New Drug Approvals

Home » cancer » HS 10340

HS 10340

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Categories

Blog Stats

  • 4,185,588 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,792 other subscribers

add to any

Share

HS-10340

CAS 2156639-66-4

MF C26 H31 N7 O5
MW 521.57
1,8-Naphthyridine-1(2H)-carboxamide, N-[5-cyano-4-[[(1R)-2-methoxy-1-methylethyl]amino]-2-pyridinyl]-7-formyl-3,4-dihydro-6-[(tetrahydro-2-oxo-1,3-oxazepin-3(2H)-yl)methyl]-
(R)-N-(5-cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-formyl-6-((2-carbonyl)-1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide

CAS 2307670-65-9

Jiangsu Hansoh Pharmaceutical Group Co Ltd

Being investigated by Jiangsu Hansoh, Shanghai Hansoh Biomedical and Changzhou Hengbang Pharmaceutical ; in June 2018, the product was being developed as a class 1 chemical drug in China.

Useful for treating liver cancer, gastric cancer and prostate cancer.

Use for treating cancers, liver cancer, gastric cancer, prostate cancer, skin cancer, ovary cancer, lung cancer, breast cancer, colon cancer, glioma and rhabdomyosarcoma

The fibroblast growth factor receptor (FGFR) belongs to the receptor tyrosine kinase transmembrane receptor and includes four receptor subtypes, namely FGFR1, FGFR2, FGFR3 and FGFR4. FGFR regulates various functions such as cell proliferation, survival, differentiation and migration, and plays an important role in human development and adult body functions. FGFR is abnormal in a variety of human tumors, including gene amplification, mutation and overexpression, and is an important target for tumor-targeted therapeutic research.
FGFR4, a member of the FGFR receptor family, forms dimers on the cell membrane by binding to its ligand, fibroblast growth factor 19 (FGF19), and the formation of these dimers can cause critical tyrosine in FGFR4’s own cells. The phosphorylation of the amino acid residue activates multiple downstream signaling pathways in the cell, and these intracellular signaling pathways play an important role in cell proliferation, survival, and anti-apoptosis. FGFR4 is overexpressed in many cancers and is a predictor of malignant invasion of tumors. Decreasing and reducing FGFR4 expression can reduce cell proliferation and promote apoptosis. Recently, more and more studies have shown that about one-third of liver cancer patients with continuous activation of FGF19/FGFR4 signaling pathway are the main carcinogenic factors leading to liver cancer in this part of patients. At the same time, FGFR4 expression or high expression is also closely related to many other tumors, such as gastric cancer, prostate cancer, skin cancer, ovarian cancer, lung cancer, breast cancer, colon cancer and the like.
The incidence of liver cancer ranks first in the world in China, with new and dead patients accounting for about half of the total number of liver cancers worldwide each year. At present, the incidence of liver cancer in China is about 28.7/100,000. In 2012, there were 394,770 new cases, which became the third most serious malignant tumor after gastric cancer and lung cancer. The onset of primary liver cancer is a multi-factor, multi-step complex process with strong invasiveness and poor prognosis. Surgical treatments such as hepatectomy and liver transplantation can improve the survival rate of some patients, but only limited patients can undergo surgery, and most patients have a poor prognosis due to recurrence and metastasis after surgery. Sorafenib is the only liver cancer treatment drug approved on the market. It can only prolong the overall survival period of about 3 months, and the treatment effect is not satisfactory. Therefore, it is urgent to develop a liver cancer system treatment drug targeting new molecules. FGFR4 is a major carcinogenic factor in liver cancer, and its development of small molecule inhibitors has great clinical application potential.
At present, some FGFR inhibitors have entered the clinical research stage as anti-tumor drugs, but these are mainly inhibitors of FGFR1, 2 and 3, and the inhibition of FGFR4 activity is weak, and the inhibition of FGFR1-3 has hyperphosphatemia. Such as target related side effects. Highly selective inhibitor of FGFR4 can effectively treat cancer diseases caused by abnormal FGFR4 signaling pathway, and can avoid the side effects of hyperphosphatemia caused by FGFR1-3 inhibition. Highly selective small molecule inhibitors against FGFR4 in tumor targeted therapy The field has significant application prospects.
SYN

PATENT

WO2017198149

where it is claimed to be an FGFR-4 inhibitor for treating liver and prostate cancers, assigned to Jiangsu Hansoh Pharmaceutical Group Co Ltd and Shanghai Hansoh Biomedical Co Ltd .

PATENT

WO2019085860

Compound (R)-N-(5-Cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-formyl-6-((2-carbonyl-) 1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide (shown as Formula I). The compound of formula (I) is disclosed in Hausen Patent PCT/CN2017/084564, the compound of formula I is a fibroblast growth factor receptor inhibitor, and the fibroblast growth factor receptor (FGFR) belongs to the receptor tyrosine kinase transmembrane receptor. The body includes four receptor subtypes, namely FGFR1, FGFR2, FGFR3 and FGFR4. FGFR regulates various functions such as cell proliferation, survival, differentiation and migration, and plays an important role in human development and adult body functions. FGFR is abnormal in a variety of human tumors, including gene amplification, mutation and overexpression, and is an important target for tumor-targeted therapeutic research.

[0003]
Example 1: Preparation of a compound of formula (I)

[0048]
First step 4-(((2-(dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)amino)butane Preparation of 1-propanol

[0049]

[0050]
2-(Dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-carbaldehyde (1.0 g, 4.2 mmol), 4-aminobutyl at room temperature l-ol (0.45g, 5.1mmol) was dissolved in DCE (15mL), stirred for 2 hours, followed by addition of NaBH (OAc) . 3 (1.35 g of, 6.4 mmol), stirred at room temperature overnight. The reaction was treated with CH 2 CI 2 was diluted (100 mL), the organic phase was washed with water (10mL) and saturated brine (15mL), and dried over anhydrous sodium sulfate, and concentrated by column chromatography to give compound 4 – (((2- ( Dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)amino)butan-1-ol (0.9 g, 69%) .

[0051]
. 1 H NMR (400 MHz, CDCl3 . 3 ) [delta] 7.13 (S, IH), 5.17 (S, IH), 4.84 (S, IH), 3.73 (S, 2H), 3.66-3.49 (m, 2H), 3.42 ( s, 6H), 3.40-3.36 (m, 2H), 2.71 (t, J = 6.3 Hz, 2H), 2.68-2.56 (m, 2H), 1.95-1.81 (m, 2H), 1.74-1.55 (m, 4H);

[0052]
MS m/z (ESI): 310.2 [M+H] + .

[0053]
The second step is 3-((2-(dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)-1,3- Preparation of oxazepine-2 ketone

[0054]

[0055]
4-(((2-(Dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)amino) in an ice water bath Butan-1-ol (0.6 g, 1.94 mmol) was dissolved in DCE (15 mL), then bis(trichloromethyl) carbonate (0.22 g, 0.76 mmol) was added and triethylamine (0.78 g, 7.76) was slowly added dropwise. Methyl) and then stirred at room temperature for 3 hours. The reaction temperature was raised to 80 ° C, and the reaction was carried out at 80 ° C for 6 hours. After the reaction was cooled to room temperature, it was diluted with CH 2 Cl 2 (100 mL), and the organic phase was washed sequentially with water (10 mL) and brine (15 mL) Drying with sodium sulfate, concentration and column chromatography to give the compound 3-((2-(dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl) )methyl)-1,3-oxazepin-2-one (0.37 g, 57%).

[0056]
MS m/z (ESI): 336.2 [M+H] + .

[0057]
The third step is phenyl 7-(dimethoxymethyl)-6-((2-carbonyl-1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1, Preparation of 8-naphthyridin-1(2H)-carboxylate

[0058]

[0059]
3-((2-(Dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)-1,3-oxan -2-one (670mg, 2mmol), diphenyl carbonate (643mg, 3mmol) mixing in of THF (15 mL), N 2 in an atmosphere, cooled to -78 deg.] C, was added dropwise LiHMDS in THF (4mL, 4mmol) was Naturally, it was allowed to react to room temperature overnight. After adding saturated aqueous NH 4 Cl (100 mL), ethyl acetate (100 mL×2), EtOAc. Methyl)-6-((3-carbonylmorpholino)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxylate (432 mg, 47%) .

[0060]
. 1 H NMR (400 MHz, CDCl3 . 3 ) [delta] 7.56 (S, IH), 7.38 (m, 2H), 7.21 (m, 3H), 5.22 (S, IH), 4.77 (S, 2H), 4.16 (m, 2H), 3.95 (m, 2H), 3.39 (s, 6H), 3.25 (m, 2H), 2.84 (t, J = 6.5 Hz, 2H), 1.87 (m, 2H), 1.64 (m, 4H);

[0061]
MS m/z (ESI): 456.2 [M+H] + .

[0062]
The fourth step: (R)-N-(5-cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-(dimethoxymethyl) -6-((2-carbonyl-1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide synthesis

[0063]

[0064]
(R)-6-Amino-4-((1-methoxypropan-2-yl)amino) nicotinenitrile (30 mg, 0.14 mmol), phenyl 7-(dimethoxymethyl)-6- ( (2-carbonyl-1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxylate (60 mg, 0.13 Methyl acetate was dissolved in THF (5 mL), cooled to -78 ° C under N 2atmosphere, and a solution of THF (0.3 mL, 0.3 mmol) of LiHMDS was added dropwise to the reaction mixture. After adding a saturated aqueous solution of NH 4 Cl (50 mL), EtOAc (EtOAc) (5-Cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-(dimethoxymethyl)-6-((2-carbonyl-1) 3-oxoheptyl-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide (65 mg, 86%).

[0065]
1H NMR (400MHz, CDCl3) δ 13.70 (s, 1H), 8.18 (s, 1H), 7.60 (s, 2H), 5.41 (s, 1H), 5.12 (d, J = 7.8 Hz, 1H), 4.73 (s, 2H), 4.20-4.11 (m, 2H), 4.06-3.99 (m, 2H), 3.93 (s, 1H), 3.52-3.48 (m, 7H), 3.46-3.42 (m, 1H), 3.39 (s, 3H), 3.26-3.21 (m, 2H), 2.83 (t, J = 6.2 Hz, 2H), 2.03-1.95 (m, 2H), 1.91-1.83 (m, 2H), 1.67-1.62 (m , 2H), 1.31 (d, J = 6.6 Hz, 3H);

[0066]
MS m/z (ESI): 568.3 [M+H] + .

[0067]
Step 5: (R)-N-(5-Cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-formyl-6-((2) Synthesis of -carbonyl-1,3-oxoheptyl-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide

[0068]

[0069]
(R)-N-(5-Cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-(dimethoxymethyl)-6-( (2-carbonyl-1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide (65 mg, 0.12 mmol) Dissolved in THF/water (volume ratio: 11/4, 4.5 mL), concentrated HCl (0.45 mL, 5.4 mmol), and allowed to react at room temperature for 2 h. Saturated NaHC03 . 3 solution (50mL), (50mL × 2 ) and extracted with ethyl acetate, the organic phases were combined and washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated by column chromatography to give the title compound (R) -N- ( 5-cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-formyl-6-((2-carbonyl-1,3-oxazepine) 3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1 (2H)-carboxamide (30 mg, 51%).

[0070]
. 1 H NMR (400 MHz, CDCl3 . 3 ) [delta] 13.57 (S, IH), 10.26 (S, IH), 8.17 (S, IH), 7.71 (S, IH), 7.63 (S, IH), 5.27 (S, 1H), 4.95 (s, 2H), 4.19-4.12 (m, 2H), 4.11-4.04 (m, 2H), 3.94 (s, 1H), 3.52 (m, 1H), 3.48-3.37 (m, 4H) , 3.33 – 3.28 (m, 2H), 2.93 (t, J = 6.3 Hz, 2H), 2.04 (m, 2H), 1.93-1.85 (m, 2H), 1.73 (m, 2H), 1.39-1.28 (m , 3H);

[0071]
MS m/z (ESI): 522.2 [M+H] + .

PATENT

WO-2019085927

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019085927&tab=FULLTEXT

Novel crystalline salt (such as hydrochloride, sulfate, methane sulfonate, mesylate, besylate, ethanesulfonate, oxalate, maleate, p-toluenesulfonate) forms of FGFR4 inhibitor, particularly N-[5-cyano-4-[[(1R)-2-methoxy-1-methyl-ethyl]amino]-2-pyridyl]-7-formyl-6-[(2-oxo-1,3-oxazepan-3-yl)methyl]-3,4-dihydro-2H-1,8-naphthyridine-1-carboxamide (designated as Forms I- IX), compositions comprising them and their use as an FGFR4 inhibitor for the treatment of cancer such as liver cancer, gastric cancer, prostate cancer, skin cancer, ovarian cancer, lung cancer, breast cancer, colon cancer and glioma or rhabdomyosarcoma are claimed.

Example 1: Preparation of a compound of formula (I)
First step 4-(((2-(dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)amino)butane Preparation of 1-propanol
2-(Dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-carbaldehyde (1.0 g, 4.2 mmol), 4-aminobutyl at room temperature l-ol (0.45g, 5.1mmol) was dissolved in DCE (15mL), stirred for 2 hours, followed by addition of NaBH (OAc) . 3 (1.35 g of, 6.4 mmol), stirred at room temperature overnight. The reaction was treated with CH 2 CI 2 was diluted (100 mL), the organic phase was washed with water (10mL) and saturated brine (15mL), and dried over anhydrous sodium sulfate, and concentrated by column chromatography to give compound 4 – (((2- ( Dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)amino)butan-1-ol (0.9 g, 69%) .
. 1 H NMR (400 MHz, CDCl3 . 3 ) [delta] 7.13 (S, IH), 5.17 (S, IH), 4.84 (S, IH), 3.73 (S, 2H), 3.66-3.49 (m, 2H), 3.42 ( s, 6H), 3.40-3.36 (m, 2H), 2.71 (t, J = 6.3 Hz, 2H), 2.68-2.56 (m, 2H), 1.95-1.81 (m, 2H), 1.74-1.55 (m, 4H);
MS m/z (ESI): 310.2 [M+H] + .
The second step is 3-((2-(dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)-1,3- Preparation of oxazepine-2 ketone
4-(((2-(Dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)amino) in an ice water bath Butan-1-ol (0.6 g, 1.94 mmol) was dissolved in DCE (15 mL), then bis(trichloromethyl) carbonate (0.22 g, 0.76 mmol) was added and triethylamine (0.78 g, 7.76) was slowly added dropwise. Methyl) and then stirred at room temperature for 3 hours. The reaction temperature was raised to 80 ° C, and the reaction was carried out at 80 ° C for 6 hours. After the reaction was cooled to room temperature, it was diluted with CH 2 Cl 2 (100 mL), and the organic phase was washed sequentially with water (10 mL) and brine (15 mL) Drying with sodium sulfate, concentration and column chromatography to give the compound 3-((2-(dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl) )methyl)-1,3-oxazepin-2-one (0.37 g, 57%).
MS m/z (ESI): 336.2 [M+H] + .
The third step is phenyl 7-(dimethoxymethyl)-6-((2-carbonyl-1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1, Preparation of 8-naphthyridin-1(2H)-carboxylate
3-((2-(Dimethoxymethyl)-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)methyl)-1,3-oxan -2-one (670mg, 2mmol), diphenyl carbonate (643mg, 3mmol) mixing in of THF (15 mL), N 2 in an atmosphere, cooled to -78 deg.] C, was added dropwise LiHMDS in THF (4mL, 4mmol) was Naturally, it was allowed to react to room temperature overnight. After adding saturated aqueous NH 4 Cl (100 mL), ethyl acetate (100 mL×2), EtOAc. Methyl)-6-((3-carbonylmorpholino)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxylate (432 mg, 47%) .
. 1 H NMR (400 MHz, CDCl3 . 3 ) [delta] 7.56 (S, IH), 7.38 (m, 2H), 7.21 (m, 3H), 5.22 (S, IH), 4.77 (S, 2H), 4.16 (m, 2H), 3.95 (m, 2H), 3.39 (s, 6H), 3.25 (m, 2H), 2.84 (t, J = 6.5 Hz, 2H), 1.87 (m, 2H), 1.64 (m, 4H);
MS m/z (ESI): 456.2 [M+H] + .
The fourth step: (R)-N-(5-cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-(dimethoxymethyl) -6-((2-carbonyl-1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide synthesis
(R)-6-Amino-4-((1-methoxypropan-2-yl)amino) nicotinenitrile (30 mg, 0.14 mmol), phenyl 7-(dimethoxymethyl)-6- ( (2-carbonyl-1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxylate (60 mg, 0.13 Methyl acetate was dissolved in THF (5 mL), cooled to -78 ° C under N 2atmosphere, and a solution of THF (0.3 mL, 0.3 mmol) of LiHMDS was added dropwise to the reaction mixture. After adding a saturated aqueous solution of NH 4 Cl (50 mL), EtOAc (EtOAc) (5-Cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-(dimethoxymethyl)-6-((2-carbonyl-1) 3-oxoheptyl-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide (65 mg, 86%).
1H NMR (400MHz, CDCl3) δ 13.70 (s, 1H), 8.18 (s, 1H), 7.60 (s, 2H), 5.41 (s, 1H), 5.12 (d, J = 7.8 Hz, 1H), 4.73 (s, 2H), 4.20-4.11 (m, 2H), 4.06-3.99 (m, 2H), 3.93 (s, 1H), 3.52-3.48 (m, 7H), 3.46-3.42 (m, 1H), 3.39 (s, 3H), 3.26-3.21 (m, 2H), 2.83 (t, J = 6.2 Hz, 2H), 2.03-1.95 (m, 2H), 1.91-1.83 (m, 2H), 1.67-1.62 (m , 2H), 1.31 (d, J = 6.6 Hz, 3H);
MS m/z (ESI): 568.3 [M+H] + .
Step 5: (R)-N-(5-Cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-formyl-6-((2) Synthesis of -carbonyl-1,3-oxoheptyl-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide
(R)-N-(5-Cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-(dimethoxymethyl)-6-( (2-carbonyl-1,3-oxazepine-3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1(2H)-carboxamide (65 mg, 0.12 mmol) Dissolved in THF/water (volume ratio: 11/4, 4.5 mL), concentrated HCl (0.45 mL, 5.4 mmol), and allowed to react at room temperature for 2 h. Saturated NaHC03 . 3 solution (50mL), (50mL × 2 ) and extracted with ethyl acetate, the organic phases were combined and washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated by column chromatography to give the title compound (R) -N- ( 5-cyano-4-((1-methoxypropan-2-yl)amino)pyridin-2-yl)-7-formyl-6-((2-carbonyl-1,3-oxazepine) 3-yl)methyl)-3,4-dihydro-1,8-naphthyridin-1 (2H)-carboxamide (30 mg, 51%).
. 1 H NMR (400 MHz, CDCl3 . 3 ) [delta] 13.57 (S, IH), 10.26 (S, IH), 8.17 (S, IH), 7.71 (S, IH), 7.63 (S, IH), 5.27 (S, 1H), 4.95 (s, 2H), 4.19-4.12 (m, 2H), 4.11-4.04 (m, 2H), 3.94 (s, 1H), 3.52 (m, 1H), 3.48-3.37 (m, 4H) , 3.33 – 3.28 (m, 2H), 2.93 (t, J = 6.3 Hz, 2H), 2.04 (m, 2H), 1.93-1.85 (m, 2H), 1.73 (m, 2H), 1.39-1.28 (m , 3H);
MS m/z (ESI): 522.2 [M+H] + .

///////////HS-10340 , HS 10340 , HS10340, CANCER, Jiangsu Hansoh, Shanghai Hansoh Biomedical,  Changzhou Hengbang, CHINA,  liver cancer, gastric cancer, prostate cancer, skin cancer, ovary cancer, lung cancer, breast cancer, colon cancer, glioma,  rhabdomyosarcoma

C[C@H](COC)Nc1cc(ncc1C#N)NC(=O)N4CCCc3cc(CN2CCCCOC2=O)c(C=O)nc34

CCS(=O)(=O)O.C[C@H](COC)Nc1cc(ncc1C#N)NC(=O)N4CCCc3cc(CN2CCCCOC2=O)c(C=O)nc34


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

DR ANTHONY CRASTO

Follow New Drug Approvals on WordPress.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,792 other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

View Full Profile →

TWITTER

  • RT @IndiaDST: The 2nd SCO Young Scientists Conclave #SCO_YSC is being hosted @jncasr , an autonomous institute of @IndiaDST , at its campus… 7 hours ago
  • RT @SciUp: Our Understanding Polymorphism online course is only a week away! This five-session course aims to give chemists and engineers a… 7 hours ago
  • RT @SciUp: Join us in Boston, US in May to get up-to-date intel on #flowchemistry. Our '5th Flow Chemistry & Continuous Processing' Confer… 7 hours ago
  • RT @SciUp: Join us online for our 'Work Up and Product Isolation' short course on 23-24 February & you will lean how to design simple and p… 7 hours ago
  • RT @thomasraji: Happy Birthday Mummyji !! Thanks for all your support and your invaluable life lessons.😍😍🎂💐💐🤩 You're not getting older...… 7 hours ago
  • RT @GuwahatiNiper: 74वें गणतंत्र दिवस कार्यक्रम की झलकियां। Glimpses of the 74th Republic Day programme. @Pharmadept @rajneeshtingal @bhagw19 hours ago
  • RT @dst_neelima: DST supported NCoE on CCU at IITB was the knowledge partner in the parallel event organised by ETWG G20 on CCUS on 5 th Fe… 19 hours ago
  • RT @dst_neelima: Glad to represent DST India In an International Conference on CCUS organised as a parallel event to Energy Transition Work… 1 day ago
  • Glimpse of 2nd National One Day Symposium on “Drug Discovery Research in India: Current State and Future Prospects… twitter.com/i/web/status/1… 1 day ago
  • RT @africureonline: World Cancer Day is observed annually on February 4th to raise awareness about the impact of cancer on individuals and… 2 days ago
  • RT @CSIRCIMAP: Activity 13: Dr N Kalaiselvi, DG CSIR & Secretary, DSIR under #CSIR_OneWeekOneLab inaugurated the ‘High Throughput Instrumen… 2 days ago
  • Career counseling to pharma students, At Govindrao Nikam College Of Pharmacy Sawarde,Tal - Chiplun, Ratnagiri, Mh 4… twitter.com/i/web/status/1… 2 days ago
  • RT @bluetech_media: We are proud to welcome Dr.@Anthony Melvin Crasto Advisor Africure Pharma, Global A WDT API INT RnD, Ex Glenmark LS, Wo… 3 days ago
  • Meet me at Global PHT 2023. as Guest of honor and speaker 𝐆𝐥𝐨𝐛𝐚𝐥 𝐏𝐡𝐚𝐫𝐦𝐚 𝐇𝐞𝐚𝐥𝐭𝐡𝐜𝐚𝐫𝐞 𝐓𝐞𝐜𝐡𝐧𝐨𝐥𝐨𝐠𝐲 𝐄𝐱𝐩𝐨 & 𝐒𝐮𝐦𝐦𝐢𝐭 𝟐𝟎𝟐𝟑… twitter.com/i/web/status/1… 4 days ago
  • Lifetime achievement award nomination at GlobalPHT 2023 𝐆𝐥𝐨𝐛𝐚𝐥 𝐏𝐡𝐚𝐫𝐦𝐚 𝐇𝐞𝐚𝐥𝐭𝐡𝐜𝐚𝐫𝐞 𝐓𝐞𝐜𝐡𝐧𝐨𝐥𝐨𝐠𝐲 𝐄𝐱𝐩𝐨 & 𝐒𝐮𝐦𝐦𝐢𝐭 (𝐆𝐥𝐨𝐛𝐚𝐥… twitter.com/i/web/status/1… 4 days ago

bloglovin

Follow my blog with Bloglovin The title of your home page You could put your verification ID in a comment Or, in its own meta tag Or, as one of your keywords Your content is here. The verification ID will NOT be detected if you put it here.
%d bloggers like this: