New Drug Approvals

Home » VITAMINS

Category Archives: VITAMINS

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Paypal donate

Blog Stats

  • 1,597,044 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 1,975 other followers

Follow New Drug Approvals on WordPress.com

Archives

Categories

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 1,975 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 29 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 29 year tenure till date Aug 2016, Around 30 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 25 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 13 lakh plus views on New Drug Approvals Blog in 212 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

VITAMINS, COMMON INFORMATION


A vitamin (US /ˈvtəmɪn/ or UK /ˈvɪtəmɪn/) is an organic compound required by an organism as a vital nutrient in limited amounts. An organic chemical compound (or related set of compounds) is called a vitamin when it cannot be synthesized in sufficient quantities by an organism, and must be obtained from the diet. Thus, the term is conditional both on the circumstances and on the particular organism. For example, ascorbic acid (vitamin C) is a vitamin for humans, but not for most other animals, and biotin (vitamin H) and vitamin D are required in the human diet only in certain circumstances.

 

 

 

 

Thiamin

What it does:

  • helps convert the food we eat to the energy we need

Foods that have thiamin:

  • spinach, tomato juice, watermelon, sunflower seeds, ham

Deficiency problems:

  • weakness, tingling in feet and hands, poor coordination
Thiamin

Riboflavin – named for its yellow color (flavus means yellow in Latin)

What it does:

  • helps convert the food we eat to the energy we need

Foods that have riboflavin:

  • milk, cheese, liver, broccoli, asparagus, spinach

Deficiency problems:

  • eye disorders, cracks at corners of mouth, swollen tongue
riboflavin

Niacin

What it does:

  • helps our body use the fat and sugar we eat for energy
  • helps keep our skin healthy

Foods that have niacin:

  • mushrooms, tuna, green beans, broccoli, spinach, breakfast cereals

Deficiency problems:

  • diarrhea, skin problems, mental disorientation
niacin

Vitamin B6

What it does:

  • helps make red blood cells
  • helps our body use the fat and protein we eat for energy

Foods that have vitamin B6:

  • spinach, broccoli, tomato juice, banana, watermelon, chicken breast

Deficiency problems:

  • headache, convulsions, vomiting, flaky skin, sore tongue
b6

Folate

What it does:

  • helps to make new cells
  • helps prevent heart disease

Foods that have folate:

  • asparagus, broccoli, corn flakes, green beans, tomato juice, beans

Deficiency problems:

  • diarrhea, mental disorders, poor growth
folate

Vitamin B12

What it does:

  • helps to make new cells

Foods that have vitamin B12:

  • meat, fish, poultry, milk, cheese, eggs

Deficiency problems:

  • anemia, poor nerve function
b12

Vitamin C– almost all animals make vitamin C in their bodies (only humans, guinea pigs, some bats, and some fish don’t)vitamin c

What it does:

  • protects cells from damage
  • helps keep bones and skin healthy
  • may help prevent cancer and heart disease

Foods that have vitamin C:

  • oranges, strawberries, peppers, kiwi, brussel sprouts, broccoli, spinach

Deficiency problems:

  • bleeding gums, tiredness, weakness, sore muscle

 

 

 

 

 

 

 

 

Vitamin A – discovered in 1913

What it does:

  • helps with eyesight
  • keeps skin healthy
  • helps with growth of body organs (like bones)

Foods that have vitamin A:

  • liver, fish, milk, butter, eggs, carrots

Deficiency problems:

  • night blindness, poor growth, dry skin
vitamin a

Vitamin D – made in the skin by the sun

What it does:

  • helps bones grow strong

Foods that have vitamin D:

  • egg yolks, liver, butter, milk

Deficiency problems:

  • rickets (deformed bones), weak bones
vitamin d

Vitamin E – called the antiaging vitamin

What it does:

  • protects lungs against pollution damage
  • helps keep heart healthy
  • may help protect against cancer

Foods that have vitamin E:

  • sweet potatoes, peanut butter, sunflower seeds, spinach, nuts

Deficiency problems:

  • nerve destruction, red blood cell destruction
vitamin e

Vitamin K – made by bacteria in our intestines

What it does:

  • helps make blood clot
  • helps keep bones healthy

Foods that have vitamin K:

  • liver, cabbage, lettuce, spinach, milk, meat, eggs

Deficiency problems:

  • hemorrhage
vitamin k

……….

