New Drug Approvals

Home » cancer » TL 487

TL 487

Advertisements
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Categories

Blog Stats

  • 2,591,992 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,399 other followers

add to any

Share
Advertisements

str1

TL-487

CAS  1469746-55-1
2-Butenamide, N-[3-cyano-7-ethoxy-4-[(4-phenoxyphenyl)amino]-6-quinolinyl]-4-(dimethylamino)-, (2E)-
Molecular Weight, 507.58, MF C30 H29 N5 O3

Teligene Inc(2E)-N-[3-Cyano-7-ethoxy-4-[(4-phenoxyphenyl)amino]-6-quinolinyl]-4-(dimethylamino)-2-butenamide

(E)-N-(3-cyano-7-ethoxy-4-((4-phenoxyphenyl)amino)quinolin-6-yl)-4-(dimethylamino)but-2-enamide

Maleate in anhydrous or monohydrate CAS, 2326561-36-6, AND 2326561-38-8 form are BTK and HER-2 kinase inhibitor useful for treating cancer

Useful for treating breast cancer, ovary cancer and colon cancer. are BTK and HER-2 kinase inhibitor useful for treating cancer.

Anticancer protein kinase inhibitor

The compound was originally claimed in WO2013152135 , and may provide the structure of TL-487 , a small molecule inhibitor to HERs, being investigated by Teligene for the treatment of breast cancer; in July 2016, the company intended to develop the product as a class 1.1 chemical drug in China.

PATENT

US 20150057312

PATENT

WO2013152135

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013152135&tab=PCTDESCRIPTION&queryString=%28ET%2Fkinase%29+&recNum=8&maxRec=4574

PATENT

WO-2019096327

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019096327&redirectedID=true

Novel crystalline maleate salt of (E)-N-(3-cyano-7-ethoxy-4-((4-phenoxyphenyl)amino)quinolin-6-yl)-4-(dimethylamino)but-2-enamide (first disclosed in WO2013152135) and its hydrates (monohydrate) and anhydrates, process for its preparation, composition comprising it and its use for treating cancers such as breast cancer, ovary cancer, colon cancer, prostate cancer, kidney cancer, bladder cancer, stomach cancer, lung cancer, mantle cell lymphoma and multiple myeloma are claimed. The compound is disclosed to be an irreversible inhibitor to BTK and Her-2 (also known as Erb-2 or neu).

(E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide is mentioned in WO2013152135 and corresponds to the compound of the Formula I:
Formula I
Compounds derived from 3-cyanoquinoline have been shown to have anti-tumor activity, which may make them useful as chemotherapeutic agents in treating various cancers, including but not limited to, pancreatic cancer, melanoma, lymphatic cancer, parotid tumors, Barrett’s esophagus, esophageal carcinomas, head and neck tumors, ovarian cancer, breast cancer, epidermoid tumors, cancers of major organs, such as kidney, bladder, larynx, stomach, and lung, colonic polyps and colorectal cancer and prostate cancer. Examples of compounds derived from 3-cyanoquinoline are disclosed and shown to possess anti-tumor activity in many literatures. One limitation of certain 3-cyanoquinoline compounds is that they are not water soluble in a free base form.
The crystalline form of a particular drug as a salt, a hydrate and/or any polymorph thereof is often one important determinant of the drug’s ease of preparation, stability, water solubility, storage stability, ease of formulation and in-vivo pharmacology. It is possible that one crystalline form is preferable over another where certain aspects such as ease of preparation, stability, water solubility and/or superior pharmacokinetics are deemed to be critical. Crystalline forms of (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide salts that possess a higher degree of water solubility than the free base but are stable fulfill an unmet need for stable, crystalline, water-solubl
Example 1. (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide sulfate
95%ethanol (4.0 ml) was added to (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide (500 mg, 0.99 mmol, 1.0 eq) , followed sulfuric acid (101.9 mg, 1.04 mmol, 1.05 eq) in 95%ethanol (1.0 ml) was added dropwise to the reaction mixture. Then an amount of precipitate was founded. Another 95% (60 ml) was added to the reaction mixture and the reaction mixture was heated to 70℃. Filtered and the filtrate was heated to 70℃ again. Then the reaction mixture was cooled to room temperature and The reaction mixture was crystallized at -10℃ for 41.5h. Filtered the precipitated solid and dried at 40℃ under vacuum for 1 hour to get the title compound (260 mg) as a yellow solid.
X-ray detection shows an amorphous structure to the compound as FIG. 9.
Example 2. Synthesis of (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide hydrochloride
95%ethanol (5.0 ml) was added to (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide (500 mg, 0.99 mmol, 1.0 eq) , followed hydrochloric acid (38.0 mg, 1.04 mmol, 1.05 eq) in 95%ethanol (1.0 ml) was added dropwise to the reaction mixture. The reaction mixture was heated to 70℃. Filtered and the filtrate was crystallized under -10℃ for 44.5h. Filtered the precipitated solid and dried at 40℃ under vacuum for 1 hour to get the title compound (96 mg) as a yellow solid.
X-ray detection shows an amorphous structure to the compound in FIG. 6.
Example 3. Synthesis of (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide malate
(E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide (500 mg, 0.99 mmol, 1.0 eq) , L-malic acid (139.4 mg, 1.04 mmol, 1.05 eq) and 95%ethanol (5.0 ml) was added to a 50 ml round-bottom flask. The reaction mixture was heated to 70℃. Filtered and the filtrate was crystallized under -10℃ for 45.5h. A little of precipitate was founded and then the reaction mixture was evaporated under vacuum at 40℃ to give the target (370 mg) as a yellow solid.
X-ray detection shows an amorphous structure to the compound in FIG. 8
Example 4: synthesis of (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide citrate
To a solution of (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide (500 mg, 0.99 mmol, 1.0 eq) , citric acid (198.8 mg, 1.04 mmol, 1.05 eq) and 95%ethanol (5.0 ml) . The reaction mixture was heated to 70℃. Filtered and the filtrate was crystallized under -10℃ for 45h. A little of precipitate was founded and then the reaction mixture was evaporated under vacuum at 40℃ to give the target compound (610 mg) as a yellow solid.
X-ray detection shows an crystalline structure to the compound in FIG. 7.
Example 5: Preparation of (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide maleate monohydrate.
(E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide free base (0.091 kg) is rinsed with a 10%solution of USP purified water in n-propanol (0.082 kg, 0.10 L) followed by the addition of water: n-propanol solution (0.74 kg, 0.90 L) . Maleic acid is added (1.01 equiv) and the mixture is rinsed with 10%water: n-propanol (0.082 kg, 0.10 L) . The mixture is quickly heated to 50-60 ℃ and held for a minimum of 15 min. until a solution is obtained. The hot solution is clarified through a pre-heated 50-60 ℃, 0.2 Mm filter cartridge and the filtrates are collected in a preheated 45-55℃, 2 L multi-neck flask. The filter cartridge is rinsed through with 10%water: n-propanol pre-heated to 45-55 ℃ (0.082 kg, 0.10 L) . The solution is cooled over at least one hour to 40 ℃ and held at that temperature for 12 hours then cooled to room temperature (25 ℃) over a minimum of four hours and held at that temperature for at least two hours. The mixture is filtered on a 12.5 cm diameter Buchner funnel for 5 min., then rinsed and washed with prefiltered10%water: n-propanol solution (2 x 0.12 kg, 2 x 0.15 L) . The cake is dammed and suction maintained until dripping essentially stops, about 1 h.
PXRD is shown in FIG. 1.
Example 6: The product from Example 1 is dried (50 ℃, 10 mm Hg, 24 h) to give crystalline, anhydrous (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide maleate.
PXRD is shown in FIG. 3.
Example 7: Preparation of (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide maleate monohydrate.
To a solution of (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide (38.0 g, 75.0 mmol, 1.0 eq) and n-propanol/H 2O (380 ml, V: V=9: 1) . maleic acid (8.7 g, 75.0 mmol, 1.0 eq) in n-propanol/H 2O (76 ml, V: V=9: 1) was added to the reaction mixture. An amount of precipitate was founded, then the reaction mixturewas heated to 65 ℃. The solid was dissolved completely, then the reaction mixture was cooled to room temperature and stand for 20 hours. Filtered and filtrate was evaporated under vacuum to get the crude product.
The crude product (14.0 g) was recrystallized in n-propanol/H 2O (240 ml, V: V=9: 1) at 70℃. The solid was dissolved completely, then the reaction mixture was cooled to room temperature and stand for 20.5 hours. Filtered and wash the cake with n-propanol/H 2O (20 ml, V: V=9: 1) to get target product (12.9 g, wet) .
PXRD as FIG. 1.
Example 8: crystalline, anhydrous (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide maleate.
To a solution of (E) -N- (3-cyano-7-ethoxy-4- ( (4-phenoxyphenyl) amino) quinolin-6-yl) -4- (dimethylamino) but-2-enamide (21.5 g, 42.4 mmol, 1.0 eq) and ethanol (300 ml) . maleic acid (5.2 g, 44.8 mmol, 1.05 eq) was added to the reaction mixture. An amount of precipitate was founded, then the reaction mixture was heated to 70 ℃. Another ethanol (1980 ml) was added to the reaction mixture in several times and the reaction temperature was keep at 70 ℃. Filtered and filtrate was cooled to room temperature, stop stirring and stand for 16-20 hours. Filtered and the solid was dried at room temperature for 24 hours to get the title compound.

///////////////TL-487, PRECLINICAL, CHINA, breast cancer, ovary cancer, olon cancer,  BTK, HER-2 kinase inhibitor,

CN(C)C\C=C\C(=O)Nc3cc4c(Nc2ccc(Oc1ccccc1)cc2)c(cnc4cc3OCC)C#N

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

DR ANTHONY CRASTO

Follow New Drug Approvals on WordPress.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,399 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 year tenure till date Dec 2017, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 50 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 19 lakh plus views on New Drug Approvals Blog in 216 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

View Full Profile →

bloglovin

Follow my blog with Bloglovin The title of your home page You could put your verification ID in a comment Or, in its own meta tag Or, as one of your keywords Your content is here. The verification ID will NOT be detected if you put it here.
%d bloggers like this: