New Drug Approvals

Home » antimalarials » CHLOROQUINE, クロロキン;Хлорохин , クロロキン , كلوروكين

CHLOROQUINE, クロロキン;Хлорохин , クロロキン , كلوروكين

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Categories

Recent Posts

Blog Stats

  • 3,040,032 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,540 other followers

add to any

Share

Chloroquine

Chloroquine.svg

CHLOROQUINE

N4-(7-Chloroquinolin-4-yl)-N1,N1-diethylpentane-1,4-diamine
Хлорохин [Russian] [INN]
クロロキン [Japanese]
كلوروكين [Arabic] [INN]
Formula
C18H26ClN3
CAS
54-05-7
Mol weight
319.8721
CAS Registry Number: 54-05-7
CAS Name: N4-(7-Chloro-4-quinolinyl)-N1,N1-diethyl-1,4-pentanediamine
Additional Names: 7-chloro-4-(4-diethylamino-1-methylbutylamino)quinoline
Manufacturers’ Codes: SN-7618; RP-3377
Molecular Formula: C18H26ClN3
Molecular Weight: 319.87
Percent Composition: C 67.59%, H 8.19%, Cl 11.08%, N 13.14%
Literature References: Prepd by the condensation of 4,7-dichloroquinoline with 1-diethylamino-4-aminopentane: DE 683692 (1939); H. Andersag et al., US 2233970 (1941 to Winthrop); Surrey, Hammer, J. Am. Chem. Soc. 68, 113 (1946). Review: Hahn in Antibiotics vol. 3, J. W. Corcoran, F. E. Hahn, Eds. (Springer-Verlag, New York, 1975) pp 58-78. Comprehensive description: D. D. Hong, Anal. Profiles Drug Subs. 5, 61-85 (1976). Comparative clinical trial with dapsone in rheumatoid arthritis: P. D. Fowler et al., Ann. Rheum. Dis. 43, 200 (1984); with penicillamine: T. Gibson et al., Br. J. Rheumatol. 26, 279 (1987).
Properties: mp 87°.
Melting point: mp 87°
Image result for CHLOROQUINE
Derivative Type: Diphosphate
CAS Registry Number: 50-63-5
Trademarks: Arechin (Polfa); Avloclor (AstraZeneca); Malaquin (Ahn Gook); Resochin (Bayer)
Molecular Formula: C18H26ClN3.2H3PO4
Molecular Weight: 515.86
Percent Composition: C 41.91%, H 6.25%, Cl 6.87%, N 8.15%, P 12.01%, O 24.81%
Properties: Bitter, colorless crystals. Dimorphic. One modification, mp 193-195°; the other, mp 215-218°. Freely sol in water; pH of 1% soln about 4.5; less sol at neutral and alkaline pH. Stable to heat in solns of pH 4.0 to 6.5. Practically insol in alcohol, benzene, chloroform, ether.
Melting point: mp 193-195°; mp 215-218°
Derivative Type: Sulfate
CAS Registry Number: 132-73-0
Trademarks: Aralen (Sanofi-Synthelabo); Nivaquine (Aventis)
Molecular Formula: C18H26ClN3.H2SO4
Molecular Weight: 417.95
Percent Composition: C 51.73%, H 6.75%, Cl 8.48%, N 10.05%, S 7.67%, O 15.31%
Therap-Cat: Antimalarial; antiamebic; antirheumatic. Lupus erythematosus suppressant.
Keywords: Antiamebic; Antiarthritic/Antirheumatic; Antimalarial; Lupus Erythematosus Suppressant.

Chloroquine is a medication used primarily to prevent and to treat malaria in areas where that parasitic disease is known to remain sensitive to its effects.[1] A benefit of its use in therapy, when situations allow, is that it can be taken by mouth (versus by injection).[1] Controlled studies of cases involving human pregnancy are lacking, but the drug may be safe for use for such patients.[verification needed][1][2] However, the agent is not without the possibility of serious side effects at standard doses,[1][3] and complicated cases, including infections of certain types or caused by resistant strains, typically require different or additional medication.[1] Chloroquine is also used as a medication for rheumatoid arthritislupus erythematosus, and other parasitic infections (e.g., amebiasis occurring outside of the intestines).[1] Beginning in 2020, studies have proceeded on its use as a coronavirus antiviral, in possible treatment of COVID-19.[4]

Chloroquine, otherwise known as chloroquine phosphate, is in the 4-aminoquinoline class of drugs.[1] As an antimalarial, it works against the asexual form of the malaria parasite in the stage of its life cycle within the red blood cell.[1] In its use against rheumatoid arthritis and lupus erythematosus, its activity as a mild immunosuppressive underlies its mechanism.[1] Antiviral activities, established and putative, are attributed to chloroquines inhibition of glycosylation pathways (of host receptor sialylation or virus protein post-translational modification), or to inhibition of virus endocytosis (e.g., via alkalisation of endosomes), or other possible mechanisms.[5] Common side effects resulting from these therapeutic uses, at common doses, include muscle problems,[clarification needed] loss of appetite, diarrhea, and skin rash.[clarification needed][1] Serious side effects include problems with vision (retinopathy), muscle damage, seizures, and certain anemias.[1][6]

Chloroquine was discovered in 1934 by Hans Andersag.[7][8] It is on the World Health Organization’s List of Essential Medicines, the safest and most effective medicines needed in a health system.[9] It is available as a generic medication.[1] The wholesale cost in the developing world is about US$0.04.[10] In the United States, it costs about US$5.30 per dose.[1]

Medical uses

Malaria

Distribution of malaria in the world:[11]
♦ Elevated occurrence of chloroquine- or multi-resistant malaria
♦ Occurrence of chloroquine-resistant malaria
♦ No Plasmodium falciparum or chloroquine-resistance
♦ No malaria

Chloroquine has been used in the treatment and prevention of malaria from Plasmodium vivaxP. ovale, and P. malariae. It is generally not used for Plasmodium falciparum as there is widespread resistance to it.[12][13]

Chloroquine has been extensively used in mass drug administrations, which may have contributed to the emergence and spread of resistance. It is recommended to check if chloroquine is still effective in the region prior to using it.[14] In areas where resistance is present, other antimalarials, such as mefloquine or atovaquone, may be used instead. The Centers for Disease Control and Prevention recommend against treatment of malaria with chloroquine alone due to more effective combinations.[15]

Amebiasis

In treatment of amoebic liver abscess, chloroquine may be used instead of or in addition to other medications in the event of failure of improvement with metronidazole or another nitroimidazole within 5 days or intolerance to metronidazole or a nitroimidazole.[16]

Rheumatic disease

As it mildly suppresses the immune system, chloroquine is used in some autoimmune disorders, such as rheumatoid arthritis and lupus erythematosus.[1]

Side effects

Side effects include blurred vision, nausea, vomiting, abdominal cramps, headache, diarrhea, swelling legs/ankles, shortness of breath, pale lips/nails/skin, muscle weakness, easy bruising/bleeding, hearing and mental problems.[17][18]

  • Unwanted/uncontrolled movements (including tongue and face twitching) [17]
  • Deafness or tinnitus.[17]
  • Nausea, vomiting, diarrhea, abdominal cramps[18]
  • Headache.[17]
  • Mental/mood changes (such as confusion, personality changes, unusual thoughts/behavior, depression, feeling being watched, hallucinating)[17][18]
  • Signs of serious infection (such as high fever, severe chills, persistent sore throat)[17]
  • Skin itchiness, skin color changes, hair loss, and skin rashes.[18][19]
    • Chloroquine-induced itching is very common among black Africans (70%), but much less common in other races. It increases with age, and is so severe as to stop compliance with drug therapy. It is increased during malaria fever; its severity is correlated to the malaria parasite load in blood. Some evidence indicates it has a genetic basis and is related to chloroquine action with opiate receptors centrally or peripherally.[20]
  • Unpleasant metallic taste
    • This could be avoided by “taste-masked and controlled release” formulations such as multiple emulsions.[21]
  • Chloroquine retinopathy
  • Electrocardiographic changes[22]
    • This manifests itself as either conduction disturbances (bundle-branch block, atrioventricular block) or Cardiomyopathy – often with hypertrophy, restrictive physiology, and congestive heart failure. The changes may be irreversible. Only two cases have been reported requiring heart transplantation, suggesting this particular risk is very low. Electron microscopy of cardiac biopsies show pathognomonic cytoplasmic inclusion bodies.
  • Pancytopeniaaplastic anemia, reversible agranulocytosislow blood plateletsneutropenia.[23]

Pregnancy

Chloroquine has not been shown to have any harmful effects on the fetus when used for malarial prophylaxis.[24] Small amounts of chloroquine are excreted in the breast milk of lactating women. However, this drug can be safely prescribed to infants, the effects are not harmful. Studies with mice show that radioactively tagged chloroquine passed through the placenta rapidly and accumulated in the fetal eyes which remained present five months after the drug was cleared from the rest of the body.[23][25] Women who are pregnant or planning on getting pregnant are still advised against traveling to malaria-risk regions.[24]

Elderly

There is not enough evidence to determine whether chloroquine is safe to be given to people aged 65 and older. Since it is cleared by the kidneys, toxicity should be monitored carefully in people with poor kidney functions.[23]

Drug interactions

Chloroquine has a number of drug-drug interactions that might be of clinical concern:[citation needed]

Overdose

Chloroquine is very dangerous in overdose. It is rapidly absorbed from the gut. In 1961, a published compilation of case reports contained accounts of three children who took overdoses and died within 2.5 hours of taking the drug. While the amount of the overdose was not stated, the therapeutic index for chloroquine is known to be small.[26] One of the children died after taking 0.75 or 1 gram, or twice a single therapeutic amount for children. Symptoms of overdose include headache, drowsiness, visual disturbances, nausea and vomiting, cardiovascular collapse, seizures, and sudden respiratory and cardiac arrest.[23]

An analog of chloroquine – hydroxychloroquine – has a long half-life (32–56 days) in blood and a large volume of distribution (580–815 L/kg).[27] The therapeutic, toxic and lethal ranges are usually considered to be 0.03 to 15 mg/l, 3.0 to 26 mg/l and 20 to 104 mg/l, respectively. However, nontoxic cases have been reported up to 39 mg/l, suggesting individual tolerance to this agent may be more variable than previously recognised.[27]

Pharmacology

Chloroquine’s absorption of the drug is rapid. It is widely distributed in body tissues. It’s protein binding is 55%.[ It’s metabolism is partially hepatic, giving rise to its main metabolite, desethylchloroquine. It’s excretion os ≥50% as unchanged drug in urine, where acidification of urine increases its elimination It has a very high volume of distribution, as it diffuses into the body’s adipose tissue.

Accumulation of the drug may result in deposits that can lead to blurred vision and blindness. It and related quinines have been associated with cases of retinal toxicity, particularly when provided at higher doses for longer times. With long-term doses, routine visits to an ophthalmologist are recommended.

Chloroquine is also a lysosomotropic agent, meaning it accumulates preferentially in the lysosomes of cells in the body. The pKa for the quinoline nitrogen of chloroquine is 8.5, meaning—in simplified terms, considering only this basic site—it is about 10% deprotonated at physiological pH (per the Henderson-Hasselbalch equation) This decreases to about 0.2% at a lysosomal pH of 4.6.Because the deprotonated form is more membrane-permeable than the protonated form, a quantitative “trapping” of the compound in lysosomes results.

Mechanism of action

Medical quinolines

Malaria

Hemozoin formation in P. falciparum: many antimalarials are strong inhibitors of hemozoin crystal growth.

The lysosomotropic character of chloroquine is believed to account for much of its antimalarial activity; the drug concentrates in the acidic food vacuole of the parasite and interferes with essential processes. Its lysosomotropic properties further allow for its use for in vitro experiments pertaining to intracellular lipid related diseases,[28][29] autophagy, and apoptosis.[30]

Inside red blood cells, the malarial parasite, which is then in its asexual lifecycle stage, must degrade hemoglobin to acquire essential amino acids, which the parasite requires to construct its own protein and for energy metabolism. Digestion is carried out in a vacuole of the parasitic cell.[citation needed]

Hemoglobin is composed of a protein unit (digested by the parasite) and a heme unit (not used by the parasite). During this process, the parasite releases the toxic and soluble molecule heme. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a nontoxic molecule. Hemozoin collects in the digestive vacuole as insoluble crystals.[citation needed]

Chloroquine enters the red blood cell by simple diffusion, inhibiting the parasite cell and digestive vacuole. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form the FP-chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function. Action of the toxic FP-chloroquine and FP results in cell lysis and ultimately parasite cell autodigestion. [31] Parasites that do not form hemozoin are therefore resistant to chloroquine.[32]

Resistance in malaria[edit source]

Since the first documentation of P. falciparum chloroquine resistance in the 1950s, resistant strains have appeared throughout East and West Africa, Southeast Asia, and South America. The effectiveness of chloroquine against P. falciparum has declined as resistant strains of the parasite evolved. They effectively neutralize the drug via a mechanism that drains chloroquine away from the digestive vacuole. Chloroquine-resistant cells efflux chloroquine at 40 times the rate of chloroquine-sensitive cells; the related mutations trace back to transmembrane proteins of the digestive vacuole, including sets of critical mutations in the P. falciparum chloroquine resistance transporter (PfCRT) gene. The mutated protein, but not the wild-type transporter, transports chloroquine when expressed in Xenopus oocytes (frog’s eggs) and is thought to mediate chloroquine leak from its site of action in the digestive vacuole.[33] Resistant parasites also frequently have mutated products of the ABC transporter P. falciparum multidrug resistance (PfMDR1) gene, although these mutations are thought to be of secondary importance compared to PfcrtVerapamil, a Ca2+ channel blocker, has been found to restore both the chloroquine concentration ability and sensitivity to this drug. Recently, an altered chloroquine-transporter protein CG2 of the parasite has been related to chloroquine resistance, but other mechanisms of resistance also appear to be involved.[34] Research on the mechanism of chloroquine and how the parasite has acquired chloroquine resistance is still ongoing, as other mechanisms of resistance are likely.[citation needed]

Other agents which have been shown to reverse chloroquine resistance in malaria are chlorpheniraminegefitinibimatinibtariquidar and zosuquidar.[35]

Antiviral

Chloroquine has antiviral effects.[36] It increases late endosomal or lysosomal pH, resulting in impaired release of the virus from the endosome or lysosome – release requires a low pH. The virus is therefore unable to release its genetic material into the cell and replicate.[37][38]

Chloroquine also seems to act as a zinc ionophore, that allows extracellular zinc to enter the cell and inhibit viral RNA-dependent RNA polymerase.[39][40]

Other

Chloroquine inhibits thiamine uptake.[41] It acts specifically on the transporter SLC19A3.

Against rheumatoid arthritis, it operates by inhibiting lymphocyte proliferation, phospholipase A2, antigen presentation in dendritic cells, release of enzymes from lysosomes, release of reactive oxygen species from macrophages, and production of IL-1.

History

In Peru the indigenous people extracted the bark of the Cinchona plant[42] trees and used the extract (Chinchona officinalis) to fight chills and fever in the seventeenth century. In 1633 this herbal medicine was introduced in Europe, where it was given the same use and also began to be used against malaria.[43] The quinoline antimalarial drug quinine was isolated from the extract in 1820, and chloroquine is an analogue of this.

Chloroquine was discovered in 1934, by Hans Andersag and coworkers at the Bayer laboratories, who named it “Resochin”.[44] It was ignored for a decade, because it was considered too toxic for human use. During World War II, United States government-sponsored clinical trials for antimalarial drug development showed unequivocally that chloroquine has a significant therapeutic value as an antimalarial drug. It was introduced into clinical practice in 1947 for the prophylactic treatment of malaria.[45]

Society and culture

Resochin tablet package

Formulations

Chloroquine comes in tablet form as the phosphate, sulfate, and hydrochloride salts. Chloroquine is usually dispensed as the phosphate.[46]

Names

Brand names include Chloroquine FNA, Resochin, Dawaquin, and Lariago.[47]

Other animals

Chloroquine is used to control the aquarium fish parasite Amyloodinium ocellatum.[48]

Research

COVID-19

In late January 2020 during the 2019–20 coronavirus outbreak, Chinese medical researchers stated that exploratory research into chloroquine and two other medications, remdesivir and lopinavir/ritonavir, seemed to have “fairly good inhibitory effects” on the SARS-CoV-2 virus, which is the virus that causes COVID-19. Requests to start clinical testing were submitted.[49] Chloroquine had been also proposed as a treatment for SARS, with in vitro tests inhibiting the SARS-CoV virus.[50][51]

Chloroquine has been recommended by Chinese, South Korean and Italian health authorities for the treatment of COVID-19.[52][53] These agencies noted contraindications for people with heart disease or diabetes.[54] Both chloroquine and hydroxychloroquine were shown to inhibit SARS-CoV-2 in vitro, but a further study concluded that hydroxychloroquine was more potent than chloroquine, with a more tolerable safety profile.[55] Preliminary results from a trial suggested that chloroquine is effective and safe in COVID-19 pneumonia, “improving lung imaging findings, promoting a virus-negative conversion, and shortening the disease course.”[56] Self-medication with chloroquine has caused one known fatality.[57]

On 24 March 2020, NBC News reported[58] a fatality due to misuse of a chloroquine product used to control fish parasites.[59]

Other viruses

In October 2004, a group of researchers at the Rega Institute for Medical Research published a report on chloroquine, stating that chloroquine acts as an effective inhibitor of the replication of the severe acute respiratory syndrome coronavirus (SARS-CoV) in vitro.[60]

Chloroquine was being considered in 2003, in pre-clinical models as a potential agent against chikungunya fever.[61]

Other

The radiosensitizing and chemosensitizing properties of chloroquine are beginning to be exploited in anticancer strategies in humans.[62][63] In biomedicinal science, chloroquine is used for in vitro experiments to inhibit lysosomal degradation of protein products.

 

 

SYN

Image result for CHLOROQUINESYNTHESIS

Image result for CHLOROQUINESYNTHESIS

CLIP

Image result for CHLOROQUINESYNTHESIS

Image result for CHLOROQUINESYNTHESIS

CLIP

Image result for CHLOROQUINESYNTHESIS

CLIP

Image result for CHLOROQUINESYNTHESIS

CLIP

Image result for CHLOROQUINESYNTHESIS

References

  1. Jump up to:a b c d e f g h i j k l m n “Aralen Phosphate”. The American Society of Health-System Pharmacists. Archived from the original on 8 December 2015. Retrieved 2 December 2015.
  2. ^ “Chloroquine Use During Pregnancy”Drugs.comArchivedfrom the original on 16 April 2019. Retrieved 16 April 2019There are no controlled data in human pregnancies.
  3. ^ Mittra, Robert A.; Mieler, William F. (1 January 2013). Ryan, Stephen J.; Sadda, SriniVas R.; Hinton, David R.; Schachat, Andrew P.; Sadda, SriniVas R.; Wilkinson, C. P.; Wiedemann, Peter; Schachat, Andrew P. (eds.). Retina (Fifth Edition). W.B. Saunders. pp. 1532–1554 – via ScienceDirect.
  4. ^ Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S (March 2020). “A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19”. Journal of Critical Caredoi:10.1016/j.jcrc.2020.03.005PMID 32173110.
  5. ^https://www.sciencedirect.com/science/article/pii/S0924857920300881
  6. ^https://www.sciencedirect.com/science/article/pii/B9781455707379000898
  7. ^ Manson P, Cooke G, Zumla A, eds. (2009). Manson’s tropical diseases (22nd ed.). [Edinburgh]: Saunders. p. 1240. ISBN 9781416044703Archived from the original on 2 November 2018. Retrieved 9 September 2017.
  8. ^ Bhattacharjee M (2016). Chemistry of Antibiotics and Related Drugs. Springer. p. 184. ISBN 9783319407463Archived from the original on 1 November 2018. Retrieved 9 September 2017.
  9. ^ World Health Organization (2019). World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO.
  10. ^ “Chloroquine (Base)”International Drug Price Indicator GuideArchived from the original on 27 August 2018. Retrieved 4 December 2015.
  11. ^ “Frequently Asked Questions (FAQs): If I get malaria, will I have it for the rest of my life?”. US Centers for Disease Control and Prevention. 8 February 2010. Archived from the original on 13 May 2012. Retrieved 14 May 2012.
  12. ^ Plowe CV (2005). “Antimalarial drug resistance in Africa: strategies for monitoring and deterrence”Malaria: Drugs, Disease and Post-genomic Biology. Current Topics in Microbiology and Immunology. 295. pp. 55–79. doi:10.1007/3-540-29088-5_3ISBN 3-540-25363-7PMID 16265887.
  13. ^ Uhlemann AC, Krishna S (2005). “Antimalarial multi-drug resistance in Asia: mechanisms and assessment”Malaria: Drugs, Disease and Post-genomic Biology. Current Topics in Microbiology and Immunology. 295. pp. 39–53. doi:10.1007/3-540-29088-5_2ISBN 3-540-25363-7PMID 16265886.
  14. ^ “Chloroquine phosphate tablet – chloroquine phosphate tablet, coated”dailymed.nlm.nih.govArchived from the original on 8 December 2015. Retrieved 4 November 2015.
  15. ^ CDC. Health information for international travel 2001–2002. Atlanta, Georgia: U.S. Department of Health and Human Services, Public Health Service, 2001.
  16. ^ Amebic Hepatic Abscesses~treatment at eMedicine
  17. Jump up to:a b c d e f “Drugs & Medications”http://www.webmd.com. Retrieved 22 March 2020.
  18. Jump up to:a b c d “Chloroquine Side Effects: Common, Severe, Long Term”Drugs.com. Retrieved 22 March 2020.
  19. ^ “Chloroquine: MedlinePlus Drug Information”medlineplus.gov. Retrieved 22 March 2020.
  20. ^ Ajayi AA (September 2000). “Mechanisms of chloroquine-induced pruritus”. Clinical Pharmacology and Therapeutics68 (3): 336. PMID 11014416.
  21. ^ Vaziri A, Warburton B (1994). “Slow release of chloroquine phosphate from multiple taste-masked W/O/W multiple emulsions”. Journal of Microencapsulation11 (6): 641–8. doi:10.3109/02652049409051114PMID 7884629.
  22. ^ Tönnesmann E, Kandolf R, Lewalter T (June 2013). “Chloroquine cardiomyopathy – a review of the literature”. Immunopharmacology and Immunotoxicology35 (3): 434–42. doi:10.3109/08923973.2013.780078PMID 23635029.
  23. Jump up to:a b c d e f g h i “Aralen Chloroquine Phosphate, USP” (PDF)Archived (PDF) from the original on 25 March 2020. Retrieved 24 March 2020.
  24. Jump up to:a b “Malaria – Chapter 3 – 2016 Yellow Book”wwwnc.cdc.govArchived from the original on 14 January 2016. Retrieved 11 November 2015.
  25. ^ Ullberg S, Lindquist NG, Sjòstrand SE (September 1970). “Accumulation of chorio-retinotoxic drugs in the foetal eye”. Nature227 (5264): 1257–8. Bibcode:1970Natur.227.1257Udoi:10.1038/2271257a0PMID 5452818.
  26. ^ Cann HM, Verhulst HL (January 1961). “Fatal acute chloroquine poisoning in children”Pediatrics27: 95–102. PMID 13690445.
  27. Jump up to:a b Molina DK (March 2012). “Postmortem hydroxychloroquine concentrations in nontoxic cases”. The American Journal of Forensic Medicine and Pathology33 (1): 41–2. doi:10.1097/PAF.0b013e3182186f99PMID 21464694.
  28. ^ Chen PM, Gombart ZJ, Chen JW (March 2011). “Chloroquine treatment of ARPE-19 cells leads to lysosome dilation and intracellular lipid accumulation: possible implications of lysosomal dysfunction in macular degeneration”Cell & Bioscience1 (1): 10. doi:10.1186/2045-3701-1-10PMC 3125200PMID 21711726.
  29. ^ Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard P, et al. (April 2010). “Abeta-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61”The Journal of Neuroscience30(17): 5948–57. doi:10.1523/JNEUROSCI.0157-10.2010PMC 2868326PMID 20427654.
  30. ^ Kim EL, Wüstenberg R, Rübsam A, Schmitz-Salue C, Warnecke G, Bücker EM, et al. (April 2010). “Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells”Neuro-Oncology12 (4): 389–400. doi:10.1093/neuonc/nop046PMC 2940600PMID 20308316.
  31. ^ Hempelmann E (March 2007). “Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors”. Parasitology Research100 (4): 671–6. doi:10.1007/s00436-006-0313-xPMID 17111179.
  32. ^ Lin JW, Spaccapelo R, Schwarzer E, Sajid M, Annoura T, Deroost K, et al. (June 2015). “Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine resistance” (PDF)The Journal of Experimental Medicine212(6): 893–903. doi:10.1084/jem.20141731PMC 4451122PMID 25941254Archived (PDF) from the original on 22 September 2017. Retrieved 4 November 2018.
  33. ^ Martin RE, Marchetti RV, Cowan AI, Howitt SM, Bröer S, Kirk K (September 2009). “Chloroquine transport via the malaria parasite’s chloroquine resistance transporter”. Science325 (5948): 1680–2. Bibcode:2009Sci…325.1680Mdoi:10.1126/science.1175667PMID 19779197.
  34. ^ Essentials of medical pharmacology fifth edition 2003, reprint 2004, published by-Jaypee Brothers Medical Publisher Ltd, 2003, KD Tripathi, pages 739,740.
  35. ^ Alcantara LM, Kim J, Moraes CB, Franco CH, Franzoi KD, Lee S, et al. (June 2013). “Chemosensitization potential of P-glycoprotein inhibitors in malaria parasites”. Experimental Parasitology134 (2): 235–43. doi:10.1016/j.exppara.2013.03.022PMID 23541983.
  36. ^ Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R (November 2003). “Effects of chloroquine on viral infections: an old drug against today’s diseases?”. The Lancet. Infectious Diseases3(11): 722–7. doi:10.1016/s1473-3099(03)00806-5PMID 14592603.
  37. ^ Al-Bari MA (February 2017). “Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases”Pharmacology Research & Perspectives5 (1): e00293. doi:10.1002/prp2.293PMC 5461643PMID 28596841.
  38. ^ Fredericksen BL, Wei BL, Yao J, Luo T, Garcia JV (November 2002). “Inhibition of endosomal/lysosomal degradation increases the infectivity of human immunodeficiency virus”Journal of Virology76 (22): 11440–6. doi:10.1128/JVI.76.22.11440-11446.2002PMC 136743PMID 12388705.
  39. ^ Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ (1 October 2014). “Chloroquine is a zinc ionophore”PloS One9(10): e109180. doi:10.1371/journal.pone.0109180PMC 4182877PMID 25271834.
  40. ^ te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ (November 2010). “Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture”PLoS Pathogens6 (11): e1001176. doi:10.1371/journal.ppat.1001176PMC 2973827PMID 21079686.
  41. ^ Huang Z, Srinivasan S, Zhang J, Chen K, Li Y, Li W, et al. (2012). “Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy”PLOS Genetics8 (11): e1003083. doi:10.1371/journal.pgen.1003083PMC 3510038PMID 23209439.
  42. ^ Fern, Ken (2010–2020). “Cinchona officinalis – L.” Plans for a FutureArchived from the original on 25 August 2017. Retrieved 2 February 2020.
  43. ^ V. Kouznetsov, Vladímir (2008). “Antimalarials: construction of molecular hybrids based on chloroquine” (PDF)Universitas Scientiarum: 1. Archived (PDF) from the original on 22 February 2020. Retrieved 22 February 2020 – via scielo.
  44. ^ Krafts K, Hempelmann E, Skórska-Stania A (July 2012). “From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy”. Parasitology Research111 (1): 1–6. doi:10.1007/s00436-012-2886-xPMID 22411634.
  45. ^ “The History of Malaria, an Ancient Disease”. Centers for Disease Control. 29 July 2019. Archived from the original on 28 August 2010.
  46. ^ “Chloroquine”nih.gov. National Institutes of Health. Retrieved 24 March 2020.
  47. ^ “Ipca Laboratories: Formulations – Branded”Archived from the original on 6 April 2019. Retrieved 14 March 2020.
  48. ^ Francis-Floyd, Ruth; Floyd, Maxine R. “Amyloodinium ocellatum, an Important Parasite of Cultured Marine Fish” (PDF)agrilife.org.
  49. ^ “Could an old malaria drug help fight the new coronavirus?”asbmb.orgArchived from the original on 6 February 2020. Retrieved 6 February 2020.
  50. ^ Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M (October 2004). “In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine”. Biochemical and Biophysical Research Communications323 (1): 264–8. doi:10.1016/j.bbrc.2004.08.085PMID 15351731.
  51. ^ Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020 Mar 11:105938. doi:10.1016/j.ijantimicag.2020.105938 PMID 32171740
  52. ^ “Physicians work out treatment guidelines for coronavirus”m.koreabiomed.com (in Korean). 13 February 2020. Archivedfrom the original on 17 March 2020. Retrieved 18 March 2020.
  53. ^ “Azioni intraprese per favorire la ricerca e l’accesso ai nuovi farmaci per il trattamento del COVID-19”aifa.gov.it (in Italian). Retrieved 18 March 2020.
  54. ^ “Plaquenil (hydroxychloroquine sulfate) dose, indications, adverse effects, interactions… from PDR.net”http://www.pdr.netArchivedfrom the original on 18 March 2020. Retrieved 19 March 2020.
  55. ^ Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. (March 2020). “In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”. Clinical Infectious Diseasesdoi:10.1093/cid/ciaa237PMID 32150618.
  56. ^ Gao J, Tian Z, Yang X (February 2020). “Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies”Bioscience Trends14: 72–73. doi:10.5582/bst.2020.01047PMID 32074550Archived from the original on 19 March 2020. Retrieved 19 March 2020.
  57. ^ Edwards, Erika; Hillyard, Vaughn (23 March 2020). “Man dies after ingesting chloroquine in an attempt to prevent coronavirus”NBC News. Retrieved 24 March 2020.
  58. ^ “A man died after ingesting a substance he thought would protect him from coronavirus”NBC News. Retrieved 25 March 2020.
  59. ^ “Banner Health experts warn against self-medicating to prevent or treat COVID-19”Banner Health (Press release). 23 March 2020. Retrieved 25 March 2020.
  60. ^ Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M (October 2004). “In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine”. Biochemical and Biophysical Research Communications323 (1): 264–8. doi:10.1016/j.bbrc.2004.08.085PMID 15351731.
  61. ^ Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R (November 2003). “Effects of chloroquine on viral infections: an old drug against today’s diseases?”. The Lancet. Infectious Diseases3(11): 722–7. doi:10.1016/S1473-3099(03)00806-5PMID 14592603.
  62. ^ Savarino A, Lucia MB, Giordano F, Cauda R (October 2006). “Risks and benefits of chloroquine use in anticancer strategies”. The Lancet. Oncology7 (10): 792–3. doi:10.1016/S1470-2045(06)70875-0PMID 17012039.
  63. ^ Sotelo J, Briceño E, López-González MA (March 2006). “Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial”. Annals of Internal Medicine144 (5): 337–43. doi:10.7326/0003-4819-144-5-200603070-00008PMID 16520474.
    “Summaries for patients. Adding chloroquine to conventional chemotherapy and radiotherapy for glioblastoma multiforme”. Annals of Internal Medicine144 (5): I31. March 2006. doi:10.7326/0003-4819-144-5-200603070-00004PMID 16520470.

External links

“Chloroquine”Drug Information Portal. U.S. National Library of Medicine.

Chloroquine
Chloroquine.svg
Chloroquine 3D structure.png
Clinical data
Pronunciation /ˈklɔːrəkwɪn/
Trade names Aralen, other
Other names Chloroquine phosphate
AHFS/Drugs.com Monograph
License data
ATC code
Legal status
Legal status
Pharmacokinetic data
Metabolism Liver
Elimination half-life 1-2 months
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
NIAID ChemDB
CompTox Dashboard (EPA)
ECHA InfoCard 100.000.175 Edit this at Wikidata
Chemical and physical data
Formula C18H26ClN3
Molar mass 319.872 g·mol−1
3D model (JSmol)

//////////////CHLOROQUINE,, クロロキン, ANTIMALARIAL, COVID 19, CORONA VIRUS, Хлорохинクロロキン كلوروكين


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

DR ANTHONY CRASTO

Follow New Drug Approvals on WordPress.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,540 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 year tenure till date Dec 2017, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 50 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 19 lakh plus views on New Drug Approvals Blog in 216 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

View Full Profile →

TWITTER

bloglovin

Follow my blog with Bloglovin The title of your home page You could put your verification ID in a comment Or, in its own meta tag Or, as one of your keywords Your content is here. The verification ID will NOT be detected if you put it here.
%d bloggers like this: