New Drug Approvals

Home » Articles posted by DR ANTHONY MELVIN CRASTO Ph.D (Page 241)

Author Archives: DR ANTHONY MELVIN CRASTO Ph.D

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,811,507 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Lupin launches insulin glargine in India


lupin ltd biosimilarnews Lupin launches insulin glargine in India

Lupin launches insulin glargine in India:

Indian pharma company, Lupin Limited announced a strategic distribution agreement with LG Life Sciences of South Korea to launch Insulin Glargine, a novel insulin analogue under the brand name Basugine™.

According to the agreement, Lupin would be responsible for marketing and sales of Basugine™ in India.

READ MORE

http://www.biosimilarnews.com/lupin-launches-insulin-glargine-in-india?utm_source=Biosimilar%20News%20%7C%20Newsletter&utm_campaign=0b76af10ab-15_08_2014_Biosimilar_News&utm_medium=email&utm_term=0_9887459b7e-0b76af10ab-335885197

Celltrion files Remsima in the United States


Celltrion files Remsima in the United States:

Celltrion announced that the company, on August 8, 2014, completed the filing procedure to obtain US FDA approval for its infliximab biosimilar. This marks the first 351(k) biosimilar mAb application to be filed in the U.S.A. and the second application for a biosimilar to be filed through the US BPCIA.

READ MORE

http://www.biosimilarnews.com/celltrion-files-remsima-in-the-us?utm_source=Biosimilar%20News%20%7C%20Newsletter&utm_campaign=0b76af10ab-15_08_2014_Biosimilar_News&utm_medium=email&utm_term=0_9887459b7e-0b76af10ab-335885197

Zopolrestat


Chemical structure for zopolrestat

Zopolrestat

Zopolrestat
CAS : 110703-94-1
110765-49-6 (Na salt)
3,4-Dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid
2- [4-Oxo-3- [5- (trifluoromethyl) benzothiazol-2-ylmethyl] -3,4-dihydrophthalazin-1-yl] acetic acid
3-(5-trifluoromethylbenzothiazol-2-ylmethyl)-4-oxo-3H-phthalazin-1-ylacetate
 
 
Pfizer Inc. INNOVATOR
2-[4-oxo-3-[5-(trifluoromethyl)benzothiazol-2-ylmethyl]-3,4-dihydrophthalazin-1-yl]acetic acid
Manufacturers’ Codes: CP-73850
MF: C19H12F3N3O3S
MW: 419.38
C 54.41%, H 2.88%, F 13.59%, N 10.02%, O 11.45%, S 7.65%
 Crystals, mp 197-198°. pKa (dioxane/water): 5.46 (1:1); 6.38 (2:1). Log P (n-octanol/water): 3.43.
 mp 197-198°
pKa: pKa (dioxane/water): 5.46 (1:1); 6.38 (2:1)
Log P: Log P (n-octanol/water): 3.43
Therap-Cat: Treatment of diabetic complications.
Keywords: Aldose Reductase Inhibitor.
 
synthesis
 
2-(8-oxo-7-((5-trifluromethyl)-1H-benzo[d]imidazol-2-yl)methyl)7,8-dihydropyrazin[2,3-d]pyridazin-5-yl)acetic acid and [4-oxo-(5-trifluoromethyl-benzothaiazol-2-ylmethyl)-3,4-dihydro-phthalazin-1-yl]-acetic acid (also known as zopolrestat), pharmaceutical compositions thereof and methods of treating diabetic complications in mammals comprising administering to mammals these salt and compositions. 2-(8-oxo-7-((5-trifluromethyl)-1H-benzo[d]imidazol-2-yl)methyl)8-dihydropyrazin[2,3-d]pyridazin-5-yl) acetic acid (formula II), is disclosed in WO 2012/009553 A1. Zopolrestat (formula III) is disclosed in U.S. Pat. No. 4,939,140.
Each of the patents, applications, and other references referred to herein are incorporated by reference. The diabetic complications include neuropathy, nephropathy, retinopathy, cataracts and cardiovascular complications, including myocardial infarction and cardiomyopathy. This invention is also directed to combinations of these salts and antihypertensive agents. These combinations are also useful in treating diabetic complications in mammals.
 
2-(8-oxo-7-((5-trifluoromethyl)-1H-benzo[d]imidazol-2-yl)methyl)8-dihydropyrazin[2,3-d]pyridazin-5-yl)acetic acid is prepared as disclosed in WO 2012/009553 A1, which is incorporated herein by reference. Zopolrestat is prepared as disclosed in U.S. Pat. No. 4,939,140.
 
 
Zopolrestat can be obtained by several different ways: 1) The reaction of 2- (4-oxo-3,4-dihydrophthalazin-1-yl) acetic acid ethyl ester (I) with 2-chloroacetonitrile by means of potassium tert-butoxide in DMF gives 2- [3- (cyanomethyl) -4-oxo-3,4-dihydrophthalazin-1-yl] acetic acid ethyl ester (II), which is cyclized with 2-amino-4- (trifluoromethyl) thiophenol (III) in refluxing ethanol yielding zopolrestat ethyl ester (IV). Finally, this compound is hydrolyzed with KOH in methanol / water / THF. 2) Compound (IV) can also be obtained by cyclization of (II) with 4-chloro-3-nitrobenzotrifluoride . (V) in hot DMF saturated with H2S 3) Compound (II) can also be obtained as follows: The reaction of phthalazine (I) with aqueous formaldehyde gives 2- [3- (hydroxymethyl) -4-oxo-3,4 -dihydrophthalazin-1-yl] acetic acid ethyl ester (VI), which is treated with PBr3 in ethyl ether yielding the bromomethyl derivative (VII). Finally, this compound is treated with potassium cyanide and KI in acetone / water.
 
 
……………………….
 
5=CF3 IS SUBS
EXAMPLE 7

  • [0051]
    In accordance with Example 6, the following compounds are prepared:

    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
 
 
 
 
……………………..
 
EXAMPLE 18 Sodium 3-(5-trifluoromethylbenzothiazol-2-ylmethyl)-4-oxo-3H-phthalazin-1-ylacetateSodium methoxide (54 mg) was added to 3-(5-trifluoromethylbenzothiazol-2-ylmethyl)-4-oxo-phthalazin-1-ylacetic acid (0.4 g) in methanol 10 ml) at room temperature. After the addition was complete, a clear solution was obtained which was stirred for 15 minutes at room temperature. The excess methanol was evaporated. The residue was triturated with ether (20 ml) and filtered to obtain the product (0.43 g; m.p. 300° C.).EXAMPLE 19 3-(5-Trifluoromethylbenzothiazol-2-ylmethyl)-4-oxo-3H-phthalazin-1-ylacetate, dicyclohexylamine saltTo a mixture of 3-(5-trifluromethylbenzothiazol-2ylmethyl)-4-oxo-phthalazin-1-ylacetic acid (0.42 g) in methanol (10 ml) was added dicyclohexylamine (0.2 g) in methanol (5 ml). The resulting clear solution was stirred at room temperature for 15 minutes and then evaporated to dryness. Trituration of the residue with ether (30 ml) gave a white solid (0.38 g; m.p. 207° C.).EXAMPLE 20 3-(5-Trifluoromethylbenzothiazol-2ylmethyl)-4-oxo-3H-phthalazin-1-ylacetic acid, meglumine saltA solution of 3-(5-trifluoromethylbenzothiazol-2-ylmethyl)-4-oxo-phthalazin-1-ylacetic acid (419 mg) and meglumine (196 mg) in methanol (50 ml) was stirred at room temperature for an hour and then evaporated to dryness. The residue was triturated with ether (25 ml), filtered and the collected solid was air dried (610 mg; m.p. 157° C.)……………………………

J. Med. Chem., 1991, 34 (1), pp 108–122
DOI: 10.1021/jm00105a018

http://pubs.acs.org/doi/abs/10.1021/jm00105a018

……………………………………

Mylari, Banavara L.; Zembrowski, William J.; Beyer, Thomas A.; Aldinger, Charles E.; Siegel, Todd W.
Journal of Medicinal Chemistry, 1992 ,  vol. 35,   12  p. 2155 – 2162

………………………………..

Mylari; Beyer; Scott; Aldinger; Dee; Siegel; Zembrowski
Journal of Medicinal Chemistry, 1992 ,  vol. 35,   3  p. 457 – 465

…………………………….

Literature References:
Aldose reductase inhibitor. Prepn: B. L. Mylari et al., EP 222576; E. R. Larson, B. L. Mylari, US 4939140(1987, 1990 both to Pfizer);
 
B. L. Mylari et al. J. Med. Chem. 34, 108 (1991).
 
Pharmacology: B. Tesfamariam et al., J. Cardiovasc.Pharmacol. 21, 205 (1993); B. Tesfamariam et al., Am. J. Physiol. 265, H1189 (1993).
 
Clinical pharmacokinetics: P. B. Inskeep et al., J. Clin. Pharmacol. 34, 760 (1994).
 
Zopolrestat < Rec INN; BAN; USAN >
Drugs Fut 1995, 20(1): 33
 
Synthesis of aldose reductase inhibitor, 3, 4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2 14C benzothiazolyl]methyl]-1-phthalazineacetic acid
J Label Compd Radiopharm 1991, 29(2): 143
 
3-19-1992
HETEROCYCLIC OXOPHTHALAZINYL ACETIC ACIDS
3-6-1992
3-(5-TRIFLUOROMETHYLBENZOTHIAZOL-2-YLMETHYL)-4-OXO-3H-PHYTHALAZIN-1-YLACETIC ACID MONOHYDRATE
7-4-1990
Heterocyclic oxophthalazinyl acetic acids
 
 
 
