Home » Articles posted by DR ANTHONY MELVIN CRASTO Ph.D (Page 241)
Author Archives: DR ANTHONY MELVIN CRASTO Ph.D
Lupin launches insulin glargine in India

Lupin launches insulin glargine in India:
Indian pharma company, Lupin Limited announced a strategic distribution agreement with LG Life Sciences of South Korea to launch Insulin Glargine, a novel insulin analogue under the brand name Basugine™.
According to the agreement, Lupin would be responsible for marketing and sales of Basugine™ in India.


Celltrion files Remsima in the United States

Celltrion files Remsima in the United States:
Celltrion announced that the company, on August 8, 2014, completed the filing procedure to obtain US FDA approval for its infliximab biosimilar. This marks the first 351(k) biosimilar mAb application to be filed in the U.S.A. and the second application for a biosimilar to be filed through the US BPCIA.



Zopolrestat




http://pubs.acs.org/doi/abs/10.1021/jm00105a018
……………………………………
Mylari, Banavara L.; Zembrowski, William J.; Beyer, Thomas A.; Aldinger, Charles E.; Siegel, Todd W.
Journal of Medicinal Chemistry, 1992 , vol. 35, 12 p. 2155 – 2162
………………………………..
Mylari; Beyer; Scott; Aldinger; Dee; Siegel; Zembrowski
Journal of Medicinal Chemistry, 1992 , vol. 35, 3 p. 457 – 465
…………………………….
Drugs Fut 1995, 20(1): 33
J Label Compd Radiopharm 1991, 29(2): 143
|
3-19-1992
|
HETEROCYCLIC OXOPHTHALAZINYL ACETIC ACIDS
|
|
|
3-6-1992
|
3-(5-TRIFLUOROMETHYLBENZOTHIAZOL-2-YLMETHYL)-4-OXO-3H-PHYTHALAZIN-1-YLACETIC ACID MONOHYDRATE
|
|
|
7-4-1990
|
Heterocyclic oxophthalazinyl acetic acids
|
|
3-24-2006
|
Medical devices to treat or inhibit restenosis
|
|
|
12-30-2004
|
N-[(SUBSTITUTED FIVE-MEMBERED DI- OR TRIAZA DIUNSATURATED RING)CARBONYL]GUANIDINE DERIVATIVES FOR THE TREATMENT OF ISCHEMIA
|
|
|
10-7-2004
|
COMBINATION OF AN ALDOSE REDUCTASE INHIBITOR AND A GLYCOGEN PHOSPHORYLASE INHIBITOR COMBINATION OF AN ALDOSE REDUCTASE INHIBITOR AND A GLYCOGEN PHOSPHORYLASE INHIBITOR
|
|
|
9-30-2004
|
Aldose reductase inhibition in preventing or reversing diabetic cardiomyopathy
|
|
|
5-27-2004
|
SUBSTITUTED FUSED HETEROCYCLIC COMPOUNDS
|
|
|
4-15-2004
|
Compounds for treating and preventing diabetic complications
|
|
|
3-32-2004
|
IMPROVED MUTANTS OF (2,5-DKG) REDUCTASE A
|
|
|
12-18-2003
|
Pharmaceutical composition for use in treatment of diabetes
|
|
|
11-14-2003
|
Salts of zopolrestat
|
|
|
4-18-2002
|
Use of an aldose reductase inhibitor for reducing non-cardiac tissue damage
|
Кальцитонин, Calcitonin

Molecular formula of calcitonin is C145H241N43O49S2
• Molecular weight is 3434.8 g/mol
| Calcitonin-related polypeptide alpha | |||
|---|---|---|---|
NMR solution structure of salmon calcitonin in SDS micelles.[1] |
The structural formula
Calcitonin (also known as thyrocalcitonin) is a 32-amino acid linear polypeptide hormone that is produced in humansprimarily by the parafollicular cells (also known as C-cells) of the thyroid, and in many other animals in the ultimobranchial body.[2] It acts to reduce blood calcium (Ca2+), opposing the effects of parathyroid hormone (PTH).[3]
Calcitonin has been found in fish, reptiles, birds, and mammals. Its importance in humans has not been as well established as its importance in other animals, as its function is usually not significant in the regulation of normal calcium homeostasis.[4] It belongs to the calcitonin-like protein family.
UV – range
IR – spectrum
Links
-
UV and IR Spectra. H.-W. Dibbern, R.M. Muller, E. Wirbitzki, 2002 ECV
-
NIST/EPA/NIH Mass Spectral Library 2008
-
Handbook of Organic Compounds. NIR, IR, Raman, and UV-Vis Spectra Featuring Polymers and Surfactants, Jr., Jerry Workman. Academic Press, 2000.
-
Handbook of ultraviolet and visible absorption spectra of organic compounds, K. Hirayama. Plenum Press Data Division, 1967.
| Calcitonin-related polypeptide alpha | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
NMR solution structure of salmon calcitonin in SDS micelles.[1] |
|||||||||||
|
|||||||||||
| Identifiers | |||||||||||
| Symbols | CALCA ; CALC1; CGRP; CGRP-I; CGRP1; CT; KC | ||||||||||
| External IDs | OMIM: 114130 MGI: 2151253HomoloGene: 88401 ChEMBL: 5293GeneCards: CALCA Gene | ||||||||||
|
|||||||||||
| RNA expression pattern | |||||||||||
| More reference expression data | |||||||||||
| Orthologs | |||||||||||
| Species | Human | Mouse | |||||||||
| Entrez | 796 | 12310 | |||||||||
| Ensembl | ENSG00000110680 | ENSMUSG00000030669 | |||||||||
| UniProt | P01258 | P70160 | |||||||||
| RefSeq (mRNA) | NM_001033952 | NM_001033954 | |||||||||
| RefSeq (protein) | NP_001029124 | NP_001029126 | |||||||||
| Location (UCSC) | Chr 11: 14.99 – 14.99 Mb |
Chr 7: 114.63 – 114.64 Mb |
|||||||||
| PubMedsearch | [1] | [2] | |||||||||
Biosynthesis and regulation
Calcitonin is formed by the proteolytic cleavage of a larger prepropeptide, which is the product of the CALC1 gene (CALCA). The CALC1 gene belongs to a superfamily of related protein hormone precursors including islet amyloid precursor protein, calcitonin gene-related peptide, and the precursor of adrenomedullin.
Secretion of calcitonin is stimulated by:
-
- an increase in serum [Ca2+][5]
- gastrin and pentagastrin.[6]
Effects
The hormone participates in calcium (Ca2+) and phosphorus metabolism. In many ways, calcitonin counteracts parathyroid hormone (PTH).
More specifically, calcitonin lowers blood Ca2+ levels in three ways:
-
- Inhibits Ca2+ absorption by the intestines[7]
- Inhibits osteoclast activity in bones[8]
- Stimulates osteoblastic activity in bones. [8]
- Inhibits renal tubular cell reabsorption of Ca2+ allowing it to be excreted in the urine[9][10]
However, effects of calcitonin that mirror those of PTH include the following:
In its skeleton-preserving actions, calcitonin protects against calcium loss from skeleton during periods of calcium mobilization, such as pregnancy and, especially, lactation.
Other effects are in preventing postprandial hypercalcemia resulting from absorption of Ca2+. Also, calcitonin inhibits food intake in rats and monkeys, and may have CNS action involving the regulation of feeding and appetite.
Receptor
The calcitonin receptor, found on osteoclasts,[12] and in kidney and regions of the brain, is a G protein-coupled receptor, which is coupled by Gs to adenylate cyclase and thereby to the generation of cAMP in target cells. It may also affect the ovaries in women and the testes in men.
Discovery
Calcitonin was purified in 1962 by Copp and Cheney.[13] While it was initially considered a secretion of the parathyroid glands, it was later identified as the secretion of the C-cellsof the thyroid gland.[14]
Pharmacology
Salmon calcitonin is used for the treatment of:
It has been investigated as a possible non-operative treatment for spinal stenosis.[16]
The following information is from the UK Electronic Medicines Compendium[17]
General characteristics of the active substance
Salmon calcitonin is rapidly absorbed and eliminated. Peak plasma concentrations are attained within the first hour of administration.
Animal studies have shown that calcitonin is primarily metabolised via proteolysis in the kidney following parenteral administration. The metabolites lack the specific biological activity of calcitonin. Bioavailability following subcutaneous and intramuscular injection in humans is high and similar for the two routes of administration (71% and 66%, respectively).
Calcitonin has short absorption and elimination half-lives of 10–15 minutes and 50–80 minutes, respectively. Salmon calcitonin is primarily and almost exclusively degraded in the kidneys, forming pharmacologically inactive fragments of the molecule. Therefore, the metabolic clearance is much lower in patients with end-stage renal failure than in healthy subjects. However, the clinical relevance of this finding is not known. Plasma protein binding is 30% to 40%.
Characteristics in patients
There is a relationship between the subcutaneous dose of calcitonin and peak plasma concentrations. Following parenteral administration of 100 IU calcitonin, peak plasma concentration lies between about 200 and 400 pg/ml. Higher blood levels may be associated with increased incidence of nausea, vomiting, and secretory diarrhea.
Preclinical safety data
Conventional long-term toxicity, reproduction, mutagenicity, and carcinogenicity studies have been performed in laboratory animals. Salmon calcitonin is devoid of embryotoxic, teratogenic, and mutagenic potential.
An increased incidence of pituitary adenomas has been reported in rats given synthetic salmon calcitonin for 1 year. This is considered a species-specific effect and of no clinical relevance. Salmon calcitonin does not cross the placental barrier.
In lactating animals given calcitonin, suppression of milk production has been observed. Calcitonin is secreted into the milk.
Pharmaceutical manufacture
Calcitonin was extracted from the ultimobranchial glands (thyroid-like glands) of fish, particularly salmon. Salmon calcitonin resembles human calcitonin, but is more active. At present, it is produced either by recombinant DNA technology or by chemical peptide synthesis. The pharmacological properties of the synthetic and recombinant peptides have been demonstrated to be qualitatively and quantitatively equivalent.[17]
Uses of calcitonin
Treatments
Calcitonin can be used therapeutically for the treatment of hypercalcemia or osteoporosis.
Oral calcitonin may have a chondroprotective role in osteoarthritis (OA), according to data in rats presented in December, 2005, at the 10th World Congress of the Osteoarthritis Research Society International (OARSI) in Boston, Massachusetts. Although calcitonin is a known antiresorptive agent, its disease-modifying effects on chondrocytes and cartilage metabolisms have not been well established until now.
This new study, however, may help to explain how calcitonin affects osteoarthritis. “Calcitonin acts both directly on osteoclasts, resulting in inhibition of bone resorption and following attenuation of subchondral bone turnover, and directly on chondrocytes, attenuating cartilage degradation and stimulating cartilage formation,” says researcher Morten Karsdal, MSC, PhD, of the department of pharmacology at Nordic Bioscience in Herlev, Denmark. “Therefore, calcitonin may be a future efficacious drug for OA.”[18]
Subcutaneous injections of calcitonin in patients suffering from mania resulted in significant decreases in irritability, euphoria and hyperactivity and hence calcitonin holds promise for treating bipolar disorder.[19] However no further work on this potential application of calcitonin has been reported.
Diagnostics
It may be used diagnostically as a tumor marker for medullary thyroid cancer, in which high calcitonin levels may be present and elevated levels after surgery may indicate recurrence. It may even be used on biopsy samples from suspicious lesions (e.g., lymph nodes that are swollen) to establish whether they are metastasis of the original cancer.
Cutoffs for calcitonin to distinguish cases with medullary thyroid cancer have been suggested to be as follows, with a higher value increasing the suspicion of medullary thyroid cancer:[20]
- females: 5 ng/L or pg/mL
- males: 12 ng/L or pg/mL
- children under 6 months of age: 40 ng/L or pg/mL
- children between 6 months and 3 years of age: 15 ng/L or pg/mL
When over 3 years of age, adult cutoffs may be used
Increased levels of calcitonin have also been reported for various other conditions. They include: C-cell hyperplasia, Nonthyroidal oat cell carcinoma, Nonthyroidal small cell carcinoma and other nonthyroidal malignancies, acute and chronic renal failure, hypercalcemia, hypergastrinemia and other gastrointestinal disorders, and pulmonary disease.[21]
Structure
Calcitonin is a polypeptide hormone of 32 amino acids, with a molecular weight of 3454.93 daltons. Its structure comprises a single alpha helix.[1] Alternative splicing of the gene coding for calcitonin produces a distantly related peptide of 37 amino acids, called calcitonin gene-related peptide (CGRP), beta type.[22]
The following are the amino acid sequences of salmon and human calcitonin:[23]
- salmon:
Cys-Ser-Asn-Leu-Ser-Thr-Cys-Val-Leu-Gly-Lys-Leu-Ser-Gln-Glu-Leu-His-Lys-Leu-Gln-Thr-Tyr-Pro-Arg-Thr-Asn-Thr-Gly-Ser-Gly-Thr-Pro
- human:
Cys-Gly-Asn-Leu-Ser-Thr-Cys-Met-Leu-Gly-Thr-Tyr-Thr-Gln-Asp-Phe-Asn-Lys-Phe-His-Thr-Phe-Pro-Gln-Thr-Ala-Ile-Gly-Val-Gly-Ala-Pro
Compared to salmon calcitonin, human calcitonin differs at 16 residues.
Description: Cellular and molecular coordination of tissues which secrete chemical compounds to regulate growth, reproduction, metabolism, and ion homeostasis.
References
- ^ Jump up to:a b PDB 2glhAndreotti G, Méndez BL, Amodeo P, Morelli MA, Nakamuta H, Motta A (August 2006). “Structural determinants of salmon calcitonin bioactivity: the role of the Leu-based amphipathic alpha-helix”. J. Biol. Chem. 281 (34): 24193–203.doi:10.1074/jbc.M603528200. PMID 16766525.
- Jump up^ Costoff A. “Sect. 5, Ch. 6: Anatomy, Structure, and Synthesis of Calcitonin (CT)”.Endocrinology: hormonal control of calcium and phosphate. Medical College of Georgia. Retrieved 2008-08-07.
- Boron WF, Boulpaep EL (2004). “Endocrine system chapter”. Medical Physiology: A Cellular And Molecular Approach. Elsevier/Saunders. ISBN 1-4160-2328-3.
- Jump up^ Costoff A. “Sect. 5, Ch. 6: Biological Actions of CT”. Medical College of Georgia. Retrieved 2008-08-07.
- Costanzo, Linda S. (2007). BRS Physiology. Lippincott, Williams, & Wilkins. p. 263.ISBN 978-0-7817-7311-9.
- Jump up^ Erdogan MF, Gursoy A, Kulaksizoglu M (October 2006). “Long-term effects of elevated gastrin levels on calcitonin secretion”. J Endocrinol Invest. 29 (9): 771–775.PMID 17114906.
- Costoff A. “Sect. 5, Ch. 6: Effects of CT on the Small Intestine”. Medical College of Georgia. Retrieved 2008-08-07.
- Costoff A. “Sect. 5, Ch. 6: Effects of CT on Bone”. Medical College of Georgia. Retrieved 2008-08-07.
- Jump up^ Potts, John; Jüppner, Harald (2008). “Chapter 353. Disorders of the Parathyroid Gland and Calcium Homeostasis”. In Dan L. Longo, Dennis L. Kasper, J. Larry Jameson, Anthony S. Fauci, Stephen L. Hauser, and Joseph Loscalzo. Harrison’s Principles of Internal Medicine (18 ed.). McGraw-Hill.
- Rhoades, Rodney (2009). Medical Physiology: Principles for Clinical Medicine. Philadelphia: Lippincott Williams & Wilkins. ISBN 978-0-7817-6852-8.
- Jump up^ Carney SL (1997). “Calcitonin and human renal calcium and electrolyte transport”.Miner Electrolyte Metab 23 (1): 43–7. PMID 9058369.
- Jump up^ Nicholson GC, Moseley JM, Sexton PM, et al (1986). “Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization”. J Clin Invest 78 (2): 355–60. doi:10.1172/JCI112584. PMC 423551. PMID 3016026.
- Jump up^ Copp DH, Cheney B (January 1962). “Calcitonin-a hormone from the parathyroid which lowers the calcium-level of the blood”. Nature 193 (4813): 381–2.doi:10.1038/193381a0. PMID 13881213.
- Jump up^ Hirsch PF, Gauthier GF, Munson PL (August 1963). “Thyroid hypocalcemic principle and recurrent laryngeal nerve injury as factors affecting the response to parathyroidectomy in rats”. Endocrinology 73 (2): 244–252. doi:10.1210/endo-73-2-244.PMID 14076205.
- Jump up^ Wall GC, Heyneman CA (April 1999). “Calcitonin in phantom limb pain”. Ann Pharmacother 33 (4): 499–501. doi:10.1345/aph.18204. PMID 10332543.
- Jump up^ Tran de QH, Duong S, Finlayson RJ (July 2010). “Lumbar spinal stenosis: a brief review of the nonsurgical management”. Can J Anaesth 57 (7): 694–703. doi:10.1007/s12630-010-9315-3. PMID 20428988.
- ^ Jump up to:a b “Electronic Medicines Compendium”. Retrieved 2008-08-07.
- Jump up^ Kleinman DM (2006-01-04). “Oral Calcitonin May Delay Onset of Joint Disease and Relieve Pain of OA”. Musculoskeletal Report. Musculoskeletal Report, LLC. Retrieved 2008-08-07.
- Jump up^ Vik A, Yatham LN (March 1998). “Calcitonin and bipolar disorder: a hypothesis revisited”. J Psychiatry Neurosci 23 (2): 109–17. PMC 1188909. PMID 9549251.
- Jump up^ Basuyau, J. -P.; Mallet, E.; Leroy, M.; Brunelle, P. (2004). “Reference Intervals for Serum Calcitonin in Men, Women, and Children”. Clinical Chemistry 50 (10): 1828–1830.doi:10.1373/clinchem.2003.026963. PMID 15388660. edit
- Jump up^ Burtis CA, Ashwood ER, Bruns DE. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 5th edition. Elsevier Saunders. p. 1774. ISBN 978-1-4160-6164-9.
- Jump up^ “calcitonin domain annotation”. SMART (a Simple Modular Architecture Research Tool). embl-heidelberg.de. Retrieved 2009-02-22.
- Jump up^ http://www.newworldencyclopedia.org/entry/Calcitonin
Further reading
- MacIntyre I, Alevizaki M, Bevis PJ, Zaidi M (1987). “Calcitonin and the peptides from the calcitonin gene”. Clin. Orthop. Relat. Res. &na; (217): 45–55. doi:10.1097/00003086-198704000-00007. PMID 3549095.
- Di Angelantonio S, Giniatullin R, Costa V, et al. (2004). “Modulation of neuronal nicotinic receptor function by the neuropeptides CGRP and substance P on autonomic nerve cells”.Br. J. Pharmacol. 139 (6): 1061–73. doi:10.1038/sj.bjp.0705337. PMC 1573932.PMID 12871824.
- Findlay DM, Sexton PM (2005). “Calcitonin”. Growth Factors 22 (4): 217–24.doi:10.1080/08977190410001728033. PMID 15621724.
- Sponholz C, Sakr Y, Reinhart K, Brunkhorst F (2007). “Diagnostic value and prognostic implications of serum procalcitonin after cardiac surgery: a systematic review of the literature”. Critical care (London, England) 10 (5): R145. doi:10.1186/cc5067.PMC 1751067. PMID 17038199.
- Schneider HG, Lam QT (2007). “Procalcitonin for the clinical laboratory: a review”. Pathology39 (4): 383–90. doi:10.1080/00313020701444564. PMID 17676478.
- Grani, G; Nesca, A; Del Sordo, M; Calvanese, A; Carbotta, G; Bianchini, M; Fumarola, A (Jun 2012). “Interpretation of serum calcitonin in patients with chronic autoimmune thyroiditis.”. Endocrine-related cancer 19 (3): 345–9. doi:10.1530/ERC-12-0013.PMID 22399011.
External links
- The Calcitonin Protein
- Calcitonin at the US National Library of Medicine Medical Subject Headings (MeSH)

cas 57014-02-5REFLECTION PAPER ON NANOTECHNOLOGY-BASED MEDICINAL PRODUCTS FOR HUMAN USE

Nanotechnology
Nanotechnology is the use of tiny structures – less than 1,000 nanometres across – that are designed to have specific properties. Nanotechnology is an emerging field in science that is used in a wide range of applications, from consumer goods to health products.

In medicine, nanotechnology has only partially been exploited. It is being investigated as a way to improve the properties of medicines, such as their solubility or stability, and to develop medicines that may provide new ways to:
- deliver medicines to the body;
- target medicines in the body more accurately;
- diagnose and treat diseases;
- support the regeneration of cells and tissues.

Activities at the European Medicines Agency
The European Medicines Agency follows the latest developments in nanotechnology that are relevant to the development of medicines. Recommendations from the Agency’sCommittee for Medicinal Products for Human Use (CHMP) have already led to the approval of a number of medicines based on nanotechnology. These include medicines containing:

- liposomes (microscopic fatty structures containing the active substance), such asCaelyx (doxorubicin), Mepact (mifamurtide) and Myocet (doxorubicin);
- nano-scale particles of the active substance, such as Abraxane (paclitaxel), Emend(aprepitant) and Rapamune (sirolimus).
The development of medicines using newer, innovative nanotechnology techniques may raise new challenges for the Agency in the future. These include discussions on whether the current regulatory framework is appropriate for these medicines and whether existing guidelines and requirements on the way the medicines are assessed and monitored are adequate.
The Agency also needs to consider the acceptability of new testing methods and the availability of experts to guide the Agency’s opinion-making.
An overview of the initiatives taken by European Union (EU) regulators in relation to the development and evaluation of nanomedicines and nanosimilars was published in the scientific journal Nanomedicines. The article describes the regulatory challenges and perspectives in this field:
Ad hoc expert group on nanomedicines
In 2009, the CHMP established an ad hoc expert group on nanomedicines.
This group includes selected experts from academia and the European regulatory network, who support the Agency’s activities by providing specialist input on new scientific knowledge and who help with the review of guidelines on nanomedicines. The group also helps the Agency’s discussions with international partners on issues concerning nanomedicines.
The group held the first ad hoc expert group meeting on nanomedicines on 29 April 2009.
Reflection papers on nanomedicines
In 2011, the CHMP began to develop in 2011 a series of four reflection papers on nanomedicines to provide guidance to sponsors developing nanomedicines.

These documents cover the development both of new nanomedicines and of nanosimilars (nanomedicines that are claimed to be similar to a reference nanomedicine), since the first generation of nanomedicines, including liposomal formulations, iron-based preparations and nanocrystal-based medicines, have started to come off patent:
- joint Ministry of Health, Labour and Welfare / European Medicines Agency reflection paper on the development of block-copolymer-micelle medicinal products, published for a six-month public consultation in January 2013;
- reflection paper on the data requirements for intravenous liposomal products developed with reference to an innovator liposomal product, published in February 2013;
- reflection paper on surface coatings: general issues for consideration regarding parenteral administration of coated nanomedicine products, published in August 2013.

The fourth document, a draft reflection paper on the data requirements for intravenous iron-based nanocolloidal products developed with reference to an innovator medicine, will be released for a six-month public consultation in 2013.
International workshops on nanomedicines
The Agency organises workshops on nanomedicines to explore the scientific aspects of nanomedicines and enable the sharing of experience at an international level, in order to assist future developments in the field:
- First international workshop on nanomedicines (02-03/09/2010)

REFLECTION PAPER ON NANOTECHNOLOGY-BASED MEDICINAL PRODUCTS FOR
HUMAN USE
Related information

Directing Venom To Fight Cancer ACS Meeting News: Encapsulated venom peptide can skip healthy cells


Venom from scorpions or honeybees sounds like it wouldn’t do a person much good. But by directing a modified component just to tumors, researchers might leverage it into a drug.
Peptides in some venoms bind to cancer cells and block tumor growth and spread. But they have not yet been developed successfully as anticancer agents because they attack healthy cells too.
Bioengineer Dipanjan Pan and coworkers at the University of Illinois, Urbana-Champaign, are now using polymeric nanoparticles to deliver venom toxin directly to cancer cells.
read at
http://cen.acs.org/articles/92/i33/Directing-Venom-Fight-Cancer.html


WHO issues draft proposal for biosimilar naming
DRUG REGULATORY AFFAIRS INTERNATIONAL

A long debate is ongoing about biosimilar naming around the world. Although EU accepted the same INN system years ago, with the latest developments around the world, biosimilar naming uncertainty is still ongoing.
View original post 74 more words
Neuroprotective effects of Asiaticoside – a Saponin of Centella asiatica
PUBLIC RELEASE DATE:
10-Aug-2014
In the central nervous system, Asiaticoside has been shown to attenuate in vitro neuronal damage caused by exposure to β-amyloid. However, its potential neuroprotective properties in glutamate-induced excitotoxicity have not been fully studied. Researchers from Fourth Military Medical University of Chinese PLA, China reported that pretreatment with Asiaticoside decreased neuronal cell loss in a concentration-dependent manner and restored changes in expression of apoptotic-related proteins Bcl-2 and Bax. Asiaticoside pretreatment also attenuated the upregulation of NR2B expression, a subunit of N-methyl-D-aspartate receptors, but did not affect expression of NR2A subunits. Additionally, in cultured neurons, Asiaticoside significantly inhibited Ca2+ influx induced by N-methyl-D-aspartate. Their results provide a new insight into the neuroprotective effects of Asiaticoside. The relevant study has been published in the Neural Regeneration Research (Vol. 9, No. 13, 2014).
View original post 85 more words
Lipid Metabolism
Leaders in Pharmaceutical Business Intelligence Group, LLC, Doing Business As LPBI Group, Newton, MA
Lipid metabolism
Larry H. Bernstein, MD, FCAP, Reporter and Curator
Leaders in Pharmaceutical Intelligence
http://pharmaceuticalintelligence.com/8-10-2014/Lipid_metabolism
This is fourth of a series of articles, lipid metabolism, that began with signaling and signaling pathways. These discussion lay the groundwork to proceed in later discussions that will take on a somewhat different approach. These are critical to develop a more complete point of view of life processes. I have indicated that many of the protein-protein interactions or protein-membrane interactions and associated regulatory features have been referred to previously, but the focus of the discussion or points made were different. The role of lipids in circulating plasma proteins as biomarkers for coronary vascular disease can be traced to the early work of Frederickson and the classification of lipid disorders. The very critical role of lipids in membrane structure in health and disease has had much less attention, despite the enormous importance, especially in…
View original post 10,510 more words
THE GROWING IMPACT OF CLICK CHEMISTRY ON DRUG DISCOVERY
The growing impact of click chemistry on drug discovery
HC Kolb, KB Sharpless – Drug discovery today, 2003 – Elsevier
chemical transformations. Its applications are increasingly found in all aspects of drug
discovery, ranging from lead finding through combinatorial chemistry and target-templated …
and reliable chemical transformations. Its applications are increasingly
found in all aspects of drug discovery, ranging from lead finding through
combinatorial chemistry and target-templated in situchemistry, to proteomics
and DNA research, using bioconjugation reactions. The copper-(I)-catalyzed
1,2,3-triazole formation from azides and terminal acetylenes is a particularly
powerful linking reaction, due to its high degree of dependability, complete
specificity, and the bio-compatibility of the reactants. The triazole products
are more than just passive linkers; they readily associate with biological
targets, through hydrogen bonding and dipole interactions.
GET YOUR PDF AT
http://image.sciencenet.cn/olddata/kexue.com.cn/blog/admin//images/upfiles/2007101622257911935.pdf


