By convention, the term vitamin includes neither other essential nutrients, such as dietary mineralsessential fatty acids, or essential amino acids (which are needed in larger amounts than vitamins) nor the large number of other nutrients that promote health but are otherwise required less often. Thirteen vitamins are universally recognized at present.

Vitamins are classified by their biological and chemical activity, not their structure. Thus, each “vitamin” refers to a number of vitamer compounds that all show the biological activity associated with a particular vitamin. Such a set of chemicals is grouped under an alphabetized vitamin “generic descriptor” title, such as “vitamin A“, which includes the compounds retinalretinol, and four known carotenoids. Vitamers by definition are convertible to the active form of the vitamin in the body, and are sometimes inter-convertible to one another, as well.

itamins have diverse biochemical functions. Some, such as vitamin D, have hormone-like functions as regulators of mineral metabolism, or regulators of cell and tissue growth and differentiation (such as some forms of vitamin A). Others function as antioxidants (e.g., vitamin E and sometimesvitamin C). The largest number of vitamins, the B complex vitamins, function as precursors for enzyme cofactors, that help enzymes in their work as catalysts in metabolism. In this role, vitamins may be tightly bound to enzymes as part of prosthetic groups: For example, biotin is part of enzymes involved in making fatty acids. They may also be less tightly bound to enzyme catalysts as coenzymes, detachable molecules that function to carry chemical groups or electrons between molecules. For example, folic acid may carry methylformyl, and methylene groups in the cell. Although these roles in assisting enzyme-substrate reactions are vitamins’ best-known function, the other vitamin functions are equally important.

 

Until the mid-1930s, when the first commercial yeast-extract vitamin B complex and semi-synthetic vitamin C supplement tablets were sold, vitamins were obtained solely through food intake, and changes in diet (which, for example, could occur during a particular growing season) usually greatly altered the types and amounts of vitamins ingested. However, vitamins have been produced as commodity chemicals and made widely available as inexpensive semisynthetic and synthetic-source multivitamin dietary and food supplements and additives, since the middle of the 20th century.,,,,,,,

 

List of vitamins

Each vitamin is typically used in multiple reactions, and, therefore, most have multiple functions.

Vitamin generic

descriptor name

Vitamerchemical name(s) (list not complete) Solubility Recommended dietary allowances

(male, age 19–70)[6]

Deficiency disease Upper Intake Level

(UL/day)[6]

Overdose disease Food sources
Vitamin A Retinolretinal, and

four carotenoids

including beta carotene

Fat 900 µg Night-blindness,Hyperkeratosis, andKeratomalacia[7] 3,000 µg Hypervitaminosis A Orange, ripe yellow fruits, leafy vegetables, carrots, pumpkin, squash, spinach, liver, soy milk, milk
Vitamin B1 Thiamine Water 1.2 mg BeriberiWernicke-Korsakoff syndrome N/D[8] Drowsiness or muscle relaxation with large doses.[9] Pork, oatmeal, brown rice, vegetables, potatoes, liver, eggs
Vitamin B2 Riboflavin Water 1.3 mg Ariboflavinosis N/D Dairy products, bananas, popcorn, green beans, asparagus
Vitamin B3 Niacinniacinamide Water 16.0 mg Pellagra 35.0 mg Liver damage (doses > 2g/day)[10] and other problems Meat, fish, eggs, many vegetables, mushrooms, tree nuts
Vitamin B5 Pantothenic acid Water 5.0 mg[11] Paresthesia N/D Diarrhea; possibly nausea and heartburn.[12] Meat, broccoli, avocados
Vitamin B6 Pyridoxine,pyridoxamine,pyridoxal Water 1.3–1.7 mg Anemia[13] peripheral neuropathy. 100 mg Impairment ofproprioception, nerve damage (doses > 100 mg/day) Meat, vegetables, tree nuts, bananas
Vitamin B7 Biotin Water 30.0 µg Dermatitisenteritis N/D Raw egg yolk, liver, peanuts, certain vegetables
Vitamin B9 Folic acidfolinic acid Water 400 µg Megaloblastic anemiaand Deficiency during pregnancy is associated with birth defects, such as neural tube defects 1,000 µg May mask symptoms of vitamin B12 deficiency;other effects. Leafy vegetables, pasta, bread, cereal, liver
Vitamin B12 Cyanocobalamin,hydroxycobalamin,methylcobalamin Water 2.4 µg Megaloblastic anemia[14] N/D Acne-like rash [causality is not conclusively established]. Meat and other animal products
Vitamin C Ascorbic acid Water 90.0 mg Scurvy 2,000 mg Vitamin C megadosage Many fruits and vegetables, liver
Vitamin D Cholecalciferol Fat 10 µg[15] Rickets andOsteomalacia 50 µg Hypervitaminosis D Fish, eggs, liver, mushrooms
Vitamin E Tocopherols,tocotrienols Fat 15.0 mg Deficiency is very rare; mild hemolytic anemiain newborn infants.[16] 1,000 mg Increased congestive heart failure seen in one large randomized study.[17] Many fruits and vegetables, nuts and seeds
Vitamin K phylloquinone,menaquinones Fat 120 µg Bleeding diathesis N/D Increases coagulation in patients taking warfarin.[18] Leafy green vegetables such as spinach, egg yolks, liver

 

Advertisements

VITAMINS- VIT C REVIEW


File:L-Ascorbic acid.svg

Vitamin C

File:Ascorbic-acid-from-xtal-1997-3D-balls.png

2-Oxo-L-threo-hexono-1,4-lactone-2,3-enediol
or
(R)-3,4-dihydroxy-5-((S)- 1,2-dihydroxyethyl)furan-2(5H)-one

James Lind, a British Royal Navy surgeon who, in 1747, identified that a quality in fruit prevented the disease of scurvy in what was the first recorded controlled experiment.

The need to include fresh plant food or raw animal flesh in the diet to prevent disease was known from ancient times. Native people living in marginal areas incorporated this into their medicinal lore. For example, spruce needles were used in temperate zones in infusions, or the leaves from species of drought-resistant trees in desert areas. In 1536, the French explorers Jacques Cartier and Daniel Knezevic, exploring the St. Lawrence River, used the local natives’ knowledge to save his men who were dying of scurvy. He boiled the needles of the arbor vitae tree to make a tea that was later shown to contain 50 mg of vitamin C per 100 grams

Citrus fruits were one of the first sources of vitamin C available to ships’ surgeons.

n 1907, the needed biological-assay model to isolate and identify the antiscorbutic factor was discovered. Axel Holst and Theodor Frølich, two Norwegian physicians studying shipboard beriberi in the Norwegian fishing fleet, wanted a small test mammal to substitute for the pigeons then used in beriberi research. They fed guinea pigs their test diet of grains and flour, which had earlier produced beriberi in their pigeons, and were surprised when classic scurvy resulted instead. This was a serendipitous choice of model. Until that time, scurvy had not been observed in any organism apart from humans, and had been considered an exclusively human disease. (Pigeons, as seed-eating birds, were also later found to make their own vitamin C.) Holst and Frølich found they could cure the disease in guinea pigs with the addition of various fresh foods and extracts. This discovery of a clean animal experimental model for scurvy, made even before the essential idea of vitamins in foods had even been put forward, has been called the single most important piece of vitamin C research

Vitamin C

 or L-ascorbic acid, or simply ascorbate (the anion of ascorbic acid), is anessential nutrient for humans and certain other animal species. Vitamin C refers to a number of vitamers that have vitamin C activity in animals, including ascorbic acid and its salts, and some oxidized forms of the molecule like dehydroascorbic acid. Ascorbate and ascorbic acid are both naturally present in the body when either of these is introduced into cells, since the forms interconvert according to pH.

Vitamin C is a cofactor in at least eight enzymatic reactions including several collagensynthesis reactions that, when dysfunctional, cause the most severe symptoms ofscurvy. In animals, these reactions are especially important in wound-healing and in preventing bleeding from capillaries. Ascorbate may also act as an antioxidant againstoxidative stress.However, the fact that the enantiomer D-ascorbate (not found in nature) has identical antioxidant activity to L-ascorbate, yet far less vitamin activity,underscores the fact that most of the function of L-ascorbate as a vitamin relies not on its antioxidant properties, but upon enzymic reactions that are stereospecific. “Ascorbate” without the letter for the enantiomeric form is always presumed to be the chemical L-ascorbate.

Ascorbate (the anion of ascorbic acid) is required for a range of essential metabolic reactions in all animals and plants. It is made internally by almost all organisms; the main exceptions are bats, guinea pigs, capybaras, and the Anthropoidea (i.e., Haplorrhini, one of the two major primate suborders, consisting of tarsiers, monkeys, humans and otherapes). Ascorbate is also not synthesized by some species of birds and fish. All species that do not synthesize ascorbate require it in the diet. Deficiency in this vitamin causes the disease scurvy in humans.

Ascorbic acid is also widely used as a food additive, to prevent oxidation.

ascorbic acid
(reduced form)
dehydroascorbic acid
(oxidized form)

The name vitamin C always refers to the L-enantiomer of ascorbic acid and its oxidized forms. The opposite D-enantiomer called D-ascorbate has equal antioxidant power, but is not found in nature, and has no physiological significance. When D-ascorbate is synthesized and given to animals that require vitamin C in the diet, it has been found to have far less vitamin activity than the L-enantiomer.Therefore, unless written otherwise, “ascorbate” and “ascorbic acid” refer in the nutritional literature to L-ascorbate and L-ascorbic acid respectively. This notation will be followed in this article. Similarly, their oxidized derivatives (dehydroascorbate, etc., see below) are all L-enantiomers, and also need not be written with full sterochemical notation here.

Ascorbic acid is a weak sugar acid structurally related to glucose. In biological systems, ascorbic acid can be found only at low pH, but in neutral solutions above pH 5 is predominantly found in the ionizedform, ascorbate. All of these molecules have vitamin C activity, therefore, and are used synonymously with vitamin C, unless otherwise specified

Rose hips are a particularly rich source of vitamin C

Goats, like almost all animals, make their own vitamin C. An adult goat, weighing approx. 70 kg, will manufacture more than 13,000 mg of vitamin C per day in normal health, and levels manyfold higher when faced with stress.\

HIGHEST SOURCES

Terminalia ferdinandiana, also called the gubingebillygoat plumKakadu plum ormurunga is a flowering plant in the family Combretaceae, native to Australia, widespread throughout the tropical woodlands from northwestern Australia to eastern Arnhem Land.

Its vitamin C concentration may be as high as 1000–5300 mg/100g  (compared with 50 mg/100g for oranges), possibly the highest known of any fruit.

Phyllanthus emblica (syn. Emblica officinalis), the Indian gooseberry, or aamla from Sanskrit amalika, is a deciduous tree of the family Phyllanthaceae. It is known for its ediblefruit of the same name.

 

 

SUMMARY

Ascorbic Acid

Structure of ascorbic acid

Ascorbic acid is more commonly known as vitamin C. Ascorbic acid is derived from glucose via the uronic acid pathway. The enzyme L-gulonolactone oxidase responsible for the conversion of gulonolactone to ascorbic acid is absent in primates making ascorbic acid required in the diet.

The active form of vitamin C is ascorbic acid itself. The main function of ascorbate is as a reducing agent in a number of different reactions. Ascorbate is the cofactor for Cu+–dependent monooxygenases and Fe2+–dependent dioxygenases. Ascorbate has the potential to reduce cytochromes a and c of the respiratory chain as well as molecular oxygen. The most important reaction requiring ascorbate as a cofactor is the hydroxylation of proline residues in collagen. Vitamin C is, therefore, required for the maintenance of normal connective tissue as well as for wound healing since synthesis of connective tissue is the first event in wound tissue remodeling. Vitamin C also is necessary for bone remodeling due to the presence of collagen in the organic matrix of bones.

Ascorbic acid also serves as a reducing agent and an antioxidant. When functioning as an antioxidant ascorbic acid itself becomes oxidized to semidehydroascorbate and then dehydroascorbate. Semidehydroascorbate is reconverted to ascorbate in the cytosol by cytochrome b5 reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH.

Several other metabolic reactions require vitamin C as a cofactor. These include the catabolism of tyrosine and the synthesis of epinephrine from tyrosine and the synthesis of the bile acids. It is also believed that vitamin C is involved in the process of steroidogenesis since the adrenal cortex contains high levels of vitamin C which are depleted upon adrenocorticotropic hormone (ACTH) stimulation of the gland.

Deficiency in vitamin C leads to the disease scurvy due to the role of the vitamin in the post-translational modification of collagens. Scurvy is characterized by easily bruised skin, muscle fatigue, soft swollen gums, decreased wound healing and hemorrhaging, osteoporosis, and anemia. Vitamin C is readily absorbed and so the primary cause of vitamin C deficiency is poor diet and/or an increased requirement. The primary physiological state leading to an increased requirement for vitamin C is severe stress (or trauma). This is due to a rapid depletion in the adrenal stores of the vitamin. The reason for the decrease in adrenal vitamin C levels is unclear but may be due either to redistribution of the vitamin to areas that need it or an overall increased utilization.

Inefficient intake of vitamin C has also been associated with a number of conditions, such as high blood pressure, gallbladder disease, stroke, some cancers, and atherosclerosis (plaque in blood vessels that can lead to heart attack and stroke). Sufficient vitamin C in the diet may help reduce the risk of developing some of these conditions, however, the evidence that taking vitamin C supplements will help or prevent any of these conditions is still lacking.

The amount of vitamin C that is recommended to consume each day (the RDA) depends upon the age and sex of the individual. Infants less than 1 year old should get 50 milligrams (mg) per day. children 1–3 years old need 15mg, 4–8 years old need 25mg, and 9–13 years old need 45mg. Adolescent girls should get 65mg per day and adolescent boys should get 75mg per day. Adult males need 90mg per day and adult women should get 75mg per day. Women who are breastfeeding should increase their intake to at least 120mg per day. Individuals who smoke should increase their daily intake by at least 35mg since smoking depletes vitamin C levels. The recommended daily intake of vitamin C to prevent conditions such as the cardiovascular disorders indicated above is reported to be between 500mg and 1000mg.

Excellent sources of vitamin C are fruits and vegetables such as oranges, watermelon, papaya, grapefruit, cantaloupe, strawberries, raspberries, blueberries, cranberries, pineapple, kiwi, mango, green peppers, broccoli, turnip greens, spinach, red and green peppers, canned and fresh tomatoes, potatoes, Brussels sprouts, cauliflower, and cabbage. Citrus juices or juices fortified with vitamin C are also excellent sources of the vitamin.

Vitamin C is sensitive to light, air, and heat, so the most vitamin C is available in fruits and vegetables that are eaten raw or lightly cooked. Natural or synthetic vitamin C can be found in a variety of forms. Tablets, capsules, and chewables are probably the most popular forms, but vitamin C also comes in powdered crystalline, effervescent, and liquid forms. An esterified form of vitamin C is also available, which may be easier on the stomach for those who are prone to heartburn. The best way to take vitamin C supplements is 2–3 times per day, with meals, depending on the dosage.

%d bloggers like this: