anthony Melvin Crasto Dr.

amcrasto@gmail.com

I , Dr A.M.Crasto is writing this blog to share the knowledge/views, after reading Scientific Journals/Articles/News Articles/Wikipedia. My views/comments are based on the results /conclusions by the authors(researchers). I do mention either the link or reference of the article(s) in my blog and hope those interested can read for details. I am briefly summarising the remarks or conclusions of the authors (researchers). If one believe that their intellectual property right /copyright is infringed by any content on this blog, please contact or leave message at below email address amcrasto@gmail.com. It will be removed ASAP

////////EMA APPROVALS, USFDA Approvals, ACALABRUTINIBAVELUMABBETRIXABANBRODALUMABCOPANLISIBDEFLAZACORTDelafloxacinDeutetrabenazineDUPILUMABETELCALCETIDENaldemedineNETARSUDILNIRAPARIBOcrelizumabPLECANATIDERIBOCICLIBSAFINAMIDETELOTRISTAT ETHYL, VALBENAZINE, CERLIPONASE, BRIGATINIB, MIDOSTAURIN, Abaloparatide, BENZNIDAZOLENERATINIBinotuzumab ozogamicinEnasidenib, LETERMOVIR, GLECAPREVIR, PIBRENTASVIR, VOXILAPREVIR, SOFOSBUVIR, EDAVARONE, abemaciclib, ANGIOTENSIN II, VESTRONIDASE, macimorelin acetate, ERTUGLIFLOZIN, SEMAGLUTIDE, EMICIZUMAB, eu 2017, fda 2017, BENRALIZUMAB, DURVALUMAB, GUSELKUMAB, LATANOPROSTENE, OZENOXACIN, SARILUMAB, SECNIDAZOLE, BENRALIZUMAB, TIVOZANIB, SARILUMAB, FLUCICLOVINE, 

FDA approves first treatment Bavencio (avelumab)for rare form of skin cancer


 Image result for avelumab
str1
03/23/2017
The U.S. Food and Drug Administration today granted accelerated approval to Bavencio (avelumab) for the treatment of adults and pediatric patients 12 years and older with metastatic Merkel cell carcinoma (MCC), including those who have not received prior chemotherapy. This is the first FDA-approved treatment for metastatic MCC, a rare, aggressive form of skin cancer.

March 23, 2017

Release

The U.S. Food and Drug Administration today granted accelerated approval to Bavencio (avelumab) for the treatment of adults and pediatric patients 12 years and older with metastatic Merkel cell carcinoma (MCC), including those who have not received prior chemotherapy. This is the first FDA-approved treatment for metastatic MCC, a rare, aggressive form of skin cancer.

“While skin cancer is one of the most common cancers, patients with a rare form called Merkel cell cancer have not had an approved treatment option until now,” said Richard Pazdur, M.D., acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research and director of the FDA’s Oncology Center of Excellence. “The scientific community continues to make advances targeting the body’s immune system mechanisms for the treatment of various types of cancer. These advancements are leading to new therapies—even in rare forms of cancer where treatment options are limited or non-existent.”

According to the National Cancer Institute, approximately 1,600 people in the United States are diagnosed with MCC every year. While the majority of patients present with localized tumors that can be treated with surgical resection, approximately half of all patients will experience recurrence, and more than 30 percent will eventually develop metastatic disease. In patients with metastatic MCC, the cancer has spread beyond the skin into other parts of the body.

Bavencio targets the PD-1/PD-L1 pathway (proteins found on the body’s immune cells and some cancer cells). By blocking these interactions, Bavencio may help the body’s immune system attack cancer cells.

Bavencio received an Accelerated Approval, which enables the FDA to approve drugs for serious conditions to fill an unmet medical need using clinical trial data that is thought to predict a clinical benefit to patients. Further clinical trials are required to confirm Bavencio’s clinical benefit and the sponsor is currently conducting these studies.

