New Drug Approvals

Home » Drug discovery » Lead-oriented synthesis: a new concept to aid drug-discovery process

Lead-oriented synthesis: a new concept to aid drug-discovery process



Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 


Recent Posts

Blog Stats

  • 3,669,409 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,654 other followers

add to any



Figure 2. a. Fragment-based screening: Small and structurally diverse molecules (circles represent functional groups) are screened for a biological target, and they are combined and modified to generate drug-like compounds. b. Diversity-oriented synthesis: Large collections of structurally diverse and complex molecules are made using a short number of reactions. The resulting compounds are optimized to produce the drug-like compounds. | Credit: P. J. Hajduk,W. R. J. D. Galloway & D. R. Spring Nature, 2011, 470, 42–43. DOI: 10.1038/470042a


The discovery and development of new drugs is a long and expensive process, and despite of it, essential to face present and new diseases. For small molecules, which account for the majority of the marketed drugs, the discovery process generally involves finding a starting point termed hit or lead compound. These molecules have biological activity but need to be optimized to enhance their potency and selectivity (i.e. minimize the toxicity) and improve pharmacokinetic parameters making them suitable to go to the next stage, the pre-clinical tests……….



pablo ortiz

Pablo Ortiz
Pablo Ortiz graduated in Pharmacy from the University of the Basque Country (UPV/EHU) and received a MSc in Synthetic and Industrial Chemistry by the same university. He is currently a PhD student in Synthetic Organic Chemistry at the University of Groningen (The Netherlands). His research is focused on novel copper catalysed transformations.

PhD at Rijksuniversiteit Groningen


PhD StudentRijksuniversiteit Groningen

October 2013 – Present 

Asymmetric organometallic catalysis focused on tertiary alcohols and amines

Harutyunyan research group

Harutyunyan research group

Master Thesis Project

University of the Basque Country

February 2013 – September 2013 (8 months)Vitoria-Gasteiz Area, Spain

Estereoselective synthesis of quaternary alpha-aminophosphonic acid derivatives (organocatalysis)

Locum pharmacist

Community pharmacy

August 2012 – August 2012 (1 month)La Rioja, Spain

Pre-registration pharmacist

NHS Trust

January 2012 – June 2012 (6 months)Southport, England

In-patient and out-patient dispensing
Clinical pharmacy
Medicines information
Anticoagulant management
Aseptic preparation of medicines
Clinical audit of antimicrobial use


Tertiary α-diarylmethylamines derived from diarylketimines and organomagnesium reagents(Link)

Chem. Commun. 2015, 51, 703-706.

November 13, 2014

Organomagnesium reagents enable swift and versatile derivatisation of diarylimines to the corresponding α-substituted diarylmethylamines in excellent yields, through fast and clean reactions. Where it occurs, 1,2-reduction can be circumvented using readily accessible dialkylmagnesium reagents.

Asymmetric Synthesis of Functionalized Tetrasubstituted α-Aminophosphonates through Enantioselective Aza-Henry Reaction of Phosphorylated Ketimines(Link)

J. Org. Chem., 2015, 80, 156–164

November 2014

Bifunctional Cinchona alkaloid thioureas efficiently catalyze asymmetric nucleophilic addition of nitromethane to ketimines derived from α-aminophosphonic acids to afford tetrasubstituted α-amino-β-nitro-phosphonates.

Catalytic Asymmetric Alkylation of Aryl Heteroaryl Ketones(Link)

Eur. J. Org. Chem., 2015, 72–76.

November 2014

Tertiary diarylmethanols are highly bioactive structural motifs. A new strategy to access chiral tertiary diarylmethanols through copper-catalyzed direct alkylation of (di)(hetero)aryl ketones by using Grignard reagents was developed. The low reactivity and the similarity of the enantiotopic faces of bis-aromatic ketones were partially overcome, which resulted in moderate to good yields and…more


Universidad del País Vasco/Euskal Herriko Unibertsitatea

Bachelor’s degree, Pharmacy, Extraordinary Degree Award, 9.06

2007 – 2012

(Open)1 honor or award
(Open)2 courses


Universidad del País Vasco/Euskal Herriko Unibertsitatea

  • How to write and publish a research article
  • X Pharmaceutical Chemistry Sessions: New strategies for the design and synthesis of drugs

Universidad del País Vasco/Euskal Herriko Unibertsitatea

  • II Organic Chemistry Synthesis and Catalysis Workshop: Methods and strategies in synthesis




Map of groningen the netherlands

Groningen City – Holland.

stadtmitte groningen niederlande stadtwanderung

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.


Follow New Drug Approvals on

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,654 other followers



DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK LIFE SCIENCES LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 PLUS year tenure till date June 2021, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 90 Lakh plus views on dozen plus blogs, 233 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 33 lakh plus views on New Drug Approvals Blog in 233 countries...... , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

View Full Profile →



Follow my blog with Bloglovin The title of your home page You could put your verification ID in a comment Or, in its own meta tag Or, as one of your keywords Your content is here. The verification ID will NOT be detected if you put it here.
%d bloggers like this: