New Drug Approvals

Home » APPROVALS 2021 » Viloxazine, ヴィロキサジン;

Viloxazine, ヴィロキサジン;

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Archives

Categories

Recent Posts

Blog Stats

  • 4,481,445 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,841 other subscribers

add to any

Share

Viloxazine structure.svg

ChemSpider 2D Image | Viloxazine | C13H19NO3

Viloxazine

  • Molecular FormulaC13H19NO3
  • Average mass237.295 Da

update FDA APPROVED 2021/4/2, Qelbree, Viloxazine hydrochloride

Formula
C13H19NO3. HCl
CAS
35604-67-2
Mol weight
273.7558
 
2-[(2-Ethoxyphenoxy)methyl]morpholine
 
256-281-7 [EINECS]
3489
46817-91-8 free [RN], Hcl 35604-67-2
5I5Y2789ZF
Emovit [Wiki]
Morpholine, 2-((2-ethoxyphenoxy)methyl)-
Morpholine, 2-[(2-ethoxyphenoxy)methyl]-
UNII:5I5Y2789ZF
Viloxazine hydrochloride.png
Viloxazine hydrochloride OQW30I1332 35604-67-2

Polymorph

FORM A , B US226136693US2011032013

NEW DRUG APPROVALS

ONE TIME

$10.00

Viloxazine (trade names VivalanEmovitVivarint and Vicilan) is a morpholine derivative and is a selective norepinephrine reuptake inhibitor (NRI). It was used as an antidepressant in some European countries, and produced a stimulant effect that is similar to the amphetamines, except without any signs of dependence. It was discovered and brought to market in 1976 by Imperial Chemical Industries and was withdrawn from the market in the early 2000s for business reasons.

Image result for viloxazine synthesis

Clip

https://www.sciencedirect.com/science/article/pii/S0040402015302659

Image result for viloxazine synthesis

Patent

US 20180265482

 Viloxazine ((R,S)-2-[(2-ethoxyphenoxy)methyl]morpholine]) is a bicyclic morpholine derivative, assigned CAS No. 46817-91-8 (CAS No. 35604-67-2 for the HCl salt). It is characterized by the formula C 1319NO 3, with a molecular mass of 237.295 g/mol. Viloxazine has two stereoisomers, (S)-(−)- and (R)-(+)-isomer, which have the following chemical structures:
 (MOL) (CDX)
      Viloxazine is known to have several desirable pharmacologic uses, including treatment of depression, nocturnal enuresis, narcolepsy, sleep disorders, and alcoholism, among others. In vivo, viloxazine acts as a selective norepinephrine reuptake inhibitor (“NRI”).
      Between the two stereoisomers, the (S)-(−)-isomer is known to be five times as pharmacologically active as the (R)-(+)-isomer. See, e.g., “Optical Isomers of 2-(2-ethoxyphenoxymethyl)tetrahydro-1,4 oxazine (viloxazine) and Related Compounds” (Journal of Medicinal Chemistry, Jan. 9, 1976, 19(8); 1074) in which it is disclosed that optical isomers of 2-(2-ethoxyphenoxymethyl)tetrahydro-1,4-oxazine (viloxazine) and 2-(3-methoxyphenoxymethyl)tetrahydro-1,4-oxazine were prepared and absolute configurations assigned. The synthesis of optical isomers of viloxazine analogs of known configuration was accomplished by resolution of the intermediate 4-benzyl-2-(p-toluenesulfonyloxymethyl)tetrahydro-1,4-oxazine isomers.
      Some unsatisfactory methods of synthesizing viloxazine are known in the art. For example, as disclosed in U.S. Pat. No. 3,714,161, viloxazine is prepared by reacting ethoxyphenol with epichlorohydrin to afford the epoxide intermediate 1-(2-ethoxyphenoxy)-2,3-epoxypropane. This epoxide intermediate is then treated with benzylamine followed with chloroacetyl chloride. The resulting morpholinone is then reduced by lithium aluminum hydride and then by Pd/C-catalyzed hydrogenation to yield viloxazine free base.
      Yet another unsatisfactory synthesis of viloxazine is disclosed in U.S. Pat. No. 3,712,890, which describes a process to prepare viloxazine HCl, wherein the epoxide intermediate, 1-(2-ethoxyphenoxy)-2,3-epoxypropane, is reacted with 2-aminoethyl hydrogen sulfate in ethanol in the presence of sodium hydroxide to form viloxazine free base. The product is extracted with diethyl ether from the aqueous solution obtained by evaporating the solvent in the reaction mixture then adding water to the residue. The ethereal extract is dried over a drying agent and the solvent is removed. Viloxazine HCl salt is finally obtained by dissolving the previous residue in isopropanol, concentrated aqueous HCl, and ethyl acetate followed by filtration.
      The foregoing methods of synthesizing viloxazine suffer from a number of deficiencies, such as low reaction yield and unacceptably large amount of impurities in the resulting product. Effective elimination or removal of impurities, especially those impurities possessing genotoxicity or other toxicities, is critical to render safe pharmaceutical products. For example, certain reagents traditionally utilized in viloxazine HCl preparation, such as epichlorohydrin and 2-aminoethyl hydrogen sulfate, present a special problem due to their toxicity. There is a need for effective methods to remove or limit harmful impurities down to a level that is appropriate and safe according to contemporary sound medical standards and judgment. Accordingly, a continuing and unmet need exists for new and improved methods of manufacturing viloxazine and its various salts to yield adequate quantities of pharmacologically desirable API with predictable and reliable control of impurities.
     Polymorph control is also an important aspect of producing APIs and their associated salts that are used in pharmaceutical products. However, no polymorphs of viloxazine HCl have previously been disclosed. A need therefore exists for new polymorphic forms of viloxazine that have improved pharmacological properties.

PATENT

WO 2011130194

US2011032013

For the sake of convenience and without putting any limitations thereof, the methods of manufacture of viloxazine have been separated into several steps, each step being disclosed herein in a multiplicity of non-limiting embodiments. These steps comprise Step 1, during which 2-ethoxyphenol and epichlorhydrin are reacted to produce l-(2-ethoxyphenoxy)-2,3-epoxypropane (Epoxide 1); Step 2, during which l-(2-ethoxyphenoxy)-2,3-epoxypropane (Epoxide 1) is converted into viloxazine base which is further converted into viloxazine salt, and Step 3, during which viloxazine salt is purified/recrystallized, and various polymorphic forms of viloxazine salt are prepared.

The above-mentioned steps will be considered below in more details.

[0031] The process of the Step 1 may be advantageously carried out in the presence of a phase-transfer catalyst to afford near quantitative yield of l-(2-ethoxyphenoxy)-2,3-epoxypropane. Alternatively, the process may make use of a Finkelstein catalyst described in more details below. Additionally, the reaction may take place without the use of the catalyst.

 FIG. 1, depicted below, schematically illustrates the preparation of l-(2-ethoxyphenoxy)-2,3-epoxypropane (“Epoxide 1”) in accordance with Step I of an exemplary synthesis of viloxazine:

STEP I:

Epoxide 1

In one embodiment of the Step 1, the preparation of l-(2-ethoxyphenoxy)-2,3-epoxypropane (epoxide 1) can be effected by the use of a phase transfer catalyst in the presence of a solid or liquid base with a solution of a corresponding phenol and epichlorohydrin in one or more solvents (Fig. 1). The phase transfer catalyst can be selected from ammonium salts, such as benzyltriethylammonium salts, benzyltrimethylammonium salts, and tetrabutylammonium salts, phosphonium salts, guanidinium salts, crown ether, polyethylene glycol, polyethylene glycol ether, or polyethylene glycol ester, or other phase transfer catalysts know in the art. The solid or liquid base can be a carbonate such as alkali carbonate, NaOH, KOH, LiOH, LiOH/LiCl, amines such as mono-, di- or tri-substituted amines (such as diethylamine, triethylamine, dibutylamine, tributylamine), DMAP, or other appropriate base. The solvents used in the solution of a corresponding phenol and epichlorohydrin include but are not limited to ethers such as methyl t-butyl ether, ketones, non-substituted or substituted aromatic solvents (xylene), halo-substituted hydrocarbons (e.g. CH2C12, CHC13), THF, DMF, dioxanes, non-substituted and substituted pyridines, acetonitrile, pyrrolidones, nitromethane , or other appropriate solvent. Additional catalyst, such as, for example, Finkelstein catalyst, can also be used in the process of this embodiment. This reaction preferably takes place at an elevated temperature. In one variation of the embodiment, the temperature is above 50°C. In another variation, epichlorohydrin, potassium carbonate, and a phase transfer catalyst are mixed with a solution of 2-ethoxyphenol in a solvent at an elevated temperature, such as 50 – 60°C. After the reaction is complete, the reaction mixture can be washed with water, followed by work-up procedures known in the art. Variations of this embodiment of the invention are further disclosed in Examples 1-8.

[0033] In one variation of the above embodiment of the Step 1 , Epoxide 1 is prepared by reacting 2-ethoxyphenol and epichlorohydrin in a solvent in the presence of two different catalysts, and a base in a solid state. The first catalyst is a phase transfer catalyst as described above; the second catalyst is a Finkelstein reaction catalyst. Without putting any limitation

hereon, metal iodide and metal bromide salts, such as potassium iodide, may be used as an example of a Finkelstein catalyst. The phase transfer catalyst and a solvent may be selected from any phase transfer catalysts and solvents known in the art. Potassium carbonate may be used as a non-limiting example of a solid base. Using the solid base in a powdered form may be highly beneficial due to the greatly enhanced interface and limiting the side reactions. This variation of the embodiment is further illustrated by Example 9. In another variation of the embodiment, liquid base such as triethylamine can be used to replace the solid base.

[0034] In a different embodiment of Step 1 , 2-ethoxyphenol and epichlorohydrin are reacted in a solvent-free system that comprises a solid or liquid base, a phase transfer catalyst as listed above and a Finkelstein catalyst.

[0035] FIG. 2, depicted below, schematically illustrates the preparation of l-(2-ethoxyphenoxy)-2,3-epoxypropane (“Epoxide 1”) in accordance with the Step I of another exemplary synthesis of viloxazine ( biphasic):

STEP I (alternative embodiment):

In this embodiment of Step 1, illustrated in Fig. 2, Epoxide 1 can be prepared by reacting epichlorohydrin with 2-ethoxyphenol in the presence of a catalytic amount of a phase transfer catalyst without the use of solvents at elevated temperatures in a two-stage process to afford near quantitative yield of l-(2-ethoxyphenoxy)-2,3-epoxypropane with very few side products. This embodiment of the invention is further illustrated by a non-limiting Example 12. The phase transfer catalyst for this embodiment can be selected from ammonium salts such as benzyltriethylammonium salts, benzyltrimethylammonium salts, tetrabutylammonium salts, etc; phosphonium salts, guanidinium salts, crown ether, polyethylene glycol, polyethylene glycol ether, or polyethylene glycol ester, or other phase transfer catalysts know in the art. The first stage of the process of this embodiment may take place without a solvent in a presence of a large excess of epichlorohydrin. This stage is followed by a de-chlorination stage, before or after

removal of excess epichlorohydrin, using a base and a solvent. The reaction produces l-(2-ethoxyphenoxy)-2,3-epoxypropane in high yield. Example of the bases used herein include but are not limited to NaOH, KOH, LiOH, LiOH/LiCl, K2C03, Na2C03, amines such as mono-, di-or tri-substituted amines (such as diethylamine, triethylamine, dibutylamine, tributylamine etc.), DMAP. In one variation of this embodiment of Step 1, the phase transfer catalyst may be used only at the de-chlorination stage of the process. The de-chlorination stage can be carried out in a biphasic system or in a single phase system. For a biphasic system, it can be an organic-aqueous liquid biphasic system, or a liquid-solid biphasic system. Solvents that are useful for the process include but are not limited to non-substituted and substituted aromatic solvents (e.g. toluene, benzene, chlorobenzene, dimethylbenzene, xylene), halo-substituted hydrocarbons (e.g. CH2C12, CHC13), THF, dioxanes, DMF, DMSO, non-substituted and substituted pyridines, ketones, pyrrolidones, ethers, acetonitrile, nitromethane. As mentioned above, this process takes place at the elevated temperature. In one variation of the embodiment, the temperature is above 60°C. In another variation, 2-ethoxyphenol and epichlorohydrin are heated to 60 – 90°C for a period of time in the presence of phase transfer catalyst. Excess of epichlorohydrin is removed and the residue is dissolved in a solvent such as toluene or benzene treated with an aqueous base solution, such as NaOH, KOH, LiOH, LiOH/LiCl. In yet another variation of the embodiment, the residue after epichlorohydrin removal can be dissolved in one or more of the said solvent and treated with a base (solid or liquid but not an aqueous solution) and optionally a second phase transfer catalyst, optionally at elevated temperatures.

[0036] In yet another embodiment of Step 1 , Epoxide 1 can also be prepared by using a catalyst for a so-called Finkelstein reaction in the presence of a Finkelstein catalyst but without the need to use a phase transfer catalyst. Finkelstein catalysts useful herein include metal iodide salts and metal bromide salts, among others. In one variation of this embodiment, 2-ethoxyphenol and epichlorohydrin are dissolved in a polar aprotic solvent such as DMF, and a catalytic amount of an iodide such as potassium iodide and a base, as solid or liquid, are used. Preferably, the base is used as a solid, such as potassium carbonate powder. This embodiment is further illustrated by the Example 11.

[0037] In the alternative embodiment of Step 1 , Epoxide 1 can also be prepared by a different method that comprises reacting epichlorohydrin and the corresponding phenol in the presence of a base at a temperature lower than the ambient temperature, especially when a base solution is used, and without the use of a phase transfer catalyst. This embodiment is illustrated by the Example 10.

[0038] A very high, almost quantitative, yield of 1 -(2-ethoxyphenoxy)-2,3-epoxypropane can be obtained through realizing the above-described embodiments of Step 1 , with less impurities generated in Epoxide 1.

[0039] Epoxide 1 , produced in Step 1 as described above, is used to prepare viloxazine base (viloxazine), which is further converted into viloxazine salt through the processes of Step 2.

[0040] FIG. 3, depicted below, schematically illustrates the preparation of viloxazine

(“Step Ila”) and the preparation of viloxazine hydrochloride (“Step lib”), as well as their purification (“Step III”) in accordance with another example embodiment hereof:

STEP Ila:

Hydrogen Sulfate

STEP lib:

Step III:

Conversion

Viloxazine free base ► Viloxazine salt

Wash/ raction

Recrystallization

Purified viloxazine salt

In the embodiment of Step 2, illustrated in Fig. 3, the preparation of viloxazine base is achieved by reacting the Epoxide 1 intermediate prepared in Step 1 and aminoethyl hydrogen sulfate in presence of a large excess of a base as illustrated by the Examples 5-7 and 14. The base may be present as a solid or in a solution. Preferably, the molar ratio of the base to Epoxide 1 is more than 10. More preferably the ratio is more than 12. Even more preferably, the ratio is between 15 and 40. It was unexpectedly discovered that the use of a higher ratio of a base results in a faster reaction, less impurities, and lower reaction temperature.

[0041] Further advantages may be offered by a specific variation of this embodiment, wherein the base is added to the reaction mixture in several separate steps. For example, a third of the base is added to the reaction mixture, and the mixture is stirred for a period of time. Then the rest of the base is added followed by additional stirring. Alternatively, half of the base is added initially followed by the second half after some period of time, or the base is added in three different parts separated by periods of time. The bases used herein include but are not limited to NaOH, KOH, LiOH, LiOH/LiCl, K2C03, Na2C03, amines such as mono-, di- or tri-substituted amines (such as diethylamine, triethylamine, dibutylamine, tributylamine), DMAP, and combinations thereof. . In one embodiment of the invention, the base is KOH. In another embodiment, the base is NaOH. In a further embodiment, the base is K2C03 powder. In yet further embodiment, the base is triethylamine. This embodiment is illustrated further by

Examples 13,15 and 16.

[0042] In another exemplary embodiment of Step 2, viloxazine is produced by cyclization of novel intermediate compound “Diol 1 ,” which is made from Epoxide 1 and N-benzyl-aminoethanol. This method allows one to drastically reduce the use of potentially toxic materials in the manufacturing process, completely eliminating some of them such as aminoethyl hydrogen sulfate. The first stage of the reaction results in the formation of an intermediate of Formula 3 (Diol 1), which is a new, previously unidentified compound.

[0043] Formula 3

Diol 1

FIG. 4, depicted below, schematically illustrates the preparation of viloxazine and its salts via “Diol 1” in accordance with another exemplary embodiment hereof (Bn = benzyl, Et = ethyl):

Viloxazine HCI

As illustrated in Fig. 4, Diol 1 is turned into N-benzyl viloxazine by cyclization. Removal of the benzyl protective group yields viloxazine base. Similarly, FIG. 5, depicted below, schematically illustrates the cyclization of Diol 1, as well as some side-reactions thereof.

Uses

Viloxazine hydrochloride was used in some European countries for the treatment of clinical depression.[4][5]

Side effects

Side effects included nausea, vomiting, insomnia, loss of appetite, increased erythrocyte sedimentation, EKG and EEG anomalies, epigastric pain, diarrhea, constipationvertigoorthostatic hypotensionedema of the lower extremities, dysarthriatremor, psychomotor agitation, mental confusion, inappropriate secretion of antidiuretic hormone, increased transaminasesseizure, (there were three cases worldwide, and most animal studies (and clinical trials that included epilepsy patients) indicated the presence of anticonvulsant properties, so was not completely contraindicated in epilepsy,[6]) and increased libido.[7]

Drug interactions

Viloxazine increased plasma levels of phenytoin by an average of 37%.[8] It also was known to significantly increase plasma levels of theophylline and decrease its clearance from the body,[9] sometimes resulting in accidental overdose of theophylline.[10]

Mechanism of action

Viloxazine, like imipramine, inhibited norepinephrine reuptake in the hearts of rats and mice; unlike imipramine, it did not block reuptake of norepinephrine in either the medullae or the hypothalami of rats. As for serotonin, while its reuptake inhibition was comparable to that of desipramine (i.e., very weak), viloxazine did potentiate serotonin-mediated brain functions in a manner similar to amitriptyline and imipramine, which are relatively potent inhibitors of serotonin reuptake.[11] Unlike any of the other drugs tested, it did not exhibit any anticholinergic effects.[11]

It was also found to up-regulate GABAB receptors in the frontal cortex of rats.[12]

Chemical properties

It is a racemic compound with two stereoisomers, the (S)-(–)-isomer being five times as pharmacologically active as the (R)-(+)-isomer.[13]

History

Viloxazine was discovered by scientists at Imperial Chemical Industries when they recognized that some beta blockers inhibited serotonin reuptake inhibitor activity in the brain at high doses. To improve the ability of their compounds to cross the blood brain barrier, they changed the ethanolamine side chain of beta blockers to a morpholine ring, leading to the synthesis of viloxazine.[14]:610[15]:9 The drug was first marketed in 1976.[16] It was never approved by the FDA,[5] but the FDA granted it an orphan designation (but not approval) for cataplexy and narcolepsy in 1984.[17] It was withdrawn from markets worldwide in 2002 for business reasons.[14][18]

As of 2015, Supernus Pharmaceuticals was developing formulations of viloxazine as a treatment for ADHD and major depressive disorder under the names SPN-809 and SPN-812.[19][20]

Research

Viloxazine has undergone two randomized controlled trials for nocturnal enuresis (bedwetting) in children, both of those times versus imipramine.[21][22] By 1990, it was seen as a less cardiotoxic alternative to imipramine, and to be especially effective in heavy sleepers.[23]

In narcolepsy, viloxazine has been shown to suppress auxiliary symptoms such as cataplexy and also abnormal sleep-onset REM[24] without really improving daytime somnolence.[25]

In a cross-over trial (56 participants) viloxazine significantly reduced EDS and cataplexy.[18]

Viloxazine has also been studied for the treatment of alcoholism, with some success.[26]

While viloxazine may have been effective in clinical depression, it did relatively poorly in a double-blind randomized controlled trial versus amisulpride in the treatment of dysthymia.[27]

It is also under investigation as a treatment for attention deficit hyperactivity disorder.[28]

REFERNCES

  1. ^ Bouchard JM, Strub N, Nil R (October 1997). “Citalopram and viloxazine in the treatment of depression by means of slow drop infusion. A double-blind comparative trial”. Journal of Affective Disorders46 (1): 51–8. doi:10.1016/S0165-0327(97)00078-5PMID 9387086.
  2. ^ Case DE, Reeves PR (February 1975). “The disposition and metabolism of I.C.I. 58,834 (viloxazine) in humans”. Xenobiotica5 (2): 113–29. doi:10.3109/00498257509056097PMID 1154799.
  3. ^ “SID 180462– PubChem Substance Summary”. Retrieved 5 November 2005.
  4. ^ Pinder, RM; Brogden, RN; Speight, ™; Avery, GS (June 1977). “Viloxazine: a review of its pharmacological properties and therapeutic efficacy in depressive illness”. Drugs13 (6): 401–21. doi:10.2165/00003495-197713060-00001PMID 324751.
  5. Jump up to:a b Dahmen, MM, Lincoln, J, and Preskorn, S. NARI Antidepressants, pp 816-822 in Encyclopedia of Psychopharmacology, Ed. Ian P. Stolerman. Springer-Verlag Berlin Heidelberg, 2010. ISBN 9783540687061
  6. ^ Edwards JG, Glen-Bott M (September 1984). “Does viloxazine have epileptogenic properties?”Journal of Neurology, Neurosurgery, and Psychiatry47 (9): 960–4. doi:10.1136/jnnp.47.9.960PMC 1027998PMID 6434699.
  7. ^ Chebili S, Abaoub A, Mezouane B, Le Goff JF (1998). “Antidepressants and sexual stimulation: the correlation” [Antidepressants and sexual stimulation: the correlation]. L’Encéphale (in French). 24 (3): 180–4. PMID 9696909.
  8. ^ Pisani F, Fazio A, Artesi C, et al. (February 1992). “Elevation of plasma phenytoin by viloxazine in epileptic patients: a clinically significant drug interaction”Journal of Neurology, Neurosurgery, and Psychiatry55 (2): 126–7. doi:10.1136/jnnp.55.2.126PMC 488975PMID 1538217.
  9. ^ Perault MC, Griesemann E, Bouquet S, Lavoisy J, Vandel B (September 1989). “A study of the interaction of viloxazine with theophylline”. Therapeutic Drug Monitoring11 (5): 520–2. doi:10.1097/00007691-198909000-00005PMID 2815226.
  10. ^ Laaban JP, Dupeyron JP, Lafay M, Sofeir M, Rochemaure J, Fabiani P (1986). “Theophylline intoxication following viloxazine induced decrease in clearance”. European Journal of Clinical Pharmacology30 (3): 351–3. doi:10.1007/BF00541543PMID 3732375.
  11. Jump up to:a b Lippman W, Pugsley TA (August 1976). “Effects of viloxazine, an antidepressant agent, on biogenic amine uptake mechanisms and related activities”. Canadian Journal of Physiology and Pharmacology54 (4): 494–509. doi:10.1139/y76-069PMID 974878.
  12. ^ Lloyd KG, Thuret F, Pilc A (October 1985). “Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock”The Journal of Pharmacology and Experimental Therapeutics235 (1): 191–9. PMID 2995646.
  13. ^ Danchev ND, Rozhanets VV, Zhmurenko LA, Glozman OM, Zagorevskiĭ VA (May 1984). “Behavioral and radioreceptor analysis of viloxazine stereoisomers” [Behavioral and radioreceptor analysis of viloxazine stereoisomers]. Biulleten’ Eksperimental’noĭ Biologii i Meditsiny (in Russian). 97 (5): 576–8. PMID 6326891.
  14. Jump up to:a b Williams DA. Antidepressants. Chapter 18 in Foye’s Principles of Medicinal Chemistry, Eds. Lemke TL and Williams DA. Lippincott Williams & Wilkins, 2012. ISBN 9781609133450
  15. ^ Wermuth, CG. Analogs as a Means of Discovering New Drugs. Chapter 1 in Analogue-based Drug Discovery. Eds.IUPAC, Fischer, J., and Ganellin CR. John Wiley & Sons, 2006. ISBN 9783527607495
  16. ^ Olivier B, Soudijn W, van Wijngaarden I. Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. Prog Drug Res. 2000;54:59-119. PMID 10857386
  17. ^ FDA. Orphan Drug Designations and Approvals: Viloxazine Page accessed August 1, 2-15
  18. Jump up to:a b Vignatelli L, D’Alessandro R, Candelise L. Antidepressant drugs for narcolepsy. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD003724. Review. PMID 18254030
  19. ^ Bloomberg Supernus profile Page accessed August 1, 2015
  20. ^ Supernus. Psychiatry portfolio Page accessed August 1, 2015
  21. ^ Attenburrow AA, Stanley TV, Holland RP (January 1984). “Nocturnal enuresis: a study”. The Practitioner228 (1387): 99–102. PMID 6364124.
  22. ^ ^ Yurdakök M, Kinik E, Güvenç H, Bedük Y (1987). “Viloxazine versus imipramine in the treatment of enuresis”. The Turkish Journal of Pediatrics29 (4): 227–30. PMID 3332732.
  23. ^ Libert MH (1990). “The use of viloxazine in the treatment of primary enuresis” [The use of viloxazine in the treatment of primary enuresis]. Acta Urologica Belgica (in French). 58 (1): 117–22. PMID 2371930.
  24. ^ Guilleminault C, Mancuso J, Salva MA, et al. (1986). “Viloxazine hydrochloride in narcolepsy: a preliminary report”. Sleep9 (1 Pt 2): 275–9. PMID 3704453.
  25. ^ Mitler MM, Hajdukovic R, Erman M, Koziol JA (January 1990). “Narcolepsy”Journal of Clinical Neurophysiology7 (1): 93–118. doi:10.1097/00004691-199001000-00008PMC 2254143PMID 1968069.
  26. ^ Altamura AC, Mauri MC, Girardi T, Panetta B (1990). “Alcoholism and depression: a placebo controlled study with viloxazine”. International Journal of Clinical Pharmacology Research10 (5): 293–8. PMID 2079386.
  27. ^ León CA, Vigoya J, Conde S, Campo G, Castrillón E, León A (March 1994). “Comparison of the effect of amisulpride and viloxazine in the treatment of dysthymia” [Comparison of the effect of amisulpride and viloxazine in the treatment of dysthymia]. Acta Psiquiátrica Y Psicológica de América Latina (in Spanish). 40 (1): 41–9. PMID 8053353.
  28. ^ Mattingly, GW; Anderson, RH (December 2016). “Optimizing outcomes in ADHD treatment: from clinical targets to novel delivery systems”. CNS Spectrums21 (S1): 45–59. doi:10.1017/S1092852916000808PMID 28044946.
Patent ID Title Submitted Date Granted Date 
US2004229942Analeptic and antidepressant combinations2004-05-122004-11-18
US2004242698Analeptic and antidepressant combinations2004-05-122004-12-02
US2002192302Transdermal and topical administration of antidepressant drugs using basic enhancers2002-06-192002-12-19
US2018105877GENETIC POLYMORPHISMS ASSOCIATED WITH DEPRESSION2017-05-19 
US2013244990GENETIC POLYMORPHISMS ASSOCIATED WITH DEPRESSION2012-11-302013-09-19
Patent ID Title Submitted Date Granted Date 
US2009197849TRANSDERMAL AND TOPICAL ADMINISTRATION OF DRUGS USING BASIC PERMEATION ENHANCERS2008-09-032009-08-06
US2006150989Method of diagnosing, treating and educating individuals with and/or about depression2005-01-122006-07-13
US8153159Modafinil modified release pharmaceutical compositions2004-09-172012-04-10
US2004229940Analeptic and antidepressant combinations2004-05-122004-11-18
US2004229941Analeptic and antidepressant combinations2004-05-122004-11-18
Patent ID Title Submitted Date Granted Date 
US9434703METHODS FOR PRODUCING VILOXAZINE SALTS AND NOVEL POLYMORPHS THEREOF2014-12-192015-05-07
US2012220962TRANSDERMAL AND TOPICAL ADMINISTRATION OF VITAMINS USING BASIC PERMEATION ENHANCERS2012-05-102012-08-30
US9358204FORMULATIONS OF VILOXAZINE2013-02-072013-08-08
US2012289515Combination therapy for cognitive distortions, resisting relapse of unipolar non-psychotic depression2011-05-252012-11-15
US2009317453TRANSDERMAL AND TOPICAL ADMINISTRATION OF DRUGS USING BASIC PERMEATION ENHANCERS2008-12-232009-12-24
Patent ID Title Submitted Date Granted Date 
US2006013834Room temperature stable aqueous liquid pharmaceutical composition2005-02-252006-01-19
US2004220262Transdermal and topical administration of drugs using basic permeation enhancers2004-06-032004-11-04
US2003124176Transdermal and topical administration of drugs using basic permeation enhancers2002-06-212003-07-03
US6713089Quick release pharmaceutical compositions of drug substances2001-07-102004-03-30
WO0015195QUICK RELEASE PHARMACEUTICAL COMPOSITIONS OF DRUG SUBSTANCES2000-03-23 
Patent ID Title Submitted Date Granted Date 
US2014315720POLYSACCHARIDE ESTER MICROSPHERES AND METHODS AND ARTICLES RELATING THERETO2014-04-042014-10-23
US2014113826POLYSACCHARIDE ESTER MICROSPHERES AND METHODS AND ARTICLES RELATING THERETO2013-10-232014-04-24
US2014052264Porous, Stabilized Craniomaxillofacial Implants and Methods and Kits Relating Thereto2013-08-122014-02-20
US2014348936GASTRORETENTIVE CONTROLLED RELEASE VEHICLES THAT INCLUDE ETHYLENE COPOLYMERS, ETHYL CELLULOSES, AND/OR THERMOPLASTIC POLYURETHANES2012-12-172014-11-27
US2016304475METHODS FOR PRODUCING VILOXAZINE SALTS AND NOVEL POLYMORPHS THEREOF2016-06-24 
Patent ID Title Submitted Date Granted Date 
US2017319698GASTRORETENTIVE GEL FORMULATIONS2015-10-26 
US8231899Quick release pharmaceutical compositions of drug substances2004-01-132012-07-31
US9662338FORMULATIONS OF VILOXAZINE2016-06-032016-09-29
US9603853FORMULATIONS OF VILOXAZINE2016-05-182016-09-08
US2015306230DRUG DELIVERY VEHICLES COMPRISING CELLULOSE DERIVATIVES, STARCH DERIVATIVES, AND COMBINATIONS THEREOF2014-06-122015-10-29
Patent ID Title Submitted Date Granted Date 
US3959273Morpholine derivatives1976-05-25 
US8802596Multi-functional ionic liquid compositions for overcoming polymorphism and imparting improved properties for active pharmaceutical, biological, nutritional, and energetic ingredients2012-06-072014-08-12
US6060516N1-propargylhydrazines, N2-propargylhydrazines and their analogs for the treatment of depression, anxiety and neurodegeneration2000-05-09 
US6479491Disubstituted morpholine, oxazepine or thiazepine derivatives, their preparation and their use as dopamine d4 receptor antagonists 2002-11-12
US2017258801FORMULATIONS OF VILOXAZINE2017-05-25 
Patent ID Title Submitted Date Granted Date 
US6034117Methods of treating and diagnosing sleep disordered breathing and means for carrying out the method2000-03-07 
EP0923370ACETYL CHOLINE ESTERASE INHIBITORS FOR TREATING AND DIAGNOSING SLEEP DISORDERED BREATHING1999-06-232005-11-16
US2014328884CONTROLLED RELEASE VEHICLES HAVING DESIRED VOID VOLUME ARCHITECTURES2012-12-172014-11-06
US9096743PROCESS FOR FORMING FILMS, FIBERS, AND BEADS FROM CHITINOUS BIOMASS2010-06-012012-05-10
US2003104041Transdermal and topical administration of drugs using basic permeation enhancers2002-06-202003-06-05
Patent ID Title Submitted Date Granted Date 
WO9807710DISUBSTITUTED MORPHOLINE, OXAZEPINE OR THIAZEPINE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS DOPAMINE D4 RECEPTOR ANTAGONISTS1998-02-26 
US2014051771Biomedical Devices Comprising Molded Polyethylene Components2013-08-122014-02-20
US9278134DUAL FUNCTIONING IONIC LIQUIDS AND SALTS THEREOF2009-12-292012-02-23
US8232265Multi-functional ionic liquid compositions for overcoming polymorphism and imparting improved properties for active pharmaceutical, biological, nutritional, and energetic ingredients2007-04-262012-07-31
US2005074487Transdermal and topical administration of drugs using basic permeation enhancers2004-06-072005-04-07
Patent ID Title Submitted Date Granted Date 
US9199918SMALL MOLECULE INHIBITORS OF AGBL22012-02-142013-12-12
US9403783METHODS FOR PRODUCING VILOXAZINE SALTS AND NOVEL POLYMORPHS THEREOF2011-10-13 
US7973043Combination therapy for depression, prevention of suicide, and various medical and psychiatric conditions2003-07-252011-07-05
US6207662Disubstituted morpholine, oxazepine or thiazepine derivatives, their preparation and their use as dopamine D4 receptor antagonists 2001-03-27
EP0920423DISUBSTITUTED MORPHOLINE, OXAZEPINE OR THIAZEPINE DERIVATIVES, THEIR PREPARATION AND THEIR USE AS DOPAMINE D4 RECEPTOR ANTAGONISTS1999-06-092005-01-26
Clinical data
Routes of
administration
By mouthintravenous infusion[1]
ATC codeN06AX09 (WHO)
Legal status
Legal statusIn general: uncontrolled
Pharmacokinetic data
Elimination half-life2–5 hours
ExcretionRenal[2]
Identifiers
IUPAC name[show]
CAS Number46817-91-8  35604-67-2 (HCl salt)
PubChem CID5666
ChemSpider5464 
UNII5I5Y2789ZF
KEGGD08673 
ChEMBLChEMBL306700 
ECHA InfoCard100.051.148 
Chemical and physical data
FormulaC13H19NO3
Molar mass237.295 g/mol g·mol−1
3D model (JSmol)Interactive image
ChiralityRacemic mixture
SMILES[hide]O(c1ccccc1OCC)CC2OCCNC2
InChI[hide]InChI=1S/C13H19NO3/c1-2-15-12-5-3-4-6-13(12)17-10-11-9-14-7-8-16-11/h3-6,11,14H,2,7-10H2,1H3 Key:YWPHCCPCQOJSGZ-UHFFFAOYSA-N 

/////////////////Viloxazine, ヴィロキサジン , Emovit, Vivalan, Emovit, Vivarint, Vicilan


Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

DR ANTHONY CRASTO

Follow New Drug Approvals on WordPress.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,841 other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

View Full Profile →

bloglovin

Follow my blog with Bloglovin The title of your home page You could put your verification ID in a comment Or, in its own meta tag Or, as one of your keywords Your content is here. The verification ID will NOT be detected if you put it here.