Today’s approval of Bavencio was based on data from a single-arm trial of 88 patients with metastatic MCC who had been previously treated with at least one prior chemotherapy regimen. The trial measured the percentage of patients who experienced complete or partial shrinkage of their tumors (overall response rate) and, for patients with a response, the length of time the tumor was controlled (duration of response). Of the 88 patients who received Bavencio in the trial, 33 percent experienced complete or partial shrinkage of their tumors. The response lasted for more than six months in 86 percent of responding patients and more than 12 months in 45 percent of responding patients.

Common side effects of Bavencio include fatigue, musculoskeletal pain, diarrhea, nausea, infusion-related reactions, rash, decreased appetite and swelling of the limbs (peripheral edema). The most common serious risks of Bavencio are immune-mediated, where the body’s immune system attacks healthy cells or organs, such as the lungs (pneumonitis), liver (hepatitis), colon (colitis), hormone-producing glands (endocrinopathies) and kidneys (nephritis). In addition, there is a risk of serious infusion-related reactions. Patients who experience severe or life-threatening infusion-related reactions should stop using Bavencio. Women who are pregnant or breastfeeding should not take Bavencio because it may cause harm to a developing fetus or a newborn baby.

The FDA granted this application Priority Review and Breakthrough Therapydesignation. Bavencio also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The FDA granted accelerated approval of Bavencio to EMD Serono Inc.

Image result for avelumab

Image result for avelumab

Avelumab
Monoclonal antibody
Type ?
Source Human
Legal status
Legal status
  • Investigational
Identifiers
CAS Number
ChemSpider
  • none
UNII
KEGG

Avelumab (MSB0010718C) is a fully human monoclonal PD-L1antibody of isotypeIgG1, currently in development by Merck KGaA, Darmstadt, Germany & Pfizer for use in immunotherapy, especially for treatment of Non-small-cell lung carcinoma (NSCLC) .[1]

Mechanism of action

Avelumab binds to the PD ligand 1 and therefore inhibits binding to its receptor programmed cell death 1 (PD-1). Formation of a PD-1/PD-L1 receptor/ligand complex leads to inhibition of CD8+ T cells, and therefore inhibition of an immune reaction. Immunotherapy aims at ceasing this immune blockage by blocking those receptor ligand pairs. In the case of avelumab, the formation of PD-1/PDL1 ligand pairs is blocked and CD8+ T cell immune response should be increased. PD-1 itself has also been a target for immunotherapy.[2] Therefore, avelumab belongs to the group of Immune checkpoint blockade cancer therapies.

Clinical trials

As of May 2015, according to Merck KGaA, Darmstadt, Germany & Pfizer, avelumab has been in Phase Iclinical trials for bladder cancer, gastric cancer, head and neck cancer, mesothelioma, NSCLC, ovarian cancer and renal cancer. For Merkel-cell carcinoma, Phase II has been reached and for NSCLC there is also a study already in Phase III.[1]

Merkel-cell carcinoma

On March 23, 2017, the U.S. Food and Drug Administration granted accelerated approval to avelumab (BAVENCIO, EMD Serono, Inc.) for the treatment of adults and pediatric patients 12 years and older with metastatic Merkel cell carcinoma (MCC).

Approval was based on data from an open-label, single-arm, multi-center clinical trial (JAVELIN Merkel 200 trial) demonstrating a clinically meaningful and durable overall response rate (ORR). All patients had histologically confirmed metastatic MCC with disease progression on or after chemotherapy administered for metastatic disease.

ORR was assessed by an independent review committee according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The ORR was 33% (95% confidence interval [CI]: 23.3, 43.8), with 11% complete and 22% partial response rates. Among the 29 responding patients, the response duration ranged from 2.8 to 23.3+ months with 86% of responses durable for 6 months or longer. Responses were observed in patients regardless of PD-L1 tumor expression or presence of Merkel cell polyomavirus.

Safety data were evaluated in 1738 patients who received avelumab, 10 mg/kg, every 2 weeks. The most common serious adverse reactions to avelumab are immune-mediated adverse reactions (pneumonitis, hepatitis, colitis, adrenal insufficiency, hypo- and hyperthyroidism, diabetes mellitus, and nephritis) and life-threatening infusion reactions. Among the 88 patients enrolled in the JAVELIN Merkel 200 trial, the most common adverse reactions were fatigue, musculoskeletal pain, diarrhea, nausea, infusion-related reaction, rash, decreased appetite, and peripheral edema. Serious adverse reactions that occurred in more than one patient in the trial were acute kidney injury, anemia, abdominal pain, ileus, asthenia, and cellulitis.

The recommended dose and schedule of avelumab is 10 mg/kg as an intravenous infusion over 60 minutes every 2 weeks. All patients should receive premedication with an antihistamine and acetaminophen prior to the first four infusions of avelumab.

Full prescribing information for avelumab is available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761049s000lbl.pdf

References

  1. ^ Jump up to:a b Merck-Pfizer Alliance. “Merck-Pfizer Alliance Avelumab Fact Sheet” (PDF). Retrieved 2 December 2015.
  2. Jump up^ Hamid, O; Robert, C; Daud, A; Hodi, F. S.; Hwu, W. J.; Kefford, R; Wolchok, J. D.; Hersey, P; Joseph, R. W.; Weber, J. S.; Dronca, R; Gangadhar, T. C.; Patnaik, A; Zarour, H; Joshua, A. M.; Gergich, K; Elassaiss-Schaap, J; Algazi, A; Mateus, C; Boasberg, P; Tumeh, P. C.; Chmielowski, B; Ebbinghaus, S. W.; Li, X. N.; Kang, S. P.; Ribas, A (2013). “Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma”. New England Journal of Medicine. 369 (2): 134–44. doi:10.1056/NEJMoa1305133. PMC 4126516Freely accessible. PMID 23724846.

//////////fda 2017, Bavencio, avelumab, EMD Serono Inc., Priority Review,  Breakthrough Therapy designation.  Orphan Drug designation, skin cancer

 

 

UPDATE ON EMA

Bavencio : EPAR – Summary for the public EN = English 13/10/2017

 http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/004338/WC500236650.pdf

Product details

Name Bavencio
Agency product number EMEA/H/C/004338
Active substance avelumab
International non-proprietary name(INN) or common name avelumab
Therapeutic area Neuroendocrine Tumors
Anatomical therapeutic chemical (ATC) code L01XC31
Additional monitoring This medicine is under additional monitoring. This means that it is being monitored even more intensively than other medicines. For more information, see medicines under additional monitoring.
Treatment of rare diseases This medicine has an “orphan designation” which means that it is used to treat life-threatening or chronically debilitating conditions that affect no more than five in 10,000 people in the European Union, or are medicines which, for economic reasons, would be unlikely to be developed without incentives.
Conditional Approval Sometimes, the CHMP recommends that a medicine be given ‘conditional approval’. This happens when the Committee has based its positive opinion on data which, while not yet comprehensive, indicate that the medicine’s benefits outweigh its risks.

The company is given obligations to fulfil, such as the performance of further studies. The approval is renewed on a yearly basis until all obligations have been fulfilled, and is then converted from a conditional approval into a normal approval. Conditional approvals can only be granted for medicines that satisfy an ‘unmet medical need’, meaning the medicine is intended to be used for a disease or condition for which no treatment is readily available, and it is therefore important that patients have early access to the medicine concerned.

Publication details

Marketing-authorisation holder Merck Serono Europe Limited
Revision 1
Date of issue of marketing authorisation valid throughout the European Union 18/09/2017

Contact address:

Merck Serono Europe Limited
56 Marsh Wall
London E14 9TP
United Kingdom

FDA approves new diagnostic imaging agent FLUCICLOVINE F-18 to detect recurrent prostate cancer


FLUCICLOVINE F-18

Cyclobutanecarboxylic acid, 1-amino-3-(fluoro-18F)-, trans- [

  • Molecular FormulaC5H818FNO2
  • Average mass132.124 Da
Axumin (fluciclovine F 18)
fluciclovinum (18F)
GE-148
NMK36
trans-1-Amino-3-(18F)fluorcyclobutancarbonsäure [German] [ACD/IUPAC Name]
trans-1-Amino-3-(18F)fluorocyclobutanecarboxylic acid [ACD/IUPAC Name]
UNII-38R1Q0L1ZE
anti-1-amino-3-[18F]fluorocyclobutane-1-carboxylic acid
cas 222727-39-1
05/27/2016 11:27 AM EDT
The U.S. Food and Drug Administration today approved Axumin, a radioactive diagnostic agent for injection. Axumin is indicated for positron emission tomography (PET) imaging in men with suspected prostate cancer recurrence based on elevated prostate specific antigen (PSA) levels following prior treatment.

May 27, 2016

Release

The U.S. Food and Drug Administration today approved Axumin, a radioactive diagnostic agent for injection. Axumin is indicated for positron emission tomography (PET) imaging in men with suspected prostate cancer recurrence based on elevated prostate specific antigen (PSA) levels following prior treatment.

Prostate cancer is the second leading cause of death from cancer in U.S. men. In patients with suspected cancer recurrence after primary treatment, accurate staging is an important objective in improving management and outcomes.

“Imaging tests are not able to determine the location of the recurrent prostate cancer when the PSA is at very low levels,” said Libero Marzella, M.D., Ph.D., director of the Division of Medical Imaging Products in the FDA’s Center for Drug Evaluation and Research. “Axumin is shown to provide another accurate imaging approach for these patients.”

Two studies evaluated the safety and efficacy of Axumin for imaging prostate cancer in patients with recurrent disease. The first compared 105 Axumin scans in men with suspected recurrence of prostate cancer to the histopathology (the study of tissue changes caused by disease) obtained by prostate biopsy and by biopsies of suspicious imaged lesions. Radiologists onsite read the scans initially; subsequently, three independent radiologists read the same scans in a blinded study.

The second study evaluated the agreement between 96 Axumin and C11 choline (an approved PET scan imaging test) scans in patients with median PSA values of 1.44 ng/mL. Radiologists on-site read the scans, and the same three independent radiologists who read the scans in the first study read the Axumin scans in this second blinded study. The results of the independent scan readings were generally consistent with one another, and confirmed the results of the onsite scan readings. Both studies supported the safety and efficacy of Axumin for imaging prostate cancer in men with elevated PSA levels following prior treatment.

Axumin is a radioactive drug and should be handled with appropriate safety measures to minimize radiation exposure to patients and healthcare providers during administration. Image interpretation errors can occur with Axumin PET imaging. A negative image does not rule out the presence of recurrent prostate cancer and a positive image does not confirm the presence of recurrent prostate cancer. Clinical correlation, which may include histopathological evaluation of the suspected recurrence site, is recommended.

The most commonly reported adverse reactions in patients are injection site pain, redness, and a metallic taste in the mouth.

Axumin is marketed by Blue Earth Diagnostics, Ltd., Oxford, United Kingdom

Patent

http://www.google.com/patents/WO2014023775A1?cl=en

The non-natural amino acid [ F]-l-amino-3-fluorocyclobutane-l-carboxylic acid

([18F]-FACBC, also known as [18F]-Fluciclovine) is taken up specifically by amino acid transporters and has shown promise for tumour imaging with positron emission tomography (PET).

A known synthesis of [18F]-FACBC begins with the provision of the protected precursor compound 1 -(N-(t-butoxycarbonyl)amino)-3 –

[((trifluoromethyl)sulfonyl)oxy]-cyclobutane-l-carboxylic acid ethyl ester. This precursor compound is first labelled with [18F]-fluoride:

II before removal of the two protecting groups:

IT III

EP2017258 (Al) teaches removal of the ethyl protecting group by trapping the [18F]- labelled precursor compound (II) onto a solid phase extraction (SPE) cartridge and incubating with 0.8 mL of a 4 mol/L solution of sodium hydroxide (NaOH). After 3 minutes incubation the NaOH solution was collected in a vial and a further 0.8 mL 4 mol/L NaOH added to the SPE cartridge to repeat the procedure. Thereafter the SPE cartridge was washed with 3 mL water and the wash solution combined with the collected NaOH solution. Then 2.2 mL of 6 mol/L HCl was then added with heating to 60°C for 5 minutes to remove the Boc protecting group. The resulting solution was purified by passing through (i) an ion retardation column to remove Na+ from excess NaOH and Cl~ from extra HCl needed to neutralise excess of NaOH to get a highly acidic solution before the acidic hydrolysis step, (ii) an alumina column, and (iii) a reverse-phase column. There is scope for the deprotection step(s) and/or the

purification step in the production of [18F]-FACBC to be simplified.

Example 1: Synthesis of f FIFACBC

No-carrier- added [18F]fluoride was produced via the 180(p,n)18F nuclear reaction on a GE PETtrace 6 cyclotron (Norwegian Cyclotron Centre, Oslo). Irradiations were performed using a dual-beam, 30μΑ current on two equal Ag targets with HAVAR foils using 16.5 MeV protons. Each target contained 1.6 ml of > 96% [180]water (Marshall Isotopes). Subsequent to irradiation and delivery to a hotcell, each target was washed with 1.6 ml of [160]water (Merck, water for GR analysis), giving approximately 2-5 Gbq in 3.2 ml of [160]water. All radiochemistry was performed on a commercially available GE FASTlab™ with single-use cassettes. Each cassette is built around a one-piece-moulded manifold with 25 three-way stopcocks, all made of polypropylene. Briefly, the cassette includes a 5 ml reactor (cyclic olefin copolymer), one 1 ml syringe and two 5 ml syringes, spikes for connection with five prefilled vials, one water bag (100 ml) as well as various SPE cartridges and filters. Fluid paths are controlled with nitrogen purging, vacuum and the three syringes. The fully automated system is designed for single-step fluorinations with cyclotron-produced [18F]fluoride. The FASTlab was programmed by the software package in a step-by-step time-dependent sequence of events such as moving the syringes, nitrogen purging, vacuum, and temperature regulation. Synthesis of

[18F]FACBC followed the three general steps: (a) [18F]fluorination, (b) hydrolysis of protection groups and (c) SPE purification.

Vial A contained K222 (58.8 mg, 156 μπιοΐ), K2C03 (8.1 mg, 60.8 μπιοΐ) in 79.5% (v/v)

MeCN(aq) (1105 μΐ). Vial B contained 4M HC1 (2.0 ml). Vial C contained MeCN

(4.1ml). Vial D contained the precursor (48.4 mg, 123.5 μιηοΐ) in its dry form (stored at -20 °C until cassette assembly). Vial E contained 2 M NaOH (4.1 ml). The 30 ml product collection glass vial was filled with 200 mM trisodium citrate (10 ml). Aqueous

[18F]fluoride (1-1.5 ml, 100-200 Mbq) was passed through the QMA and into the 180-

H20 recovery vial. The QMA was then flushed with MeCN and sent to waste. The trapped [18F]fluoride was eluted into the reactor using eluent from vial A (730 μΐ) and then concentrated to dryness by azeotropic distillation with acetonitrile (80 μΐ, vial C). Approximately 1.7 ml of MeCN was mixed with precursor in vial D from which 1.0 ml of the dissolved precursor (corresponds to 28.5 mg, 72.7 mmol precursor) was added to the reactor and heated for 3 min at 85°C. The reaction mixture was diluted with water and sent through the tC18 cartridge. Reactor was washed with water and sent through the tC18 cartridge. The labelled intermediate, fixed on the tC18 cartridge was washed with water, and then incubated with 2M NaOH (2.0 ml) for 5 min after which the 2M NaOH was sent to waste. The labelled intermediate (without the ester group) was then eluted off the tC18 cartridge into the reactor using water. The BOC group was hydrolysed by adding 4M HC1 (1.4 ml) and heating the reactor for 5 min at 60 °C. The reactor content with the crude [18F]FACBC was sent through the HLB and Alumina cartridges and into the 30 ml product vial. The HLB and Alumina cartridges were washed with water (9.1 ml total) and collected in the product vial. Finally, 2M NaOH (0.9 ml) and water (2.1 ml) was added to the product vial, giving a purified formulation of [18F]FACBC with a total volume of 26 ml. Radiochemical purity was measured by radio-TLC using a mixture of MeCN:MeOH:H20:CH3COOH (20:5:5: 1) as the mobile phase. The radiochemical yield (RCY) was expressed as the amount of radioactivity in the [18F]FACBC fraction divided by the total used [18F]fluoride activity (decay corrected). Total synthesis time was 43 min.

The RCY of [18F]FACBC was 62.5% ± 1.93 (SD), n=4.

/////FDA,  diagnostic imaging agent,  recurrent prostate cancer, fda 2016, Axumin, marketed, Blue Earth Diagnostics, Ltd., Oxford, United Kingdom, fluciclovine F 18

C1[C@@](C[C@H]1[18F])(N)C(=O)O

 

UPDATE

FLUCICLOVINE

Image result for FLUCICLOVINE

LINK https://newdrugapprovals.org/2016/05/28/fda-approves-new-diagnostic-imaging-agent-fluciclovine-f-18-to-detect-recurrent-prostate-cancer/

SEE EMA

Axumin : EPAR – Summary for the public EN = English 06/07/2017

http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004197/human_med_002100.jsp&mid=WC0b01ac058001d124

Marketing-authorisation holder Blue Earth Diagnostics Ltd
Revision 0
Date of issue of marketing authorisation valid throughout the European Union 22/05/2017

Contact address:

Blue Earth Diagnostics Ltd
215 Euston Road
London NW1 2BE
United Kingdom

Manufacture, characterisation and process controls

The active substance fluciclovine (18F) is prepared from the precursor AH113487 by nucleophilic substitution
of a triflate group by 18F-fluoride, followed by two deprotection steps. Due to the short half-life of the 18Ffluorine
radioisotope, each batch is prepared on the day of clinical use.
The active substance is prepared in a proprietary automated synthesiser unit. The synthesiser module is
computer-controlled. A fluid path for synthesis is provided in the form of a single use cassette (FASTlab). The
cassette contains 3 reagent vials and 3 solid phase cartridges. Two other reagent vials are supplied
separately as they have a recommended storage temperature of 2-8°C. These 2 vials are inserted into the
cassette on the day of production.
Assessment report
EMA/237809/2017 Page 13/90
Fluciclovine (18F) is produced in a continuous operation from the precursor AH113487. Due to the radioactive
nature of the process, and the short half-life of [18F] fluorine, intermediates are not isolated and there is no
opportunity for operator intervention or in-process testing. Control of the synthesis of fluciclovine (18F) from
the precursor is achieved through the automated synthesis platform, which is pre-programmed with
synthesis parameters optimised for the process. On-board detectors record transfers of radioactivity through
the fluid path at critical points and monitor temperature and pressure as appropriate so that the operator
may track the progress of the synthesis.
The active substance fluciclovine (18F) progressses immediately to purification, formulation and dispensing as
the finished product within a single, continuous operation. Validation of the manufacturing process for
fluciclovine (18F) is therefore described as part of finished product validation.
The characterisation of the active substance is in accordance with the EU guideline on chemistry of new
active substances.
As mentioned, the manufacture of the active substance and finished product takes place in a single,
continuous process. The active substance is not isolated at any point. Therefore, relevant information about
impurities is given only for the finished product.
For the same reason, information for the container closure system is provided only for the finished product.http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/004197/WC500230836.pdf

%d bloggers like this: