New Drug Approvals

Home » 2023 » December

Monthly Archives: December 2023

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,480,209 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,841 other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,841 other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Capivasertib


Capivasertib.png

Capivasertib

C21H25ClN6O2

 428.915

  • 1143532-39-1

AZD 5363

4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide

(S)-4-AMINO-N-(1-(4-CHLOROPHENYL)-3-HYDROXYPROPYL)-1-(7H-PYRROLO[2,3-D]PYRIMIDIN-4-YL)PIPERIDINE-4-CARBOXAMIDE

FDA APPROVED 11/16/2023, To treat breast cancer that meets certain disease criteria, Truqap

Capivasertib, sold under the brand name Truqap, is an anti-cancer medication used for the treatment of breast cancer.[1][2]

The most common adverse reactions include diarrhea, cutaneous adverse reactions, increased random glucose, decreased lymphocytes, decreased hemoglobin, increased fasting glucose, nausea, fatigue, decreased leukocytes, increased triglycerides, decreased neutrophils, increased creatinine, vomiting, and stomatitis.[3]

In November 2023, capivasertib was approved in the United States for people with hormone receptor-positive, human epidermal growth factor receptor 2-negative breast cancer when used in combination with fulvestrant.[3][4][5]

Capivasertib is a novel pyrrolopyrimidine derivative, and an orally available inhibitor of the serine/threonine protein kinase AKT (protein kinase B) with potential antineoplastic activity. Capivasertib binds to and inhibits all AKT isoforms. Inhibition of AKT prevents the phosphorylation of AKT substrates that mediate cellular processes, such as cell division, apoptosis, and glucose and fatty acid metabolism. A wide range of solid and hematological malignancies show dysregulated PI3K/AKT/mTOR signaling due to mutations in multiple signaling components. By targeting AKT, the key node in the PIK3/AKT signaling network, this agent may be used as monotherapy or combination therapy for a variety of human cancers.

Medical uses

Capivasertib, used in combination with fulvestrant (Faslodex), is indicated for adults with hormone receptor-positive, human epidermal growth factor receptor 2-negative locally advanced or metastatic breast cancer with one or more PIK3CA/AKT1/PTEN-alterations, as detected by an FDA-approved test, following progression on at least one endocrine-based regimen in the metastatic setting or recurrence on or within twelve months of completing adjuvant therapy.[1][3]

History

Efficacy was evaluated in CAPItello-291 (NCT04305496), a randomized, double-blind, placebo-controlled, multicenter trial in 708 participants with locally advanced or metastatic HR-positive, HER2-negative breast cancer, of which 289 participants had tumors with PIK3CA/AKT1/PTEN-alterations.[3] All participants were required to have progression on aromatase inhibitor-based treatment.[3] Participants could have received up to two prior lines of endocrine therapy and up to one line of chemotherapy for locally advanced or metastatic disease.[3]

PATENT

US10654855,

EXAMPLE 9: (S)-4-AMINO-N-(1-(4-CHLOROPHENYL)-3-HYDROXYPROPYL)-1-(7H-PYRROLO[2,3-D]PYRIMIDIN-4-YL)PIPERIDINE-4-CARBOXAMIDE (E9)


(MOL)(CDX)
      HCl (4M in Dioxane) (3.00 mL, 12.00 mmol) was added to (S)-tert-butyl 4-(1-(4-chlorophenyl)-3-hydroxypropylcarbamoyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-ylcarbamate (Intermediate 22) (1.27 g, 2.40 mmol) in dichloromethane (20 mL). The resulting suspension was stirred at 20° C. for 16 hours. The reaction mixture was filtered through a PTFE filter cup and the crude solid was purified by preparative HPLC (Waters XTerra C18 column, 5 μm silica, 19 mm diameter, 100 mm length), using decreasingly polar mixtures of water (containing 1% TFA) and MeCN as eluents. Fractions containing the desired compound were purified by ion exchange chromatography, using an SCX column. The desired product was eluted from the column using 7M NH 3/MeOH and pure fractions were evaporated to dryness to afford (S)-4-amino-N-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (0.200 g, 19.4%) as a white solid. 1H NMR (399.9 MHz, DMSO-d6) δ 1.45 (2H, d), 1.86 (1H, d), 1.90-1.93 (1H, m), 2.19 (2H, s), 3.38 (2H, q), 3.51-3.58 (2H, m), 4.35-4.38 (2H, m), 4.53 (1H, t), 4.88 (1H, d), 6.58 (1H, t), 7.16 (1H, t), 7.32-7.38 (4H, m), 8.12 (1H, s), 8.43 (1H, d), 11.63 (1H, s), m/z (ESI+) (M+H)+=429; HPLC tR=1.46 min.

EXAMPLE 9 ALTERNATIVE ROUTE 1: (S)-4-AMINO-N-(1-(4-CHLOROPHENYL)-3-HYDROXYPROPYL)-1-(7H-PYRROLO[2,3-D]PYRIMIDIN-4-YL)PIPERIDINE-4-CARBOXAMIDE


(MOL)(CDX)
      N-Ethyldiisopropylamine (1.676 ml, 9.62 mmol) was added to (S)-4-amino-N-(1-(4-chlorophenyl)-3-hydroxypropyl)piperidine-4-carboxamide (Intermediate 49) (1 g, 3.21 mmol) and 4-chloro-7H-pyrrolo[2,3-d]pyrimidine (0.493 g, 3.21 mmol) in butan-1-ol (15 ml). The resulting solution was stirred at 60° C. for 18 hours. The reaction mixture was diluted with EtOAc (50 mL), and washed sequentially with water (25 mL) and saturated brine (25 mL). The organic layer was dried over MgSO 4, filtered and evaporated to afford crude product. The crude product was purified by flash silica chromatography, elution gradient 0 to 6% MeOH with ammonia in DCM. Pure fractions were evaporated to dryness to afford (S)-4-amino-N-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (842 mg) as a white foam. (S)-4-amino-N-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide was stirred in ethyl acetate (7 mL) for 18 hours. The solid was collected by filtration, washed with a small amount of ethyl acetate and vacuum oven dried at 55° C. for 18 hours to afford (S)-4-amino-N-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (0.585 g, 42.5%) as a white solid.
      m/z (ES+) (M+H)+=429; HPLC tR=1.60 min.
      1H NMR (400.13 MHz, DMSO-d 6) δ 1.39-1.47 (2H, m), 1.80-2.02 (4H, m), 2.17 (2H, s), 3.35-3.40 (2H, m), 3.50-3.59 (2H, m), 4.34-4.41 (2H, m), 4.53 (1H, t), 4.88 (1H, d), 6.57 (1H, m), 7.14-7.16 (1H, m), 7.31-7.37 (4H, m), 8.12 (1H, s), 8.42 (1H, d), 11.62 (1H, s)

EXAMPLE 9 ALTERNATIVE ROUTE 2: (S)-4-AMINO-N-(1-(4-CHLOROPHENYL)-3-HYDROXYPROPYL)-1-(7H-PYRROLO[2,3-D]PYRIMIDIN-4-YL)PIPERIDINE-4-CARBOXAMIDE


(MOL)(CDX)
      (S)-3-Amino-3-(4-chlorophenyl)propan-1-ol (Intermediate 47) (2.055 g, 11.07 mmol) was added in one portion to 4-(tert-butoxycarbonylamino)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxylic acid (Intermediate 1) (4 g, 11.07 mmol) and DIPEA (5.80 ml, 33.20 mmol) in DMA (40 ml). HATU (4.63 g, 12.18 mmol) was added and the resulting solution was stirred at 20° C. for 24 hours. The reaction mixture was evaporated to dryness then diluted with EtOAc (300 mL), and washed sequentially with water (50 mL) and saturated brine (50 mL). The organic layer was dried over MgSO 4, filtered and evaporated to afford crude product. The crude product was purified by flash silica chromatography, elution gradient 2 to 6% MeOH with ammonia in DCM. Pure fractions were evaporated to dryness and triturated with dioxane (40 ml) to afford (S)-tert-butyl 4-(1-(4-chlorophenyl)-3-hydroxypropylcarbamoyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-ylcarbamate (Intermediate 22) (4.82 g, 82%) as a white solid. (S)-tert-butyl 4-(1-(4-chlorophenyl)-3-hydroxypropylcarbamoyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-ylcarbamate (Intermediate 22) (4.82 g, 82%) was suspended in dioxane (40.0 ml) and 4M hydrogen chloride in dioxane (7.69 ml, 221.36 mmol) added. The reaction was stirred at ambient temperature for 2 hours. The crude product was purified by ion exchange chromatography, using an SCX column. The desired product was eluted from the column using 3.5M NH 3/MeOH and pure fractions were evaporated to dryness. The crude product was purified by preparative HPLC (Waters XBridge Prep C18 OBD column, 5 μm silica, 19 mm diameter, 100 mm length), using decreasingly polar mixtures of water (containing 1% NH 3) and MeCN as eluents. Fractions containing the desired compound were evaporated to dryness to afford (S)-4-amino-N-(1-(4-chlorophenyl)-3-hydroxypropyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (1.200 g, 25.3%) as a white solid.
      m/z (ES+) (M+H)+=429; HPLC tR=1.67 min.
1H NMR matches previous.
str1
Flag Counter

AS ON DEC2021 3,491,869 VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@amcrasto

//////////

Clinical data
Trade namesTruqap
Other namesAZD-5363
AHFS/Drugs.comTruqap
License dataUS DailyMedCapivasertib
Routes of
administration
By mouth
Drug classThreonine kinase inhibitor
ATC codeL01EX27 (WHO)
Legal status
Legal statusUS: ℞-only[1]
Identifiers
showIUPAC name
CAS Number1143532-39-1
PubChem CID25227436
DrugBankDB12218
ChemSpider28189073
UNIIWFR23M21IE
KEGGD11371
ChEMBLChEMBL2325741
PDB ligand0XZ (PDBeRCSB PDB)
CompTox Dashboard (EPA)DTXSID40150710 
ECHA InfoCard100.208.066 
Chemical and physical data
FormulaC21H25ClN6O2
Molar mass428.92 g·mol−1
3D model (JSmol)Interactive image
showSMILES
showInChI

