New Drug Approvals

Home » 2025 » December

Monthly Archives: December 2025

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,805,623 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Alizulatide vixocianine


Alizulatide vixocianine

CAS 2924859-51-6

MF C115H145N17O25S, 2,197.55

L-Serine, N-[6-[2-[7-[1,3-dihydro-1,1-dimethyl-3-(4-sulfobutyl)-2H-benz[e]indol-2-ylidene]-1,3,5-heptatrien-1-yl]-1,1-dimethyl-1H-benz[e]indolio]-1-oxohexyl]-L-α-glutamyl-L-α-glutamyl-L-α-aspartyl-3-cyclohexyl-L-alanyl-L-phenylalanyl-D-seryl-D-arginyl-L-tyrosyl-L-leucyl-L-tryptophyl-, inner salt

4-[2-[7-[3-[6-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2R)-1-[[(2R)-5-carbamimidamido-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(1S)-1-carboxy-2-hydroxyethyl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-cyclohexyl-1-oxopropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-6-oxohexyl]-1,1-dimethylbenzo[e]indol-3-ium-2-yl]hepta-2,4,6-trienylidene]-1,1-dimethylbenzo[e]indol-3-yl]butane-1-sulfonate

diagnostic imaging agent, 8M3Q8XZ6MJ

Alizulatide vixocianine is a polypeptide that can be discovered through polypeptide screening. Polypeptide screening is a research tool mainly based on immunoassay methods to identify active polypeptides. It can be applied to protein interaction, functional analysis, antigenic epitope screening, especially in the fields of active molecule research and development.

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

/////////alizulatide vixocianine, diagnostic imaging agent, 8M3Q8XZ6MJ

Aleniglipron


Aleniglipron

CAS 2685823-26-9

MF C49H55FN9O6P MW916.0 g/mol

3-[(1S,2S)-1-[2-[(4S)-3-[3-[4-diethylphosphoryl-3-(methylamino)phenyl]-2-oxoimidazol-1-yl]-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-6,7-dihydro-4H-pyrazolo[4,3-c]pyridine-5-carbonyl]-5-(oxan-4-yl)indol-1-yl]-2-methylcyclopropyl]-4H-1,2,4-oxadiazol-5-one

glucagon-like peptide 1 (GLP-1) receptor agonist, GSBR-1290, GSBR 1290, Z6XCL6R9SX

Aleniglipron (development code GSBR-1290) is a small-molecule GLP-1 agonist developed by Structure Therapeutics.[1] It is delivered orally and is in a Phase II trial as of 2023.[2][3][4] In June 2024, Structure Therapeutics reported positive topline data from a Phase 2a obesity study in which GSBR-1290 demonstrated clinically meaningful and statistically significant placebo-adjusted mean weight loss and generally favorable safety and tolerability results.[5]

  • Aleniglipron Phase 2 Body Composition StudyCTID: NCT07169942Phase: Phase 2Status: Active, not recruitingDate: 2025-10-31
  • A Dose-Range Study of Aleniglipron (GSBR-1290) in Participants Living With Obesity or Overweight With at Least One Weight-related ComorbidityCTID: NCT06703021Phase: Phase 2Status: Active, not recruitingDate: 2025-09-15
  • A Phase 2b, Dose-range Finding Study of the Efficacy and Safety of Multiple Doses of Aleniglipron (GSBR-1290) in Participants Living With Obesity or Overweight With at Least One Weight-related ComorbidityCTID: NCT06693843Phase: Phase 2Status: Active, not recruitingDate: 2025-08-26

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=US367934715&_cid=P10-MJRZ0C-74156-1

Example 2: Synthesis of

3-((1S,2S)-1-(2-((S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridine-5-carbonyl)-5-(tetrahydro-2H-pyran-4-yl)-1H-indol-1-yl)-2-methylcyclopropyl)-1,2,4-oxadiazol-5(4H)-one (Compound 121a)

Step A: (4-bromo-2-fluorophenyl)diethylphosphine oxide

      The mixture of 4-bromo-2-fluoro-1-iodobenzene (2.00 g, 6.60 mmol), diethylphosphine oxide (775 mg, 7.30 mmol), Pd 2(dba) (302 mg, 0.330 mmol) and XantPhos (382 mg, 0.660 mmol) in 40 mL of 1,4-dioxane was sparged with argon. Then triethylamine (1.30 g, 13.2 mmol) was added. The mixture was heated at 60° C. for 12 h under an atmosphere of argon. LCMS showed the reaction was completed. The mixture was concentrated, and the residue was diluted with ethyl acetate (100 mL) and washed with water (50 mL). The organic layer was dried and concentrated. The residue was purified with silica gel column chromatography (PE/EA/methanol=1:2:0.1) to provide (4-bromo-2-fluorophenyl)diethylphosphine oxide (1.50 g, 5.37 mmol, 80.6% yield) as a pale white solid.
      LCMS: m/z=279.0, 281.0 (M+H) +.
       1H NMR (400 MHz, DMSO-d 6) δ 7.63-7.73 (m, 3H), 1.95-2.08 (m, 2H), 1.80-1.92 (m, 2H), 0.80-1.10 (m, 6H).

Step B: (4-bromo-2-(methylamino)phenyl)diethylphosphine oxide

      To a mixture of (4-bromo-2-fluorophenyl)diethylphosphine oxide (360 mg, 1.29 mmol) in 2 mL of methanol was added methylamine (9.8 M in methanol, 4 mL, 39.2 mmol). The mixture was heated at 80° C. for 3 h in a microwave reactor. LCMS showed most of the starting material was consumed. The mixture was concentrated, diluted with ethyl acetate (50 mL), and washed with water (30 mL). The organic layer was dried and concentrated. The resulting residue was purified with silica gel column chromatography (PE/EA/methanol=1:2:0.1) to provide (4-bromo-2-(methylamino)phenyl)diethylphosphine oxide (179 mg, 0.617 mmol, 47.9% yield) as a white solid.
      LCMS: m/z=290.0, 292.0 (M+H) +.
       1H NMR (600 MHz, DMSO-d 6) δ 7.75-7.76 (m, 1H), 7.11 (dd, J=13.2, 8.4 Hz, 1H), 6.63-6.80 (m, 2H), 2.71 (d, J=5.4 Hz, 3H), 1.88-1.94 (m, 4H), 0.90-1.05 (m, 6H).

Step C: tert-butyl (S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-2,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxylate

      The mixture of (4-bromo-2-(methylamino)phenyl)diethylphosphine oxide (310 mg, 1.07 mmol), tert-butyl (S)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-3-(2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxylate (428 mg, 0.970 mmol), CuI (278 mg, 1.46 mmol), potassium carbonate (268 mg, 1.94 mmol), and (1S,2S)—N 1,N 2-dimethylcyclohexane-1,2-diamine (208 mg, 1.46 mmol) in NMP (25 mL) was heated at 130° C. for 3 h under an atmosphere of argon. LCMS showed the reaction was completed. The mixture was added ethyl acetate (100 mL) and washed with water (50 mL*3). The organic layer was dried and concentrated. The residue was purified with silica gel column chromatography (PE/EA/methanol=1:4:0.3) to provide tert-butyl (5)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-2,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxylate (530 mg, 0.810 mmol, 84.0% yield) as a pale yellow solid. LCMS: m/z=651.3 (M+H) +.
       1H NMR (600 MHz, DMSO-d 6) δ 7.73 (q, J=4.8 Hz, 1H), 7.35 (d, J=3.0 Hz, 1H), 7.26 (dd, J=13.2, 8.4 Hz, 1H), 7.11 (d, J=6.6 Hz, 2H), 6.98 (s, 1H), 6.89 (d, J=7.8 Hz, 1H), 6.86 (s, 1H), 5.12 (br. s, 1H), 4.13-4.34 (m, 1H), 3.02-3.19 (m, 1H), 2.69-2.74 (m, 4H), 2.61-2.69 (m, 1H), 2.19 (s, 6H), 1.89-1.95 (m, 4H), 1.43 (s, 9H), 1.17-1.18 (m, 3H), 0.95-1.05 (m, 6H).

Step D: (5)-1-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-3-(2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridin-3-yl)-1,3-dihydro-2H-imidazol-2-one hydrochloride

      To a mixture of tert-butyl (S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-2,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxylate (520 mg, 0.800 mmol) in 1,4-dioxane (6 mL) was added hydrogen chloride (4 M in 1,4-dioxane, 12 mL, 48.0 mmol).
      The mixture was stirred at room temperature for 3 h. LCMS showed the reaction was completed. The mixture was concentrated, and the residue was dispersed in 40 mL of ethyl ether. The resulting solid was collected and dried in vacuo to provide (S)-1-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-3-(2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridin-3-yl)-1,3-dihydro-2H-imidazol-2-one hydrochloride (430 mg, 0.730 mmol, 91.7% yield) as a pale yellow solid.
      LCMS: m/z=551.2 (M+H) +.
       1H NMR (400 MHz, DMSO-d 6) δ 10.14 (s, 1H), 9.46-9.53 (m, 1H), 7.39 (d, J=3.2 Hz, 1H), 7.27 (dd, J=12.8, 8.4 Hz, 1H), 7.13 (d, J=6.4 Hz, 2H), 6.93 (d, J=3.2 Hz, 1H), 6.90 (dt, J=8.4, 2.0 Hz, 1H), 6.86-6.87 (m, 1H), 4.55-4.59 (m, 2H), 3.58-3.62 (m, 1H), 3.28-3.33 (m, 1H), 3.03-3.10 (m, 1H), 2.90-3.05 (m, 1H), 2.73 (s, 3H), 2.20 (d, J=2.0 Hz, 6H), 1.88-1.97 (m, 4H), 1.36 (d, J=6.8 Hz, 3H), 0.90-1.05 (m, 6H).

Step E: 3-((1S,2S)-1-(2-((S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino) phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridine-5-carbonyl)-5-(tetrahydro-2H-pyran-4-yl)-1H-indol-1-yl)-2-methylcyclopropyl)-1,2,4-oxadiazol-5(4H)-one

      To a mixture of 1-((1S,2S)-2-methyl-1-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)cyclopropyl)-5-(tetrahydro-2H-pyran-4-yl)-1H-indole-2-carboxylic acid (272 mg, 0.710 mmol) and DMF (7 mL) in a 50 mL flask (flask A) were added HATU (810 mg, 2.13 mmol) and triethylamine (1.45 g, 14.3 mmol). The mixture was stirred at room temperature for 10 mins. In another 50 mL flask (flask B), (5)-1-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-3-(2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridin-3-yl)-1,3-dihydro-2H-imidazol-2-one hydrochloride (420 mg, 0.710 mmol) and triethylamine (2.90 g, 28.7 mmol) in 7 mL of DMF was stirred at room temperature for 10 mins. Then the mixture in flask B was added into flask A dropwise. The resulting mixture was stirred at room temperature for 12 h. LCMS showed most of the starting material was consumed. The mixture was diluted with DCM (100 mL) and washed with water (50 mL*3). The organic layer was dried and concentrated. The residue was purified with Prep-HPLC (0.01% hydrochloric acid in water and acetonitrile) to provide 3-((1S,2S)-1-(2-((S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridine-5-carbonyl)-5-(tetrahydro-2H-pyran-4-yl)-1H-indol-1-yl)-2-methylcyclopropyl)-1,2,4-oxadiazol-5 (4H)-one (290 mg) as a white solid.
      LCMS: m/z=916.4 (M+H) +.
       1H NMR (400 MHz, DMSO-d 6, 80° C.) δ 11.58 (br. s, 1H), 7.66 (br. s, 1H), 7.52 (s, 1H), 7.42 (d, J=8.4 Hz, 1H), 7.05-7.30 (m, 5H), 6.70-6.95 (m, 4H), 5.56 (br. s, 1H), 4.45 (br. s, 1H), 3.95-3.99 (m, 2H), 3.40-3.70 (m, 3H), 2.83-2.90 (m, 3H), 2.60-2.80 (m, 3H), 2.22 (d, J=1.6 Hz, 6H), 1.88-1.96 (m, 4H), 1.58-1.80 (m, 7H), 1.43 (br. s, 3H), 1.17 (br. s, 3H), 0.95-1.10 (m, 6H).

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

References

  1.  Mao, Ting; Meng, Qinghua; Zhang, Haizhen; Zhang, Jinqiang J.; Shi, Songting; Guan, Zhibo; Jiang, Xinglong; Zhang, Fang; Lei, Hui; Lin, Xichen (20 June 2023). “760-P: Discovery of GSBR-1290, a Highly Potent, Orally Available, Novel Small Molecule GLP-1 Receptor Agonist”. Diabetes72 (Supplement_1) 760-P. doi:10.2337/db23-760-PS2CID 259430363.
  2.  “Structure Therapeutics Initiates Phase 2a Study of Oral GLP-1 agonist GSBR-1290 for the Treatment of Type 2 Diabetes and Obesity”BioSpace. 25 May 2023. Retrieved 4 November 2023.
  3.  “Structure announces positive results from oral GLP-1 receptor agonist gsbr-1290”Bariatric News. 2 October 2023. Retrieved 4 November 2023.
  4.  Satija, Bhanvi (29 September 2023). “Structure Therapeutics surges as early data from obesity pill tops expectations”Reuters. Retrieved 4 November 2023.
  5.  “Structure Therapeutics Reports Positive Topline Data from its Phase 2a Obesity Study and Capsule to Tablet PK Study for its Oral Non-Peptide Small Molecule GLP-1 Receptor Agonist GSBR-1290”BioSpace. 2024-06-03. Retrieved 2024-10-24.
Legal status
Legal statusInvestigational
Identifiers
IUPAC name
CAS Number2685823-26-9
PubChem CID164809721
DrugBankDB18551
UNIIZ6XCL6R9SX
Chemical and physical data
FormulaC49H55FN9O6P
Molar mass916.008 g·mol−1
InChI

//////////Aleniglipron, glucagon-like peptide 1 (GLP-1) receptor agonist, GSBR-1290, GSBR 1290, Z6XCL6R9SX

Limnetrelvir


Limnetrelvir

CAS 2923500-04-1

MF C27H23F4N5O4 MW 557.50

N-[(3R)-1-[4-cyano-2-(morpholine-4-carbonyl)-6-(trifluoromethyl)phenyl]pyrrolidin-3-yl]-8-fluoro-2-oxo-1H-quinoline-4-carboxamide

N-{(3R)-1-[4-cyano-2-(morpholine-4-carbonyl)-6-
(trifluoromethyl)phenyl]pyrrolidin-3-yl}-8-fluoro-2-oxo1,2-dihydroquinoline-4-carboxamide
antiviral, ABBV-903, ABBV 903, 4TPS988XGG

Limnetrelvir (ABBV-903) is a MPro inhibitor. Limnetrelvir could be used in antiviral research.

SYN

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=4D458E543A941751578F87216FA39801.wapp1nA?docId=WO2024081351&_cid=P10-MJQJMM-46773-1#detailMainForm:MyTabViewId:PCTDESCRIPTION

Example 1 – Synthesis of Compound (2) (R)-N-(1-(4-cyano-2-(morpholine-4-carbonyl)-6-(trifluoromethyl)phenyl)pyrrolidin-3-yl)-8-fluoro-2-oxo-1,2-dihydroquinoline-4-carboxamide

Compound 2F – Synthesis of 8-fluoro-2-oxo-1,2-dihydroquinoline-4-carboxylic acid

[00035] A suspension of 7-fluoroindoline-2,3-dione (55 g, 333 mmol), malonic acid (41.6 g, 400 mmol) and sodium acetate (68.3 g, 833 mmol) in acetic acid (500 mL) was heated at 112 °C overnight. The reaction mixture was cooled to room temperature and poured into cold 0.4 M aqueous HCl (2200 mL). The precipitate was collected by filtration and rinsed thoroughly with ice-cold water (~250 mL) followed by methyl tert-butyl ether (~100 mL) and then concentrated twice from acetonitrile with high vacuum. The materials were largely dissolved into 1 M aqueous NaOH (370 mL) and filtered through diatomaceous earth with a 0.1 M aqueous NaOH (50 mL) rinse. Then the filtrate was washed thrice with dichloromethane (3 x 200 mL) which removed the color. After this aqueous layer was filtered again through diatomaceous earth, it was acidified by the dropwise addition of concentrated aqueous HCl (33 mL, ~0.4 moles). The material was collected by filtration. After prolonged drying under heat and vacuum, the material was treated with water (1 L) and the mixture was made acidic by the addition of a small amount of 1 M aqueous HCl. The suspension was heated to 80 °C and then allowed to slowly cool to room temperature. The resulting material was collected by filtration, washed with 0.01 M aqueous HCl (150 mL) and dried under vacuum at 80 °C to provide the title compound (2F).1H NMR (500 MHz, DMSO-d6) δ ppm 14.00 (bs, 1H), 12.07 (bs, 1H), 8.00 (dd, J = 8.2, 1.2 Hz, 1H), 7.49 (ddd, J = 11.0, 8.1, 1.2 Hz, 1H), 7.23 (ddd, J = 8.2, 8.1, 5.2 Hz, 1H), 6.95 (s, 1H); 13C NMR (101 MHz, DMSO-d6, 90 °C) δ ppm 165.75 – 165.73 (m), 160.30, 148.75 (d, J = 246.0 Hz), 140.85 – 140.80 (m), 128.11 (d, J = 13.7 Hz), 123.85, 121.60 – 121.53 (m), 121.53 – 121.43 (m), 117.70 – 117.65 (m), 115.33 (d, J = 17.2 Hz); 19F NMR (376 MHz, DMSO-d6, 90 °C) δ ppm -130.47 (dd, J = 10.9, 5.3 Hz); MS (APCI, M+H+) m/z 208.

Compound 2G – Synthesis of (R)-N-(1-(4-cyano-2-(morpholine-4-carbonyl)-6-(trifluoromethyl)phenyl)pyrrolidin-3-yl)-8-fluoro-2-oxo-1,2-dihydroquinoline-4-carboxamide (2)

00036] To a mixture of Compound 2F (29.84 g, 144 mmol) in anhydrous N,N-dimethylformamide (360 mL) was added DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-

methylmorpholinium chloride) (43.17 g, 156 mmol) over twelve minutes at room temperature. After the suspension had been stirred forty minutes, it was added over eight minutes to a suspension of Compound 2E (≤120 mmol) and N-methylmorpholine (16 mL, 146 mmol) in N,N-dimethylformamide (120 mL) with a N,N-dimethylformamide (20 mL) rinse. After forty minutes, the reaction mixture was added to rapidly stirred 0.1 M aqueous K2HPO4 (2.5 L) and extracted four times with 4:1 isopropyl acetate / heptanes then once with isopropyl acetate alone. The product, which had begun to precipitate out from the combined extracts, was separated by decantation and filtration, then washed with dichloromethane. The remaining aqueous phase was extracted twice more with isopropyl acetate and all the organic extracts were combined, then washed with additional 0.1 M aqueous K2HPO4 followed by water, dried (Na2SO4), and filtered. The filtrate was concentrated with the dichloromethane wash of the material collected above. The residue was concentrated, dissolved in acetonitrile / CH2Cl2, filtered, and purified by chromatography on silica (20 to 100% acetonitrile / CH2Cl2). The collected fractions were concentrated to a small volume, and stirred in ethyl acetate overnight.

[00037] The suspension was heated at 70 °C for twenty minutes, then allowed to slowly cool to room temperature. Methyl tert-butyl ether was stirred in, the suspension was cooled to 0 °C, and the purified product was collected by filtration with rinses of 1:1 ethyl acetate / methyl tert-butyl ether followed by methyl tert-butyl ether before being dried under vacuum with heat. The material obtained previously from the early extracts were also stirred in ethyl acetate, heated at 70 °C, then allowed to slowly cool to room temperature. Methyl tert-butyl ether was stirred in, the suspension was cooled to 0 °C, and the purified product was collected by filtration with rinses of 1:1 ethyl acetate / methyl tert-butyl ether rinse followed by methyl tert-butyl ether. The material was dried overnight under vacuum to provide the title compound (2).1H NMR (500 MHz, DMSO-d6) δ ppm 11.96 (s, 1H), 9.03 – 8.84 (m, 1H), 8.21 – 8.18 (m, 1H), 7.98 – 7.93 (m, 1H), 7.56 – 7.50 (m, 1H), 7.49 – 7.43 (m, 1H), 7.21 – 7.15 (m, 1H), 6.66 – 6.59 (m, 1H), 4.51 – 4.40 (m, 1H), 3.73 – 3.55 (m, 6H), 3.54 – 3.22 (m, 6H), 2.29 – 2.18 (m, 1H), 2.07 – 1.95 (m, 1H); 1H NMR (400 MHz, DMSO-d6, 90 °C) δ ppm 11.47 (bs, 1H), 8.77 – 8.47 (m, 1H), 8.09 (d, J = 2.1 Hz, 1H), 7.88 (d, J = 2.1 Hz, 1H), 7.54 (dd, J = 8.1, 1.2 Hz, 1H), 7.39 (ddd, J = 11.0, 8.1, 1.2 Hz, 1H), 7.15 (ddd, J = 8.1, 8.1, 5.1 Hz, 1H), 6.60 (s, 1H), 4.54 – 4.43 (m, 1H), 3.74 – 3.20 (m, 12H), 2.31 – 2.21 (m, 1H), 2.06 – 1.96 (m, 1H); 13C NMR (101 MHz, DMSO-d6, 90 °C) δ

ppm 166.61, 165.97, 161.31, 149.59 (d, J = 246.3 Hz), 148.95, 146.10 – 146.03 (m), 136.00, 135.65, 133.13 (q, J = 6.1 Hz), 128.84 – 128.63 (m), 123.76 (q, J = 273.7 Hz), 122.19, 122.16, 122.12, 121.60, 118.99 – 118.91 (m), 117.75, 116.17 (d, J = 17.3 Hz), 105.57, 66.04, 57.95, 51.06, 50.35, 47.74, 42.35, 31.54; 19F NMR (376 MHz, DMSO-d6) δ ppm -57.54 – -58.10 (m), -130.02 – -130.15 (m); 19F NMR (376 MHz, DMSO-d6, 90 °C) δ ppm -58.37 – -58.97 (m), -130.96 (dd, J = 11.0, 5.1 Hz). MS (APCI, M+H+) m/z 558.

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

/////////limnetrelvir, antiviral, ABBV-903, ABBV 903, 4TPS988XGG

Aficamten


Aficamten

C18H19N5O2, 337.4 g/mol

FDA 2025, APPROVALS 2025, Myqorzo, 12/19/2025, To treat symptomatic obstructive hypertrophic cardiomyopathy

CK-3773274, B1I77MH6K1, BAY-3723113; CK 3773274; CK 274; MYQORZO

N-[(1R)-5-(5-ethyl-1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-1-yl]-1-methylpyrazole-4-carboxamide

  • OriginatorCytokinetics
  • DeveloperBayer; Cytokinetics; Sanofi
  • ClassAmides; Cardiovascular therapies; Heart failure therapies; Indenes; Oxadiazoles; Pyrazoles; Small molecules
  • Mechanism of ActionCardiac myosin inhibitors
  • Orphan Drug StatusYes – Hypertrophic cardiomyopathy
  • RegisteredHypertrophic cardiomyopathy
  • 20 Dec 2025Cytokinetics plans to launch aficamten in the USA in second half of January 2026
  • 19 Dec 2025Registered for Hypertrophic cardiomyopathy in USA (PO)
  • 19 Dec 2025Aficamten carries a black box warning for the risk of heart failure

Aficamten, sold under the brand name Myqorzo, is a medication used for the treatment of symptomatic obstructive hypertrophic cardiomyopathy.[1] It is a cardiac myosin inhibitor[2] developed by Cytokinetics.[3][4]

Aficamten binds directly to the motor domain of cardiac myosin and prevents it from entering the force-producing state.[5] This lowers cardiac contractility, leading to reduced left ventricular outflow tract obstruction in people with hypertrophic cardiomyopathy.[5]

Aficamten was approved for medical use in the United States in December 2025.[6]

Medical uses

Aficamten is indicated for the treatment of adults with symptomatic obstructive hypertrophic cardiomyopathy to improve functional capacity and symptoms.[1][6]

Symptomatic obstructive hypertrophic cardiomyopathy is an inherited condition where people have thickened heart muscle and reduced blood flow from the left side of the heart to the rest of the body, causing symptoms such as shortness of breath, fatigue, and potentially life-threatening cardiac events.[6]

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019144041&_cid=P10-MJP428-30255-1

Example 15

Synthesis of Compound 184

1. Synthesis of Intermediate 15-2:

[0262] To a solution of tert-butyl N-[(1R)-5-(N-hydroxycarbamimidoyl)-2,3-dihydro-1H-inden-1-yl] carbamate (16 g, 54.9 mmol, 1.0 equiv) in dioxane (300 mL) was added propanoyl propanoate (8.4 g, 64.5 mmol, 1.2 equiv). The mixture was stirred at 105 oC for 8 h, cooled to r.t., concentrated under reduced pressure, and purified by silica gel

chromatography (EA/PE, 1/9) to give 17.5 g (97%) of tert-butyl N-[(1R)-5-(5-ethyl-1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-1-yl]carbamate as a white solid.

2. Synthesis of Intermediate 15-3:

[0263] To a solution of tert-butyl N-[(1R)-5-(5-ethyl-1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-1-yl]carbamate (17.6 g, 53.4 mmol, 1.0 equiv) in DCM (120 mL) was added TFA (24 mL). The mixture was stirred at room temperature overnight and concentrated under reduced pressure. The mixture was then poured into ethanol (50 mL) and water (5 mL) and the pH was adjusted to 12 with sodium hydroxide solution (2 N). The mixture was then extracted with dichloromethane (200 mL) three times. The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure to give 11.2 g of (1R)-5-(5-ethyl-1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-1-amine as a brown oil. 3. Synthesis of Compound 184:

[0264] To a solution of 1-methyl-1H-pyrazole-4-carboxylic acid (6.1 g, 48.4 mmol, 1.0 equiv) in DMF (300 mL) were added DIEA (12.6 g, 97.5 mmol, 2.0 equiv), HOAt (19.8 g, 145.8 mmol, 3.0 equiv), and EDCI (28 g, 146.1 mmol, 3.0 equiv). The mixture was stirred for 15 min, and (1R)-5-(5-ethyl-1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-1-amine (11.2 g, 48.9 mmol, 1.0 equiv) was then added. The mixture was then stirred for 3 h, diluted with DCM, washed with NH4Cl solution three times, dried over sodium sulfate, concentrated under reduced pressure, and purified by silica gel chromatography (EA/PE, 74/26) to give an intermediate product. The intermediate product was triturated with a mixture of EA and PE (1/10) to afford 14.5 g (88%) of (R)-N-(5-(5-ethyl-1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-1-yl)-1-methyl-1H-pyrazole-4-carboxamide (Compound 184) as a white solid. LRMS (ES) m/z 338 (M+H). 1H-NMR: (DMSO, 300MHz, ppm): į 8.41 (1H, d, J = 8.4 Hz), 8.16 (1H, s), 7.91-7.79 (3H, m), 7.34 (1H, d, J = 7.9 Hz), 5.53 (1H, q, J = 8.3 Hz), 3.84 (3H, s), 3.13-2.81 (4H, m), 2.44 (1H, dd, J = 7.9, 4.7 Hz), 1.95 (1H, m), 1.33 (3H, t, J = 7.5 Hz).

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021011807&_cid=P10-MJP428-30255-1

 (R)-N-(5-(5-ethyl- 1,2,4-oxadiazol-3-yl)-2,3-dihydro-1H-inden-l-yl)-1-methyl-1H-pyrazole-4-carboxamide,

SYN

https://pubs.acs.org/doi/10.1021/acs.jmedchem.1c01290

PAT

REF

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Contraindiations

Use with rifampin is contraindicated.[1]

Adverse effects

The US prescription label for aficamten contains a boxed warning that it reduces left ventricular ejection fraction and can cause heart failure due to systolic dysfunction.[1]

History

The effectiveness and safety of aficamten were studied in 282 adults with symptomatic obstructive hypertrophic cardiomyopathy randomly assigned to receive aficamten or placebo for 24 weeks.[6] At the end of the study, participants receiving aficamten had an increase in exercise capacity measured by peak oxygen uptake compared to no change in exercise capacity among those receiving placebo.[6] Also, 59 percent of participants receiving aficamten experienced an improvement in physical activity limitations (measured using the New York Heart Association Classification system) compared to 24 percent of individuals receiving placebo.[6]

Society and culture

Aficamten was approved for medical use in the United States in December 2025.[6][7] The US Food and Drug Administration granted the application for aficamten orphan drug and breakthrough therapy designations.[6]

In December 2025, the Committee for Medicinal Products for Human Use of the European Medicines Agency adopted a positive opinion, recommending the granting of a marketing authorization for the medicinal product Myqorzo, intended for the treatment of adults with obstructive hypertrophic cardiomyopathy.[5] The applicant for this medicinal product is Cytokinetics (Ireland) Limited.[5]

Names

Aficamten is the international nonproprietary name.[8]

Aficamten is sold under the brand name Myqorzo.[6]

References

  1.  https://www.accessdata.fda.gov/drugsatfda_docs/label/2025/219083s000lbl.pdf [bare URL PDF]
  2.  Chuang, Chihyuan; Collibee, Scott; Ashcraft, Luke; Wang, Wenyue; Vander Wal, Mark; Wang, Xiaolin; et al. (October 2021). “Discovery of Aficamten (CK-274), a Next-Generation Cardiac Myosin Inhibitor for the Treatment of Hypertrophic Cardiomyopathy”Journal of Medicinal Chemistry64 (19): 14142–14152. doi:10.1021/acs.jmedchem.1c01290ISSN 0022-2623PMID 34606259S2CID 238355647.
  3.  Zhao, Xue; Liu, Hongzhong; Tian, Wei; Fang, Ligang; Yu, Mengyang; Wu, Xiaofei; et al. (2023). “Safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple doses of aficamten in healthy Chinese participants: a randomized, double-blind, placebo-controlled, phase 1 study”Frontiers in Pharmacology14 1227470. doi:10.3389/fphar.2023.1227470PMC 10482267PMID 37680714.
  4.  Sebastian, Sneha Annie; Padda, Inderbir; Lehr, Eric J.; Johal, Gurpreet (September 2023). “Aficamten: A Breakthrough Therapy for Symptomatic Obstructive Hypertrophic Cardiomyopathy”. American Journal of Cardiovascular Drugs: Drugs, Devices, and Other Interventions23 (5): 519–532. doi:10.1007/s40256-023-00599-0ISSN 1179-187XPMID 37526885S2CID 260348901.
  5.  “Myqorzo EPAR”European Medicines Agency (EMA). 12 December 2025. Retrieved 22 December 2025. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.
  6.  “FDA approves drug to improve functional capacity and symptoms in adults with rare inherited heart condition”U.S. Food and Drug Administration (FDA) (Press release). 22 December 2025. Retrieved 22 December 2025. Public Domain This article incorporates text from this source, which is in the public domain.
  7.  “Cytokinetics Announces FDA Approval of Myqorzo (aficamten) for the Treatment of Adults with Symptomatic Obstructive Hypertrophic Cardiomyopathy to Improve Functional Capacity and Symptoms” (Press release). Cytokinetics. 19 December 2025. Retrieved 22 December 2025 – via GlobeNewswire News Room.
  8.  World Health Organization (2021). “International nonproprietary names for pharmaceutical substances (INN): recommended INN: list 86”. WHO Drug Information35 (3). hdl:10665/346562.

Further reading

  • Clinical trial number NCT05186818 for “Aficamten vs Placebo in Adults With Symptomatic Obstructive Hypertrophic Cardiomyopathy (SEQUOIA-HCM) (SEQUOIA-HCM)” at ClinicalTrials.gov
Clinical data
Trade namesMyqorzo
Other namesCK-3773274
License dataUS DailyMedAficamten
Routes of
administration
By mouth
Drug classCardiac myosin inhibitor
ATC codeNone
Legal status
Legal statusUS: ℞-only[1]
Identifiers
IUPAC name
CAS Number2364554-48-1
PubChem CID139331495
DrugBankDB18490
ChemSpider114935503
UNIIB1I77MH6K1
KEGGD12253
ChEMBLChEMBL4847050
PDB ligand6I6 (PDBeRCSB PDB)
Chemical and physical data
FormulaC18H19N5O2
Molar mass337.383 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

//////////Aficamten, FDA 2025, APPROVALS 2025, Myqorzo, CK-3773274, CK 3773274, B1I77MH6K1, BAY 3723113; CK 3773274; CK 274, MYQORZO

Zoliflodacin


Zoliflodacin

  • CAS 1620458-09-4
  • AZD-0914
  • AZD0914
  • FWL2263R77
  • ETX0914

MF C22H22FN5O7 MW 487.4 g/mol

FDA 2025, APPROVALS 2025, 12/12/2025, Nuzolvence

(4′R,6′S,7′S)-17′-fluoro-4′,6′-dimethyl-13′-[(4S)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]spiro[1,3-diazinane-5,8′-5,15-dioxa-2,14-diazatetracyclo[8.7.0.02,7.012,16]heptadeca-1(17),10,12(16),13-tetraene]-2,4,6-trione

Spiro[isoxazolo[4,5-g][1,4]oxazino[4,3-a]quinoline-5(6H),5′(2′H)-pyrimidine]-2′,4′,6′(1′H,3′H)-trione, 11-fluoro-1,2,4,4a-tetrahydro-2,4-dimethyl-8-[(4S)-4-methyl-2-oxo-3-oxazolidinyl]-, (2R,4S,4aS)-

(2R,4S,4aS)-11-Fluoro-2,4-dimethyl-8-[(4S)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-1,2,4,4a-tetrahydro-2′H,6H-spiro[1,4-oxazino[4,3-a][1,2]oxazolo[4,5-g]quinoline-5,5′-pyrimidine]-2′,4′,6′(1′H,3′H)-trione

To treat uncomplicated urogenital gonorrhea due to Neisseria gonorrhoeae

Zoliflodacin, sold under the brand name Nuzolvence, is an antibiotic used for the treatment of antibiotic-resistant Neisseria gonorrhoeae (gonorrhea).[2] Zoliflodacin is being developed as part of a public-private partnership between Innoviva Specialty Therapeutics and the Global Antibiotic Research & Development Partnership (GARDP).[3] Zoliflodacin is taken by mouth.[2]

The most common side effects include low white blood cell counts, headache, dizziness, nausea, and diarrhea.[2]

Zoliflodacin was approved for medical use in the United States in December 2025.[2]

SYN

SYN

SYN

US8889671, 5

SYN

WO-2022204231-A2

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=US106042502&_cid=P11-MJMADN-82597-1

(2R,4S,4aS)-11-Fluoro-2,4-dimethyl-8-[(4S)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-1,2,4,4a-tetrahydro-2′H,6H-spiro[1,4-oxazino[4,3-a][1,2]oxazolo[4,5-g]quinoline-5,5′-pyrimidine]-2′,4′,6′(1′H,3′H)-trione

   Example 5 was prepared from Intermediate 21. The title compound was isolated by reverse phase HPLC (10 mM ammonium acetate in water, CH 3CN) as the first eluting of two components. 1H NMR (400 MHz, DMSO-d 6) δ: 0.9 (d, 3H), 1.15 (d, 3H), 1.4 (d, 3H), 2.9 (d, 1H), 3.1 (t, 1H), 3.5-3.6 (m, 2H), 3.8 (m, 1H), 3.9 (d, 1H), 4.0 (d, 1H), 4.2 (q, 1H), 4.6-4.7 (m, 2H), 7.6 (s, 1H), 11.5 (s, 1H), 11.8 (s, 1H). MS (ES) MH +: 488.4 for C 2222FN 57, [α] D 20=−92 (c=1; MeOH).
      Also isolated from the synthesis of Example 5 as the second eluting component from HPLC purification was (2S,4R,4aR)-11-fluoro-2,4-dimethyl-8-[(4S)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-1,2,4,4a-tetrahydro-2′H,6H-spiro[1,4-oxazino[4,3-a][1,2]oxazolo[4,5-g]quinoline-5,5′-pyrimidine]-2′,4′,6′(1′H,3′H)-trione
1H NMR (400 MHz, DMSO-d 6) δ: 0.9 (d, 3H), 1.15 (d, 3H), 1.4 (d, 3H), 2.9 (d, 1H), 3.1 (t, 1H), 3.6-3.7 (m, 2H), 3.8-4.0 (m, 1H), 3.9 (d, 1H), 4.1 (d, 1H), 4.2 (q, 1H), 4.6-4.7 (m, 2H), 7.6 (s, 1H), 11.5 (s, 1H), 11.8 (s, 1H). MS (ES) MH +: 488.4 for C 2222FN 57, [α] D 20=+224 (c=1; MeOH).

Alternative Synthesis of Example 5

      A solution of Intermediate 22 (1.14 g, 2.71 mmol) and pyrimidine-2,4,6(1H,3H,5H)-trione (0.346 g, 2.71 mmol) in acetic acid (8 mL) and of water (2 mL) was heated at 110° C. for 2 hours. The solvent was removed and the reaction mixture was purified using Super Critical Fluid Chromatography (Chiralpak IC column with 30% methanol and 70% CO mobile phase). The first eluting compound was further purified by dissolving in acetonitrile (30 mL) and diluting with water (60 mL) to give the title compound as a solid. (0.910 g, 69.0% yield). 1H NMR (300 MHz, DMSO-d 6) δ: δ 0.9 (d, 3H), 1.15 (d, 3H), 1.4 (d, 3H), 2.9 (d, 1H), 3.1 (t, 1H), 3.6-3.7 (m, 2H), 3.8 (m, 1H), 3.9 (d, 1H), 4.1 (d, 1H), 4.2 (q, 1H), 4.6-4.75 (m, 2H), 7.6 (s, 1H), 11.4 (s, 1H), 11.8 (s, 1H). MS (ES) MH +: 488 for C 2222FN 67.
      Also isolated from the synthesis of Alternative Synthesis of Example 5 as the second component eluting from the HPLC purification was (2R,4R,4aR)-11-fluoro-2,4-dimethyl-8-[(4S)-4-methyl-2-oxo-1,3-oxazolidin-3-yl]-1,2,4,4a-tetrahydro-2′H,6H-spiro[1,4-oxazino[4,3-a][1,2]oxazolo[4,5-g]quinoline-5,5′-pyrimidine]-2′,4′,6′(1′H,3′H)-trione:

 1H NMR (300 MHz, DMSO-d 6) δ: 1.0 (d, 3H), 1.3 (d, 3H), 1.4 (d, 3H), 3.1 (d, 1H), 3.5-4.3 (m, 7H), 4.5-4.8 (m, 2H), 7.6 (s, 1H), 11.5 (br. s., 1H), 11.7 (br. s., 1H). MS (ES) MH +: 488 for C 2222FN 57.

SYN

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mic90

2.3.2 Chemical synthesis

The synthesis of zoliflodacin described below was reported in 2015 [47]. The first step, starting from 2,3,4-trifluorobenzaldehyde, consists of the protection of the aldehyde function to an acetal group. After deprotonation using n-BuLi, formylation is performed with DMF to introduce an aldehyde group, which is then converted to oxime using hydroxylamine. Chlorination with N-chlorosuccinimide (NCS), followed by reaction with L-alaninol and intramolecular SNAr allows the formation of the benzisoxazole ring. The oxazolidinone moiety is obtained using 1,1′-carbonyldiimidazole (CDI). The deprotection of the aldehyde is then performed in acidic conditions followed by another SNAr at the ortho position of the aldehyde using (2R,6S)-2,6-dimethylmorpholine. Finally, a Knoevenagel condensation between the aldehyde and hexahydropyrimidine-2,4,6-trione is performed, followed by an intramolecular rearrangement consisting in an [1-5] hydride shift and then intramolecular cyclization leading to zoliflodacin (Fig. 5).

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Medical uses

Zoliflodacin is indicated for the treatment of uncomplicated urogenital gonorrhea in people who weigh at least 77 pounds (35 kg).[2]

Susceptible bacteria

Zoliflodacin has shown in vitro activity against the following species of bacteria:[4] Staphylococcus aureusStreptococcus pneumoniaeHaemophilus influenzaeMoraxella catarrhalisNeisseria gonorrhoeae, and Chlamydia trachomatis

Adverse effects

Animal studies showed that zoliflodacin might cause birth defects, pregnancy loss, or male fertility problems.[2]

Mechanism of action

It has a mechanism of action which involves inhibition of bacterial type II topoisomerases.[4][5][6]

History

Compound PNU-286607, discovered in a high-throughput screen for compounds with antibiotic activity.

A high throughput screening campaign aimed at identifying compounds with whole cell antibacterial activity performed at Pharmacia & Upjohn identified compound PNU-286607, a progenitor of Zoliflodacin, as having the desired activity.[7]

Subsequent research at AstraZeneca led to the discovery that the nitroaromatic in PNU-286607 could be replaced with a fused benzisoxazole ring,[8] which allowed for an exploration of different groups at the 3-position of the heterocycle. This work was continued at Entasis Pharmaceuticals where extensive optimization resulted in the discovery of ETX0914.[4]

Researchers tested zoliflodacin in a study with 930 participants who had uncomplicated urogenital gonorrhea.[2] Two-thirds of participants received a single 3-gram dose of zoliflodacin dissolved in water.[2] The other third received the standard treatment of ceftriaxone shot plus azithromycin pill.[2] The study measured how well the medicines cleared the bacteria 4 to 8 days after treatment.[2] The study showed 91% of participants who took zoliflodacin were cured and 96% of participants who received the standard treatment were cured.[2]

Society and culture

Zoliflodacin was approved for medical use in the United States in December 2025.[3]

The US Food and Drug Administration (FDA) granted the application for zoliflodacin fast track, qualified infectious disease product, and priority review designations for the uncomplicated urogenital gonorrhea indication.[2] The FDA approval for zoliflodacin was granted to Entasis Therapeutics.[2]

Names

Zoliflodacin is the international nonproprietary name.[9]

Zoliflodacin is sold under the brand name Nuzolvence.[3]

References

  1.  https://innovivaspecialtytherapeutics.com/wp-content/uploads/2025/12/NUZOLVENCE-zoliflodacin-Full-Prescribing-Information-December-2025.pdf [bare URL PDF]
  2.  “FDA Approves Two Oral Therapies to Treat Gonorrhea”U.S. Food and Drug Administration (FDA) (Press release). 12 December 2025. Retrieved 13 December 2025. Public Domain This article incorporates text from this source, which is in the public domain.
  3.  Pierre G (12 December 2025). “Nuzolvence (Zoliflodacin) Receives U.S. FDA Approval”Global Antibiotic Research & Development Partnership (GARDP). Retrieved 13 December 2025.
  4.  Basarab GS, Kern GH, McNulty J, Mueller JP, Lawrence K, Vishwanathan K, et al. (July 2015). “Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases”Scientific Reports5 (1) 11827. Bibcode:2015NatSR…511827Bdoi:10.1038/srep11827PMC 4501059PMID 26168713.
  5.  Bradford PA, Miller AA, O’Donnell J, Mueller JP (June 2020). “Zoliflodacin: An Oral Spiropyrimidinetrione Antibiotic for the Treatment of Neisseria gonorrheae, Including Multi-Drug-Resistant Isolates”ACS Infectious Diseases6 (6): 1332–1345. doi:10.1021/acsinfecdis.0c00021PMID 32329999.
  6.  Pisano L, Giovannuzzi S, Supuran CT (June 2024). “Management of Neisseria gonorrhoeae infection: from drug resistance to drug repurposing”. Expert Opinion on Therapeutic Patents34 (6): 511–524. doi:10.1080/13543776.2024.2367005PMID 38856987.
  7.  Miller AA, Bundy GL, Mott JE, Skepner JE, Boyle TP, Harris DW, et al. (August 2008). “Discovery and characterization of QPT-1, the progenitor of a new class of bacterial topoisomerase inhibitors”Antimicrobial Agents and Chemotherapy52 (8): 2806–2812. doi:10.1128/AAC.00247-08PMC 2493097PMID 18519725.
  8.  Basarab GS, Brassil P, Doig P, Galullo V, Haimes HB, Kern G, et al. (November 2014). “Novel DNA gyrase inhibiting spiropyrimidinetriones with a benzisoxazole scaffold: SAR and in vivo characterization”. Journal of Medicinal Chemistry57 (21): 9078–9095. doi:10.1021/jm501174mPMID 25286019.
  9.  World Health Organization (2016). “International nonproprietary names for pharmaceutical substances (INN): recommended INN: list 76”. WHO Drug Information30 (3). hdl:10665/331020.

Further reading

Clinical data
Trade namesNuzolvence
Other namesAZD0914; ETX0914
AHFS/Drugs.comNuzolvence
License dataUS DailyMedZoliflodacin
Routes of
administration
By mouth
Drug classAntibacterial
ATC codeNone
Legal status
Legal statusUS: ℞-only[1][2]
Pharmacokinetic data
Bioavailability97.8%
MetabolismLiver
Onset of actionFasted: 1.5–2.3 hFed: 4 h
Elimination half-life5.3–6.3 h
ExcretionFeces (79.6%)Urine (18.2%)
Identifiers
IUPAC name
PubChem CID76685216
DrugBank12817
UNIIFWL2263R77
KEGGD11726
Chemical and physical data
FormulaC22H22FN5O7
Molar mass487.444 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

//////////Zoliflodacin, FDA 2025, APPROVALS 2025, Nuzolvence, AZD-0914, AZD 0914, FWL2263R77, ETX 0914

Iscartrelvir


Iscartrelvir

CAS 2921711-74-0

MF 2921711-74-0, 526.4 g/mol

N-{(1S,2R)-2-[4-bromo-2-(methylcarbamoyl)-6-nitroanilino]cyclohexyl}isoquinoline-4-carboxamide
antiviral, WU-04, WU 04, W2LTV65R5E

Iscartrelvir is an investigational new drug developed by the Westlake University for the treatment of COVID-19. It targets the SARS-CoV-2 3CL protease, which is crucial for the replication of the virus responsible for COVID-19.[1][2]

Iscartrelvir is a small molecule drug. The usage of the INN stem ‘-trelvir’ in the name indicates that Iscartrelvir is a antiviral 3CL protease inhibitor. Iscartrelvir has a monoisotopic molecular weight of 525.1 Da.

PAT

WO2022150962A1

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022150962&_cid=P11-MJKTXT-76321-1

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=CN331401594&_cid=P11-MJKTO7-65334-1

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2024243841&_cid=P11-MJKTO7-65334-1

N-((1S,2R)-2-((4-bromo-2-(methylcarbamoyl)-6-nitrophenyl)amino)cyclohexyl)isoquinoline-4-carboxamide, and its structure is as follows:

Example 1: Preparation of Compound 1 

[0189]A free, amorphous compound 1, a yellow solid, was prepared according to the method disclosed in paragraphs [00121]-[00128] of WO2022150962A1, and was used in the following examples. The specific synthetic steps are shown in steps a to d:

The reagents and conditions for steps a to d are further described below: (a) 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU), N,N-diisopropylethylamine (DIPEA), CH₂Cl₂ 

or 

dichloromethane (DCM), 0°C, 2 h; (b) DIPEA, dimethylformamide (DMF), 80°C, 16 h; (c) 3M ethyl hydrochloride (HCl·EA), CH₂Cl₂ , 

h ; (d ) HATU, DIPEA, DMF, room temperature, 12 h. 

[0191]Step a: Synthesis of N-methyl-5-bromo-2-fluoro-3-nitrobenzamide (I-1) 

[0192]A solution of 5-bromo-2-fluoro-3-nitrobenzoic acid (0.8 g, 3.80 mmol) in dichloromethane (20 mL) was stirred at 0 °C. Then, HATU (2.0 g, 5.25 mmol), DIPEA (1.88 mL, 11.4 mmol), and methylamine hydrochloride (0.31 g, 4.5 mmol) were added to the reaction mixture. The mixture was stirred at 0 °C for 2 hours until it became clear. The mixture was extracted three times with dichloromethane, and the combined organic layers were washed with a saturated brine solution. The organic phase was then dried over anhydrous Na₂SO₄ and concentrated 

under vacuum. Finally, the mixture was purified by chromatography to give compound I-1 (0.8 g, 76% yield) as a yellow solid.

[0193]Step b: Synthesis of tert-butyl 2-((4-bromo-2-(methylcarbamoyl)-6-nitrophenyl)amino)cyclohexyl)carbamate (I-2) 

[0194]A solution of compound I-1 (0.8 g, 2.9 mmol) in 15 mL of DMF was stirred at room temperature. Then, tert-butyl ((1S,2R)-2-aminocyclohexyl)carbamate (0.75 g, 3.5 mmol) (the corresponding stereoisomer of this reagent can be used to synthesize the stereoisomer of compound I-2) and DIPEA (1.44 mL, 8.7 mmol) were added to the reaction mixture. The mixture was heated to 80 °C and stirred for 16 hours. The mixture was extracted three times with ethyl acetate, and the combined organic layers were washed with saturated salt solution. The organic phase was then dried over anhydrous Na₂SO₄ and concentrated under vacuum to give compound 

I -2 as a yellow solid, requiring no further purification.

Step c: Synthesis of 2-(2-aminocyclohexyl)amino)-5-bromo-N-methyl-3-nitrobenzamide hydrochloride (I-3) 

[0196]A solution of compound I-2 (90 mg, 0.19 mmol) (or the corresponding stereoisomer) in anhydrous dichloromethane (6 mL) was stirred at room temperature. Then, HCl (4 mL, 3 M in ethyl acetate) was added. The mixture was stirred at room temperature for 2 hours. The mixture was concentrated under vacuum to give compound I-3 as a yellow solid, requiring no further purification. 

[0197]Step d: Synthesis of N-((1S,2R)-2-((4-bromo-2-(methylcarbamoyl)-6-nitrophenyl)amino)cyclohexyl)isoquinoline-4-carboxamide 

[0198]At room temperature, a solution of the corresponding isoquinoline-4-carboxylic acid (1 equivalent) and HATU (1.5 equivalent) in anhydrous DMF (6 mL) was stirred. Then, compound I-3 and DIPEA (5.0 equivalent) were added. The mixture was stirred overnight at room temperature. The mixture was extracted three times with ethyl acetate, and the combined organic layers were washed with saturated brine. The organic phase was then dried over anhydrous Na₂SO₄ and 

concentrated under vacuum. Finally, the mixture was purified by chromatography to give compound 1 as a free amorphous solid in yellow form.

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesWPV01; WU-04
Identifiers
IUPAC name
CAS Number2921711-74-0
PubChem CID156774920
ChemSpider129307041
UNIIW2LTV65R5E
PDB ligandJ7R (PDBeRCSB PDB)
Chemical and physical data
FormulaC24H24BrN5O4
Molar mass526.391 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  Yang L, Wang Z (September 2023). “Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China”European Journal of Medicinal Chemistry257 115503. doi:10.1016/j.ejmech.2023.115503PMC 10193775PMID 37229831.
  2.  Hou N, Shuai L, Zhang L, Xie X, Tang K, Zhu Y, et al. (February 2023). “Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLpro”ACS Central Science9 (2): 217–227. doi:10.1021/acscentsci.2c01359PMC 9885526PMID 36844503.
  3. Resistance mechanisms of SARS-CoV-2 3CLpro to the non-covalent inhibitor WU-04Publication Name: Cell DiscoveryPublication Date: 2024-04-09PMCID: PMC11003996PMID: 38594245DOI: 10.1038/s41421-024-00673-0
  4. Identification of Ebselen derivatives as novel SARS-CoV-2 main protease inhibitors: Design, synthesis, biological evaluation, and structure-activity relationships explorationPublication Name: Bioorganic & Medicinal ChemistryPublication Date: 2023-12-15PMID: 37972434DOI: 10.1016/j.bmc.2023.117531
  5. The molecular mechanism of non-covalent inhibitor WU-04 targeting SARS-CoV-2 3CLpro and computational evaluation of its effectiveness against mainstream coronavirusesPublication Name: Physical chemistry chemical physics : PCCPPublication Date: 2023-09-13PMID: 37655706DOI: 10.1039/d3cp03828a
  6. Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in ChinaPublication Name: European Journal of Medicinal ChemistryPublication Date: 2023-09-05PMCID: PMC10193775PMID: 37229831DOI: 10.1016/j.ejmech.2023.115503
  7. Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLproPublication Name: ACS Central SciencePublication Date: 2023-01-25PMCID: PMC9885526PMID: 36844503DOI: 10.1021/acscentsci.2c01359

////////iscartrelvir, antiviral, WU-04, WU 04, W2LTV65R5E

Zoracopan


Zoracopan

CAS 2243483-63-6

MF C31H31BrN6O3 MW 615.52

2-Azabicyclo[3.1.0]hexane-3-carboxamide, 2-[2-[3-acetyl-7-methyl-5-(2-methyl-5-pyrimidinyl)-1H-indol-1-yl]acetyl]-N-(6-bromo-3-methyl-2-pyridinyl)-5-methyl-, (1R,3S,5R)-

(1R,3S,5R)-2-{[3-acetyl-7-methyl-5-(2-methylpyrimidin5-yl)-1H-indol-1-yl]acetyl}-N-(6-bromo-3-methylpyridin2-yl)-5-methyl-2-azabicyclo[3.1.0]hexane-3-carboxamide
complement factor D inhibitor, ALXN-2080, ALXN 2080, E7799Y8LXY

Zoracopan is a selective complement factor D (CFD) inhibitor. When administered systemically (orally or intravenously), Zoracopan accumulates and is sustained-released in ocular tissues, primarily in the choroid-retinal pigment epithelium (C-RPE) and/or iridociliary body (I-CB).

Zoracopan is a small molecule drug. The usage of the INN stem ‘-copan’ in the name indicates that Zoracopan is a complement receptor antagonist/complement inhibitor. Zoracopan is under investigation in clinical trial NCT06173596 (A Study to Evaluate Potential Drug Interactions Between ALXN2080 and Itraconazole, Fluconazole & Carbamazepine in Healthy Adults). Zoracopan has a monoisotopic molecular weight of 614.16 Da.

  • Safety and Tolerability, PK, and PD Study of Single and Multiple ALXN2080 Doses in Healthy ParticipantsCTID: NCT05428696Phase: Phase 1Status: CompletedDate: 2024-06-07
  • A Study to Evaluate Potential Drug Interactions Between ALXN2080 and Itraconazole, Fluconazole & Carbamazepine in Healthy AdultsCTID: NCT06173596Phase: Phase 1Status: CompletedDate: 2024-06-20
  • A Study to Investigate the Potential Drug Interactions Between ALXN2080 and Rosuvastatin and Metformin in Healthy Adult ParticipantsCTID: NCT06160414Phase: Phase 1Status: CompletedDate: 2025-04-24

WO2024259085

WO2024137329

SYN

US11084800,

426

https://patentscope.wipo.int/search/en/detail.jsf?docId=US289331902&_cid=P10-MJJEYB-31207-1

SYN

WO2021183555

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018160889&_cid=P10-MJJEK1-12570-1

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

[1]. Ocular drug depot for complement-mediated disorders. WO2021183555A1 – Ocular drug depot for complement-mediated disorders – Google Patents.

////zoracopan, complement factor D inhibitor, ALXN-2080, ALXN 2080, E7799Y8LXY

Zopocianine


Zopocianine

CAS 2206660-94-6, NA SALT 2206660-95-7

MF C74H93N7O27S4, 1,640.83

L-Tyrosine, N-[[[(1S)-1,3-dicarboxypropyl]amino]carbonyl]-L-g-glutamyl-3-[2-(2-aminoethoxy)ethoxy]propanoyl-L-phenylalanyl-O-[6-[2-[1,3-dihydro-3,3-dimethyl-5-sulfo-1-(4-sulfobutyl)-2H-indol-2-ylidene]ethylidene]-2-[2-[3,3-dimethyl-5-sulfo-1-(4-sulfobutyl)-3H-indolium-2-yl]ethenyl]-1-cyclohexen-1-yl]-, inner salt

N-{[(1S)-1,3-dicarboxypropyl]carbamoyl}-L-γ-glutamyl3-[2-(2-aminoethoxy)ethoxy]propanoyl-L-phenylalanylO-[(6Ξ)-2-{(1Ξ)-2-[3,3-dimethyl-1-(4-sulfobutyl)-5-
sulfonato-3H-indol-1-ium-2-yl]ethen-1-yl}-6-{(2Ξ)-2-
[3,3-dimethyl-5-sulfo-1-(4-sulfobutyl)-1,3-dihydro-2Hindol-2-ylidene]ethylidene}cyclohex-1-en-1-yl]-Ltyrosine
diagnostic imaging agent, UD9V5S9M7A, OTL 0078, OTL 78

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

/////////zopocianine, diagnostic imaging agent, UD9V5S9M7A, OTL 0078, OTL 78

Zomiradomide


Zomiradomide

CAS 2655656-99-6

MF C45H48F3N7O6S MW871.97

  • N-[2-[4-[[6-[2-[[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]amino]ethyl]-2-azaspiro[3.3]heptan-2-yl]methyl]cyclohexyl]-5-(2-hydroxypropan-2-yl)-1,3-benzothiazol-6-yl]-6-(trifluoromethyl)pyridine-2-carboxamide
  • N-[2-[trans-4-[[6-[2-[[2-(2,6-Dioxo-3-piperidinyl)-2,3-dihydro-1,3-dioxo-1H-isoindol-4-yl]amino]ethyl]-2-azaspiro[3.3]hept-2-yl]methyl]cyclohexyl]-5-(1-hydroxy-1-methylethyl)-6-benzothiazolyl]-6-(trifluoromethyl)-2-pyridinecarboxamide

antineoplastic, IRAK degrader-1, AQ5UXV5646

Zomiradomide is an orally active PROTAC degrader for IRAK4 (DC50=6 nM), thereby inhibiting the NF-κB signaling pathway. Zomiradomide acts also as a molecular glue, recruiting Ikaros and Aiolos, and mediating their degradation (DC50 for Ikaros is 1 nM), thereby activating the type I IFN signaling pathway.

Zomiradomide is a small molecule protein degrader of interleukin-1 receptor-associated kinase 4 (IRAK4) and the immunomodulatory imide drug (IMiD) substrates Ikaros (IKZF1) and Aiolos (IKZF3), with potential immunomodulating and antineoplastic activities. Upon administration, zomiradomide modulates the E3 (ubiquitin) ligase and targets IRAK4, Ikaros and Aiolos for ubiquitination. This induces proteasome-mediated degradation of IRAK4, Ikaros and Aiolos. The degradation of IRAK4 inhibits IRAK4-mediated signaling and prevents the activation of IRAK4-mediated nuclear factor-kappa B (NF-kB) signaling and decreases the expression of inflammatory cytokines and certain pro-survival factors. This inhibits the proliferation of IRAK4-overactivated tumor cells, which are found in cells harboring MYD88 activating mutations or those with overactivated toll-like receptor (TLR) pathways. The degradation of the transcription factors Ikaros and Aiolos leads to a downregulation of other proteins, including interferon regulatory factor 4 (IRF4), which upregulates type I interferon signaling and further inhibits NF-kB activation. This leads to apoptosis and the inhibition of tumor cell proliferation. IRAK4, a serine/threonine-protein kinase that plays a key role in both the TLR and IL-1R signaling pathways, is activated though the adaptor protein MYD88 and links the TLR and IL-1R signaling pathway to the NF-kB pathway.

SYN

WO2022027058

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022027058&_cid=P20-MJGJKA-81687-1

Example 1. Synthesis of N-[2-[4-[[6-[2-[[2-(2,6-dioxo-3-piperidyl)-1,3-dioxo-isoindolin-4-yl]amino]ethyl]-2- azaspiro[3.3]heptan-2-yl]methyl]cyclohexyl]-5-(1-hydroxy-1-methyl-ethyl)-1,3-benzothiazol-6-yl]-6-(trifluoromethyl)pyridine-2-carboxamide (Compound A)

[00349] To a solution of 4-[2-(2-azaspiro[3.3]heptan-6-yl)ethylamino]-2-(2,6-dioxo-3-piperidyl)isoindoline -1,3-dione (75.8 mg, 148 umol, TFA salt, Intermediate ATH) in THF (2 mL) was added TEA (15.0 mg, 148 umol), then the mixture stirred at 25 °C for 10 min. Next, HOAc (8.92 mg, 148 umol) and N-[2-(4-formylcyclohexyl)-5-(1-hydroxy-1-methyl-ethyl)-1,3-benzothiazol-6-yl]-6-(trifluoromethyl)pyridine-2-carboxamide (73.0 mg, 148 umol, Intermediate BAX) were added to the mixture and the mixture was stirred at 25 °C for 20 minutes, then NaBH(OAc)3 (62.9 mg, 297 umol) was added to the mixture at 0 °C. The reaction mixture was stirred at 0-25 °C for 2 hours. On completion, the reaction mixture was quenched with H2O (1 mL) and concentrated in vacuo. The residue was purified by prep-HPLC (column: Phenomenex Synergi C18150*25*10 um; mobile phase: [water(0.225%FA)-ACN]; B%: 31%-58%, 9 min) to give the title compound (59.1 mg, 41% yield) as a yellow solid.1H NMR (400 MHz, DMSO-d6) δ 12.54 (s, 1H), 11.09 (s, 1H), 9.06 (s, 1H), 8.49 – 8.44 (m, 1H), 8.38 (t, J = 8.0 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 7.88 (s, 1H), 7.58 (t, J = 8.0 Hz, 1H), 7.10 – 6.99 (m, 2H), 6.47 (t, J = 5.6 Hz, 1H), 6.07 (s, 1H), 5.05 (dd, J = 5.6, 12.8 Hz, 1H), 3.54 – 3.47 (m, 2H), 3.25 – 3.18 (m, 4H), 3.06 – 2.99 (m, 1H), 2.93 – 2.83 (m, 1H), 2.63 – 2.56 (m, 1H), 2.54 (s, 3H), 2.30 – 2.21 (m, 2H), 2.30 – 2.21 (m, 3H), 2.06 – 1.99 (m, 1H), 1.88 – 1.77 (m, 4H), 1.68 – 1.61 (m, 8H), 1.58 – 1.49 (m, 2H), 1.45 – 1.36 (m, 1H), 1.15 – 1.02 (m, 2H); LC-MS (ESI+) m/z 872.2 (M+H)+.

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……


[1]. Weiss Matthew M. Preparation of benzothiazole derivatives as IRAK degraders and uses thereof. World Intellectual Property Organization, WO2021127190 A1. 2021-06-24.[2]. Zeng S, et al. Current advances and development strategies of orally bioavailable PROTACs. Eur J Med Chem. 2023 Dec 5;261:115793.  [Content Brief][3]. Weiss MM, et al., Discovery of KT-413, a Targeted Protein Degrader of IRAK4 and IMiD Substrates Targeting MYD88 Mutant Diffuse Large B-Cell Lymphoma. J Med Chem. 2024 Jul 11;67(13):10548-10566.  [Content Brief]

/////////zomiradomide, antineoplastic, IRAK degrader-1, AQ5UXV5646

Zerencotrep


Zerencotrep

CAS 1628287-16-0

MF C23H20ClF3N4O5, MW 524.88

7-[(4-chlorophenyl)methyl]-1-(3-hydroxypropyl)-3-methyl-8-[3-(trifluoromethoxy)phenoxy]purine-2,6-dione

7-[(4-chlorophenyl)methyl]-1-(3-hydroxypropyl)-3-
methyl-8-[3-(trifluoromethoxy)phenoxy]-3,7-dihydro1H-purine-2,6-dione
transient receptor potential channel 4 and 5 (TRPC4, TRPC5) inhibitor, Pico 145, HC 608, HMIMSYLCWQ

Pico145 (HC-608) is a remarkable inhibitor of TRPC1/4/5 channels, inhibits (-)-englerin A-activated TRPC4/TRPC5 channels, with IC50s of 0.349 and 1.3 nM in cells, and shows no effect on TRPC3, TRPC6, TRPV1, TRPV4, TRPA1, TRPM2, TRPM8.


Zerencotrep is a small molecule drug. The usage of the INN stem ‘-cotrep’ in the name indicates that Zerencotrep is a transient receptor potential canonical channel 5 (TRPC5) antagonist. Zerencotrep has a monoisotopic molecular weight of 524.11 Da.

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014143799&_cid=P22-MJF454-30876-1

The following examples 7a through 7k were prepared using the method of example 6, step 1.

Example 7a 7-(4-chlorobenzyl)-l -(3-hydroxypropyl)-3-methyl-8-(3-(trifluoromethoxy)phenoxy)-l -purine-2,6(3H,7H)-dione

The title compound was prepared using the method of example 6, step 1 and purified

preparative HPLC to give 7-(4-chlorobenzyl)-l -(3-hydroxypropyl)-3-methyl-8-(3-

(trifluoromethoxy)phenoxy)-lH-purine-2,6(3H,7H)-dione (10 mg, 17.3% yield) as white solid. lH-NMR (CD3OD) δ 7.57-7.53(t, IH), 7.46-7.44(d, 2H), 7.37-7.33(m, 4H), 7.26-7.24(d, IH), 5.49(s, 2H), 4.13-4.09(t, IH), 3.64-3.60(t, 2H), 3.42(s, 3H), 1.89-1.86(m, 2H). LCMS retention time 3.059 min; LCMS MH+ 525.

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

///////////zerencotrep, Pico 145, HC 608, HMIMSYLCWQ