3-24-2006
Medical devices to treat or inhibit restenosis
12-30-2004
N-[(SUBSTITUTED FIVE-MEMBERED DI- OR TRIAZA DIUNSATURATED RING)CARBONYL]GUANIDINE DERIVATIVES FOR THE TREATMENT OF ISCHEMIA
10-7-2004
COMBINATION OF AN ALDOSE REDUCTASE INHIBITOR AND A GLYCOGEN PHOSPHORYLASE INHIBITOR COMBINATION OF AN ALDOSE REDUCTASE INHIBITOR AND A GLYCOGEN PHOSPHORYLASE INHIBITOR
9-30-2004
Aldose reductase inhibition in preventing or reversing diabetic cardiomyopathy
5-27-2004
SUBSTITUTED FUSED HETEROCYCLIC COMPOUNDS
4-15-2004
Compounds for treating and preventing diabetic complications
3-32-2004
IMPROVED MUTANTS OF (2,5-DKG) REDUCTASE A
12-18-2003
Pharmaceutical composition for use in treatment of diabetes
11-14-2003
Salts of zopolrestat
4-18-2002
Use of an aldose reductase inhibitor for reducing non-cardiac tissue damage

Кальцитонин, Calcitonin


 

Molecular formula of calcitonin is C145H241N43O49S2
• Molecular weight is 3434.8 g/mol

Calcitonin-related polypeptide alpha
Calcitonin.png
NMR solution structure of salmon calcitonin in SDS micelles.[1]
Calcitonin
CAS Registry Number: 9007-12-9
Additional Names: Thyrocalcitonin; TCA; TCT
Therap-Cat: Calcium regulator.

 

The structural formula

 

Calcitonin (also known as thyrocalcitonin) is a 32-amino acid linear polypeptide hormone that is produced in humansprimarily by the parafollicular cells (also known as C-cells) of the thyroid, and in many other animals in the ultimobranchial body.[2] It acts to reduce blood calcium (Ca2+), opposing the effects of parathyroid hormone (PTH).[3]

Calcitonin has been found in fishreptilesbirds, and mammals. Its importance in humans has not been as well established as its importance in other animals, as its function is usually not significant in the regulation of normal calcium homeostasis.[4] It belongs to the calcitonin-like protein family.

UV – range

Conditions : Concentration – 53 mg / 100 ml
Solvent designation schedule Methanol
Water
0.1М HCl
0.1M NaOH
The absorption maximum 278 nm 275 nm
4.9 4.4
with 1670 1500

 

 

 

IR – spectrum

Wavelength (μm)
Wavenumber (cm -1 )

 

Links

  • UV and IR Spectra. H.-W. Dibbern, R.M. Muller, E. Wirbitzki, 2002 ECV
  • NIST/EPA/NIH Mass Spectral Library 2008
  • Handbook of Organic Compounds. NIR, IR, Raman, and UV-Vis Spectra Featuring Polymers and Surfactants, Jr., Jerry Workman. Academic Press, 2000.
  • Handbook of ultraviolet and visible absorption spectra of organic compounds, K. Hirayama. Plenum Press Data Division, 1967.
Calcitonin-related polypeptide alpha
Calcitonin.png
NMR solution structure of salmon calcitonin in SDS micelles.[1]
Available structures
PDB Ortholog search: PDBeRCSB
[show]List of PDB id codes
Identifiers
Symbols CALCA ; CALC1; CGRP; CGRP-I; CGRP1; CT; KC
External IDs OMIM114130 MGI2151253HomoloGene88401 ChEMBL5293GeneCardsCALCA Gene
[show]Gene ontology
RNA expression pattern
PBB GE CALCA 210728 s at tn.png
PBB GE CALCA 210727 at tn.png
PBB GE CALCA 217495 x at tn.png
More reference expression data
Orthologs
Species Human Mouse  
Entrez 796 12310  
Ensembl ENSG00000110680 ENSMUSG00000030669  
UniProt P01258 P70160  
RefSeq (mRNA) NM_001033952 NM_001033954  
RefSeq (protein) NP_001029124 NP_001029126  
Location (UCSC) Chr 11:
14.99 – 14.99 Mb
Chr 7:
114.63 – 114.64 Mb
 
PubMedsearch [1] [2]  
 
 

Biosynthesis and regulation

Calcitonin is formed by the proteolytic cleavage of a larger prepropeptide, which is the product of the CALC1 gene (CALCA). The CALC1 gene belongs to a superfamily of related protein hormone precursors including islet amyloid precursor proteincalcitonin gene-related peptide, and the precursor of adrenomedullin.

Secretion of calcitonin is stimulated by:

Effects

The hormone participates in calcium (Ca2+) and phosphorus metabolism. In many ways, calcitonin counteracts parathyroid hormone (PTH).

More specifically, calcitonin lowers blood Ca2+ levels in three ways:

However, effects of calcitonin that mirror those of PTH include the following:

  • Inhibits phosphate reabsorption by the kidney tubules[11]

In its skeleton-preserving actions, calcitonin protects against calcium loss from skeleton during periods of calcium mobilization, such as pregnancy and, especially, lactation.

Other effects are in preventing postprandial hypercalcemia resulting from absorption of Ca2+. Also, calcitonin inhibits food intake in rats and monkeys, and may have CNS action involving the regulation of feeding and appetite.

Receptor

The calcitonin receptor, found on osteoclasts,[12] and in kidney and regions of the brain, is a G protein-coupled receptor, which is coupled by Gs to adenylate cyclase and thereby to the generation of cAMP in target cells. It may also affect the ovaries in women and the testes in men.

Discovery

Calcitonin was purified in 1962 by Copp and Cheney.[13] While it was initially considered a secretion of the parathyroid glands, it was later identified as the secretion of the C-cellsof the thyroid gland.[14]

Pharmacology

Salmon calcitonin is used for the treatment of:

It has been investigated as a possible non-operative treatment for spinal stenosis.[16]

The following information is from the UK Electronic Medicines Compendium[17]

General characteristics of the active substance

Salmon calcitonin is rapidly absorbed and eliminated. Peak plasma concentrations are attained within the first hour of administration.

Animal studies have shown that calcitonin is primarily metabolised via proteolysis in the kidney following parenteral administration. The metabolites lack the specific biological activity of calcitonin. Bioavailability following subcutaneous and intramuscular injection in humans is high and similar for the two routes of administration (71% and 66%, respectively).

Calcitonin has short absorption and elimination half-lives of 10–15 minutes and 50–80 minutes, respectively. Salmon calcitonin is primarily and almost exclusively degraded in the kidneys, forming pharmacologically inactive fragments of the molecule. Therefore, the metabolic clearance is much lower in patients with end-stage renal failure than in healthy subjects. However, the clinical relevance of this finding is not known. Plasma protein binding is 30% to 40%.

Characteristics in patients

There is a relationship between the subcutaneous dose of calcitonin and peak plasma concentrations. Following parenteral administration of 100 IU calcitonin, peak plasma concentration lies between about 200 and 400 pg/ml. Higher blood levels may be associated with increased incidence of nausea, vomiting, and secretory diarrhea.

Preclinical safety data

Conventional long-term toxicity, reproduction, mutagenicity, and carcinogenicity studies have been performed in laboratory animals. Salmon calcitonin is devoid of embryotoxic, teratogenic, and mutagenic potential.

An increased incidence of pituitary adenomas has been reported in rats given synthetic salmon calcitonin for 1 year. This is considered a species-specific effect and of no clinical relevance. Salmon calcitonin does not cross the placental barrier.

In lactating animals given calcitonin, suppression of milk production has been observed. Calcitonin is secreted into the milk.

Pharmaceutical manufacture

Calcitonin was extracted from the ultimobranchial glands (thyroid-like glands) of fish, particularly salmon. Salmon calcitonin resembles human calcitonin, but is more active. At present, it is produced either by recombinant DNA technology or by chemical peptide synthesis. The pharmacological properties of the synthetic and recombinant peptides have been demonstrated to be qualitatively and quantitatively equivalent.[17]

Uses of calcitonin

Treatments

Calcitonin can be used therapeutically for the treatment of hypercalcemia or osteoporosis.

Oral calcitonin may have a chondroprotective role in osteoarthritis (OA), according to data in rats presented in December, 2005, at the 10th World Congress of the Osteoarthritis Research Society International (OARSI) in Boston, Massachusetts. Although calcitonin is a known antiresorptive agent, its disease-modifying effects on chondrocytes and cartilage metabolisms have not been well established until now.

This new study, however, may help to explain how calcitonin affects osteoarthritis. “Calcitonin acts both directly on osteoclasts, resulting in inhibition of bone resorption and following attenuation of subchondral bone turnover, and directly on chondrocytes, attenuating cartilage degradation and stimulating cartilage formation,” says researcher Morten Karsdal, MSC, PhD, of the department of pharmacology at Nordic Bioscience in Herlev, Denmark. “Therefore, calcitonin may be a future efficacious drug for OA.”[18]

Subcutaneous injections of calcitonin in patients suffering from mania resulted in significant decreases in irritability, euphoria and hyperactivity and hence calcitonin holds promise for treating bipolar disorder.[19] However no further work on this potential application of calcitonin has been reported.

Diagnostics

It may be used diagnostically as a tumor marker for medullary thyroid cancer, in which high calcitonin levels may be present and elevated levels after surgery may indicate recurrence. It may even be used on biopsy samples from suspicious lesions (e.g., lymph nodes that are swollen) to establish whether they are metastasis of the original cancer.

Cutoffs for calcitonin to distinguish cases with medullary thyroid cancer have been suggested to be as follows, with a higher value increasing the suspicion of medullary thyroid cancer:[20]

  • females: 5 ng/L or pg/mL
  • males: 12 ng/L or pg/mL
  • children under 6 months of age: 40 ng/L or pg/mL
  • children between 6 months and 3 years of age: 15 ng/L or pg/mL

When over 3 years of age, adult cutoffs may be used

Increased levels of calcitonin have also been reported for various other conditions. They include: C-cell hyperplasia, Nonthyroidal oat cell carcinoma, Nonthyroidal small cell carcinoma and other nonthyroidal malignancies, acute and chronic renal failure, hypercalcemia, hypergastrinemia and other gastrointestinal disorders, and pulmonary disease.[21]

Structure

Calcitonin is a polypeptide hormone of 32 amino acids, with a molecular weight of 3454.93 daltons. Its structure comprises a single alpha helix.[1] Alternative splicing of the gene coding for calcitonin produces a distantly related peptide of 37 amino acids, called calcitonin gene-related peptide (CGRP), beta type.[22]

The following are the amino acid sequences of salmon and human calcitonin:[23]

  • salmon:
      Cys-Ser-Asn-Leu-Ser-Thr-Cys-Val-Leu-Gly-Lys-Leu-Ser-Gln-Glu-Leu-His-Lys-Leu-Gln-Thr-Tyr-Pro-Arg-Thr-Asn-Thr-Gly-Ser-Gly-Thr-Pro
  • human:
      Cys-Gly-Asn-Leu-Ser-Thr-Cys-Met-Leu-Gly-Thr-Tyr-Thr-Gln-Asp-Phe-Asn-Lys-Phe-His-Thr-Phe-Pro-Gln-Thr-Ala-Ile-Gly-Val-Gly-Ala-Pro

Compared to salmon calcitonin, human calcitonin differs at 16 residues.

Description: Cellular and molecular coordination of tissues which secrete chemical compounds to regulate growth, reproduction, metabolism, and ion homeostasis.

 

 

 

 

References

  1. Jump up to:a b PDB 2glhAndreotti G, Méndez BL, Amodeo P, Morelli MA, Nakamuta H, Motta A (August 2006). “Structural determinants of salmon calcitonin bioactivity: the role of the Leu-based amphipathic alpha-helix”. J. Biol. Chem. 281 (34): 24193–203.doi:10.1074/jbc.M603528200PMID 16766525.
  2. Jump up^ Costoff A. “Sect. 5, Ch. 6: Anatomy, Structure, and Synthesis of Calcitonin (CT)”.Endocrinology: hormonal control of calcium and phosphate. Medical College of Georgia. Retrieved 2008-08-07.
  3.  Boron WF, Boulpaep EL (2004). “Endocrine system chapter”. Medical Physiology: A Cellular And Molecular Approach. Elsevier/Saunders. ISBN 1-4160-2328-3.
  4. Jump up^ Costoff A. “Sect. 5, Ch. 6: Biological Actions of CT”. Medical College of Georgia. Retrieved 2008-08-07.
  5. Costanzo, Linda S. (2007). BRS Physiology. Lippincott, Williams, & Wilkins. p. 263.ISBN 978-0-7817-7311-9.
  6. Jump up^ Erdogan MF, Gursoy A, Kulaksizoglu M (October 2006). “Long-term effects of elevated gastrin levels on calcitonin secretion”J Endocrinol Invest. 29 (9): 771–775.PMID 17114906.
  7.  Costoff A. “Sect. 5, Ch. 6: Effects of CT on the Small Intestine”. Medical College of Georgia. Retrieved 2008-08-07.
  8.  Costoff A. “Sect. 5, Ch. 6: Effects of CT on Bone”. Medical College of Georgia. Retrieved 2008-08-07.
  9. Jump up^ Potts, John; Jüppner, Harald (2008). “Chapter 353. Disorders of the Parathyroid Gland and Calcium Homeostasis”. In Dan L. Longo, Dennis L. Kasper, J. Larry Jameson, Anthony S. Fauci, Stephen L. Hauser, and Joseph Loscalzo. Harrison’s Principles of Internal Medicine (18 ed.). McGraw-Hill.
  10.  Rhoades, Rodney (2009). Medical Physiology: Principles for Clinical Medicine. Philadelphia: Lippincott Williams & Wilkins. ISBN 978-0-7817-6852-8.
  11. Jump up^ Carney SL (1997). “Calcitonin and human renal calcium and electrolyte transport”.Miner Electrolyte Metab 23 (1): 43–7. PMID 9058369.
  12. Jump up^ Nicholson GC, Moseley JM, Sexton PM, et al (1986). “Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization”J Clin Invest 78 (2): 355–60. doi:10.1172/JCI112584PMC 423551PMID 3016026.
  13. Jump up^ Copp DH, Cheney B (January 1962). “Calcitonin-a hormone from the parathyroid which lowers the calcium-level of the blood”. Nature 193 (4813): 381–2.doi:10.1038/193381a0PMID 13881213.
  14. Jump up^ Hirsch PF, Gauthier GF, Munson PL (August 1963). “Thyroid hypocalcemic principle and recurrent laryngeal nerve injury as factors affecting the response to parathyroidectomy in rats”. Endocrinology 73 (2): 244–252. doi:10.1210/endo-73-2-244.PMID 14076205.
  15. Jump up^ Wall GC, Heyneman CA (April 1999). “Calcitonin in phantom limb pain”. Ann Pharmacother 33 (4): 499–501. doi:10.1345/aph.18204PMID 10332543.
  16. Jump up^ Tran de QH, Duong S, Finlayson RJ (July 2010). “Lumbar spinal stenosis: a brief review of the nonsurgical management”. Can J Anaesth 57 (7): 694–703. doi:10.1007/s12630-010-9315-3PMID 20428988.
  17. Jump up to:a b “Electronic Medicines Compendium”. Retrieved 2008-08-07.
  18. Jump up^ Kleinman DM (2006-01-04). “Oral Calcitonin May Delay Onset of Joint Disease and Relieve Pain of OA”Musculoskeletal Report. Musculoskeletal Report, LLC. Retrieved 2008-08-07.
  19. Jump up^ Vik A, Yatham LN (March 1998). “Calcitonin and bipolar disorder: a hypothesis revisited”J Psychiatry Neurosci 23 (2): 109–17. PMC 1188909PMID 9549251.
  20. Jump up^ Basuyau, J. -P.; Mallet, E.; Leroy, M.; Brunelle, P. (2004). “Reference Intervals for Serum Calcitonin in Men, Women, and Children”. Clinical Chemistry 50 (10): 1828–1830.doi:10.1373/clinchem.2003.026963PMID 15388660edit
  21. Jump up^ Burtis CA, Ashwood ER, Bruns DE. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 5th edition. Elsevier Saunders. p. 1774. ISBN 978-1-4160-6164-9.
  22. Jump up^ “calcitonin domain annotation”SMART (a Simple Modular Architecture Research Tool). embl-heidelberg.de. Retrieved 2009-02-22.
  23. Jump up^ http://www.newworldencyclopedia.org/entry/Calcitonin

Further reading

External links

 
 
 
 
 
Literature References: 
Calcium regulating hormone secreted from the mammalian thyroid gland and in non-mammalian species from the ultimobranchial gland. Postulation of a plasma-calcium lowering substance: Copp et al., Endocrinology 70, 638 (1962).
 
Recognition as a hormone: Hirsch et al., ibid. 73, 244 (1963); of thyroid origin: Foster et al., Nature 202, 1303 (1964).
 
Over-all action is to oppose the bone and renal effects of parathyroid hormone, q.v.; inhibits bone resorption of Ca2+, with accompanying hypocalcemia and hypophosphatemia and decreased urinary Ca2+ concentrations. Also abolishes the osteolytic effect of toxic doses of vitamins A and D. Calcitonin is highly active biologically, e.g. 50 mg/min infused into a 100 g rat leads to a significant (1 mg/100 ml) decrease in the concn of the plasma calcium within 60 min (together with a corresponding fall in plasma phosphate). Activity is destroyed by trypsin, chymotrypsin, pepsin, polyphenol oxidase; also by hydrogen peroxide oxidation, photooxidation, and treatment with N-bromosuccinimide. Calcitonin structures are single polypeptide chains containing 32 amino acid residues. Structure of porcine: Neher et al., Helv. Chim. Acta 51, 917 (1968); Potts et al., Proc. Natl. Acad. Sci. USA 59, 1321 (1968); Bellet al., J. Am. Chem. Soc. 90, 2704 (1968); eidem, Biochemistry 9, 1665 (1970).
 
Synthesis of porcine: Rittel et al., Helv. Chim. Acta 51, 924 (1968); Guttmann et al., ibid. 1155.
 
Isoln of human calcitonin from non-pathological thyroid glands: Haymovits, Rosen, Endocrinology 81, 993 (1967); from medullary carcinoma of the thyroid: Neher et al., Nature 220, 984 (1968); Helv. Chim. Acta 51, 1738 (1968); Neher, Riniker, DE 1929957 (1970 to Ciba), C.A. 73, 28902b (1970).
 
Structure of human: Neher et al., Helv. Chim. Acta 51, 1900 (1968). Synthesis of human: Sieber et al., ibid. 2057; J. Hirt et al., Rec. Trav. Chim. 98, 143 (1979).
 
Biosynthetic studies: J. W. Jacobs et al., J. Biol. Chem. 254, 10600 (1979); S. G. Amara et al., ibid. 255, 2645 (1980).
 
Amino acid sequence differs among mammalian species, salmon calcitonin showing a marked difference from that of the higher vertebrae as well as a more potent biological activity. Mechanism of action: E. M. Brown, G. D. Aurbach, Vitam. Horm. 38, 236 (1980). Anorectic activity in rats: W. J. Freed et al., Science 206, 850 (1979).
 
Growth inhibition of human breast cancer cells in vitro: Y. Iwasaki et al., Biochem. Biophys. Res. Commun. 110, 235 (1983).
Review of early literature: Munson, Hirsch, Clin. Orthop. 49, 209 (1966).
 