References

  1. Jump up to:a b c “Truqap- capivasertib tablet, film coated”DailyMed. 16 November 2023. Archived from the original on 20 November 2023. Retrieved 20 November 2023.
  2. ^ Turner NC, Oliveira M, Howell SJ, Dalenc F, Cortes J, Gomez Moreno HL, et al. (June 2023). “Capivasertib in Hormone Receptor–Positive Advanced Breast Cancer”. New England Journal of Medicine388 (22): 2058–2070. doi:10.1056/NEJMoa2214131PMID 37256976S2CID 259002400.
  3. Jump up to:a b c d e f “FDA approves capivasertib with fulvestrant for breast cancer”U.S. Food and Drug Administration. 16 November 2023. Archived from the original on 17 November 2023. Retrieved 17 November 2023. Public Domain This article incorporates text from this source, which is in the public domain.
  4. ^ “Oncology (Cancer) / Hematologic Malignancies Approval Notifications”U.S. Food and Drug Administration. 16 November 2023. Archived from the original on 17 November 2023. Retrieved 17 November 2023.
  5. ^ “Truqap (capivasertib) plus Faslodex approved in the US for patients with advanced HR-positive breast cancer”AstraZeneca (Press release). 17 November 2023. Archived from the original on 17 November 2023. Retrieved 17 November 2023.

External links

  • Clinical trial number NCT04305496 for “Capivasertib+Fulvestrant vs Placebo+Fulvestrant as Treatment for Locally Advanced (Inoperable) or Metastatic HR+/HER2- Breast Cancer (CAPItello-291)” at ClinicalTrials.gov

///////Capivasertib, Truqap, FDA 2023, APPROVALS 2023, AZD 5363

NC1(CCN(CC1)C1=C2C=CNC2=NC=N1)C(=O)N[C@@H](CCO)C1=CC=C(Cl)C=C1

Eplontersen


Eplontersen

AKCEA-TTR-LRx

  • ION-682884 FREE ACID
  • ISIS-682884 FREE ACID

UNII0GRZ0F5XJ6

CAS number1637600-16-8

STR1

Eplontersen, FDA APP, 12/21/2023, To treat polyneuropathy of hereditary transthyretin-mediated amyloidosis, Wainua

AKCEA-TTR-LRx is under investigation in clinical trial NCT04136184 (Neuro-ttransform: A Study to Evaluate the Efficacy and Safety of Akcea-ttr-lrx in Participants With Hereditary Transthyretin-mediated Amyloid Polyneuropathy).

Eplontersen, sold under the brand name Wainua, is a medication used for the treatment of transthyretin-mediated amyloidosis.[1] It is a transthyretin-directed antisense oligonucleotide.[1] It was developed to treat hereditary transthyretin amyloidosis by Ionis Pharmaceuticals and AstraZeneca.[2][3][4][5]

It was approved for medical use in the United States in December 2023.[6][7][8]

Medical uses

Eplontersen is indicated for the treatment of the polyneuropathy of hereditary transthyretin-mediated amyloidosis in adults.[1]

Society and culture

Names

Eplontersen is the international nonproprietary name.[9]

//////////////

str1
Flag Counter

AS ON DEC2021 3,491,869 VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@amcrasto

//////////

Clinical data
Trade namesWainua
Other namesAKCEA-TTR-LRx
AHFS/Drugs.comEplontersen
License dataUS DailyMedEplontersen
Routes of
administration
Subcutaneous
ATC codeN07XX21 (WHO)
Legal status
Legal statusUS: ℞-only[1]
Identifiers
CAS Number1637600-16-8
DrugBankDB16199
UNII0GRZ0F5XJ6

References

  1. Jump up to:a b c d https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/217388s000lbl.pdf
  2. ^ “Ionis announces FDA acceptance of New Drug Application for eplontersen for the treatment of hereditary transthyretin-mediated amyloid polyneuropathy (ATTRv-PN)” (Press release). Ionis Pharmaceuticals. 7 March 2023. Archived from the original on 26 September 2023. Retrieved 21 December 2023 – via PR Newswire.
  3. ^ Coelho, Teresa; Waddington Cruz, Márcia; Chao, Chi-Chao; Parman, Yeşim; Wixner, Jonas; Weiler, Markus; et al. (February 2023). “Characteristics of Patients with Hereditary Transthyretin Amyloidosis-Polyneuropathy (ATTRv-PN) in NEURO-TTRansform, an Open-label Phase 3 Study of Eplontersen”Neurology and Therapy12 (1): 267–287. doi:10.1007/s40120-022-00414-zPMC 9837340PMID 36525140.
  4. ^ Coelho, Teresa; Marques, Wilson; Dasgupta, Noel R.; Chao, Chi-Chao; Parman, Yeşim; França, Marcondes Cavalcante; et al. (October 2023). “Eplontersen for Hereditary Transthyretin Amyloidosis With Polyneuropathy”. The Journal of the American Medical Association330 (15): 1448–1458. doi:10.1001/jama.2023.18688PMC 10540057. PMID 37768671.
  5. ^ Diep, John K.; Yu, Rosie Z.; Viney, Nicholas J.; Schneider, Eugene; Guo, Shuling; Henry, Scott; et al. (December 2022). “Population pharmacokinetic/pharmacodynamic modelling of eplontersen, an antisense oligonucleotide in development for transthyretin amyloidosis”. British Journal of Clinical Pharmacology88 (12): 5389–5398. doi:10.1111/bcp.15468PMID 35869634S2CID 250989659.
  6. ^ “Eplontersen: FDA-Approved Drugs”U.S. Food and Drug Administration (FDA). Retrieved 21 December 2023.
  7. ^ “Wainua (eplontersen) granted regulatory approval in the U.S. for the treatment of adults with polyneuropathy of hereditary transthyretin-mediated amyloidosis”Ionis Pharmaceuticals, Inc. (Press release). 21 December 2023. Retrieved 22 December 2023.
  8. ^ “Wainua (eplontersen) granted first-ever regulatory approval in the US for the treatment of adults with polyneuropathy of hereditary transthyretin-mediated amyloidosis”AstraZeneca US (Press release). 22 December 2023. Retrieved 22 December 2023.
  9. ^ World Health Organization (2021). “International nonproprietary names for pharmaceutical substances (INN): recommended INN: list 85”. WHO Drug Information35 (1). hdl:10665/340684.

External links

  • Clinical trial number NCT04136184 for “NEURO-TTRansform: A Study to Evaluate the Efficacy and Safety of Eplontersen (Formerly Known as ION-682884, IONIS-TTR-LRx and AKCEA-TTR-LRx) in Participants With Hereditary Transthyretin-Mediated Amyloid Polyneuropathy” at ClinicalTrials.gov
  • Clinical trial number NCT01737398 for “Efficacy and Safety of Inotersen in Familial Amyloid Polyneuropathy” at ClinicalTrials.gov

///////////Eplontersen, Wainua, FDA 2023, APPROVALS 2023, ION-682884 FREE ACID, ISIS-682884 FREE ACID

Iptacopan


Iptacopan

1644670-37-0

422.525, C25H30N2O4

  • 4-((2S,4S)-4-ethoxy-1-((5-methoxy-7-methyl-1H-indol-4-yl)methyl)piperidin-2-yl) benzoic acid
  • BENZOIC ACID, 4-((2S,4S)-4-ETHOXY-1-((5-METHOXY-7-METHYL-1H-INDOL-4-YL)METHYL)-2-PIPERIDINYL)-
  • Iptacopan
  • LNP 023
  • LNP-023
  • LNP023
  • NVP-LNP023
  • NVP-LNP023-NX

Fda approved, To treat paroxysmal nocturnal hemoglobinuria, 12/5/2023, Fabhalta ‘

Iptacopan is a small-molecule factor B inhibitor previously investigated as a potential treatment for the rare blood disease paroxysmal nocturnal hemoglobinuria (PNH) by inhibiting the complement factor B.1 Factor B is a positive regulator of the alternative complement pathway, where it activates C3 convertase and subsequently C5 convertase.2 This is of particular importance to PNH, where one of the disease hallmarks is the mutation of the PIGA gene. Due to this mutation, all progeny erythrocytes will lack the glycosyl phosphatidylinositol–anchored proteins that normally anchor 2 membrane proteins, CD55 and CD59, that protect blood cells against the alternative complement pathway.3 Additionally, iptacopan has the benefit of targeting factor B, which only affect the alternative complement pathway, leaving the classic and lectin pathway untouched for the body to still mount adequate immune responses against pathogens.2

On December 6th, 2023, Iptacopan under the brand name Fabhalta was approved by the FDA for the treatment of adults with PNH. This approval was based on favorable results obtained from the phase III APPL-PNH and APPOINT-PNH studies, where 82.3% and 77.5% of patients experienced a sustained hemoglobin improvement without transfusions respectively.5

Iptacopan , sold under the brand name Fabhalta, is a medication used for the treatment of paroxysmal nocturnal hemoglobinuria.[1] It is a complement factor B inhibitor that was developed by Novartis.[1] It is taken by mouth.[1]

Iptacopan was approved by the US Food and Drug Administration (FDA) for the treatment of adults with paroxysmal nocturnal hemoglobinuria in December 2023.[2][3]

Medical uses

Iptacopan is indicated for the treatment of adults with paroxysmal nocturnal hemoglobinuria.[1][4]

Side effects

The FDA label for iptacopan contains a black box warning for the risk of serious and life-threatening infections caused by encapsulated bacteria, including Streptococcus pneumoniaeNeisseria meningitidis, and Haemophilus influenzae type B.[1]

Research

In a clinical study with twelve participants, iptacopan as a single drug led to the normalization of hemolytic markers in most patients, and no serious adverse events occurred during the 12-week study.[5][6]

Iptacopan is also investigated as a drug in other complement-mediated diseases, like age-related macular degeneration and some types of glomerulopathies.[7]


PATENT

US9682968

https://patents.google.com/patent/US9682968B2/en

Example-26Example-26a4-((2S,4S)-(4-ethoxy-1-((5-methoxy-7-methyl-1H-indol-4-yl)methyl)piperidin-2-yl))benzoic acid ((+) as TFA Salt)

Figure US09682968-20170620-C00315

A mixture of methyl 4-((2S,4S)-4-ethoxy-1-((5-methoxy-7-methyl-1H-indol-4-yl)methyl)piperidin-2-yl)benzoate, Intermediate 6-2b peak-1 (tr=1.9 min), (84 mg, 0.192 mmol) and LiOH in H2O (1 mL, 1 mmol) in THF (1 mL)/MeOH (2 mL) was stirred at room temperature for 16 h, and then concentrated. The resulting residue was purified by RP-HPLC (HC-A) to afford the title compound. Absolute stereochemistry was determined by comparison with enantiopure synthesis in Example-26c. 1H NMR (TFA salt, 400 MHz, D2O) δ 8.12 (d, J=8.19 Hz, 2H), 7.66 (br. d, J=8.20 Hz, 2H), 7.35 (d, J=3.06 Hz, 1H), 6.67 (s, 1H), 6.25 (d, J=3.06 Hz, 1H), 4.65 (dd, J=4.28, 11.49 Hz, 1H), 4.04 (d, J=13.00 Hz, 1H), 3.87-3.98 (m, 2H), 3.53-3.69 (m, 5H), 3.38-3.50 (m, 1H), 3.20-3.35 (m, 1H), 2.40 (s, 3H), 2.17-2.33 (m, 2H), 2.08 (br. d, J=15.70 Hz, 1H), 1.82-1.99 (m, 1H), 1.28 (t, J=7.03 Hz, 3H); HRMS calcd. for C26H31N2O(M+H)423.2284, found 423.2263.

PATENT

Example 1

      Intermediate 1:


 (MOL) (CDX)

      To a 3 L three-necked flask were successively added tetrahydrofuran (150 mL) and 4-bromoxynil (50 g). Isopropylmagnesium chloride lithium chloride coordination complex (1.3 M, 210 mL) was slowly added to the reaction system under nitrogen atmosphere. After the reaction was carried out at room temperature for 2 h, the reaction system was diluted with anhydrous tetrahydrofuran (500 mL) for dilution. The reaction system was cooled to −5° C., and 4-methoxypyridine (25 mL) was added, followed by slowly dropwise addition of benzyl chloroformate (35 mL) (the system temperature was maintained below 0° C.). After the dropwise addition was completed, the reaction system was successively reacted at 0° C. for 2 h, and then warmed to room temperature and reacted at that temperature for 16 h. After the reaction was completed, hydrochloric acid solution (6 M, 150 mL) was added. The mixture was stirred at room temperature for half an hour, added with water (1000 mL) for dilution, and extracted twice with ethyl acetate (500 mL). The extract phase was washed with saturated brine (50 mL), then dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated, and the resulting crude product was separated and purified by a silica gel column (petroleum ether:ethyl acetate=3:1 to 1:1) to give intermediate 1 (23 g, yield: 23%). MS m/z (ESI): 333.0 [M+H].
      Intermediate 2:


 (MOL) (CDX)

      To a 500 mL single-neck flask were successively added intermediate 1 (28 g), zinc powder (55 g) and acetic acid (200 mL). The reaction mixture was heated to 100° C. and reacted at that temperature for 16 h. After the reaction was completed, the reaction mixture was filtered. The filtrate was added with water (500 mL) for dilution and extracted with ethyl acetate (500 mL). The extract phase was washed twice with saturated aqueous sodium bicarbonate solution (500 mL), washed once with saturated brine (100 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated under reduced pressure to give intermediate 2 (26 g, yield: 73%). MS m/z (ESI): 334.8 [M+H].
      Intermediate 3:


 (MOL) (CDX)

      To a 1 L single-neck flask were successively added tetrahydrofuran (100 mL), ethanol (100 mL) and intermediate 2 (26 g), and sodium borohydride (2 g) was added in batches. The mixture was reacted at room temperature for 2 h. After the reaction was completed, the system was cooled to 0° C., and saturated aqueous ammonium chloride solution (100 mL) was added until the temperature did not increase any more. Water (300 mL) was added for dilution, followed by extraction with ethyl acetate (200 mL×2). The extract phase was washed with saturated brine (500 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated under reduced pressure to give intermediate 3 (25 g, yield: 76%). MS m/z (ESI): 336.9 [M+H].
      Intermediate 4:


 (MOL) (CDX)

      Dichloromethane (200 mL) was added to a 500 mL single-neck flask, and then intermediate 3 (25 g), imidazole (6.6 g) and tert-butyldiphenylchlorosilane (25 g) were successively added. The mixture was reacted at room temperature for 2 h. After the reaction was completed, water (500 mL) was added for dilution, followed by the extraction with dichloromethane (200 mL). The extract phase was washed with water (50 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated under reduced pressure. The residue was separated and purified by a silica gel column (petroleum ether:ethyl acetate=10:1) to give intermediate 4 (5.7 g, yield: 13%, R f=0.55; isomer R f=0.50). MS m/z (ESI): 597.0 [M+23].
      Intermediate 5:


 (MOL) (CDX)

      To a 250 mL single-neck flask were successively added a solution of tetrabutylammonium fluoride in tetrahydrofuran (1 M, 30 mL) and intermediate 4 (5 g). The mixture was reacted at room temperature for 2 h. After the reaction was completed, water (100 mL) was added for dilution, followed by the extraction with ethyl acetate (50 mL×3). The extract phase was washed with saturated brine (100 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated under reduced pressure. The residue was separated and purified by a silica gel column (petroleum ether:ethyl acetate=3:1 to 0:1) to give a racemic intermediate. The intermediate was subjected to SFC chiral resolution (apparatus: SFC Thar prep 80; column: CHIRALPAK AD-H, 250 mm×20 mm, 5 m; modifier: 35% methanol (0.2% aqueous ammonia); column temperature: 40° C.; column pressure: 60 bar; wavelength: 214/254 nm; flow rate: 40 g/min; Rt=4.78 min) to give intermediate 5 (1.2 g, yield: 41%). MS m/z (ESI): 358.8 [M+23].
      Intermediate 6:


 (MOL) (CDX)

      To a 100 mL single-neck flask were successively added N,N-dimethylformamide (15 mL) as a solvent, intermediate 5 (1.2 g) and iodoethane (1.1 g). After the reaction system was cooled to 0° C., sodium hydrogen (60%, 243 mg) was added. Then the system was warmed to room temperature and reacted at that temperature for 2 h. After the reaction was completed, water (30 mL) was added for dilution, followed by the extraction with ethyl acetate (50 mL). The extract phase was washed with saturated brine (10 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated under reduced pressure to give intermediate 6 (1.2 g, yield: 83%). MS m/z (ESI): 386.9 [M+23].
      Intermediate 7:


 (MOL) (CDX)

      To a 100 mL single-neck flask were successively added methanol (10 mL), water (10 mL), concentrated sulfuric acid (10 mL) and intermediate 6 (1.2 g). The mixture was heated to 80° C. and reacted at that temperature for 48 h. After the reaction was completed, the reaction mixture was concentrated to remove methanol. The residue was made neutral with saturated aqueous sodium hydroxide solution and extracted three times with ethyl acetate (10 mL). The extract phase was washed with saturated brine (5 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated under reduced pressure to give intermediate 7 (850 mg, yield: 81%). MS m/z (ESI): 264.1 [M+H]. 1H NMR (400 MHz, CDCl 3) δ 8.01 (d, J=8.3 Hz, 2H), 7.49 (d, J=8.3 Hz, 2H), 4.13 (dd, J=11.7, 2.4 Hz, 1H), 3.92 (s, 3H), 3.82-3.70 (m, 1H), 3.62-3.47 (m, 2H), 3.27-3.10 (m, 1H), 3.02-2.88 (m, 1H), 2.07-1.97 (m, 1H), 1.95-1.85 (m, 1H), 1.82-1.62 (m, 2H), 1.27 (t, J=7.0 Hz, 3H).
      Intermediate 8:


 (MOL) (CDX)

      To a 250 mL single-neck flask were successively added dichloromethane (50 mL), 5-methoxy-7-methyl-1H-indole (3 g), BOC anhydride (5.68 g), 4-dimethylaminopyridine (227 mg) and triethylamine (2.26 g). The mixture was reacted at room temperature for 16 h. After the reaction was completed, the reaction mixture was quenched by adding saturated ammonium chloride solution (5 mL) and extracted three times with dichloromethane (20 mL). The combined organic phases were washed with water (5 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated. The residue was purified by column chromatography on silica gel (petroleum ether:ethyl acetate=10:1) to give intermediate 8 (4.6 g, yield: 94%). MS m/z (ESI): 262.0 [M+H].
      Intermediate 9:


 (MOL) (CDX)

      To a 250 mL single-neck flask were successively added dichloromethane (80 mL), N-methylformanilide (3.8 g) and oxalyl chloride (3.6 g). The mixture was stirred at room temperature for 3 h. Then the reaction temperature was lowered to −14° C., and intermediate 8 (2.5 g) was added. The reaction system was naturally warmed to room temperature and stirred for 1 h. After the reaction was completed, the reaction liquid was poured into ice water and extracted three times with dichloromethane (100 mL). The combined extract phases were washed twice with water (10 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated. The residue was separated and purified by a silica gel column (petroleum ether:ethyl acetate=20:1) to give intermediate 9 (1.3 g, yield: 47%). MS m/z (ESI): 290.0 [M+H]. 1H NMR (400 MHz, CDCl 3) δ 10.65 (s, 1H), 7.65 (d, J=3.4 Hz, 1H), 7.49 (d, J=3.4 Hz, 1H), 6.76 (s, 1H), 3.98 (s, 3H), 2.70 (s, 3H), 1.65 (s, 9H).
      Intermediate 10:


 (MOL) (CDX)

      To a 50 mL three-necked flask were successively added 1,2-dichloroethane (5 mL), intermediate 7 (127 mg) and intermediate 9 (130 mg). The mixture was reacted at room temperature for 18 h. Then sodium triacetoxyborohydride (438.72 mg) was added, and the system was successively reacted at room temperature for 18 h. After the reaction was completed, dichloromethane (10 mL) was added for dilution, followed by a wash with 10 mL of water. The organic phase was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated. The residue was separated and purified by a silica gel column (methanol:dichloromethane=1:10) to give intermediate 10 (50 mg, yield: 14.58%). MS m/z (ESI): 437.3 [M+H], RT=1.142 min.
      Intermediate 11:


 (MOL) (CDX)

      To a 50 mL three-necked flask were successively added tetrahydrofuran (0.5 mL), methanol (0.5 mL), water (0.5 mL), sodium hydroxide (44 mg) and intermediate 10 (50 mg). The mixture was reacted at room temperature for 18 h. After the reaction was completed, the reaction liquid was directly concentrated under reduced pressure and lyophilized to give intermediate 11 (50 mg, yield: 92%). MS m/z (ESI): 423.1 [M+H].

PAPER

https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b01870

The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several human diseases including age-related macular degeneration, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), and various glomerular diseases. The serine protease factor B (FB) is a key node in the AP and is integral to the formation of C3 and C5 convertase. Despite the prominent role of FB in the AP, selective orally bioavailable inhibitors, beyond our own efforts, have not been reported previously. Herein we describe in more detail our efforts to identify FB inhibitors by high-throughput screening (HTS) and leveraging insights from several X-ray cocrystal structures during optimization efforts. This work culminated in the discovery of LNP023 (41), which is currently being evaluated clinically in several diverse AP mediated indications.

Abstract Image
STR1

a Reagents and conditions: (a) i PrMgCl·LiCl, Cbz-Cl, THF; (b) Zn, AcOH; (c) LiBH4, THF; (d) TBDPS-Cl, imidazole, DMF; (e) separation of diastereomers by flash chromatography; (f) TBAF, THF; (g) NaH, EtI, DMF; (h) Ba(OH)2, i PrOH, H2O; (i) K2CO3, MeI, DMF; (j) H2, Pd/C, MeOH; (k) (±)-50, DIPEA, DMA; (l) K2CO3, MeOH; then TMS-diazomethane, toluene, MeOH; (m) chiral SFC; (n) LiOH, H2O, MeOH, THF; (o) (2S,4S)-50, NaBH(OAc)3, DCE.

4-((2S,4S)-(4-Ethoxy-1-((5-methoxy-7-methyl-1H-indol-4- yl)methyl)piperidin-2-yl))benzoic Acid (41, LNP023). Step 1: tert-Butyl 4-(((2S,4S)-4-Ethoxy-2-(4-(methoxycarbonyl)phenyl)- piperidin-1-yl)methyl)-5-methoxy-7-methyl-1H-indole-1-carboxylate (58). To a solution of tert-butyl 4-formyl-5-methoxy-7-methyl1H-indole-1-carboxylate (57) (1.5 g, 5.18 mmol) and methyl 4- ((2S,4S)-4-ethoxypiperidin-2-yl)benzoate ((2S,4S)-50) (1.185 g, 4.50 mmol) in DCE (20 mL) was added NaBH(OAc)3 (3 g, 14.1 mmol), and this was stirred at rt for 21.5h. Additional tert-butyl 4-formyl-5- methoxy-7-methyl-1H-indole-1-carboxylate (57) (500 mg, 1.90 mmol) was added, and this was stirred for 20 h. The reaction was diluted with EtOAc, washed successively with 5% aqueous NaHCO3, H2O, and brine, dried over Na2SO4, filtered, and concentrated to provide the title compound (2.415 g, quant) which was used without further purification. MS (ESI+) m/z 537.4 (M + H). The absolutestereochemistry was ultimately determined via cocrystallization of 41 with the catalytic domain of FB. Step 2: 4-((2S,4S)-(4-Ethoxy-1-((5-methoxy-7-methyl-1H-indol-4- yl)methyl)piperidin-2-yl))benzoic Acid (41, LNP023). To a solution of tert-butyl 4-(((2S,4S)-4-ethoxy-2-(4-(methoxycarbonyl)phenyl)- piperidin-1-yl)methyl)-5-methoxy-7-methyl-1H-indole-1-carboxylate (58) (2.415 g, 4.50 mmol) in THF (10 mL) and MeOH (20 mL) was added 1 M LiOH in H2O (15 mL, 15 mmol), and this was stirred at 70 °C for 8 h. The reaction was cooled to rt, diluted with H2O, half saturated aqueous KHSO4 and citric acid, saturated with sodium chloride, then extracted with 9:1 DCM/TFE, dried with Na2SO4, filtered, and concentrated. RP-HPLC-B purification provided the title compound (730 mg, 38% for 2 steps). 1 H NMR (400 MHz, D2O) δ 7.96 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 3.2 Hz, 1H), 6.66 (s, 1H), 6.20 (s, 1H), 4.62−4.47 (m, 1H), 4.06 (d, J = 13.2 Hz, 1H), 3.97−3.76 (m, 2H), 3.66−3.48 (m, 5H), 3.43−3.29 (m, 1H), 3.26−3.15 (m, 1H), 2.35 (s, 3H), 2.31−2.11 (m, 2H), 2.00 (d, J = 15.4 Hz, 1H), 1.93−1.74 (m, 1H), 1.25−1.07 (m, 3H). HRMS calcd for C25H31N2O4 (M + H)+ 423.2284, found 423.2263. 4-((2S,4S)-(4-Ethoxy-1-((5-methoxy-7-methyl-1H-indol-4- yl)methyl)piperidin-2-yl))benzoic Acid Hydrochloride (41· HCl). To a solution of 41 (620 mg, 1.47 mmol) in H2O (10 mL) and acetonitrile (3 mL) was added 5 M aqueous HCl (0.5 mL, 2.5 mmol). The mixture was then lyophilized, and the resulting solid was suspended in i PrOH and heated to 70 °C. The mixture turned into a solution after 1.5 h and was then cooled to rt with stirring. After about 5 h, the mixture turned into a suspension and the solid was collected by filtration and dried under high vacuum at 50 °C to provide the title compound as the hydrochloride salt (450 mg, 65%). 1 H NMR (400 MHz, methanol-d4) δ 10.73 (s, 1H), 8.23 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.3 Hz, 2H), 7.36−7.31 (m, 1H), 6.77 (s, 1H), 6.42−6.31 (m, 1H), 4.40−4.19 (m, 2H), 3.87−3.80 (m, 1H), 3.76 (s, 3H), 3.68− 3.50 (m, 4H), 3.45−3.38 (m, 1H), 2.51 (s, 3H), 2.30−2.18 (m, 2H), 2.13−1.89 (m, 2H), 1.31 (t, J = 7.0 Hz, 3H). MS (ESI+) m/z 423.3 (M + H).

//////////////

str1
Flag Counter

AS ON DEC2021 3,491,869 VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@amcrasto

///////////

Clinical data
Trade namesFabhalta
Other namesLNP023
AHFS/Drugs.comFabhalta
License dataUS DailyMedIptacopan
Routes of
administration
By mouth
Drug classComplement factor B inhibitor
ATC codeNone
Legal status
Legal statusUS: ℞-only[1]
Identifiers
CAS Number1644670-37-0
PubChem CID90467622
DrugBankDB16200
ChemSpider75533872
UNII8E05T07Z6W
KEGGD12251D12252
ChEMBLChEMBL4594448
PDB ligandJGQ (PDBeRCSB PDB)
Chemical and physical data
FormulaC25H30N2O4
Molar mass422.525 g·mol−1
3D model (JSmol)Interactive image
showSMILES
showInChI

References

  1. Jump up to:a b c d e f “Fabhalta- iptacopan capsule”DailyMed. 5 December 2023. Archived from the original on 10 December 2023. Retrieved 10 December 2023.
  2. ^ “Novartis receives FDA approval for Fabhalta (iptacopan), offering superior hemoglobin improvement in the absence of transfusions as the first oral monotherapy for adults with PNH”Novartis (Press release). Archived from the original on 12 December 2023. Retrieved 6 December 2023.
  3. ^ “Novel Drug Approvals for 2023”U.S. Food and Drug Administration (FDA). 6 December 2023. Archived from the original on 21 January 2023. Retrieved 10 December 2023.
  4. ^ https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2023/218276Orig1s000ltr.pdf Archived 10 December 2023 at the Wayback Machine Public Domain This article incorporates text from this source, which is in the public domain.
  5. ^ Jang JH, Wong L, Ko BS, Yoon SS, Li K, Baltcheva I, et al. (August 2022). “Iptacopan monotherapy in patients with paroxysmal nocturnal hemoglobinuria: a 2-cohort open-label proof-of-concept study”Blood Advances6 (15): 4450–4460. doi:10.1182/bloodadvances.2022006960PMC 9636331PMID 35561315.
  6. ^ “Novartis Phase III APPOINT-PNH trial shows investigational oral monotherapy iptacopan improves hemoglobin to near-normal levels, leading to transfusion independence in all treatment-naïve PNH patients”Novartis (Press release). Archived from the original on 12 December 2023. Retrieved 6 September 2023.
  7. ^ Schubart A, Anderson K, Mainolfi N, Sellner H, Ehara T, Adams CM, et al. (April 2019). “Small-molecule factor B inhibitor for the treatment of complement-mediated diseases”Proceedings of the National Academy of Sciences of the United States of America116 (16): 7926–7931. Bibcode:2019PNAS..116.7926Sdoi:10.1073/pnas.1820892116PMC 6475383PMID 30926668.

External links

  • Clinical trial number NCT04558918 for “Study of Efficacy and Safety of Twice Daily Oral LNP023 in Adult PNH Patients With Residual Anemia Despite Anti-C5 Antibody Treatment (APPLY-PNH)” at ClinicalTrials.gov
  • Clinical trial number NCT04820530 for “Study of Efficacy and Safety of Twice Daily Oral Iptacopan (LNP023) in Adult PNH Patients Who Are Naive to Complement Inhibitor Therapy (APPOINT-PNH)” at ClinicalTrials.gov

///////Iptacopan, fda 2023,  approvals, 2023,  paroxysmal nocturnal hemoglobinuria, 12/5/2023, Fabhalta , LNP 023, LNP-023, LNP023, NVP-LNP023, NVP-LNP023-NX

NEW DRUG APPROVALS

ONE TIME

$10.00