New Drug Approvals

Home » 2025 » December

Monthly Archives: December 2025

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,798,292 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Zemirciclib


Zemirciclib

CAS 2057509-72-3

MF C22H28ClN5O2, 429.9 g/mol

(1S,3R)-3-acetamido-N-[5-chloro-4-(5,5-dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)pyridin-2-
yl]cyclohexane-1-carboxamide

(1S,3R)-3-acetamido-N-[5-chloro-4-(5,5-dimethyl-4,6-dihydropyrrolo[1,2-b]pyrazol-3-yl)pyridin-2-yl]cyclohexane-1-carboxamide

(1S,3R)-3-acetamido-N-(5-chloro-4-(5,5-dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)pyridin-2-yl)cyclohexanecarboxamide

cyclin-dependent kinase inhibitor, antineoplastic, AZD 4573, UNII-E5XSP3X68B

Zemirciclib is a selective, short-acting inhibitor of the serine/threonine cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the RNA polymerase II (RNA Pol II) elongation factor positive transcription elongation factor b (PTEF-b; PTEFb), with potential antineoplastic activity. Upon intravenous administration, zemirciclib binds to and blocks the phosphorylation and kinase activity of CDK9, thereby preventing PTEFb-mediated activation of RNA Pol II, leading to the inhibition of gene transcription of various anti-apoptotic proteins. This induces cell cycle arrest and apoptosis, and leads to a reduction in tumor cell proliferation. CDK9 regulates elongation of transcription through phosphorylation of RNA polymerase II at serine 2 (p-Ser2-RNAPII). It is upregulated in various tumor cell types and plays a key role in the regulation of Pol II-mediated transcription of anti-apoptotic proteins. Tumor cells are dependent on anti-apoptotic proteins for their survival.

AZD-4573 is a small molecule drug with a maximum clinical trial phase of II and has 1 investigational indication.

  • AZD4573 in Novel Combinations With Anti-cancer Agents in Patients With Advanced Blood CancerCTID: NCT04630756Phase: Phase 1/Phase 2Status: CompletedDate: 2025-04-09
  • AZD4573 as Monotherapy or in Combinations With Anti-cancer Agents in Patients With r/r PTCL or r/r cHLCTID: NCT05140382Phase: Phase 2Status: CompletedDate: 2024-08-28
  • Study to Assess Safety, Tolerability, Pharmacokinetics and Antitumor Activity of AZD4573 in Relapsed/Refractory Haematological MalignanciesCTID: NCT03263637Phase: Phase 1Status: CompletedDate: 2021-10-22

SYN

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017001354&_cid=P22-MJC84G-87476-1

Example 14: (1S,3R)-3-acetamido-N-(5-chloro-4-(5,5-dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl)pyridin-2-yl)cyclohexanecarboxamide

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

/////////Zemirciclib, cyclin-dependent kinase inhibitor, antineoplastic, AZD 4573, UNII-E5XSP3X68B

Zelenirstat


Zelenirstat

CAS 1215011-08-7

MF C24H30Cl2N6O2S, 537.5 g/mol

2,6-dichloro-N-[1,5-dimethyl-3-(2-methylpropyl)-1Hpyrazol-4-yl]-4-[2-(piperazin-1-yl)pyridin-4-yl]benzene-1-sulfonamide
N-myristoyltransferase inhibitor, antineoplastic, PCLX 001, DDD86481, CCI 002, DDD 86481

Zelenirstat (PCLX-001) is an investigational, oral small-molecule drug that inhibits N-myristoyltransferases (NMTs), enzymes crucial for adding fatty acids to proteins, a process vital for cell signaling and membrane attachment. Developed by Pacylex Pharmaceuticals, it’s being tested for various cancers, showing promise in hematologic cancers like AML and lymphomas, as well as solid tumors, by disrupting cancer cell survival and growth, with early trials indicating good safety and potential efficacy. 

How it works:

  • Targets NMT enzymes: Zelenirstat blocks NMT1 and NMT2, preventing myristoylation (adding a fatty acid) to proteins.
  • Disrupts cancer cell processes: This inhibition interferes with essential cell signaling and stability, especially in cancer cells where NMT expression is altered, leading to cell death (apoptosis).
  • Affects mitochondrial function: It also disrupts mitochondrial complex I and oxidative phosphorylation, vital for leukemia stem cell survival, notes Pacylex Pharmaceuticals. 

Development & Status:

  • Orphan Drug Status: Granted for Acute Myeloid Leukemia (AML).
  • Clinical Trials: A Phase 1 trial demonstrated good safety and early signs of activity in patients with advanced solid tumors and lymphomas, leading to further development.
  • New Drug Class: It represents a novel approach to cancer treatment, distinct from many existing therapies. 

Potential Applications:

  • Acute Myeloid Leukemia (AML)
  • B-cell Lymphomas (like Diffuse Large B-Cell Lymphoma)
  • Colorectal Carcinoma
  • Other cancers, including breast, lung, bladder, and pancreatic cancers, show sensitivity in preclinical models. 

Zelenirstat, also known as PCLX-001, is an investigational new drug that is being evaluated for the treatment of cancer and as an antiviral agent. It is a small molecule inhibitor targets both N-myristoyltransferase 1 (NMT1) and N-myristoyltransferase 2 (NMT2) proteins, which are responsible for myristoylation. Its dual mechanism of action disrupts both cell signaling and energy production in cancer cells.

Zelenirstat is a strong pan-N myristoyl transferase inhibitor, which prevents addition of myristic acid into penultimate glycine of protein with myristoylation signal, and initially has been introduced as anti-tumor drug.[1][2][3] It has completed phase I clinical trial and is going through escalation phase.[4] Its prototype DDD85646 as well as other NMT inhibitors such as IMP-1088 have strong antiviral activities against viruses that required myristoylated proteins to complete their life cycle, including hemorrhagic viruses, such as lassa and argentinian virus, and pox viruses, such as vaccinia and monkeypox.[5][6]

Zelenirstat is an orally bioavailable inhibitor of the enzyme N-myristoyl transferase (NMT), with potential antineoplastic activity. Upon oral administration, zelenirstat targets and binds to NMT, especially NMT type 2 (NMT2). This prevents NMT-mediated signaling and myristoylation. This inhibits proliferation of certain cancer cells in which NMT expression is lost. Zelenirstat also inhibits B-cell receptor (BCR) signaling and reduces the levels of Src-family tyrosine kinases (SFKs). NMTs mediate myristoylation, a key process by which the fatty acid myristate is added to proteins and allows proteins to interact with cell membranes and become part of the cell signaling system. NMT expression is lost in numerous cancers, such as blood cancer cells, thereby making these cells more sensitive to zelenirstat compared to normal cells. The loss of NMT expression may promote tumorigenesis.

Mechanism of action

Zelenirstat acts by inhibiting NMT I and II enzymes, which are required to complete the myristoylation of proteins. Without myristoylation, these proteins are targeted for proteasomal degradation.[7]

PCLX-001 is a first-in-kind N-Myristoyltransferase (NMT) inhibitor being developed by [Pacylex Pharmaceuticals](https://pacylex.com). Current studies have shown that PCLX-001 works differently than other known cancer drugs and has high activity and positive results in breast, lung, bladder and pancreas cancers.

  • Study of PCLX-001 in R/R Advanced Solid Malignancies and B-cell LymphomaCTID: NCT04836195Phase: Phase 1Status: CompletedDate: 2025-04-17
  • Study of Oral PCLX-001 in R/R Acute Myeloid LeukemiaCTID: NCT06613217Phase: Phase 1Status: RecruitingDate: 2025-03-10

REF

SYN

US9156811B2

DDD 86481

https://patentscope.wipo.int/search/en/detail.jsf?docId=US73438944&_cid=P12-MJAUPA-00022-1

INTERMEDIATE 23A

4-Bromo-2,6-dichloro-N-(3-isobutyl-1,5-dimethyl-1H-pyrazol-4-yl)-benzenesulfonamide

      Prepared from 4-bromo-2,6-dichlorobenzenesulfonyl chloride (0.68 g, 2.1 mmol) and 4-amino-1,5-dimethyl-3-isobutyl-1H-pyrazole (0.35 g, 2.1 mmol) in pyridine (5 ml) according to the method of intermediate 1, to give the title compound as a white solid (120 mg, 0.26 mmol, 12%). δH (D-6 DMSO, 300K) 7.65 (2H, s), 6.54 (1H, s), 3.70 (3H, s), 2.17 (3H, s), 1.96 (2H, d J 7.9 Hz), 1.74 (1H, m), 0.78 (6H, d J 6.6 Hz). m/z (ES +, 70V) 456.0 (MH +).

EXAMPLE DDD86481

2,6-Dichloro-N-(3-isobutyl-1,5-dimethyl-1H-pyrazol-4-yl)-4-(2-piperazin-1-yl-pyridin-4-yl)-benzenesulfonamide

      Prepared from the sulphonamide of intermediate 23A (115 mg, 0.25 mmol), 2-(1-piperazinyl)pyridine-4-boronic acid pinacol ester (80 mg, 0.28 mmol), tribasic potassium phosphate (60 mg, 0.28 mmol), and Pd(PPh 3(30 mg, 0.026 mmol) in DMF (1.6 ml) and water (0.4 ml), according to the method of intermediate 11, to give the title compound as a yellow solid (73 mg, 0.14 mmol, 54%). δH (D-6 DMSO, 300K) 8.20, (1H, d J 5.2 Hz), 8.06 (2H, s), 7.15 (1H, s), 7.02 (1H, d J 5.2 Hz), 3.60 (3H, s), 3.52 (4H, m), 2.80 (4H, m), 1.98 (3H, s), 1.92 (2H, d J 7.3 Hz), 1.70 (1H, m), 0.70 (6H, d J 6.6 Hz). m/z (ES +, 70V) 537.2 (MH +).

SYN

WO-2010026365

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010026365&_cid=P12-MJAUOO-99381-1

PAT

N-myristoyl transferase inhibitors

Publication Number: WO-2010026365-A1

Priority Date: 2008-09-02

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

References

  1.  Gamma JM, Liu Q, Beauchamp E, Iyer A, Yap MC, Zak Z, et al. (January 2025). “Zelenirstat Inhibits N-Myristoyltransferases to Disrupt Src Family Kinase Signaling and Oxidative Phosphorylation, Killing Acute Myeloid Leukemia Cells”Molecular Cancer Therapeutics24 (1): 69–80. doi:10.1158/1535-7163.MCT-24-0307PMC 11694064PMID 39382188.
  2.  Sangha R, Jamal R, Spratlin J, Kuruvilla J, Sehn LH, Beauchamp E, et al. (August 2024). “A first-in-human phase I trial of daily oral zelenirstat, a N-myristoyltransferase inhibitor, in patients with advanced solid tumors and relapsed/refractory B-cell lymphomas”Investigational New Drugs42 (4): 386–393. doi:10.1007/s10637-024-01448-wPMC 11327210PMID 38837078.
  3.  Sangha RS, Jamal R, Spratlin J, Kuruvilla J, Sehn LH, Weickert M, et al. (June 2024). “Final results of a first-in-human phase I dose escalation trial of daily oral zelenirstat, a n-myristoyltransferase inhibitor, in patients with advanced solid tumors and relapsed/refractory B-cell lymphomas”. Journal of Clinical Oncology42 (16_suppl): 3082. doi:10.1200/JCO.2024.42.16_suppl.3082ISSN 0732-183X.
  4.  Spratlin JL, Sangha RS, Jamal R, Beauchamp E, Berthiaume LG, Mackey JR (20 January 2024). “A first-in-human, open-label, phase I trial of daily oral zelenirstat, an NMT inhibitor, in patients with relapsed/refractory advanced cancer including gastrointestinal cancers”Journal of Clinical Oncology42 (3_suppl): 129–129. doi:10.1200/jco.2024.42.3_suppl.129. Retrieved 19 January 2025.
  5.  Witwit H, Betancourt CA, Cubitt B, Khafaji R, Kowalski H, Jackson N, et al. (August 2024). “Cellular N-Myristoyl Transferases Are Required for Mammarenavirus Multiplication”Viruses16 (9): 1362. doi:10.3390/v16091362PMC 11436053PMID 39339839.
  6.  Witwit H, Cubitt B, Khafaji R, Castro EM, Goicoechea M, Lorenzo MM, et al. (January 2025). “Repurposing Drugs for Synergistic Combination Therapies to Counteract Monkeypox Virus Tecovirimat Resistance”Viruses17 (1): 92. doi:10.3390/v17010092ISSN 1999-4915PMC 11769280.
  7.  Witwit H, Betancourt CA, Cubitt B, Khafaji R, Kowalski H, Jackson N, et al. (August 2024). “Cellular N-Myristoyl Transferases Are Required for Mammarenavirus Multiplication”Viruses16 (9): 1362. doi:10.3390/v16091362PMC 11436053PMID 39339839.
Clinical data
Other namesPCLX-001
Identifiers
IUPAC name
CAS Number1215011-08-7
PubChem CID58561243
DrugBankDB15567
ChemSpider35034199
UNII5HY8BYC3Q6
ChEMBLChEMBL3357685
Chemical and physical data
FormulaC24H30Cl2N6O2S
Molar mass537.50 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

////////zelenirstat, N-myristoyltransferase inhibitor, antineoplastic, PCLX 001, DDD86481, CCI 002, DDD 86481

Zavolosotine


Zavolosotine

CAS 2604416-66-0

MF C20H18F5N5O MW439.38

4-[(3S)-3-aminopyrrolidin-1-yl]-6-cyano-5-(3,5-difluorophenyl)-N-[(2S)-1,1,1-trifluoropropan-2-yl]pyridine-3-carboxamide

4-[(3S)-3-aminopyrrolidin-1-yl]-6-cyano-5-(3,5-difluorophenyl)-N-[(2S)-1,1,1-trifluoropropan-2-yl]pyridine-3-carboxamide

4-[(3S)-3-aminopyrrolidin-1-yl]-6-cyano-5-(3,5-difluorophenyl)- N-[(2S)-1,1,1-trifluoropropan-2-yl]pyridine3-carboxamide
somatostatin receptor agonist, 275EAX4XXX

Zavolosotine (Compound 1) is an orally active agonist for somatostatin receptor type 5 (SST5) with EC50 <1 nM. Zavolosotine inhibits insulin and glucagon secretion, increases levels of glucagon in blood in rat model.

SYN

WO2022177988

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022177988&_cid=P20-MJ9E0I-92373-1

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=US318018214&_cid=P20-MJ9DV5-88499-1

Example 4. 4-[(3S)-3-aminopyrrolidin-1-yl]-6-cyano-5-(3,5-difluorophenyl)-N-[(2S)-1,1,1-trifluoropropan-2-yl]pyridine-3-carboxamide (Compound 1-71)

Step 4-1, preparation of tert-butyl (S)-(1-(2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate: to a DMF (70 mL) solution was added 4,6-dichloronicotinaldehyde (6.8 g, 1.0 Eq, 39 mmol), tert-butyl (S)-pyrrolidin-3-ylcarbamate (7.6 g, 1.1 Eq, 41 mmol) and TEA (16 mL, 3.1 Eq, 120 mmol). The resulting mixture was stirred at 50° C. for 4 hours. The reaction crude was quenched with water (100 mL) and extracted with ethyl acetate (3×40 mL). The organic layers were combined, washed with brine, dried and concentrated under vacuum. The remaining residue was purified by silica gel chromatography eluting with ethyl acetate/petroleum ether (1/3) to afford tert-butyl (S)-(1-(2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (5.3 g, 42%) as a yellow solid. MS (M+H) +=326.2.
      Step 4-2, preparation of tert-butyl (S)-(1-(3-bromo-2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate: to an AcOH (60 mL) solution of tert-butyl (S)-(1-(2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (5.3 g, 1.0 Eq, 16 mmol) was added NBS (3.1 g, 1.1 Eq, 17 mmol) at 10° C. The resulting mixture was stirred at the same temperature for 1 hour. The reaction mixture was quenched with saturated NaHCO and extracted with ethyl acetate (3×40 mL). The organic layers were combined, washed with brine, dried and concentrated under vacuum. The remaining residue was purified by silica gel chromatography eluting with ethyl acetate/petroleum ether (1/4) to afford tert-butyl (S)-(1-(3-bromo-2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (3.5 g, 53%) as a yellow solid. MS (M+H) +=404.1, 406.1.
      Step 4-3, preparation of tert-butyl (S)-(1-(2-chloro-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate: to a mixture of tert-butyl (S)-(1-(3-bromo-2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (3.5 g, 1.0 Eq, 8.6 mmol), (3,5-difluorophenyl)boronic acid (0.88 Eq, 7.6 mmol, 1.2 g), Pd(DtBPF)Cl (300 mg, 0.05 Eq, 0.46 mmol) and potassium phosphate (5.4 g, 2.9 Eq, 25 mmol) was added Toluene (140 mL) and water (14 mL) under atmospheric nitrogen. The resulting mixture was stirred at 40° C. for 2 hours. The reaction crude was concentrated under reduced pressure and the remaining residue was purified by silica gel column chromatography eluting with petroleum ether/EtOAc (3:1) to afford tert-butyl (S)-(1-(2-chloro-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (2.7 g, 71%) as a yellow solid. MS (M+H) +=438.0, 440.0.
      Step 4-4, preparation of tert-butyl (S)-(1-(2-cyano-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate: to a mixture of tert-butyl (S)-(1-(2-chloro-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (2.7 g, 1.0 Eq, 6.2 mmol), Pd 2(dba) 3.CHCl (310 mg, 0.05 Eq, 0.31 mmol), Zn(CN) (1.4 g, 1.9 Eq, 12 mmol) and (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane) (720 mg, 0.20 Eq, 1.24 mmol) was added DMF (30 mL) under atmospheric nitrogen. The resulting mixture was heated under microwave radiation conditions at 135° C. for 1 hour. The reaction crude was quenched with water (100 mL) and extracted with EtOAc (3×40 mL). Organic layers were combined, washed with brine, dried over anhydrous Na 2SO 4, filtered and concentrated under vacuum. The remaining residue was purified by silica gel chromatography eluting with petroleum ether/EtOAc (1:1) to afford tert-butyl (S)-(1-(2-cyano-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (2.2 g, 83%) as a yellow solid. MS (M+H) +=429.2.
      Step 4-5, preparation of (S)-4-(3-((tert-butoxycarbonyl)amino)pyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)nicotinic acid: to a tert-butyl alcohol solution (20 mL) of (S)-(1-(2-cyano-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (2.4 g, 1.0 Eq, 5.1 mmol) was added sodium dihydrogen phosphate (2.4 g, 3.0 Eq, 15 mmol) 2-methylbut-2-ene (11.0 g, 31 Eq, 157 mmol), sodium chlorite (1.0 g, 2.2 Eq, 11 mmol) and water (6.6 mL). The resulting mixture was stirred at ambient temperature for 1 hour. The reaction mixture was quenched with saturated NaHSO (50 mL) and extracted with ethyl acetate (3×40 mL). The organic layers were combined, washed with brine, dried and concentrated under vacuum to afford (S)-4-(3-((tert-butoxycarbonyl)amino)pyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)nicotinic acid (2.0 g, 88%) as a yellow solid. This material was used for next step without purification. MS (M+H) +=445.2.
      Step 4-6, preparation of tert-butyl ((S)-1-(2-cyano-3-(3,5-difluorophenyl)-5-(((S)-1,1,1-trifluoropropan-2-yl)carbamoyl)pyridin-4-yl)pyrrolidin-3-yl)carbamate: to a DMF solution (2.0 mL) of (S)-4-(3-((tert-butoxycarbonyl)amino)pyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)nicotinic acid (70 mg, 1.0 Eq, 0.16 mmol) was added (S)-1,1,1-trifluoropropan-2-amine hydrochloride (35 mg, 1.5 Eq, 0.23 mmol), N-ethyl-N-isopropylpropan-2-amine (4.4 Eq, 0.70 mmol, 0.12 mL) and HATU (60 mg, 1.0 Eq, 0.16 mmol). The resulting mixture was stirred at ambient temperature for 2 hours. The reaction crude was purified by Prep-HPLC using the following conditions: SunFire Prep C18 OBD Column, 19*150 mm 5 μm; mobile phase, Water (0.1% FA) and ACN (24.0% ACN up to 46.0% in 7 min); Total flow rate, 20 mL/min; Detector, UV 220 nm. This resulted in tert-butyl ((S)-1-(2-cyano-3-(3,5-difluorophenyl)-5-(((S)-1,1,1-trifluoropropan-2-yl)carbamoyl)pyridin-4-yl)pyrrolidin-3-yl)carbamate (45 mg, 53%) as a light yellow solid. MS (M+H) +=540.3.
      Step 4-7, preparation of 4-((S)-3-aminopyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)-N—((S)-1,1,1-trifluoropropan-2-yl)nicotinamide: to a DCM solution (2.0 mL) of tert-butyl ((S)-1-(2-cyano-3-(3,5-difluorophenyl)-5-(((S)-1,1,1-trifluoropropan-2-yl)carbamoyl)pyridin-4-yl)pyrrolidin-3-yl)carbamate (45 mg, 1.0 Eq, 0.083 mmol) was added TFA (1.0 mL). The resulting mixture was stirred at ambient temperature for 2 hours. The reaction solution was concentrated and freeze-dried under vacuum to afford the TFA salt of 4-((S)-3-aminopyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)-N—((S)-1,1,1-trifluoropropan-2-yl)nicotinamide bis(2,2,2-trifluoroacetate) (40.2 mg, 72%) as a light yellow solid. MS (M+H) +=440.2.

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

[1]. FERRARA-COOK C, et al., Somatostatin receptor type 5 agonist for the treatment of hyperinsulinism. WO2022177988 .

///////////zavolosotine, somatostatin receptor agonist, 275EAX4XXX

Zamzetoclax


Zamzetoclax

CAS 2388470-64-0

MF C38H46ClN5O6S MW736.32

N-[(3′R,4S,6′R,7′S,8′E,11′S)-7-chloro-7′-methoxy-11′-methyl-13′,15′-dioxospiro[2,3-dihydro-1H-naphthalene-4,22′-20-oxa-13λ6-thia-1,14-diazatetracyclo[14.7.2.03,6.019,24]pentacosa-8,13,16(25),17,19(24)-pentaene]-13′-yl]-3-methoxy-1-methylpyrazole-4-carboxamide

B-cell lymphoma 2 (Bcl-2) inhibitor, antineoplastic, RRS8GZU2UN

Zamzetoclax (compound 1) is a potential Mcl-1 inhibitor.

REFDiscovery of an Oral, Beyond-Rule-of-Five Mcl-1 Protein–Protein Interaction Modulator with the Potential of Treating Hematological Malignancies

Publication Name: Journal of Medicinal Chemistry

Publication Date: 2023-04-28

PMID: 37114951

DOI: 10.1021/acs.jmedchem.2c01953

SYN

WO 2019/222112

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019222112&_cid=P12-MJ7Z15-98773-1

Example 154

[0447] Example 154 was synthesized in the same manner as Example 18 using 3-methoxy-1-methyl-1H-pyrazole-4-carboxylic acid and Example 109. Example 109 (620 mg, 1.04 mmol) was dissolved in dichloromethane (12 mL). 3-Methoxy-1-methyl-1H-pyrazole-4-carboxylic acid (324 mg, 2.08 mmol, 2 equiv.) and N-(3-dimethylaminopropyl)-N¢-ethylcarbodiimide hydrochloride (400 mg, 2.08 mmol, 2 equiv.) were added. The reaction mixture was stirred for 5 minutes at room temperature before DMAP (253 mg, 2.08 mmol, 2 equiv.) was added in a single portion. The reaction mixture was stirred overnight at room temperature and the progress of the reaction was monitored by LCMS. Upon completion, the reaction mixture was concentrated under reduced pressure, and the residue was purified by Gilson reverse phase prep HPLC (60-100% ACN/H2O with 0.1% TFA) to give Example 154.1H NMR (400 MHz, methanol-d4) d 8.07 (s, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 7.22– 7.10 (m, 3H), 6.92 (d, J = 8.2 Hz, 1H), 6.20– 6.05 (m, 1H), 5.63 (dd, J = 15.5, 8.0 Hz, 1H), 4.10 (d, J = 12.0 Hz, 1H), 4.06 (s, 4H), 3.91– 3.83 (m, 1H), 3.82 (s, 3H), 3.79 (s, 1H), 3.72 (d, J = 14.4 Hz, 1H), 3.38 (d, J = 14.5 Hz, 1H), 3.30 (s, 3H), 3.09 (dd, J = 15.1, 10.0 Hz, 1H), 2.89– 2.72 (m, 2H), 2.51 (d, J = 26.7 Hz, 2H), 2.24 (dd, J = 10.9, 6.0 Hz, 2H), 2.12 (d, J = 13.7 Hz, 1H), 2.02– 1.70 (m, 4H), 1.54– 1.40 (m, 1H), 1.14 (d, J = 6.1 Hz, 3H). LCMS-ESI+ (m/z): calcd for C38H46ClN5O6S: 735.28; found: 735.94.

SYN

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=33B420439B8C0CFAAEE83F88092DF1B6.wapp1nC?docId=US413449521&_cid=P12-MJ7YW7-95600-1

WO 2019/222112 discloses novel 3′,4,4′,5-tetrahydro-2H,2′H-spiro[benzo[b][1,4]oxazepine-3,1′-naphthalene] derivatives that are active against MCL-1. For example, Compound 1 (below) has been shown to be an effective MCL-1 inhibitor

SYN

US10703733,

SYN

WO2023215404

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

[1]. Salts and polymorphs of certain MCL-1 inhibitors. World Intellectual Property Organization, WO2023215404 A1 2023-11-09.

///////////zamzetoclax, B-cell lymphoma 2 (Bcl-2) inhibitor, antineoplastic, RRS8GZU2UN

Vilzemetkib


Vilzemetkib

CAS 1363402-44-1

MF C36H36F2N4O5 MW 642.7 g/mol

1-N‘-[4-[7-[[1-(cyclopentylamino)cyclopropyl]methoxy]-6-methoxyquinolin-4-yl]oxy-3-fluorophenyl]-1-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide

hepatocyte growth factor receptor inhibitor, antineoplastic, AL 2846, FJ4Y6XP24Y

Vilzemetkib (also known as AL2846) is an investigational, orally active small-molecule drug that acts as a potent inhibitor of the c-Met receptor tyrosine kinase, a protein often overexpressed in cancers, aiming to block tumor growth, survival, and spread by disrupting key cellular signals. It’s being studied in clinical trials, often in combination with other agents like TQB2450 (a PD-L1 inhibitor), for advanced cancers such as esophageal and liver cancer, showing promise in immunotherapy-resistant patients. 

How it Works:

  • Targets c-Met: Vilzemetkib binds to the c-Met protein, preventing its phosphorylation (activation).
  • Blocks Signaling: This action disrupts downstream pathways crucial for cancer cell proliferation, survival, invasion, metastasis, and new blood vessel formation (angiogenesis). 

Development & Use:

  • Developer: Developed by Advenchen Laboratories.
  • Status: Investigational drug, currently in clinical trials.
  • Research Focus: Studied for cancers like esophageal squamous cell carcinoma (ESCC) and hepatocellular carcinoma (HCC). 

Key Information:

  • Chemical Name: 1,1-Cyclopropanedicarboxamide, N-[4-[[7-[[1-(cyclopentylamino)cyclopropyl]methoxy]-6-methoxy-4-quinolinyl]oxy]-3-fluorophenyl]-N′-(4-fluorophenyl)-.
  • Purpose: Potential anti-cancer (antineoplastic) activity. 
  • OriginatorAdvenchen Laboratories
  • DeveloperAdvenchen Laboratories; Chia Tai Tianqing Pharmaceutical Group
  • ClassAntineoplastics; Small molecules
  • Mechanism of ActionReceptor protein-tyrosine kinase antagonists
  • Phase IIINon-small cell lung cancer; Thyroid cancer
  • Phase IILung cancer; Ovarian cancer
  • Phase I/IIColorectal cancer; Neurofibromatosis 1; Pancreatic cancer
  • No development reportedSolid tumours
  • 28 Oct 2025No recent reports of development identified for phase-I development in Solid-tumours(Combination therapy, In the elderly, Late-stage disease, Second-line therapy or greater, In adults) in China (PO, Capsule)
  • 10 Oct 2025700363489: CTP push: KDM and HE updated
  • 26 Aug 2025Chemical structure information added.

Vilzemetkib is an orally bioavailable small molecule inhibitor of the oncoprotein c-Met (hepatocyte growth factor receptor; HGFR), with potential antineoplastic activity. Upon oral administration vilzemetkib targets and binds to the c-Met protein, prevents c-Met phosphorylation and disrupts c-Met-dependent signal transduction pathways. This may induce cell death in tumor cells overexpressing c-Met protein or expressing constitutively activated c-Met protein. c-Met protein is overexpressed or mutated in many tumor cell types and plays key roles in tumor cell proliferation, survival, invasion, metastasis, and tumor angiogenesis.

SYN

[US20120123126]

https://patentscope.wipo.int/search/en/detail.jsf?docId=US73570351&_cid=P20-MJ6JF6-22611-1

EXAMPLE 6

N-(4-(7-((1-(cyclopentylamino)cyclopropyl)methoxy)-6-methoxyquinolin-4-yloxy)-3-fluoro-phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide

      The title compound was prepared by similar manner to Example 3, by using cyclopentanone instead of tetrahydro-4H-pyran-4-one. Mass: (M+1), 643

SYN

WO-2022268158-A1

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022268158&_cid=P20-MJ6JJ7-25153-1

WO2012034055 discloses N-(4-((7-((1-(cyclopentylamino)cyclopropyl)methoxy)-6-methoxyquinolone-4-yl)oxy)-3-fluorophenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide (hereinafter referred to as compound (I)) as a c-Met kinase inhibitor and its use in inhibiting tyrosine kinase activity. Compound (I) is a novel class of compounds with excellent pharmacological properties, capable of inhibiting the activity of various protein tyrosine kinases, such as c-Met, VEGFr, EGFr, c-kit, PDGF, FGF, SRC, Ron, Tie2, etc. This disclosure relates to the treatment of neurofibromatosis type I with compound (I).

SYN

WO-2012034055-A2

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012034055&_cid=P20-MJ6JLU-26634-1

Example 6

N-(4-(7-((1-(cyclopentylamino)cyclopropyl)methoxy)-6-methoxyquinolin-4-yloxy)-3-fluoro-phenyl)-N-(4-fluorophenyl)cyclopropane- 1,1-dicarboxamide

The title compound was prepared by similar manner to Example 3, by using cyclopentanone instead of tetrahydro-4H-pyran-4-one. Mass: (M + 1), 643

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

////////Vilzemetkib, hepatocyte growth factor receptor inhibitor, antineoplastic, AL 2846, FJ4Y6XP24Y

Vicadrostat


Vicadrostat

CAS 1868065-21-7

MF C15H12ClN3O3 MW 317.73

2-chloro-4-[(6R)-6-(hydroxymethyl)-6-methyl-4-oxo-6,7-dihydropyrano[3,4-d]imidazol-3(4H)-yl]benzonitrile
aldosterone synthase inhibitor, BI 690517, AF4VW4GA3H

Vicadrostat is an aldosterone synthase inhibitor (IC50=48 nM). Vicadrostat can be used for research in kidney diseases and cardiovascular diseases

Vicadrostat (BI 690517) is an investigational drug by Boehringer Ingelheim that selectively blocks aldosterone synthase, reducing excess aldosterone linked to kidney, heart, and metabolic diseases like chronic kidney disease (CKD) and heart failure. Currently in Phase III trials (EASi-KIDNEY and EASi-HF), it’s being tested alone and with empagliflozin (an SGLT2 inhibitor) to reduce proteinuria and improve heart/kidney health, showing promise in reducing albuminuria. 

What it is

  • Type: A highly selective Aldosterone Synthase Inhibitor (ASI).
  • Mechanism: Blocks the enzyme that makes aldosterone, a hormone that causes fluid retention and damage in heart/kidney conditions. 

What it’s for

  • Conditions: Investigated for Chronic Kidney Disease (CKD) and Heart Failure with Preserved Ejection Fraction (HFpEF).
  • Goal: To reduce high aldosterone levels, organ damage, and slow disease progression, particularly in interconnected cardiovascular and renal conditions. 

How it’s being studied

  • Combination Therapy: Key trials combine vicadrostat with empagliflozin (Jardiance).
  • Promising Results: A Phase II trial showed significant reduction in urine protein (albuminuria) when combined with empagliflozin.
  • Clinical Trials: Undergoing large Phase III trials (EASi-KIDNEY and EASi-HF) to confirm its efficacy and safety. 

Key benefit

  • Offers a potential new treatment by targeting aldosterone, addressing multiple interconnected organ systems (heart, kidney, metabolism) simultaneously. 
  • OriginatorBoehringer Ingelheim
  • Class2 ring heterocyclic compounds; Alcohols; Benzonitrile; Chlorinated hydrocarbons; Imidazoles; Pyrones; Small molecules; Urologics
  • Mechanism of ActionCytochrome P-450 CYP11B2 inhibitors
  • Phase IIICardiovascular disorders; Heart failure; Hypertension; Renal failure; Type 2 diabetes mellitus
  • No development reportedDiabetic nephropathies
  • 28 Oct 2025No recent reports of development identified for phase-I development in Renal-failure(In volunteers) in Netherlands (IV)
  • 28 Oct 2025No recent reports of development identified for phase-I development in Renal-failure(In volunteers) in Netherlands (PO)
  • 08 Sep 2025Boehringer Ingelheim initiates a phase I trial (In volunteers, Combination therapy) in Germany (NCT07133399)
  • A Study to Test Whether Vicadrostat in Combination With Empagliflozin Helps People With Chronic Kidney DiseaseCTID: NCT06926660Phase: Phase 2Status: RecruitingDate: 2025-11-28
  • A Study to Test Whether Vicadrostat (BI 690517) in Combination With Empagliflozin Helps People With Heart Failure and a Weak Pumping Function of the Left Side of the HeartCTID: NCT06935370Phase: Phase 3Status: RecruitingDate: 2025-11-26
  • A Study to Test Whether Vicadrostat in Combination With Empagliflozin Helps People With Heart FailureCTID: NCT06424288Phase: Phase 3Status: RecruitingDate: 2025-11-26
  • A Study to Test Vicadrostat (BI 690517) Taken Together With Empagliflozin in People With Type 2 Diabetes, High Blood Pressure, and Cardiovascular DiseaseCTID: NCT07064473Phase: Phase 3Status: RecruitingDate: 2025-11-26
  • A Study in Healthy Men to Compare the Amount of Vicadrostat and Empagliflozin in the Blood When Taken Separately and TogetherCTID: NCT07035457Phase: Phase 1Status: CompletedDate: 2025-08-20

SYN

compound 29 A [WO2016014736A1]

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016014736&_cid=P12-MJ3WOZ-69028-1

Example 8: Synthesis of 2-chloro-4-[(6R)-6-(hydroxymethyl)-6-methyl-4-oxo-3H,4H,6H,7H-pyrano[3,4-d]imidazol-3-yl]benzonitrile (29 enantiomer A) and 2-chloro-4-[(6S)-6-(hydroxymethyl)-6-methyl-4-oxo-3H,4H,6H,7H-pyrano[3,4-d]imidazol-3-yl]benzonitrile (29 enantiomer B)

29 enan

A mixture of 0.50 g (1.7 mmol) of I-07e and 0.56 g (2.5 mmol) of 77% m-CPBA (m-chloroperoxybenzoic acid) in 10 mL of CH2CI2 is stirred fori 6 h. EtOAc (200 mL) and 20 mL of 10% Na2S03 are added. The mixture is washed twice with 50 mL of NaHC03 and the washes are extracted with 50 mL of CH2C12. The organic extracts are combined, dried with MgS04, filtered and concentrated to give 507 mg of racemic 29 as a pale yellow solid. Chiral

chromatography of 507 mg (LUX 5u Cellulose 4, 28% EtOH:C02, 80 g/min, 120 bar, 40 °C) delivers 238 mg of 29 enantiomer A and 230 mg of 29 enantiomer B. The absolute

stereochemistry for compounds 29 A and 29 B were determined by high resolution single crystal X-ray crystallography structure determination and careful examination of the Flack parameter on the refined structures (H.D. Flack and G. Bernardinelli, 2008, Chirality, 20, 681-690).

The following compounds are prepared from the appropriate olefin I-07c and n in the same manner as 29 enantiomers A & B.

3- (3,4-dichlorophenyl)-6-(hydroxymethyl)-6-methyl-3H,4H,6H,7H-pyrano[3,4- d]imidazol-4-one (30 enantiomers A & B) from I-07c.(RegisPack, 25% (EtOH + 1% iPrNH2):C02, 80 mL/min, 100 bar, 25 °C)

4- [6-(hydroxymethyl)-6-methyl-4-oxo-3H,4H,6H,7H-pyrano[3,4-d]imidazol-3-yl]-3- methylbenzonitrile (31 enantiomers A & B) from I-07n. (LUX 5u Cellulose 4, 25% EtOH:C02, 90 g/min, 120 bar, 40 °C)

SYN

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=9D1B049BBF0DDAFA23D2F0BE26189EE7.wapp1nC?docId=WO2025190858&_cid=P12-MJ3WMH-67572-1

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2025174790&_cid=P12-MJ3WOZ-69028-1

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

[1]. Jennifer Burke, et al. Aldosterone synthase inhibitors.WO2016014736.2018-09-07

//////////vicadrostat, aldosterone synthase inhibitor, BI 690517, AF4VW4GA3H

Varegacestat


Varegacestat

CAS 1584647-27-7

MF C26H25F7N4O3 MW574.5

(2R,3S)-N1-[(3S)-5-(3-fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-1H1,4-benzodiazepin-3-yl]-2,3-bis(3,3,3-trifluoropropyl)butanediamide

(2R,3S)-N1-((3S)-5-(3-FLUOROPHENYL)-2,3-DIHYDRO-9-METHYL-2-OXO-1H-1,4-BENZODIAZEPIN-3-YL)-2,3-BIS(3,3,3-TRIFLUOROPHENYL)BUTANEDIAMIDE
(2R,3S)-N1-((3S)-5-(3-FLUOROPHENYL)-9-METHYL-2-OXO-2,3-DIHYDRO-1H-1,4-BENZODIAZEPIN-3-YL)-2,3-BIS(3,3,3-TRIFLUOROPHENYL)BUTANEDIAMIDE
gamma-secretase inhibitor, antineoplastic, AL102, BMS 986115, LSK1L593UU, AL 102

BMS-986115 has been used in trials studying the treatment of Various Advanced Cancer.

Varegacestat is an orally bioavailable, gamma secretase (GS) and pan-Notch inhibitor, with potential antineoplastic activity. Upon administration, varegacestat binds to GS and blocks the proteolytic cleavage and release of the Notch intracellular domain (NICD), which would normally follow ligand binding to the extracellular domain of the Notch receptor. This prevents both the subsequent translocation of NICD to the nucleus to form a transcription factor complex and the expression of Notch-regulated genes. This results in the induction of apoptosis and the inhibition of growth of tumor cells that overexpress Notch. Overexpression of the Notch signaling pathway plays an important role in tumor cell proliferation and survival. The integral membrane protein GS is a multi-subunit protease complex that cleaves single-pass transmembrane proteins, such as Notch receptors, at residues within their transmembrane domains and leads to their activation

AL 102 (previously known as BMS 986115), was developed as an orally active a gamma-secretase and pan-Notch inhibitor. The drug participated in phase I clinical trials in solid tumor patients. The drug was safe and well-tolerated and stabilized disease for more than six months in 14% of patients, however, Bristol-Myers Squibb terminated the study because of the changes in the business objectives. Ayala, an Israeli biotech company, licensed rights for the development of AL 102 from Bristol-Myers Squibb. In December 2018, Ayala in collaborating with Novartis decided to investigate AL102 for treatment of multiple myeloma. Ayala studied AL102, an inhibitor of the Notch pathway, in blood cancers. It is known that the pathway regulates cell-fate determination during development and maintains adult tissue balance. Cumulative evidence indicates that Notch is overactive in multiple myeloma and participates in its onset and progression.

SYN

US9273014

PATENTS

US-20150166489-A1

https://patentscope.wipo.int/search/en/detail.jsf?docId=US137591635&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

PATENT

US-20140087992-A1

https://www.google.com/patents/US20140087992

Example 1(2R,3S)—N-((3S)-5-(3-Fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-1H-1,4-benzodiazepin-3-yl)-2,3-bis(3,3,3-trifluoropropyl)succinamide

Intermediate 1A: (2S,3R)-tert-Butyl 6,6,6-trifluoro-3-(((S)-5-(3-fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)carbamoyl)-2-(3,3,3-trifluoropropyl)hexanoate

Figure US20140087992A1-20140327-C00139

In a 100 mL round-bottomed flask, a solution of Intermediate B-1 (1683 mg, 5.94 mmol), Et3N (1.656 mL, 11.88 mmol), and Intermediate S-1 in DMF (20 mL) was treated with o-benzotriazol-1-yl-N,N,N′,N′-tetramethyluronium tetrafluoroborate (3815 mg, 11.88 mmol) and stirred at room temperature for 1 hour. The reaction mixture was diluted with water and saturated aqueous NaHCO3. An off white precipitate formed and was filtered and washed with water. The resulting solid was dried on the filter under a stream of nitrogen to give Intermediate 1A (3.7 g, 99% yield). MS (ES): m/z=632.4[M+H+]; HPLC: RT=3.635 min Purity=98%. (H2O/MeOH with TFA, CHROMOLITH® ODS S5 4.6×50 mm, gradient=4 min, wavelength=220 nm). 1H NMR (400 MHz, methanol-d4) δ 7.53 (t, J=4.5 Hz, 1H), 7.46-7.30 (m, 3H), 7.28-7.23 (m, 1H), 7.23-7.18 (m, 2H), 5.37 (s, 1H), 2.88 (td, J=10.4, 3.4Hz, 1H), 2.60 (td, J=10.2, 4.1 Hz, 1H), 2.54-2.40 (m, 1H), 2.47 (s, 3H), 2.33-2.12 (m, 3H), 1.98-1.69 (m, 4H), 1.51 (s, 9H).

Intermediate 1B: (2S,3R)-6,6,6-Trifluoro-3-(((S)-5-(3-fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)carbamoyl)-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure US20140087992A1-20140327-C00140

In a 250 mL round-bottomed flask, a solution of Intermediate 1A (3.7 g, 5.86 mmol) in DCM (25 mL) was treated with TFA (25 mL) and the resulting pale orange solution was stirred at room temperature for 1.5 hours. The reaction mixture was then concentrated to give Intermediate 1B. HPLC: RT=3.12 min (H2O/MeOH with TFA, CHROMOLITH® ODS S5 4.6×50 mm, gradient=4 min, wavelength=220 nm). MS (ES): m/z=576.3 (M+H)+. 1H NMR (400 MHz, methanol-d4) δ 7.54 (t, J=4.5 Hz, 1H), 7.49-7.29 (m, 3H), 7.28-7.15 (m, 3H), 5.38 (br. s., 1H), 2.89 (td, J=10.3, 3.7 Hz, 1H), 2.67 (td, J=9.9, 4.2Hz, 1H), 2.56-2.38 (m, 1H), 2.48 (s, 3H), 2.34-2.13 (m, 3H), 2.00-1.71 (m, 4H).

Example 1

In a 250 mL round-bottomed flask, a solution of Intermediate 1B (4.04 g, 5.86 mmol) in THF (50 mL) was treated with ammonia (2M in iPrOH) (26.4 mL, 52.7 mmol), followed by HOBT (1.795 g, 11.72 mmol) and EDC (2.246 g, 11.72 mmol). The resulting white suspension was stirred at room temperature overnight. The reaction mixture was diluted with water and saturated aqueous NaHCO3. The resulting solid was filtered, rinsed with water and then dried on the filter under a stream of nitrogen. The crude product was suspended in 20 mL of iPrOH and stirred at room temperature for 20 min and then filtered and washed with iPrOH and dried under vacuum to give 2.83 g of solid. The solid was dissolved in refluxing EtOH (100 mL) and slowly treated with 200 mg activated charcoal added in small portions. The hot mixture was filtered through CELITE® and rinsed with hot EtOH. The filtrate was reduced to half volume, allowed to cool and the white precipitate formed was filtered and rinsed with EtOH to give 2.57 g of white solid. A second recrystallization from EtOH (70 mL) afforded Example 1 (2.39 g, 70% yield) as a white solid. HPLC: RT=10.859 min (H2O/CH3CN with TFA, Sunfire C18 3.5 μm, 3.0×150 mm, gradient=15 min, wavelength=220 and 254 nm); MS (ES): m/z=575.3 [M+H+]; 1H NMR (400 MHz, methanol-d4) δ 7.57-7.50 (m, 1H), 7.47-7.30 (m, 3H), 7.29-7.15 (m, 3H), 5.38 (s, 1H), 2.85-2.75 (m, 1H), 2.59 (td, J=10.5, 4.0 Hz, 1H), 2.53-2.41 (m, 4H), 2.31-2.10 (m, 3H), 1.96-1.70 (m, 4H).

PATENT

WO-2014047372-A1

https://www.google.com/patents/WO2014047372A1?cl=en

Figure imgf000041_0001
Figure imgf000042_0001

Scheme 3

Figure imgf000044_0001
Figure imgf000045_0001

XII XI

Scheme 4

Figure imgf000047_0001

Intermediate S-l : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid

Figure imgf000053_0001

Intermediate S-IA: 3,3,3-Trifluoro ropyl trifluoromethanesulfonate

Figure imgf000053_0002

[00180] To a cold (-25 °C) stirred solution of 2,6-lutidine (18.38 mL, 158 mmol) in DCM (120 mL) was added Tf20 (24.88 mL, 147 mmol) over 3 min, and the mixture was stirred for 5 min. To the reaction mixture was added 3,3,3-trifluoropropan-l-ol (12 g, 105 mmol) over an interval of 3 min. After 2 hr, the reaction mixture was warmed to room temperature and stirred for 1 hr. The reaction mixture was concentrated to half its volume, then purified by loading directly on a silica gel column (330g ISCO) and the product was eluted with DCM to afford Intermediate S-IA (13.74 g, 53%) as a colorless oil. 1H NMR (400 MHz, CDC13) δ ppm 4.71 (2 H, t, J= 6.15 Hz), 2.49-2.86 (2 H, m).

Intermediate S-1B: (4S)-4-Benzyl-3-(5,5,5-trifluoropentanoyl)-l,3-oxazolidin-2-one

Figure imgf000054_0001

[00181] To a stirring solution of 5,5,5-trifluoropentanoic acid (14.76 g, 95 mmol) and DMF (0.146 rriL) in DCM (50 mL) was slowly added oxalyl chloride (8.27 mL, 95 mmol). After 2h, the mixture was concentrated to dryness. A separate flask was changed with (S)-4-benzyloxazolidin-2-one (16.75 g, 95 mmol) in THF (100 mL) and then cooled to -78 °C. To the solution was slowly added n-BuLi (2.5M, 37.8 mL, 95 mmol) over 10 min, stirred for 10 min, and then a solution of the above acid chloride in THF (50 mL) was slowly added over 5 min. The mixture was stirred for 30 min, and then warmed to room temperature. The reaction was quenched with sat aq NH4C1. Next, 10% aq LiCl was then added to the mixture, and the mixture was extracted with Et20. The organic layer was washed with sat aq NaHC03 then with brine, dried (MgSC^), filtered and concentrated to dryness. The residue was purified by Si02 chromatography (ISCO, 330 g column, eluting with a gradient from 100% hexane to 100% EtOAc) to afford the product Intermediate S-IB; (25.25 g, 85%): 1H NMR (400 MHz, CDC13) δ ppm 7.32-7.39 (2 H, m), 7.30 (1 H, d, J= 7.05 Hz), 7.18-7.25 (2 H, m), 4.64-4.74 (1 H, m), 4.17-4.27 (2 H, m), 3.31 (1 H, dd, J= 13.35, 3.27 Hz), 3.00-3.11 (2 H, m), 2.79 (1 H, dd, J= 13.35, 9.57 Hz), 2.16-2.28 (2 H, m), 1.93-2.04 (2 H, m).

Intermediate S-IC: tert- utyl (3R)-3-(((4S)-4-benzyl-2-oxo-l,3-oxazolidin-3- yl)carbonyl)-6,6,6-trifluoroh xanoate

Figure imgf000054_0002

[00182] To a cold (-78 °C), stirred solution of Intermediate S-IB (3.03 g, 9.61 mmol) in THF (20 mL) was added NaHMDS (1.0M in THF) (10.6 mL, 10.60 mmol) under a nitrogen atmosphere. After 2 hours, tert-butyl 2-bromoacetate (5.62 g, 28.8 mmol) was added neat via syringe at -78 °C and stirring was maintained at the same temperature. After 6 hours, the reaction mixture was warmed to room temperature. The reaction mixture was partitioned between saturated NH4C1 and EtOAc. The organic phase was separated, and the aqueous phase was extracted with EtOAc (3x). The combined organics were washed with brine, dried (Na2s04), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (Teledyne ISCO

CombiFlash Rf, 5% to 100% solvent A/B = hexanes/EtOAc, REDISEP® Si02 120g). Concentration of the appropriate fractions provided Intermediate S-1C (2.79 g, 67.6%) as a colorless viscous oil: 1H NMR (400 MHz, CDC13) δ ppm 7.34 (2 H, d, J= 7.30 Hz), 7.24-7.32 (3 H, m), 4.62-4.75 (1 H, m, J= 10.17, 6.89, 3.43, 3.43 Hz), 4.15-4.25 (3 H, m), 3.35 (1 H, dd, J= 13.60, 3.27 Hz), 2.84 (1 H, dd, J= 16.62, 9.57 Hz), 2.75 (1 H, dd, J = 13.35, 10.07 Hz), 2.47 (1 H, dd, J= 16.62, 4.78 Hz), 2.11-2.23 (2 H, m), 1.90-2.02 (1 H, m), 1.72-1.84 (1 H, m), 1.44 (9 H, s).

Intermediate S-ID: (2R)-2-( -tert-Butoxy-2-oxoethyl)-5,5,5-trifluoropentanoic acid

Figure imgf000055_0001

[00183] To a cool (0 °C), stirred solution of Intermediate S-1C (2.17 g, 5.05 mmol) in THF (50 mL) and water (15 mL) was added a solution of LiOH (0.242 g, 10.11 mmol) and H202 (2.065 mL, 20.21 mmol) in H20 (2 mL). After 10 min, the reaction mixture was removed from the ice bath, stirred for lh, and then cooled to 0 °C. Saturated aqueous NaHCC”3 (25 mL) and saturated aqueous Na2s03 (25 mL) were added to the reaction mixture, and the mixture was stirred for 10 min, and then partially concentrated. The resulting mixture was extracted with DCM (2x), cooled with ice and made acidic with cone. HC1 to pH 3. The mixture was saturated with solid NaCl, extracted with EtOAc (3x), and then dried over MgS04, filtered and concentrated to a colorless oil to afford Intermediate S-ID, 1.2514g, 92%): 1H NMR (400 MHz, CDCI3) δ ppm 2.83-2.95 (1 H, m), 2.62-2.74 (1 H, m), 2.45 (1 H, dd, J= 16.62, 5.79 Hz), 2.15-2.27 (2 H, m), 1.88-2.00 (1 H, m), 1.75-1.88 (1 H, m), 1.45 (9 H, s). Intermediate S-l : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid, and Intermediate S-1E: (2R,3R)-3-(tert-butoxycarbonyl)- 6,6,6-trifluoro-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure imgf000056_0001

(S-1E)

[00184] To a cold (-78 °C) stirred solution of Intermediate S-1D (5 g, 18.50 mmol) in THF (60 mL) was slowly added LDA (22.2 mL, 44.4 mmol, 2.0M) over 7 min. After stirring for 2 hr, Intermediate S- 1 A (6.38 g, 25.9 mmol) was added to the reaction mixture over 3 min. After 60 min, the reaction mixture was warmed to -25 °C

(ice/MeOH/dry ice) and stirred for an additional 60 min at which time sat aq NH4C1 was added. The separated aqueous phase was acidified with IN HC1 to pH 3, and then extracted with Et20. The combined organic layers were washed with brine (2x), dried over MgS04, filtered and concentrated to provide a 1 :4 (II :I1E) mixture (as determined by 1H NMR) of Intermediate S-l and Intermediate S-1E (6.00 g, 89%) as a pale yellow solid. 1H NMR (500 MHz, CDC13) δ ppm 2.81 (1 H, ddd, J = 10.17, 6.32, 3.85 Hz), 2.63- 2.76 (1 H, m), 2.02-2.33 (4 H, m), 1.86-1.99 (2 H, m), 1.68-1.85 (2 H, m), 1.47 (9 H, s).

[00185] To a cold (-78 °C), stirred solution of a mixture of Intermediate S-l and Intermediate S-1E (5.97 g, 16.30 mmol) in THF (91 mL) was added LDA (19 mL, 38.0 mmol, 2.0M in THF/hexane/ethyl benzene) dropwise via syringe over 10 min (internal temperature never exceeded -65 °C, J-KEM® probe in reaction solution). The mixture was stirred for 15 min, and then warmed to room temperature (24 °C water bath), stirred for 15 min, and then cooled to -78 °C for 15 min. To the reaction mixture was added Et2AlCl (41 mL, 41.0 mmol, 1M in hexane) via syringe (internal temperature never exceeded -55 °C), and the mixture was stirred for 10 min, and then warmed to room temperature (24 °C bath) for 15 min and then back to -78 °C for 15 min. Meanwhile, a 1000 mL round bottom flask was charged with MeOH (145 mL) and precooled to -78 °C. With vigorous stirring the reaction mixture was transferred via cannula over 5 min to the MeOH. The flask was removed from the bath, ice was added followed by the slow addition of IN HC1 (147 mL, 147 mmol). Gas evolution was observed as the HC1 was added. The reaction mixture was allowed to warm to room temperature during which the gas evolution subsided. The reaction mixture was diluted with EtOAc (750 mL), saturated with NaCl, and the organic phase was separated, washed with a solution of potassium fluoride (8.52 g, 147 mmol) and IN HC1 (41 mL, 41.0 mmol) in water (291 mL), brine (100 mL), and then dried (Na2s04), filtered and concentrated under vacuum. 1H NMR showed the product was a 9: 1 mixture of Intermediate S-l and Intermediate S- 1E. The enriched mixture of Intermediate S-l and Intermediate S-1E (6.12 g, >99% yield) was obtained as a dark amber solid: 1H NMR (400 MHz, CDC13) δ ppm 2.64-2.76 (2 H, m), 2.04-2.35 (4 H, m), 1.88-2.00 (2 H, m), 1.71-1.83 (2 H, m), 1.48 (9 H, s).

Alternate procedure to make Intermediate S-l :

Intermediate S-IF: (2R,3 -1 -Benzyl 4-tert-butyl 2,3-bis(3,3,3-trifluoropropyl)succinate

Figure imgf000057_0001

[00186] To a stirred solution of a 9: 1 enriched mixture of Intermediate S-l and Intermediate S-1E (5.98 g, 16.33 mmol) in DMF (63 mL) were added potassium carbonate (4.06 g, 29.4 mmol) and benzyl bromide (2.9 mL, 24.38 mmol), the mixture was then stirred overnight at room temperature. The reaction mixture was diluted with EtOAc (1000 mL), washed with 10% LiCl (3×200 mL), brine (200 mL), dried (Na2S04), filtered, concentrated, and then dried under vacuum. The residue was purified by Si02 chromatography using a toluene:hexane gradient. Diastereomerically purified

Intermediate S-IF (4.81g, 65%) was obtained as a colorless solid: 1H NMR (400 MHz, chloroform-d) δ 7.32-7.43 (m, 5H), 5.19 (d, J= 12.10 Hz, 1H), 5.15 (d, J= 12.10 Hz, 1H), 2.71 (dt, J= 3.52, 9.20 Hz, 1H), 2.61 (dt, J= 3.63, 9.63 Hz, 1H), 1.96-2.21 (m, 4H), 1.69-1.96 (m, 3H), 1.56-1.67 (m, 1H), 1.45 (s, 9H).

Intermediate S-l : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid

Figure imgf000058_0001

[00187] To a solution of Intermediate S-1F (4.81 g, 10.54 mmol) in MeOH (100 mL) was added 10% palladium on carbon (wet, Degussa type, 568.0 mg, 0.534 mmol) in a H2– pressure flask. The vessel was purged with N2 (4x), then purged with H2 (2x), and finally, pressurized to 50 psi and shaken overnight. The reaction vessel was

depressurized and purged with nitrogen. The mixture was filtered through CELITE®, washed with MeOH and then concentrated and dried under vacuum. Intermediate S-1 (3.81 g, 99% yield)) was obtained as a colorless solid: 1H NMR (400 MHz, chloroform-d) δ 2.62-2.79 (m, 2H), 2.02-2.40 (m, 4H), 1.87-2.00 (m, 2H), 1.67-1.84 (m, 2H), 1.48 (s, 9H).

Alternate procedure to make Intermediate S-1 :

Intermediate S-1 : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid

Figure imgf000058_0002

[00188] Intermediate S-1 as a mixture with Intermediate S-IE was prepared in a similar procedure as above from Intermediate S-1D to afford a 1 :2.2 mixture of

Intermediate S-1 and Intermediate S-IE (8.60 g, 23.48 mmol), which was enriched using LDA (2.0 M solution in THF, ethyl benzene and heptane, 28.2 mL, 56.4 mmol) and diethyl aluminum chloride (1.0 M solution in hexane, 59 mL, 59.0 mmol) in THF (91 mL). After workup as described above, the resulting residue was found to be a 13.2: 1 (by 1H NMR) mixture of Intermediate S-1 and Intermediate S-IE, which was treated as follows: The crude material was dissolved in MTBE (43 mL). Hexanes (26 mL) were slowly charged to the reaction mixture while maintaining a temperature below 30 °C. The reaction mixture was stirred for 10 min. Next, tert-butylamine (2.7 mL, 1.1 eq) was charged slowly over a period of 20 minutes while maintaining a temperature below 30 °C. This addition was observed to be exothermic. The reaction mixture was stirred for 2 hrs below 30 °C and then filtered. The solid material was washed with 5:3 MTBE: hexane (80 mL), and the filtrate was concentrated and set aside. The filtered solid was dissolved in dichloromethane (300 mL), washed with IN HC1 (lOOmL), and the organic layer was washed with brine (100 mL x 2), and then concentrated under reduced pressure below 45 °C to afford Intermediate S-l (5.46 g, 64%).

A second alternate procedure for preparing Intermediate S-l :

Intermediate S-1G: tert- utyl 5,5,5-trifluoropentanoate

Figure imgf000059_0001

[00189] To a stirred solution of 5,5,5-trifluoropentanoic acid (5 g, 32.0 mmol) in THF (30 mL) and hexane (30 mL) at 0 °C, was added tert-butyl 2,2,2-trichloroacetimidate (11.46 mL, 64.1 mmol). The mixture was stirred for 15 min at 0 °C. Boron trifluoride etherate (0.406 mL, 3.20 mmol) was added and the reaction mixture was allowed to warm to room temperature overnight. To the clear reaction mixture was added solid NaHC03 (5 g) and stirred for 30 min. The mixture was filtered through MgSC^ and washed with hexanes (200 mL). The solution was allowed to rest for 45 min, and the resulting solid material was removed by filtering on the same MgSC^ filter again, washed with hexanes (100 mL) and concentrated under reduced pressure without heat. The volume was reduced to about 30 mL, filtered through a clean fritted funnel, washed with hexane (5 mL), and then concentrated under reduced pressure without heat. The resulting neat oil was filtered through a 0.45μιη nylon membrane filter disk to provide Intermediate S-1G (6.6 g, 31.4 mmol 98% yield) as a colorless oil: 1H NMR (400 MHz, CDC13) δ ppm 1.38 (s, 9 H) 1.74-1.83 (m, 2 H) 2.00-2.13 (m, 2 H) 2.24 (t, J= 7.28 Hz, 2 H). Intermediate S-1H: (4S)-4-(Propan-2-yl)-3-(5,5,5-trifluoropentanoyl)-l,3-oxazolidin-2- one

Figure imgf000060_0001

[00190] To a stirred solution of 5,5,5-trifluoropentanoic acid (5.04 g, 32.3 mmol) in DCM (50 mL) and DMF (3 drops) was added oxalyl chloride (3.4 mL, 38.8 mmol) dropwise over 5 min. The solution was stirred until all bubbling subsided. The reaction mixture was concentrated under reduced pressure to give pale yellow oil. To a separate flask charged with a solution of (4S)-4-(propan-2-yl)-l,3-oxazolidin-2-one (4.18 g, 32.4 mmol) in THF (100 mL) at -78 °C was added n-BuLi (2.5M in hexane) (13.0 mL, 32.5 mmol) dropwise via syringe over 5 min. After stirring for 10 min, the above acid chloride, dissolved in THF (20 mL), was added via cannula over 15 min. The reaction mixture was warmed to 0 °C, and was allowed to warm to room temperature as the bath warmed and stirred overnight. To the reaction mixture was added saturated NH4C1, and the mixture was extracted with EtOAc (2x). The combined organics were washed with brine, dried (Na2s04), filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography (Teledyne ISCO CombiFlash Rf, 5% to 60% solvent A/B = hexanes/EtOAc, REDISEP® Si02 120g). Concentration of the appropriate fractions provided Intermediate S-1H (7.39 g, 86%) as a colorless oil: 1H NMR (400 MHz, CDC13) δ ppm 4.44 (1 H, dt, J= 8.31, 3.53 Hz), 4.30 (1 H, t, J= 8.69 Hz), 4.23 (1 H, dd, J= 9.06, 3.02 Hz), 2.98-3.08 (2 H, m), 2.32-2.44 (1 H, m, J= 13.91, 7.02, 7.02, 4.03 Hz), 2.13-2.25 (2 H, m), 1.88-2.00 (2 H, m), 0.93 (3 H, d, J= 7.05 Hz), 0.88 (3 H, d, J= 6.80 Hz).