Review of isoln, structure, synthesis: Behrens, Grinnan, Annu. Rev. Biochem. 38, 83 (1969); Potts et al., Vitam. Horm. 29,41 (1971).
 
Comprehensive review: Calcitonin, Proc. Symp. on Thyrocalcitonin and the C Cells, S. Taylor, Ed. (Springer-Verlag, New York, 1968); Foster et al., ”Calcitonin” in Clinics in Endocrinology and Metabolism, I. MacIntyre, Ed. (W. B. Saunders, Philadelphia, 1972) pp 93-124.
 
Review of pharmacology and therapeutic use: J. C. Stevenson, I. M. A. Evans, Drugs 21, 257-272 (1981).
 
 
 
Derivative Type: Calcitonin, porcine
CAS Registry Number: 12321-44-7
Trademarks: Calcitar(e) (RPR); Staporos (Cassenne)
 
Derivative Type: Calcitonin, human synthetic
CAS Registry Number: 21215-62-3
Trademarks: Cibacalcin (Novartis)
 
Derivative Type: Calcitonin, salmon synthetic
CAS Registry Number: 47931-85-1
Additional Names: Salcatonin
Trademarks: Calciben (Firma); Calcimar (RPR); Calsyn (RPR); Calsynar (RPR); Catonin (Magis); Karil (Novartis); Miacalcic (Novartis); Miacalcin (Novartis); Miadenil (Francia); Osteocalcin (Tosi); Prontocalcin (Domp?; Rulicalcin (HMR); Salmotonin (Yamanouchi); Stalcin (Locatelli); Tonocalcin (Searle)
Literature References: Clinical trial in postmenopausal osteoporosis: C. H. Chesnut et al., Am. J. Med. 109, 267 (2000). LC determn in biological fluids: M. Aguiar et al.J. Chromatogr. B 818, 301 (2005).
Properties: See also Elcatonin.
 
eel
cas   57014-02-5
Share

REFLECTION PAPER ON NANOTECHNOLOGY-BASED MEDICINAL PRODUCTS FOR HUMAN USE


Nanotechnology

Nanotechnology is the use of tiny structures – less than 1,000 nanometres across – that are designed to have specific properties. Nanotechnology is an emerging field in science that is used in a wide range of applications, from consumer goods to health products.

 

In medicine, nanotechnology has only partially been exploited. It is being investigated as a way to improve the properties of medicines, such as their solubility or stability, and to develop medicines that may provide new ways to:

  • deliver medicines to the body;
  • target medicines in the body more accurately;
  • diagnose and treat diseases;
  • support the regeneration of cells and tissues.

Activities at the European Medicines Agency 

The European Medicines Agency follows the latest developments in nanotechnology that are relevant to the development of medicines. Recommendations from the Agency’sCommittee for Medicinal Products for Human Use (CHMP) have already led to the approval of a number of medicines based on nanotechnology. These include medicines containing:

 

  • liposomes (microscopic fatty structures containing the active substance), such asCaelyx (doxorubicin), Mepact (mifamurtide) and Myocet (doxorubicin);
  • nano-scale particles of the active substance, such as Abraxane (paclitaxel), Emend(aprepitant) and Rapamune (sirolimus).

The development of medicines using newer, innovative nanotechnology techniques may raise new challenges for the Agency in the future. These include discussions on whether the current regulatory framework is appropriate for these medicines and whether existing guidelines and requirements on the way the medicines are assessed and monitored are adequate.

The Agency also needs to consider the acceptability of new testing methods and the availability of experts to guide the Agency’s opinion-making.

 

An overview of the initiatives taken by European Union (EU) regulators in relation to the development and evaluation of nanomedicines and nanosimilars was published in the scientific journal Nanomedicines. The article describes the regulatory challenges and perspectives in this field:

Ad hoc expert group on nanomedicines

In 2009, the CHMP established an ad hoc expert group on nanomedicines.

This group includes selected experts from academia and the European regulatory network, who support the Agency’s activities by providing specialist input on new scientific knowledge and who help with the review of guidelines on nanomedicines. The group also helps the Agency’s discussions with international partners on issues concerning nanomedicines.

The group held the first ad hoc expert group meeting on nanomedicines on 29 April 2009.

 

Reflection papers on nanomedicines

In 2011, the CHMP began to develop in 2011 a series of four reflection papers on nanomedicines to provide guidance to sponsors developing nanomedicines.

These documents cover the development both of new nanomedicines and of nanosimilars (nanomedicines that are claimed to be similar to a reference nanomedicine), since the first generation of nanomedicines, including liposomal formulations, iron-based preparations and nanocrystal-based medicines, have started to come off patent:

The fourth document, a draft reflection paper on the data requirements for intravenous iron-based nanocolloidal products developed with reference to an innovator medicine, will be released for a six-month public consultation in 2013.

International workshops on nanomedicines

The Agency organises workshops on nanomedicines to explore the scientific aspects of nanomedicines and enable the sharing of experience at an international level, in order to assist future developments in the field:

REFLECTION PAPER ON NANOTECHNOLOGY-BASED MEDICINAL PRODUCTS FOR
HUMAN USE

http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2010/01/WC500069728.pdf

Related information

 

 

Share

Directing Venom To Fight Cancer ACS Meeting News: Encapsulated venom peptide can skip healthy cells


DR ANTHONY MELVIN CRASTO Ph.D's avatarORGANIC CHEMISTRY SELECT

09233-notw11-scorpioncxd

 
Scorpion toxins may one day be useful as anticancer drugs.
Credit: Courtesy of Dipanjan Pan

Venom from scorpions or honeybees sounds like it wouldn’t do a person much good. But by directing a modified component just to tumors, researchers might leverage it into a drug.

Peptides in some venoms bind to cancer cells and block tumor growth and spread. But they have not yet been developed successfully as anticancer agents because they attack healthy cells too.

Bioengineer Dipanjan Pan and coworkers at the University of Illinois, Urbana-Champaign, are now using polymeric nanoparticles to deliver venom toxin directly to cancer cells.

read at

http://cen.acs.org/articles/92/i33/Directing-Venom-Fight-Cancer.html

 

 

 

 

 

View original post

WHO issues draft proposal for biosimilar naming


DR ANTHONY MELVIN CRASTO Ph.D's avatarDRUG REGULATORY AFFAIRS INTERNATIONAL

biosimilar ladder WHO issues draft proposal for biosimilar naming

A long debate is ongoing about biosimilar naming around the world. Although EU accepted the same INN system years ago, with the latest developments around the world, biosimilar naming uncertainty is still ongoing.

View original post 74 more words

Neuroprotective effects of Asiaticoside – a Saponin of Centella asiatica


Ralph Turchiano's avatarCLINICALNEWS.ORG

PUBLIC RELEASE DATE:

10-Aug-2014

In the central nervous system, Asiaticoside has been shown to attenuate in vitro neuronal damage caused by exposure to β-amyloid. However, its potential neuroprotective properties in glutamate-induced excitotoxicity have not been fully studied. Researchers from Fourth Military Medical University of Chinese PLA, China reported that pretreatment with Asiaticoside decreased neuronal cell loss in a concentration-dependent manner and restored changes in expression of apoptotic-related proteins Bcl-2 and Bax. Asiaticoside pretreatment also attenuated the upregulation of NR2B expression, a subunit of N-methyl-D-aspartate receptors, but did not affect expression of NR2A subunits. Additionally, in cultured neurons, Asiaticoside significantly inhibited Ca2+ influx induced by N-methyl-D-aspartate. Their results provide a new insight into the neuroprotective effects of Asiaticoside. The relevant study has been published in the Neural Regeneration Research (Vol. 9, No. 13, 2014).

View original post 85 more words

Lipid Metabolism


larryhbern's avatarLeaders in Pharmaceutical Business Intelligence Group, LLC, Doing Business As LPBI Group, Newton, MA

Lipid metabolism

Larry H. Bernstein, MD, FCAP, Reporter and Curator

Leaders in Pharmaceutical Intelligence

http://pharmaceuticalintelligence.com/8-10-2014/Lipid_metabolism

This is fourth of a series of articles, lipid metabolism, that began with signaling and signaling pathways. These discussion lay the groundwork to proceed in later discussions that will take on a somewhat different approach. These are critical to develop a more complete point of view of life processes.  I have indicated that many of the protein-protein interactions or protein-membrane interactions and associated regulatory features have been referred to previously, but the focus of the discussion or points made were different.  The role of lipids in circulating plasma proteins as biomarkers for coronary vascular disease can be traced to the early work of Frederickson and the classification of lipid disorders.  The very critical role of lipids in membrane structure in health and disease has had much less attention, despite the enormous importance, especially in…

View original post 10,510 more words

THE GROWING IMPACT OF CLICK CHEMISTRY ON DRUG DISCOVERY


 

The growing impact of click chemistry on drug discovery

HC Kolb, KB SharplessDrug discovery today, 2003 – Elsevier

Click chemistry is a modular approach that uses only the most practical and reliable
chemical transformations. Its applications are increasingly found in all aspects of drug
discovery, ranging from lead finding through combinatorial chemistry and target-templated
 
Click chemistry is a modular approach that uses only the most practical
and reliable chemical transformations. Its applications are increasingly
found in all aspects of drug discovery, ranging from lead finding through
combinatorial chemistry and target-templated in situchemistry, to proteomics
and DNA research, using bioconjugation reactions. The copper-(I)-catalyzed
1,2,3-triazole formation from azides and terminal acetylenes is a particularly
powerful linking reaction, due to its high degree of dependability, complete
specificity, and the bio-compatibility of the reactants. The triazole products
are more than just passive linkers; they readily associate with biological
targets, through hydrogen bonding and dipole interactions.
 
 
 

GET YOUR PDF AT

http://image.sciencenet.cn/olddata/kexue.com.cn/blog/admin//images/upfiles/2007101622257911935.pdf