Intermediate S-1I: (2S,3R)-tert-Butyl 6,6,6-trifluoro-3-((S)-4-isopropyl-2- oxooxazolidine-3-carbonyl)-2-(3,3,3-trifluoropropyl)hexanoate, and Intermediate S-U: (2R,3R)-tert-Butyl 6,6,6-trifluoro-3-((S)-4-isopropyl-2-oxooxazolidine-3-carbonyl)-2- (3 ,3 ,3 -trifluoropropyl)hexanoate

Figure imgf000061_0001

[00191] To a cold (-78 °C), stirred solution of diisopropylamine (5.3 mL, 37.2 mmol) in THF (59 mL) under a nitrogen atmosphere was added n-BuLi (2.5M in hexane) (14.7 mL, 36.8 mmol). The mixture was then warmed to 0 °C to give a 0.5M solution of LDA. A separate vessel was charged with Intermediate S-1H (2.45 g, 9.17 mmol). The material was azeotroped twice with benzene (the RotoVap air inlet was fitted with a nitrogen inlet to completely exclude humidity), and then toluene (15.3 mL) was added. This solution was added to a flask containing dry lithium chloride (1.96 g, 46.2 mmol). To the resultant mixture, cooled to -78 °C, was added the LDA solution (21.0 mL, 10.5 mmol) and the mixture was stirred at -78 °C for 10 min, then warmed to 0 °C for 10 min., and then cooled to -78 °C. To a separate reaction vessel containing Intermediate S-1G (3.41 g, 16.07 mmol), also azeotroped twice with benzene, was added toluene (15.3 mL), cooled to -78 °C and LDA (37.0 mL, 18.5 mmol) was added. The resulting solution was stirred at -78 °C for 25 min. At this time the enolate derived from the ester was transferred via cannula into the solution of the oxazolidinone enolate and stirred at -78 °C for an additional 5 min, at which time the septum was removed and solid powdered bis(2- ethylhexanoyloxy)copper (9.02 g, 25.8 mmol) was rapidly added to the reaction vessel and the septum was replaced. The vessel was immediately removed from the cold bath and immersed into a warm water bath (40 °C) with rapid swirling and with a concomitant color change from the initial turquoise to brown. The reaction mixture was stirred for 20 min, was then poured into 5% aqueous NH4OH (360 mL) and extracted with EtOAc (2x). The combined organics were washed with brine, dried (Na2s04), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (Teledyne ISCO CombiFlash Rf, 0% to 60% solvent A/B = hexanes/EtOAc, REDISEP® Si02 120g). Concentration of the appropriate fractions provided a mixture of Intermediate S- II and Intermediate S-1J (2.87 g, 66%) as a pale yellow viscous oil. 1H NMR showed the product was a 1.6: 1 mixture of diastereomers S-1LS-1J as determined by the integration of the multiplets at 2.74 and 2.84 ppm: 1H NMR (400 MHz, CDC13) δ ppm 4.43-4.54 (2 H, m), 4.23-4.35 (5 H, m), 4.01 (1 H, ddd, J= 9.54, 6.27, 3.51 Hz), 2.84 (1 H, ddd, J = 9.41, 7.28, 3.64 Hz), 2.74 (1 H, ddd, J= 10.29, 6.27, 4.02 Hz), 2.37-2.48 (2 H, m, J = 10.38, 6.98, 6.98, 3.51, 3.51 Hz), 2.20-2.37 (3 H, m), 1.92-2.20 (8 H, m), 1.64-1.91 (5 H, m), 1.47 (18 H, s), 0.88-0.98 (12 H, m). Intermediate S-1 : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid, and Intermediate S-IE: (2R,3R)-3-(tert-Butoxycarbonyl)- 6,6,6-trifluoro-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure imgf000062_0001

(S-IE)

[00192] To a cool (0 °C), stirred solution of Intermediate S-1I and Intermediate S-1 J (4.54 g, 9.51 mmol) in THF (140 mL) and water (42 mL) were sequentially added hydrogen peroxide (30% in water) (10.3 g, 91 mmol) and LiOH (685.3 mg, 28.6 mmol). The mixture was stirred for 1 hr. At this time the reaction vessel was removed from the cold bath and then stirred for 1.5 hr. To the reaction mixture were added saturated NaHC03 (45 mL) and saturated Na2s03 (15 mL), and then the mixture was partially concentrated under reduced pressure. The resulting crude solution was extracted with DCM (3x). The aqueous phase was acidified to pH~l-2 with IN HC1, extracted with DCM (3x) and then EtOAc (lx). The combined organics were washed with brine, dried (Na2s04), filtered and concentrated under reduced pressure to provide a mixture of Intermediates S-1 and S-IE (3.00 g, 86%) as a colorless oil: 1H NMR (400 MHz, CDC13) δ ppm 2.76-2.84 (1 H, m, diastereomer 2), 2.64-2.76 (3 H, m), 2.04-2.35 (8 H, m), 1.88- 2.00 (4 H, m), 1.71-1.83 (4 H, m), 1.48 (9 H, s, diastereomer 1), 1.46 (9 H, s,

diastereomer 2); 1H NMR showed a 1.7: 1 mixture of S-1E:S-1F by integration of the peaks for the t-butyl groups. Intermediate S-1 : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid, and Intermediate S-IF: (2R,3R)-3-(fert-Butoxycarbonyl)- 6,6,6-trifluoro-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure imgf000063_0001

[00193] To a cold (-78 °C) stirred solution of diisopropylamine (1.7 mL, 11.93 mmol) in THF (19 mL) under a nitrogen atmosphere was added n-BuLi (2.5M in hexanes) (4.8 mL, 12.00 mmol). The mixture was stirred for 5 min and then warmed to 0 °C. In a separate vessel, to a cold (-78 °C) stirred solution of the mixture of Intermediates S-1 and S-1E (1.99 g, 5.43 mmol) in THF (18 mL) was added the LDA solution prepared above via cannula slowly over 25 min. The mixture was stirred for 15 min, then warmed to room temperature (placed in a 24 °C water bath) for 15 min, and then again cooled to -78 °C for 15 min. To the reaction mixture was added Et2AlCl (1M in hexane) (11.4 mL, 11.40 mmol) via syringe. The mixture was stirred for 10 min, warmed to room

temperature for 15 min and then cooled back to -78 °C for 15 min. Methanol (25 mL) was rapidly added, swirled vigorously while warming to room temperature, and then concentrated to ~l/4 the original volume. The mixture was dissolved in EtOAc and washed with IN HC1 (50 mL) and ice (75 g). The aqueous phase was separated and extracted with EtOAc (2x). The combined organics were washed with a mixture of KF (2.85g in 75 mL water) and IN HC1 (13 mL) [resulting solution pH 3-4], then with brine, dried (Na2s04), filtered and concentrated under reduced pressure to give a 9: 1 (S-LS-1E) enriched diastereomeric mixture (as determined by 1H NMR) of Intermediate S-1 and Intermediate S-1E (2.13 g, >99%) as a pale yellow viscous oil: 1H NMR (400 MHz, CDC13) δ ppm 2.64-2.76 (2 H, m), 2.04-2.35 (4 H, m), 1.88-2.00 (2 H, m), 1.71-1.83 (2 H, m), 1.48 (9 H, s).

Intermediate S-2: (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3- fluoropropyl)hexanoic acid

Figure imgf000064_0001

Intermediate S-2: (2R,3S)-3-(tert-Butoxycarbonyl)-7,7,7-trifluoro-2-(3,3,3- trifluoropropyl)heptanoic acid, and Intermediate S-2A: (2R,3R)-3-(tert-Butoxycarbonyl)- 7,7,7-trifluoro-2-(3,3,3-trifluoropropyl)heptanoic acid

Figure imgf000064_0002

(S-2A)

[00194] To a cold (-78 °C), stirred solution of Intermediate S-1D (1.72 g, 6.36 mmol) in THF (30 mL) was slowly added LDA (7.32 mL, 14.6 mmol) over 7 min. After stirring for 1 h, 4,4,4-trifluorobutyltrifluoromethanesulfonate (2.11 g, 8.11 mmol) was added to the reaction mixture over 2 min. After 15 min, the reaction mixture was warmed to -25 °C (ice/MeOH/dry ice) for lh, and then cooled to -78 °C. After 80 min, the reaction was quenched with a saturated aqueous NH4C1 solution (10 mL). The reaction mixture was further diluted with brine and the solution was adjusted to pH 3 with IN HC1. The aqueous layer was extracted with ether. The combined organics were washed with brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to provide a mixture of Intermediates S-2 and S-2A (2.29 g, 95%) as a colorless oil. 1H NMR (400MHz, chloroform-d) δ 2.83-2.75 (m, 1H), 2.64 (ddd, J = 9.9, 6.7, 3.6 Hz, 1H), 2.32-2.03 (m, 5H), 1.98-1.70 (m, 3H), 1.69-1.52 (m, 3H), 1.50-1.42 (m, 9H). 1H NMR showed a 1 :4.5 mixture (S-2:S-2A) of diastereomers by integration of the peaks for the t- Bu groups.

Intermediate S-2: (2R,3S)-3-(fert-Butoxycarbonyl)-7,7,7-trifluoro-2-(3,3,3- trifluoropropyl)heptanoic acid, and Intermediate S-2A: (2R,3R)-3-(tert-Butoxycarbonyl)- 7,7,7-trifluoro-2-(3,3,3-trifluoropropyl)heptanoic acid

Figure imgf000065_0001

[00195] A mixture of Intermediate S-2 and Intermediate S-2A (2.29 g, 6.02 mmol) was dissolved in THF (38 mL) to give a colorless solution which was cooled to -78 °C. Then, LDA (7.23 mL, 14.5 mmol) (2.0M in heptane/THF/ethylbenzene) was slowly added to the reaction mixture over 3 min. After stirring for 15 min, the reaction mixture was placed in a room temperature water bath. After 15 min the reaction mixture was placed back in a -78 °C bath and then diethylaluminum chloride (14.5 mL, 14.5 mmol) (1M in hexane) was added slowly over 5 min. The reaction mixture was stirred at -78 °C. After 15 min, the reaction mixture was placed in a room temperature water bath for 10 min, and then cooled back to -78 °C. After 15 min, the reaction was quenched with MeOH (30.0 mL, 741 mmol), removed from the -78 °C bath and concentrated. To the reaction mixture was added ice and HC1 (60.8 mL, 60.8 mmol) and the resulting mixture was extracted with EtOAc (2x 200 mL). The organic layer was washed with potassium fluoride (3.50g, 60.3 mmol) in 55 mL H20 and 17.0 mL of IN HC1. The organics were dried over anhydrous magnesium sulfate and concentrated under reduced pressure to provide an enriched mixture of Intermediate S-2 and Intermediate S-2A (2.25g, 98% yield) as a light yellow oil. 1H NMR (400MHz, chloroform-d) δ 2.83-2.75 (m, 1H), 2.64 (ddd, J= 9.9, 6.7, 3.6 Hz, 1H), 2.32-2.03 (m, 5H), 1.98-1.70 (m, 3H), 1.69-1.52 (m, 3H), 1.50-1.42 (m, 9H). 1H NMR showed a 9: 1 ratio in favor of the desired diastereomer Intermediate S-2.

Intermediate S-2B: (2R,3S)-1 -Benzyl 4-tert-butyl 2,3-bis(4,4,4-trifluorobutyl)succinate

Figure imgf000065_0002

[00196] To a stirred 9: 1 mixture of Intermediate S-2 and Intermediate S-2A (2.24 g, 5.89 mmoL) and potassium carbonate (1.60 g, 11.58 mmoL) in DMF (30 mL) was added benzyl bromide (1.20 mL, 10.1 mmoL)). The reaction mixture was stirred at room temperature for 19 h. The reaction mixture was diluted with ethyl acetate (400 mL) and washed with 10% LiCl solution (3 x 100 mL), brine (50 mL), and then dried over anhydrous magnesium sulfate, filtered and concentrated to dryness under vacuum. The residue was purified by flash chromatography (Teledyne ISCO CombiFlash 0%> to 100% solvent A/B = hexane/EtOAc, REDISEP® Si02 220 g, detecting at 254 nm, and monitoring at 220 nm). Concentration of the appropriate fractions provided Intermediate S-2B (1.59 g, 57.5%). HPLC: RT = 3.863 min (CHROMOLITH® SpeedROD column 4.6 x 50 mm, 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm), 1H NMR (400MHz, chloroform-d) δ 7.40-7.34 (m, 5H), 5.17 (d, J= 1.8 Hz, 2H), 2.73-2.64 (m, 1H), 2.55 (td, J= 10.0, 3.9 Hz, 1H), 2.16-1.82 (m, 5H), 1.79-1.57 (m, 3H), 1.53-1.49 (m, 1H), 1.45 (s, 9H), 1.37-1.24 (m, 1H).

Intermediate S-2: (2R,3S)-3-(tert-Butoxycarbonyl)-6,6,6-trifluoro-2-(4,4,4- trifluorobutyl)hexanoic acid

Figure imgf000066_0001

[00197] To a stirred solution of Intermediate S-2B (1.59 g, 3.37 mmoL) in MeOH (10 mL) and EtOAc (10 mL) under nitrogen was added 10%> Pd/C (510 mg). The atmosphere was replaced with hydrogen and the reaction mixture was stirred at room temperature for 2.5 h. The palladium catalyst was filtered off through a 4 μΜ polycarbonate film and rinsed with MeOH. The filtrate was concentrated under reduced pressure to give intermediate S-2 (1.28 g, 99%). 1H NMR (400MHz, chloroform-d) δ 2.76-2.67 (m, 1H), 2.65-2.56 (m, 1H), 2.33-2.21 (m, 1H), 2.17-2.08 (m, 3H), 1.93 (dtd, J= 14.5, 9.9, 5.2 Hz, 1H), 1.84-1.74 (m, 2H), 1.70-1.52 (m, 3H), 1.48 (s, 9H).

Intermediate A- 1 : (2-Amino-3 -methylphenyl)(3 -fluorophenyl)methanone

Figure imgf000067_0001

Intermediate A-1 A: 2-Amino- -methoxy-N,3-dimethylbenzamide

Figure imgf000067_0002

[00198] In a 1 L round-bottomed flask was added 2-amino-3-methylbenzoic acid (11.2 g, 74.1 mmol) and Ν,Ο-dimethylhydroxylamine hydrochloride (14.45 g, 148 mmol) in DCM (500 mL) to give a pale brown suspension. The reaction mixture was treated with Et3N (35 mL), HOBT (11.35 g, 74.1 mmol) and EDC (14.20 g, 74.1 mmol) and then stirred at room temperature for 24 hours. The mixture was then washed with 10% LiCl, and then acidified with IN HCl. The organic layer was washed successively with 10%> LiCl and aq NaHC03. The organic layer was decolorized with charcoal, filtered, and the filtrate was dried over MgSC^. The mixture was filtered and concentrated to give 13.22 g (92% yield) of Intermediate A-1A. MS(ES): m/z = 195.1 [M+H+]; HPLC: RT = 1.118 min. (H20/MeOH with TFA, CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm); 1H NMR (500MHz, chloroform-d) δ 7.22 (dd, J= 7.8, 0.8 Hz, 1H), 7.12-7.06 (m, 1H), 6.63 (t, J= 7.5 Hz, 1H), 4.63 (br. s., 2H), 3.61 (s, 3H), 3.34 (s, 3H), 2.17 (s, 3H).

Intermediate A- 1 : (2-Amino-3 -methylphenyl)(3 -fluorophenyl)methanone

Figure imgf000067_0003

[00199] In a 500 mL round-bottomed flask, a solution of l-fluoro-3-iodobenzene (13.61 mL, 116 mmol) in THF (120 mL) was cooled in a -78 °C bath. A solution of n- BuLi, (2.5M in hexane, 46.3 mL, 116 mmol) was added dropwise over 10 minutes. The solution was stirred at -78 °C for 30 minutes and then treated with a solution of

Intermediate A-1 A (6.43 g, 33.1 mmol) in THF (30 mL). After 1.5 hours, the reaction mixture was added to a mixture of ice and IN HCl (149 mL, 149 mmol) and the reaction flask was rinsed with THF (5 ml) and combined with the aqueous mixture. The resulting mixture was diluted with 10% aq LiCl and the pH was adjusted to 4 with IN NaOH. The mixture was then extracted with Et20, washed with brine, dried over MgS04, filtered and concentrated. The resulting residue was purified by silica gel chromatography (220g ISCO) eluting with a gradient from 10% EtOAc/hexane to 30% EtOAc/hexane to afford Intermediate A-l (7.11 g, 94% yield) as an oil. MS(ES): m/z = 230.1 [M+H+]; HPLC: RT = 2.820 min Purity = 99%. (H20/MeOH with TFA, CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm).

Intermediate B-1 : (S)-3-Amino-5-(3-fluorophenyl)-9-methyl-lH-benzo[e][l,4]diazepin- 2(3H)-one

Figure imgf000085_0001

Intermediate B-1 A: (S)-Benzyl (5-(3-fluorophenyl)-9-methyl-2-oxo-2,3-dihydro benzo[e] [ 1 ,4]diazepin-3-yl)carbamate

Figure imgf000085_0002

(B-1A)

[00225] In a 1 L round-bottomed flask, a solution of 2-(lH-benzo[d][l,2,3]triazol-l- yl)-2-((phenoxycarbonyl)amino)acetic acid (J. Org. Chem., 55:2206-2214 (1990)) (19.37 g, 62.0 mmol) in THF (135 mL) was cooled in an ice/water bath and treated with oxalyl chloride (5.43 mL, 62.0 mmol) and 4 drops of DMF. The reaction mixture was stirred for 4 hours. Next, a solution of Intermediate A- 1 (7.11 g, 31.0 mmol) in THF (35 mL) was added and the resulting solution was removed from the ice/water bath and stirred at room temperature for 1.5 hours. The mixture was then treated with a solution of ammonia, (7M in MeOH) (19.94 mL, 140 mmol). After 15 mins, another portion of ammonia, (7M in MeOH) (19.94 mL, 140 mmol) was added and the resulting mixture was sealed under N2 and stirred overnight at room temperature. The reaction mixture was then concentrated to ~l/2 volume and then diluted with AcOH (63 mL) and stir at room temperature for 4 hours. The reaction mixture was then concentrated, and the residue was diluted with 500 mL water to give a precipitate. Hexane and Et20 were added and the mixture was stirred at room temperature for 1 hour to form an orange solid. Et20 was removed under a stream of nitrogen and the aqueous layer was decanted. The residue was triturated with 40 mL of iPrOH and stirred at room temperature to give a white precipitate. The solid was filtered and washed with iPrOH, then dried on a filter under a stream of nitrogen to give racemic Intermediate B-1A (5.4 g, 41.7%yield).

[00226] Racemic Intermediate B-1A (5.9 g, 14.3 mmol) was resolved using the Chiral SFC conditions described below. The desired stereoisomer was collected as the second peak in the elution order: Instrument: Berger SFC MGIII, Column: CHIRALPAK® IC 25 x 3 cm, 5 cm; column temp: 45 °C; Mobile Phase: C02/MeOH (45/55); Flow rate: 160 mL/min; Detection at 220 nm.

[00227] After evaporation of the solvent, Intermediate B-1A (2.73 g, 46% yield) was obtained as a white solid. HPLC: RT = 3.075 min. (H20/MeOH with TFA,

CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm).

Chiral HPLC RT: 8.661 min (AD, 60% (EtOH/MeOH)/heptane) > 99%ee. MS(ES): m/z = 418.3 [M+H+];1H NMR (500MHz, DMSO-d6) δ 10.21 (s, 1H), 8.38 (d, J= 8.3 Hz, 1H), 7.57-7.47 (m, 2H), 7.41-7.29 (m, 8H), 7.25-7.17 (m, 2H), 5.10-5.04 (m, 3H), 2.42 (s, 3H).

Intermediate B-l : (S)-3-Amino-5-(3-fluorophenyl)-9-methyl-lH-benzo[e][l,4]diazepin- 2(3H)-one.

[00228] In a 100 mL round-bottomed flask, a solution of Intermediate B-1A (2.73 g, 6.54 mmol) in acetic acid (12 mL) was treated with HBr, 33% in HOAc (10.76 mL, 65.4 mmol) and the mixture was stirred at room temperature for 1 hour. The solution was diluted with Et20 to give a yellow precipitate. The yellow solid was filtered and rinsed with Et20 under nitrogen. The solid was transferred to 100 mL round bottom flask and water was added (white precipitate formed). The slurry was slowly made basic with saturated NaHC03. The resulting tacky precipitate was extracted with EtOAc. The organic layer was washed with water, dried over MgS04, and then filtered and

concentrated to dryness to give Intermediate B-l (1.68 g, 91% yield) as a white foam solid. MS(ES): m/z = 284.2 [M+H+]; HPLC: RT = 1.72 min (H20/MeOH with TFA, CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm). 1H NMR (400MHz, DMSO-d6) δ 10.01 (br. s., 1H), 7.56-7.44 (m, 2H), 7.41-7.26 (m, 3H), 7.22-7.11 (m, 2H), 4.24 (s, 1H), 2.55 (br. s., 2H), 2.41 (s, 3H). [00229] The compounds listed below in Table 6 (Intermediates B-2 to B-3) were prepared according to the general synthetic procedure described for Intermediate B-l , using the starting materials Intermediate A- 10 and Intermediate A-4, respectively.

Example 1

(2R,3S)-N-((3S)-5-(3-Fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-lH-l,4-benzodiazepin- 3-yl)-2, -bis(3,3,3-trifluoropropyl)succinamide

Figure imgf000098_0001

Intermediate 1A: (2S,3R)-tert-Butyl 6,6,6-trifluoro-3-(((S)-5-(3-fluorophenyl)-9-methyl- 2-0X0-2, 3-dihydro-lH-benzo[e][l,4]diazepin-3-yl)carbamoyl)-2-(3,3 ,3- trifluoropropyl)hexanoat

Figure imgf000098_0002

[00240] In a 100 mL round-bottomed flask, a solution of Intermediate B-l (1683 mg, 5.94 mmol), Et3N (1.656 mL, 11.88 mmol), and Intermediate S-l in DMF (20 mL) was treated with o-benzotriazol-l-yl-A .A .N’.N’-tetramethyluronium tetrafluoroborate (3815 mg, 11.88 mmol) and stirred at room temperature for 1 hour. The reaction mixture was diluted with water and saturated aqueous NaHC03. An off white precipitate formed and was filtered and washed with water. The resulting solid was dried on the filter under a stream of nitrogen to give Intermediate 1A (3.7 g, 99% yield). MS(ES): m/z =

632.4[M+H+]; HPLC: RT = 3.635 min Purity = 98%. (H20/MeOH with TFA,

CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm). 1H NMR (400MHz, methanol-d4) δ 7.53 (t, J = 4.5 Hz, 1H), 7.46-7.30 (m, 3H), 7.28-7.23 (m, 1H), 7.23-7.18 (m, 2H), 5.37 (s, 1H), 2.88 (td, J = 10.4, 3.4 Hz, 1H), 2.60 (td, J =

10.2, 4.1 Hz, 1H), 2.54-2.40 (m, 1H), 2.47 (s, 3 H), 2.33-2.12 (m, 3H), 1.98-1.69 (m, 4H), 1.51 (s, 9H). Intermediate IB: (2S,3R)-6,6,6-Trifluoro-3-(((S)-5-(3-fluorophenyl)-9-methyl-2-oxo-

2,3-dihydro-lH-benzo[e][l,4]diazepin-3-yl)carbamoyl)-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure imgf000099_0001

[00241] In a 250 mL round-bottomed flask, a solution of Intermediate 1A (3.7 g, 5.86 mmol) in DCM (25 mL) was treated with TFA (25 mL) and the resulting pale orange solution was stirred at room temperature for 1.5 hours. The reaction mixture was then concentrated to give Intermediate IB. HPLC: RT = 3.12 min (H20/MeOH with TFA, CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm).

MS(ES): m/z = 576.3 (M+H)+. 1H NMR (400MHz, methanol-d4) δ 7.54 (t, J= 4.5 Hz, 1H), 7.49-7.29 (m, 3H), 7.28-7.15 (m, 3H), 5.38 (br. s., 1H), 2.89 (td, J= 10.3, 3.7 Hz, 1H), 2.67 (td, J= 9.9, 4.2 Hz, 1H), 2.56-2.38 (m, 1H), 2.48 (s, 3 H), 2.34-2.13 (m, 3H), 2.00-1.71 (m, 4H).

Example 1 :

[00242] In a 250 mL round-bottomed flask, a solution of Intermediate IB (4.04 g, 5.86 mmol) in THF (50 mL) was treated with ammonia (2M in iPrOH) (26.4 mL, 52.7 mmol), followed by HOBT (1.795 g, 11.72 mmol) and EDC (2.246 g, 11.72 mmol). The resulting white suspension was stirred at room temperature overnight. The reaction mixture was diluted with water and saturated aqueous NaHC03. The resulting solid was filtered, rinsed with water and then dried on the filter under a stream of nitrogen. The crude product was suspended in 20 mL of iPrOH and stirred at room temperature for 20 min and then filtered and washed with iPrOH and dried under vacuum to give 2.83 g of solid. The solid was dissolved in re fluxing EtOH(100 mL) and slowly treated with 200 mg activated charcoal added in small portions. The hot mixture was filtered through CELITE® and rinsed with hot EtOH. The filtrate was reduced to half volume, allowed to cool and the white precipitate formed was filtered and rinsed with EtOH to give 2.57 g of white solid. A second recrystallization from EtOH (70 mL) afforded Example 1 (2.39 g, 70% yield) as a white solid. HPLC: RT = 10.859 min (H20/CH3CN with TFA, Sunfire C18 3.5μπι, 3.0x150mm, gradient = 15 min, wavelength = 220 and 254 nm); MS(ES): m/z = 575.3 [M+H+]; 1H NMR (400MHz, methanol-d4) δ 7.57-7.50 (m, 1H), 7.47-7.30 (m, 3H), 7.29-7.15 (m, 3H), 5.38 (s, 1H), 2.85-2.75 (m, 1H), 2.59 (td, J= 10.5, 4.0 Hz, 1H), 2.53-2.41 (m, 4H), 2.31-2.10 (m, 3H), 1.96-1.70 (m, 4H).

SEE

WO2012129353A1 *Mar 22, 2012Sep 27, 2012Bristol-Myers Squibb CompanyBis(fluoroalkyl)-1,4-benzodiazepinone compounds

PAPER RELATED

Structure–activity relationships in a series of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides identified highly potent inhibitors of γ-secretase mediated signaling of Notch1/2/3/4 receptors. On the basis of its robust in vivo efficacy at tolerated doses in Notch driven leukemia and solid tumor xenograft models, 12 (BMS-906024) was selected as a candidate for clinical evaluation.

Discovery of Clinical Candidate BMS-906024: A Potent Pan-Notch Inhibitor for the Treatment of Leukemia and Solid Tumors

Ashvinikumar V. Gavai*, Claude Quesnelle, Derek Norris, Wen-Ching Han, Patrice Gill, Weifang Shan, Aaron Balog, Ke Chen§, Andrew Tebben, Richard Rampulla, Dauh-Rurng Wu, Yingru Zhang, Arvind Mathur,Ronald White, Anne Rose, Haiqing Wang, Zheng Yang, Asoka Ranasinghe, Celia D’Arienzo, Victor Guarino, Lan Xiao, Ching Su, Gerry Everlof, Vinod Arora, Ding Ren Shen, Mary Ellen Cvijic, Krista Menard, Mei-Li Wen, Jere Meredith, George Trainor, Louis J. Lombardo, Richard Olson, Phil S. Baran§,John T. Hunt, Gregory D. Vite, Bruce S. Fischer, Richard A. Westhouse, and Francis Y. Lee

Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States

Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States

§ Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037,United StatesACS Med. Chem. Lett.

, 2015, 6 (5), pp 523–527

DOI: 10.1021/acsmedchemlett.5b00001, http://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.5b00001

*Phone: 609-252-5091. E-mail: ashvinikumar.gavai@bms.com.

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

PAPER RELATED

Abstract Image

An enantioselective synthesis of (S)-7-amino-5H,7H-dibenzo[b,d]azepin-6-one (S1) is described. The key step in the sequence involved crystallization-induced dynamic resolution (CIDR) of compound 7 using Boc-d-phenylalanine as a chiral resolving agent and 3,5-dichlorosalicylaldehyde as a racemization catalyst to afford S1 in 81% overall yield with 98.5% enantiomeric excess.

Crystallization-Induced Dynamic Resolution toward the Synthesis of (S)-7-Amino-5H,7H-dibenzo[b,d]-azepin-6-one: An Important Scaffold for γ-Secretase Inhibitors

Sukhen Karmakar, Vijay Byri, Ashvinikumar V. Gavai, Richard Rampulla, Arvind Mathur, and Anuradha Gupta*

Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India

Bristol-Myers Squibb Company, P.O Box 4000, Princeton, New Jersey 08543-4000, United StatesOrg. Process Res. Dev.

, Article ASAP

DOI: 10.1021/acs.oprd.6b00207, http://pubs.acs.org/doi/suppl/10.1021/acs.oprd.6b00207

*E-mail: anuradha.gupta@syngeneintl.com.

Cited PatentFiling datePublication dateApplicantTitle
WO2000007995A1 *Aug 7, 1999Feb 17, 2000Du Pont Pharmaceuticals CompanySUCCINOYLAMINO LACTAMS AS INHIBITORS OF Aβ PROTEIN PRODUCTION
WO2000038618A2 *Dec 23, 1999Jul 6, 2000Du Pont Pharmaceuticals CompanySUCCINOYLAMINO BENZODIAZEPINES AS INHIBITORS OF Aβ PROTEIN PRODUCTION
WO2001060826A2 *Feb 16, 2001Aug 23, 2001Bristol-Myers Squibb Pharma CompanySUCCINOYLAMINO CARBOCYCLES AND HETEROCYCLES AS INHIBITORS OF Aβ PROTEIN PRODUCTION
US6737038 *May 17, 2000May 18, 2004Bristol-Myers Squibb CompanyUse of small molecule radioligands to discover inhibitors of amyloid-beta peptide production and for diagnostic imaging
US7053084Feb 17, 2000May 30, 2006Bristol-Myers Squibb CompanySuccinoylamino benzodiazepines as inhibitors of Aβ protein production
US7456172Jan 13, 2006Nov 25, 2008Bristol-Myers Squibb Pharma CompanySuccinoylamino benzodiazepines as inhibitors of Aβ protein production
US20030134841 *Nov 1, 2002Jul 17, 2003Olson Richard E.Succinoylamino lactams as inhibitors of A-beta protein production
US20120245151 *Mar 22, 2012Sep 27, 2012Bristol-Myers Squibb CompanyBisfluoroalkyl-1,4-benzodiazepinone compounds

//////////varegacestat, BMS-986115, BMS 986115, 3,5-dichlorosalicylaldehydeAlzheimer’s diseaseBoc-D-phenylalanineCIDR;dibenzoazepenone,  DKR; Notch inhibitorsNotch inhibitorSAR,  T-acute lymphoblastic leukemiatriple-negative breast cancerγ-secretase inhibitor, PHASE 1, BMS, Bristol-Myers Squibb,  Ashvinikumar Gavai, 1584647-27-7, LSK1L593UU, AL 102

Tigozertinib


Tigozertinib

CAS 2660250-10-0

MF C28H37FN6O3S MW 556.7

3-Isoquinolinamine, N-[2-[(3S,4R)-3-fluoro-4-methoxy-1-piperidinyl]-4-pyrimidinyl]-5-(1-methylethyl)-8-[(2R,3S)-2-methyl-3- [(methylsulfonyl)methyl]-1-azetidinyl]-

N-{2-[(3S,4R)-3-fluoro-4-methoxypiperidin-1-yl]pyrimidin-4-yl}-8-{(2R,3S)-3-[(methanesulfonyl)methyl]-2-methylazetidin-1-yl}-5-(propan-2-yl)isoquinolin-3-amine

N-[2-[(3S,4R)-3-fluoro-4-methoxypiperidin-1-yl]pyrimidin-4-yl]-8-[(2R,3S)-2-methyl-3-(methylsulfonylmethyl)azetidin-1-yl]-5-propan-2-ylisoquinolin-3-amine

N-(2-((3S,4R)-3-fluoro-4-methoxypiperidin-l-yl)pyrimidin-4-yl)-5-isopropyl-8-(3-(methylsulfonylmethyl)azetidin-l-yl)isoquinolin-3-amine

epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, antineoplastic, PA4PTH5HL9, BLU 945


Tigozertinib (BLU-945) is currently under investigation in clinical trial NCT04862780 (Phase 1/​2 Study Targeting EGFR Resistance Mechanisms in NSCLC) for the treatment of NSCLC.

Tigozertinib is a fourth-generation, orally bioavailable, mutant-selective, epidermal growth factor receptor (EGFR) inhibitor, with potential antineoplastic activity. Upon oral administration, tigozertinib targets, binds to and inhibits the activity of EGFR with C797S triple mutations including ex19del/T790M/C797S and L858R/T790M/C797S, thereby preventing EGFR-mediated signaling. This may both induce cell death and inhibit tumor growth in EGFR-overexpressing tumor cells. EGFR, a receptor tyrosine kinase mutated in many tumor cell types, plays a key role in tumor cell proliferation and tumor vascularization. BLU-945 inhibits mutated forms of EGFR with C797S mutation, which prevents covalent bond formation with third-generation EGFR inhibitors leading to drug resistance. BLU-945 may have enhanced anti-tumor effects in tumors with C797S-mediated resistance when compared to other EGFR tyrosine kinase inhibitors.Tigozertinib is a fourth-generation, orally bioavailable, mutant-selective, epidermal growth factor receptor (EGFR) inhibitor, with potential antineoplastic activity. Upon oral administration, tigozertinib targets, binds to and inhibits the activity of EGFR with C797S triple mutations including ex19del/T790M/C797S and L858R/T790M/C797S, thereby preventing EGFR-mediated signaling. This may both induce cell death and inhibit tumor growth in EGFR-overexpressing tumor cells. EGFR, a receptor tyrosine kinase mutated in many tumor cell types, plays a key role in tumor cell proliferation and tumor vascularization. BLU-945 inhibits mutated forms of EGFR with C797S mutation, which prevents covalent bond formation with third-generation EGFR inhibitors leading to drug resistance. BLU-945 may have enhanced anti-tumor effects in tumors with C797S-mediated resistance when compared to other EGFR tyrosine kinase inhibitors.

  • First-in-Human, Phase 1b/2a Trial of a Multipeptide Therapeutic Vaccine in Patients With Progressive GlioblastomaCTID: NCT04116658Phase: Phase 1/Phase 2Status: CompletedDate: 2025-11-28
  • (SYMPHONY) Phase 1/2 Study Targeting EGFR Resistance Mechanisms in NSCLCCTID: NCT04862780Phase: Phase 1Status: TerminatedDate: 2025-02-10
  • A Novel Therapeutic Vaccine (EO2401) in Metastatic Adrenocortical Carcinoma, or Malignant Pheochromocytoma/ParagangliomaCTID: NCT04187404Phase: Phase 1/Phase 2Status: TerminatedDate: 2024-11-12

REF

SYN

WO2021133809

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021133809&_cid=P11-MJ29N8-15768-1

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021133809&_cid=P11-MJ292P-02302-1

Example 5, Compound 117: Synthesis of (3S,4R)-3-fluoro-l-(4-(5-isopropyl-8-((2R,3S)-2-methyl-3-(methylsulfonylmethyl)azetidin-l-yl)isoquinolin-3-ylamino)pyrimidin-2-yl)-4-methylpiperidin-4-ol

To a solution of 3-chloro-8-[(2R,3S)-3-(methanesulfonylmethyl)-2-methylazetidin-l-yl]-5-(propan-2-yl)isoquinoline(28 g,76.3mmol, from step 1 of Example 3), (3R,4S)-l-(4-aminopyrimidin-2-yl)-3-fluoro-4-methylpiperidin-4-ol(17.2g,76.3mmol, peak 1 from Example B12), CS2CO3 (49.8 g, 152 mmol),C-phos (4.27 g, 9.15mmol, 2-dicyclohexylphosphino-2’,6’-bis(N,N-dimethylamino)biphenyl) and Pd2(dba)3 (3.94 g, 3.81 mmol) in dioxane (400 mL) was heated to 100 °C for 16 h under N2 atmosphere. The mixture reaction was filtered and the filtrate was concentration under vacuum. The residue was applied onto a silica gel column with EA/PE (2: 1) to give product 28.8 g (67%) as a light-yellow solid.

OTHERS

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

///////////Tigozertinib, antineoplastic, PA4PTH5HL9, BLU 945

Tambiciclib


Tambiciclib

CAS 2247481-08-7

MF C25H35ClN6O2S, 519.10

4-[[[4-[5-chloro-2-[[4-[[(2R)-1-methoxypropan-2-yl]amino]cyclohexyl]amino]-4-pyridinyl]-1,3-thiazol-2-yl]amino]methyl]oxane-4-carbonitrile

2H-PYRAN-4-CARBONITRILE, 4-(((4-(5-CHLORO-2-((TRANS-4-(((1R)-2-METHOXY-1-METHYLETHYL)AMINO)CYCLOHEXYL)AMINO)-4-PYRIDINYL)-2-THIAZOLYL)AMINO)METHYL)TETRAHYDRO-

cyclin-dependent kinase inhibitor, antineoplastic, GFH 009, JSH 009, XDZ7VK8CXC, Orphan Drug , Acute myeloid leukaemia, Peripheral T-cell lymphoma

Tambiciclib (GFH009, JSH-009) is an orally active, highly potent and selective CDK9 inhibitor (IC50 = 1 nM), demonstrating >200-fold selectivity over other CDKs, >100-fold selectivity over DYRK1A/B, and excellent selectivity over 468 kinases/mutants. Tambiciclib demonstrates potent in vitro and in vivo antileukemic efficacy in acute myeloid leukemia (AML) mouse models by inhibiting RNA Pol II phosphorylation, downregulating MCL1 and MYC, and inducing apoptosis. Tambiciclib can be used for AML research.

Tambiciclib is a selective inhibitor of the serine/threonine cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the RNA polymerase II (RNA Pol II) elongation factor positive transcription elongation factor b (PTEF-b; PTEFb), with potential antineoplastic activity. Upon administration, tambiciclib targets, binds to and blocks the phosphorylation and kinase activity of CDK9, thereby preventing PTEFb-mediated activation of RNA Pol II, leading to the inhibition of gene transcription of various anti-apoptotic proteins. This induces cell cycle arrest and apoptosis and prevents tumor cell proliferation. CDK9 regulates elongation of transcription through phosphorylation of RNA Pol II at serine 2 (p-Ser2-RNAPII). It is upregulated in various tumor cell types and plays a key role in the regulation of Pol II-mediated transcription of anti-apoptotic proteins. Tumor cells are dependent on anti-apoptotic proteins for their survival.

  • OriginatorGenFleet Therapeutics
  • DeveloperGenFleet Therapeutics; Sellas Life Sciences Group
  • ClassAntineoplastics; Small molecules
  • Mechanism of ActionCyclin-dependent kinase 9 inhibitors
  • Orphan Drug StatusYes – Acute myeloid leukaemia; Peripheral T-cell lymphoma
  • Phase IIAcute myeloid leukaemia
  • Phase I/IIDiffuse large B cell lymphoma; Haematological malignancies; Peripheral T-cell lymphoma
  • Phase ISolid tumours
  • PreclinicalColorectal cancer; T-cell prolymphocytic leukaemia
  • 13 Oct 2025Preclinical trials in T-cell prolymphocytic leukaemia (Combination therapy) in USA (Parenteral)
  • 13 Oct 2025Preclinical trials in T-cell prolymphocytic leukaemia (Monotherapy) in USA (Parenteral)
  • 13 Oct 2025Pharmacodynamics data from preclinical studies in T-cell prolymphocytic leukaemia released by SELLAS Life Sciences

CLINICAL

  • A Study of GFH009 in Combination With Zanubrutinib in Subjects With Relapsed or Refractory DLBCLCTID: NCT06375733Phase: Phase 1/Phase 2Status: RecruitingDate: 2025-08-12
  • A Study of GFH009 Monotherapy in Patients with Relapsed or Refractory Peripheral T-cell Lymphoma (PTCL)CTID: NCT05934513Phase: Phase 1/Phase 2Status: RecruitingDate: 2024-12-13

Discovery of 4-(((4-(5-chloro-2-(((1s,4s)-4-((2-methoxyethyl)amino)cyclohexyl)amino)pyridin-4-yl)thiazol-2-yl)amino)methyl)tetrahydro-2H-pyran-4-carbonitrile (JSH-150) as a novel highly selective and potent CDK9 kinase inhibitor

Publication Name: European Journal of Medicinal Chemistry

Publication Date: 2018-10-05

PMID: 30253346

DOI: 10.1016/j.ejmech.2018.09.025

SYN

WO-2020244612-A1

SYN

WO-2024239512-A1

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018192273&_cid=P12-MJ18VV-17351-1

Example 1: Synthesis of 4-(((4-(5-chloro-2-(((1R,4r)-4-(((R)-1-methoxypropyl-2-yl)amino) cyclohexyl)amino)pyridin-4-yl)thiazolyl)amino)methyl)tetrahydro-2H-pyran-4- carboxynitrile

Step 1: Synthesis of 5-chloro-2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborhecyclopentan-2-yl)pyridine 

[0102]5-Chloro-2-fluoropyridine-4-boronic acid (0.7 g, 4.46 mmol) and pinacol (0.63 g, 5.35 mmol) were added to 50 mL of toluene, and the mixture was refluxed at 120 °C overnight. TLC showed a small amount of starting material remaining. The reaction mixture was cooled to room temperature and concentrated, then dried by an oil pump to give 0.92 g of a white solid compound, 5-chloro-2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborhexacyclopentan-2-yl)pyridine, yield 80%, MS (ESI): m/z 258.1 (M+H) + . 

[0103]Step 2: Synthesis of (S)-1-methoxypropyl-2-yl-4-toluenesulfonyl ester 

[0104]60% sodium hydride (NaH) (6.52 g, 283 mmol) was added to anhydrous tetrahydrofuran (THF) (200 mL). The mixture was cooled to 0 °C in an ice bath under nitrogen protection, and (S)-(+)-1-methoxy-2-propanol (21 g, 233 mmol) was added dropwise. After the addition was complete, the mixture was brought to room temperature and stirred for 1.5 hours. The reaction mixture was then cooled back to 0 °C, and a tetrahydrofuran (THF) solution of p-toluenesulfonyl chloride (45.3 g, 283 mmol) (200 mL) was added dropwise. After the addition was complete, the mixture was stirred overnight at room temperature. TLC showed that the starting material had reacted completely. The reaction mixture was diluted with ethyl acetate (500 mL), and the reaction was quenched by adding water (500 mL) dropwise while cooling in an ice bath. The mixture was separated, and the aqueous phase was extracted once more with ethyl acetate (200 mL). The combined organic phases were washed with water (200 mL) and then with saturated brine (200 mL). The crude product was dried with anhydrous sodium sulfate, filtered, and concentrated to obtain 43 g of a pale yellow oily substance. Column separation (petroleum ether/ethyl acetate = 5/1) yielded 37 g of (S)-1-methoxypropyl-2-yl-4-toluenesulfonyl ester, a pale yellow oily substance, with a yield of 65.1%. MS (ESI): m/z 245.1 (M+H) + . 

[0105]Step 3: Synthesis of (1r,4R)-N 

1 -((R)-1-methoxypropyl-2-yl)cyclohexane-1,4-diamine 

[0106](S)-1-methoxypropyl-2-yl 4-toluenesulfonyl ester (5 g, 20.5 mmol) and trans-1,4-cyclohexanediamine (5.84 g, 51.2 mmol) were added to 50 mL of acetonitrile and heated to 90 °C overnight. The reaction was monitored by TLC until complete. After cooling, the reaction solution was filtered, the filtrate was concentrated, and the residue was dissolved in dichloromethane and separated by silica gel stirring column (dichloromethane/methanol = 10/1) to give 2.5 g of the pale yellow liquid compound (1r,4R)-N 

1 -((R)-1-methoxypropyl-2-yl)cyclohexane-1,4-diamine, yield 65%, MS (ESI): m/z 187.3 (M+H) + . 

[0107]Step 4: Synthesis of tert-butyl 5-bromothiazol-2-ylcarbamate 

[0108]105 g (403 mmol) of 5-bromothiazol-2-amine hydrobromide was suspended in 500 mL of tetrahydrofuran. Dimethylaminopyridine (2.41 g, 20 mmol) was added, resulting in a white turbidity. A tetrahydrofuran solution of di-tert-butyl dicarbonate (105.6 g, 484.6 mmol) was slowly added dropwise, and the reaction was allowed to proceed at room temperature for two days. The reaction solution was concentrated and dissolved in 300 mL of dichloromethane. The solution was mixed with silica gel and separated by column chromatography (petroleum ether/ethyl acetate = 10/1-6/1 gradient elution) to give 45 g of off-white solid, yield 40%. MS (ESI): m/z 278.98 (M+H) + . 

[0109]Step 5: Synthesis of tert-butyl 4-bromothiazol-2-ylcarbamate 

[0110]A 200 mL solution of diisopropylamine (64 mL, 446 mmol) in tetrahydrofuran was added to a dry three-necked flask. Under nitrogen protection, the mixture was cooled to 0 °C, and n-butyllithium (2.5 M, 173 mL, 431.7 mmol) was added dropwise. The reaction was allowed to proceed for 1 hour after the addition was complete. Then, a 400 mL solution of 5-bromothiazol-2-ylcarbamate in tetrahydrofuran was added dropwise at 0 °C. The reaction was allowed to proceed for 2 hours after the addition was complete. TLC showed that the reaction was complete. At 0℃, ice water (5 mL) was slowly added dropwise to quench the reaction. After stirring for 30 minutes, saturated ammonium chloride (500 mL) aqueous solution was added. The mixture was separated, and the aqueous layer was extracted with dichloromethane (2 × 300 mL). The organic layers were combined, washed with saturated brine, dried with anhydrous sodium sulfate, filtered, concentrated, and recrystallized from petroleum ether:ethyl acetate = 30:1. 31 g of tert-butyl 4-bromothiazol-2-ylcarbamate was obtained as a white solid, yield 77.5%. MS (ESI): m/z 278.98 (M+H) + . 

[0111]Step Six: Synthesis of Methyl 4-cyano-tetrahydro-2H-pyran-4-carbonate 

[0112]Methyl cyanoacetate (39.1 g, 395.3 mmol) and 2,2-dibromoethyl ether (100 g, 434.8 mmol) were added to 600 mL of dimethylformamide, followed by DBU (90 g, 593 mmol). The mixture was heated to 85 °C and reacted for 3 hours. TLC showed that the starting material reacted completely. The solid was filtered off, washed with ethyl acetate (2 × 300 mL), and the mother liquor was concentrated to obtain a brown oily substance. The oil was distilled under reduced pressure at an internal temperature of 65-70 °C, and the fraction collected was a colorless liquid. Crystallization was observed to give 42 g of a white solid, 4-cyano-tetrahydro-2H-pyran-4-carbonate. Yield: 62.8%, MS (ESI): m/z 178.2 (M+H) + . 

[0113]Step 7: Synthesis of 4-(hydroxymethyl)-tetrahydro-2H-pyran-4-carboxynitrile 

[0114]4-Cyano-tetrahydro-2H-pyran-4-carbonate methyl ester (42 g, 248.4 mmol) was dissolved in 400 mL of ethylene glycol dimethyl ether and 40 mL of methanol. The mixture was cooled to 0 °C in an ice bath, and sodium borohydride (11.1 g, 149 mmol) was added in portions. After the addition was complete, the mixture was allowed to rise to room temperature and stirred for 16 hours. The reaction was completed by TLC. The reaction solution was concentrated, and methanol was added to quench excess sodium borohydride. The solution was then concentrated again. Column chromatography (petroleum ether/ethyl acetate = 5/1) yielded 28 g of 4-(hydroxymethyl)-tetrahydro-2H-pyran-4-carboxynitrile, a pale yellow oil, yield: 79.5%, MS (ESI): m/z 142.1 (M+H) + . 

[0115]Step 8: Synthesis of tert-butyl (4-bromothiazolyl)((4-cyanotetrahydro-2H-pyran-4-yl)methyl)carbamate 

[0116]4-(hydroxymethyl)-tetrahydro-2H-pyran-4-carboxynitrile, 4-bromothiazol-2-ylcarbamate tert-butyl ester, and triphenylphosphine were added to anhydrous tetrahydrofuran (THF) and cooled to 0°C. Diisopropyl azodicarbonate (DIAD) was added dropwise. The mixture was stirred at room temperature for 10 minutes, then heated to 40°C overnight. The reaction solution was concentrated, and the residue was dissolved in dichloromethane. The solution was mixed with silica gel and separated by column chromatography (petroleum ether/ethyl acetate = 50/1, 30/1, 20/1) to obtain (4-bromothiazol-2-yl)((4-cyanotetrahydro-2H-pyran-4-yl)methyl)carbamate tert-butyl ester, a white solid of 365 mg, yield 50%. MS (ESI): m/z 402.1 (M+H) + . 

[0117]Step Nine: Synthesis of tert-butyl (4-(5-chloro-2-fluoropyridin-4-yl)thiazolyl)((4-cyano-tetrahydro-2H-pyran-4-yl)methyl)carbamate 

[0118]5-Chloro-2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborhexacyclopentan-2-yl)pyridine and sodium carbonate were added to a mixture of dimethyl ether/H₂O 

/ dioxane. The system was purged with nitrogen twice. Then, tert-butyl (4-bromothiazolyl)((4-cyanotetrahydro-2H-pyran-4-yl)methyl)carbamate and tetraphenylphosphine palladium Pd(pph 3 ) 

4 were added . The system was purged with nitrogen three times. The temperature was then raised to 70°C and the reaction was carried out for 6 hours. TLC showed that only half of the starting material remained. Heating was then stopped and the reaction was terminated. The reaction solution was cooled to room temperature, ethyl acetate and methanol were added, and the mixture was filtered. The filter cake was washed with ethyl acetate, the filtrate was concentrated, and the residue was dissolved in dichloromethane. The residue was washed with saturated brine, separated, and the organic phase was dried over anhydrous sodium sulfate. The mixture was filtered, and silica gel was added for mixing. The sample was separated by column chromatography (petroleum ether/ethyl acetate = 30/1) to give 3.2 g of (4-(5-chloro-2-fluoropyridin-4-yl)thiazolyl)((4-cyano-tetrahydro-2H-pyran-4-yl)methyl)carbamate, a white foamy solid, with a yield of 55%. MS (ESI): m/z 453.1 (M+H) + . 

[0119]Step 10: Synthesis of 4-(((4-(5-chloro-2-(((1R,4r)-4-(((R)-1-methoxypropyl-2-yl)amino)cyclohexyl)amino)pyridin-4-yl)thiazolyl)amino)methyl)tetrahydro-2H-pyran-4-carboxynitrile 

[0120]The tert-butyl carbamate (4-(5-chloro-2-fluoropyridin-4-yl)thiazolyl)((4-cyano-tetrahydro-2H-pyran-4-yl)methyl)carbamate (3.2 g, 7.1 mmol) and (1r,4R)-N 

1 -((R)-1-methoxypropyl-2-yl)cyclohexane-1,4-diamine (3.9 g, 21.2 mmol) and diisopropylethylamine (DIPEA) were added to 30 mL of dimethyl sulfoxide. Under nitrogen protection, the mixture was heated to 100-110 °C and reacted for two days. The reaction was monitored by TLC and LCMS. The starting material (4-(5-chloro-2-fluoropyridin-4-yl)thiazolyl)((4-cyano-tetrahydro-2H-pyran-4-yl)methyl)carbamate tert-butyl ester had completely disappeared, with some BOC-free intermediate remaining. The reaction was stopped, and the reaction solution was cooled and diluted with ethyl acetate (60 mL). Water (150 mL) was added under ice bath. The mixture was separated, and the aqueous layer was extracted again with ethyl acetate (2 × 50 mL). The organic layers were combined, washed with saturated brine (100 mL), dried with anhydrous sodium sulfate, filtered, and concentrated to obtain a crude product of yellowish-brown oil. Column separation (acetonitrile/water/trifluoroacetic acid = 80/20/0.001) yielded 700 mg of 4-(((4-(5-chloro-2-(((1R,4r)-4-(((R)-1-methoxypropyl-2-yl)amino)cyclohexyl)amino)pyridin-4-yl)thiazolyl)amino)methyl)tetrahydro-2H-pyran-4-carboxynitrile, a pale yellow solid. Yield: 19.1%. ¹H NMR (400 MHz, CDCl₃ 

) )δ8.06(s,1H),7.38(s,1H),6.97(s,1H),5.92(brs,1H),4.45(d,J=8.0Hz,1H),4.02(dd,J 1=2.8Hz, J2=12Hz,2H),3.71-3.74(m,4H),3.54-3.56(m,1H),3.35(s,3H),3.21-3.25(m,2 H),3.00-3.05(m,1H),2.50-2.60(m,1H),2.15(d,J=9.6Hz,2H),2.04-2.07(m,1H),1.95(d ,J=12.8Hz,3H),1.74-1.82(m,3H),1.10-1.30(m,4H),1.00(d,J=.4Hz,3H),MS(ESI):m/z 519.3(M+H) + .

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=US376039987&_cid=P12-MJ18R0-12787-1

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

//Tambiciclib, cyclin-dependent kinase inhibitor, antineoplastic, GFH 009, JSH 009, XDZ7VK8CXC, Orphan Drug , Acute myeloid leukaemia, Peripheral T-cell lymphoma

Talorasib


Talorasib

CAS 2648584-48-7

MFC32H34ClFN6O3 MW605.10

[(2S)-4-[(7S)-7-(8-chloronaphthalen-1-yl)-2-{[(2S)-1-methylpyrrolidin-2-yl]methoxy}-7,8-dihydro-5H-pyrano[4,3-d]pyrimidin-4-yl]-1-(2-fluoroprop-2-enoyl)piperazin-2-yl]acetonitrile
Kirsten rat sarcoma viral oncogene homologue (KRAS)inhibitor, antineoplastic, 727W6T7DPK

SYN

CN115385923

https://patentscope.wipo.int/search/en/detail.jsf?docId=CN380619664&_cid=P20-MJ0TAW-52678-1

Preparation Example 1: Synthesis of the compound shown in formula (I)
        (1) Synthesis of Compound 1
        Synthetic route of compound 1:
 Synthesis of compound 1-j
        1-Bromo-8-chloronaphthalene (500 mg, 2.07 mmol) was dissolved in THF (20 mL), cooled to -78 °C, and n-BuLi (2.5 M, 1.66 mL, 4.14 mmol) was added dropwise under nitrogen protection. After the addition was complete, the mixture was stirred at -78 °C for 10 min, and then DMF (800 μL, 10.35 mmol) was added dropwise at -78 °C. After the addition was complete, the reaction mixture was stirred at -78 °C for 30 min, then heated to room temperature and stirred for 2 h. The reaction was quenched with 50 mL of saturated ammonium chloride solution and extracted with ethyl acetate (50 mL * 2). The organic phase was washed with saturated brine (50 mL * 2), treated with anhydrous sodium sulfate, filtered, and concentrated to obtain the crude product. The crude product was purified by rapid column chromatography (EA/PE = 1/10) to give compound 1-j (330 mg, 84% yield) as a white solid. LC-MS (ESI): m/z=191.0[M+H] + ; 1 H NMR (400MHz, CDCL 3 ):δ11.31(s,1H),8.03(dd,1H,J 1 =1.2Hz,J 2 =8.4Hz), 7.92(dd,1H,J 1 =1.2Hz,J 2 =7.2Hz),7.86(1H,J=8.4Hz),7.70(dd,1H,J 1 =1.2Hz,J 2 =7.6Hz), 7.59(t,1H,J=7.6Hz), 7.47(t,1H,J=8Hz).
        Synthesis of compound 1-i
        At room temperature, NaH (60%, 242 mg, 6.05 mmol) was added to 6 mL of THF. Then, methyl acetoacetate (543 μL, 5.04 mmol) was added under nitrogen atmosphere at room temperature. The mixture was stirred for 30 minutes under nitrogen atmosphere at room temperature, and then n-BuLi (2.5 M, 2.4 mL, 6.05 mmol) was added dropwise at -15 °C to -10 °C. After the addition was complete, the mixture was maintained at this temperature for 30 minutes, and then a 10 mL solution of compound 1-j (320 mg, 1.68 mmol) in THF was added dropwise. After the addition was complete, the mixture was stirred at low temperature (-10 °C to 0 °C) for 2 hours, then quenched with saturated ammonium chloride solution (50 mL), and then extracted with ethyl acetate (50 mL x 2). The organic phase was washed with saturated brine (50 mL * 2), treated with anhydrous sodium sulfate, filtered, and concentrated to obtain the crude product. The crude product was purified by rapid column chromatography (EA/DCM = 1/10) to give compound 1-i (510 mg, 99% yield) as a white solid. LC-MS (ESI): m/z = 329.1 [M + Na]  ; 1H NMR (400 MHz, CDCl₂) 3 ): δ8.06(d,1H,J=6.4Hz),7.79(d,2H,J=8Hz),7.58(dd,1H,J 1 =7.6Hz,J 2 =1.6Hz),7.53(t,1H,J=7.6Hz),7.34(t,1H,J=7.6Hz),6.91(dd,1H,J 1 =9.2Hz, J 2 =2.4Hz),3.74(s,3H),3.54(s,2H),3.36(dd,1H,J 1 =18Hz,J 2 =1.6Hz),3.24(d,1H,J=3.6Hz),2.85-2.75(m,1H).
        Synthesis of compound 1-h
        Compound 1-i (510 mg, 1.66 mmol) was dissolved in DCM (18 mL) at room temperature, followed by the addition of DMF-DMA (245 μL, 1.83 mmol) under nitrogen atmosphere at room temperature. After stirring the reaction mixture for 45 minutes at room temperature, BF was added. 3 Et 2 O (232 μL, 1.83 mmol). After addition, the mixture was stirred at room temperature for 1 hour, then diluted with 100 mL of ethyl acetate. The organic phase was then sequentially quenched with saturated NaHCO3. 3 The sample was washed with a solution (100 mL) and saturated saline solution (100 mL * 2), treated with anhydrous sodium sulfate, filtered, and concentrated to obtain the crude compound 1-h (520 mg). The crude product required no purification and was used directly in the next reaction. LC-MS (ESI): m/z = 317.1 [M+1] + .
        Synthesis of compound 1-g
        Compound 1-h (520 mg, 1.64 mmol) was dissolved in THF (20 mL) at room temperature, and then tri-sec-butylborohydride (1 M, 1.64 mL, 1.64 mmol) was added dropwise under nitrogen atmosphere at -78 °C. After addition, the mixture was stirred at -78 °C for 1 hour, the reaction was quenched with saturated ammonium chloride solution (50 mL), extracted with ethyl acetate (50 mL * 2), the organic matter was washed with saturated brine (50 mL * 2), treated with anhydrous sodium sulfate, filtered, and concentrated to obtain the crude product. The crude product was purified by rapid column chromatography (PE/EA = 4/1) to give compound 1-g (338 mg, 65% yield) as a yellow oil. LC-MS (ESI): m/z = 319.0 [M+1] + .
        Synthesis of compound 1-f
        Compound 1-g (338 mg, 1.06 mmol) was dissolved in methanol (20 mL) at room temperature. Then, under nitrogen atmosphere at 0 °C, sodium methoxide (286 mg, 5.3 mmol) and compound 2-methyl-2-mercaptourea sulfate (265 mg, 0.954 mmol) were added sequentially. After the addition was complete, the mixture was brought to room temperature and stirred for 20 hours. The pH of the reaction solution was adjusted to 5 with 1 N dilute hydrochloric acid, and a solid precipitated. The solid was filtered, the filter cake was washed with water (5 mL * 2), and the solid was collected and dried under vacuum to give crude product 1-f (313 mg) as a white solid. LC-MS (ESI): m/z = 359.1 [M+1] + .
        Synthesis of compound 1-e
        Compound 1-f (313 mg, 0.87 mmol) was dissolved in DCM (10 mL) at room temperature. Then, under nitrogen atmosphere in an ice-water bath, DIPEA (431 μL, 2.61 mmol) and trifluoromethanesulfonic anhydride (219 μL, 1.31 mmol) were added sequentially. After addition, the reaction mixture was stirred in an ice-water bath for 2 hours, quenched with saturated sodium bicarbonate solution (50 mL), extracted with DCM (50 mL x 2), and the organic phase was treated with anhydrous sodium sulfate, filtered, and concentrated to obtain a crude product. The crude product was purified by rapid column chromatography (EA/PE = 1/10) to give compound 1-e (83 mg, 16% yield in 2 steps) as a white solid. LC-MS (ESI): m/z = 491.0 [M+1] + .
        Synthesis of compound 1-d
        Compound 1-e (83 mg, 0.169 mmol) was dissolved in DMF (10 mL) at room temperature, followed by the sequential addition of DIPEA (84 μL, 0.507 mmol) and (S)-2-cyanomethylpiperazine-1-carboxylate hydrochloride (59.9 mg, 0.203 mmol). After addition, the mixture was stirred for 1 hour at 100 °C under nitrogen protection, cooled to room temperature, quenched with saturated brine (50 mL), and extracted with ethyl acetate (50 mL x 2). The organic phase was washed with saturated brine (50 mL x 3), treated with anhydrous sodium sulfate, filtered, and concentrated to obtain a crude product. The crude product was purified by rapid column chromatography (EA/PE = 1/1) to give compound 1-d (101 mg, 99% yield) as a white solid. LC-MS (ESI): m/z = 600.2 [M+1] + .
        Synthesis of compound 1-c
        Compound 1-d (101 mg, 0.168 mmol) was dissolved in ethyl acetate (10 mL) at room temperature, followed by the addition of MCPBA (85%, 88.4 mg, 0.437 mmol) at room temperature. After addition, the mixture was stirred at room temperature for 2 hours, quenched with saturated sodium bicarbonate solution (20 mL), extracted with ethyl acetate (25 mL x 2), and the organic phase was treated with anhydrous sodium sulfate, filtered, and concentrated to obtain a crude product. The crude product was purified by rapid column chromatography (EA/PE = 1/4) to give compound 1-c (88 mg, 82% yield) as a white solid. LC-MS (ESI): m/z = 632.1 [M+1] + .
        Synthesis of compound 1-b
        Compound 1-c (88 mg, 0.139 mmol) was dissolved in toluene (10 mL) at room temperature. The reaction mixture was then cooled to 0 °C, and N-methylprolyl (29 μL, 0.243 mmol) and t-BuONa (27 mg, 0.278 mmol) were added sequentially. After the addition was complete, the reaction mixture was stirred for 0.5 hours under nitrogen in an ice-water bath, quenched with water (20 mL), and extracted with ethyl acetate (30 mL * 2). The organic phase was treated with anhydrous sodium sulfate, filtered, and concentrated to obtain a crude product. The crude product was purified by rapid column chromatography (MeOH/DCM = 1/10) to give compound 1-b (78 mg, 84% yield) as a white solid. LC-MS (ESI): m/z = 667.3 [M+1] + .
        Synthesis of compound 1-a
        Compound 1-b (72 mg, 0.108 mmol) was dissolved in methanol (50 mL) at room temperature. The reaction solution was then cooled to -78 °C, purged twice with nitrogen, and then Pd/C (150 mg) and ZnBr were added. 2 (24.3 mg, 0.108 mmol), the reaction mixture was purged with hydrogen three times, brought to room temperature, and stirred under hydrogen atmosphere for 5 hours. The reaction mixture was filtered and concentrated to obtain a crude product, which was then purified by a rapid separation column (MeOH/DCM = 1:4) to give compound 1-a (20 mg, 35% yield) as a white solid. LC-MS (ESI): m/z = 533.0 [M+1] + .
        Synthesis of Compound 1
        At room temperature, compound 2-fluoroacrylic acid (5.1 mg, 0.0563 mmol) was dissolved in DMF (2 mL). Then, at 0 °C, HATU (25.6 mg, 0.0675 mmol) and DIPEA (18.6 μL, 0.113 mmol) were added sequentially. After the addition was complete, the reaction mixture was stirred at 0 °C under nitrogen for 20 minutes. Then, a DMF solution of compound 1-a (20 mg, 0.0375 mmol) (3 mL) was added to the above reaction mixture. The mixture was brought to room temperature and stirred for another 5 hours. The reaction mixture was quenched with saturated brine (20 mL), extracted with ethyl acetate (25 mL * 2), washed with saturated brine (50 mL * 3), treated with anhydrous sodium sulfate, filtered, and concentrated to obtain the crude product. The crude product was purified by PREP-TLC (MeOH/DCM = 1/10) to obtain compound 1 (6 mg, 26% yield) as a white solid. LC-MS (ESI): m/z=605.2[M+1] + ; 1 H NMR (400MHz, CDCl 3 ): δ7.99-7.93(m,1H),7.83(t,2H,J=8.8Hz),7.62-7.49(m,2H),7.36(t,1H,J=7.6Hz),6.5 5-6.44(m,1H),5.51-5.31(m,1H),5.25(d,1H,J=16.8Hz),5.02-4.93(m,1H),4.82(dd,1H,J 1 =2.4Hz, J 2 =13.6Hz),4.48-4.38(m,1H),4.32-4.19(m,1H),4.17-4.04(m,1H),4. 00(d,1H,J=14Hz),3.87-3.70(m,1H),3.66-3.36(m,2H),3.31-3.16(m ,2H),3.14-2.98(m,1H),2.96-2.69(m,4H),2.59(d,3H,J=18Hz),2.52 -2.34(m,1H),2.15-2.06(m,1H),1.87-1.74(m,2H),0.93-0.76(m,2H).
        (2) Resolution of compound 1
        Synthesis of compounds 1-1 and 1-2
         
        The challenge lay in obtaining the compound shown in formula (I) through chiral resolution of compound 1. Despite trying various conditions, the two isomers of compound 1 could not be separated on a thin-layer chromatography plate, making separation impossible by thin-layer chromatography. Even in HPLC, the separation of the two isomers of compound 1 was poor, making separation impossible by preparative HPLC. Finally, chiral resolution had to be resorted to. After trying several conditions (as shown in Table 1 below), chiral resolution condition 9 was finally found, which enabled the separation of the compound shown in formula (I) and its diastereomers.

SYN

 WO-2021109737-A1

SYN

WO-2022081655-A1

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022081655&_cid=P20-MJ0T2K-48115-1

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

[1]. Shanghai Yingli Pharmaceutical Co., Ltd. Preparation of oxygen-containing heterocyclic compounds as Ras inhibitor for prevention and/or treatment of Ras mediated diseases. China, CN115385923 A 2022-11-25

///////////talorasib, antineoplastic, 727W6T7DPK