New Drug Approvals

Home » Posts tagged 'PROCESS' (Page 12)

Tag Archives: PROCESS

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,804,378 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Improve Immunity Through Ayurveda


allow slideshare to load………..

Greek Herbs- Fennel (saunf)


 
Fennel, otherwise known as Foeniculum vulgare, is a plant belonging to the genus Foeniculum. The fennel plant is native to the Mediterranean region, and the plant produces yellow flowers. Fennel is also an edible plant considered both aromatic and flavorful. In addition to culinary uses, fennel has several purported medicinal uses. Fennel powder is the powdered form made by grinding the seeds from the plant. Health supplement manufacturers use the fennel powder to produce fennel health supplements. You should, however, speak with your doctor prior to using fennel as a health
supplement.

………………………………………………

……………………………………………….

History of Fennel

Ancient Greeks and Indian cultures used fennel for cooking and as part of traditional herbal medicine. The Greeks and Indians traditionally combined fennel with other herbs to make home remedies for the relief of gastrointestinal problems such as acidity and indigestion.

Fennel Composition

The essential oil of fennel contains approximately 5 percent limonene, 50 to 80 percent anethole and 5 percent fenchone. Additionally, the oil contains trace amounts of a-pinene, estragole, b-pinene, safrole, b-myrcene, camphene and p-cymene. The seeds from the fennel plant also contain fiber and complex carbohydrates. Fennel contains nutrients including vitamin B-3, magnesium, molybdenum, copper, phosphorus, iron, calcium, manganese, vitamin C, folate and potassium.

Fennel Uses

As a health supplement, fennel can help to prevent gas, support digestion and function as an expectorant that can help to relieve minor respiratory problems such as mucus. Fennel also contains anti-inflammatory properties when used externally. The leaves from the fennel plant can facilitate the healing of wounds and burns. The root of the fennel plant is diuretic and can help treat urine infections. Fennel also contains a combination of phytonutrients including the flavonoids rutin, quercitin and kaempferol. Fennel also has antioxidant properties and as a dietary fiber, it can help lower your cholesterol levels.

Fennel Supplements

Health supplement manufacturers offer fennel supplements in powdered form. As a supplement, manufacturers recommend taking 1 to 4 g per day of the powdered fennel supplement. The Food and Drug Administration, however, has not established a recommended dose for fennel powder. There are no known side effects of consuming fennel powder supplements, although you should speak with your doctor prior to using fennel powder if you are attempting to treat a specific medical condition.

The bulb, foliage, and seeds of the fennel plant are widely used in many of the culinary traditions of the world. The small flowers of wild fennel (mistakenly known in America as fennel “pollen” ) are the most potent form of fennel, but also the most expensive.Dried fennel seed is an aromatic, anise-flavoured spice, brown or green in colour when fresh, slowly turning a dull grey as the seed ages. For cooking, green seeds are optimal. The leaves are delicately flavoured and similar in shape to those of dill. The bulb is a crisp vegetable that can be sautéed, stewed, braised, grilled, or eaten raw. They are used for garnishes and to add flavor to salads. They are also added to sauces and served with pudding. The leaves used in soups and fish sauce and sometimes eaten raw as salad.

Fennel seeds are sometimes confused with those of anise, which are similar in taste and appearance, though smaller. Fennel is also used as a flavouring in some natural toothpastes. The seeds are used in cookery and sweet desserts.

Many cultures in India, Pakistan, Afghanistan, Iran and the Middle East use fennel seed in their cookery. It is one of the most important spices in Kashmiri Pandit and Gujarati cooking. It is an essential ingredient of the Assamese/Bengali/Oriya spice mixture panch phoron and in Chinese five-spice powders. In many parts of India and Pakistan, roasted fennel seeds are consumed as mukhwas, an after-meal digestive and breath freshener. Fennel leaves are used as leafy green vegetables either by themselves or mixed with other vegetables, cooked to be served and consumed as part of a meal, in some parts of India. In Syria and Lebanon, it is used to make a special kind of egg omelette (along with onions, and flour) called ijjeh.

Many egg, fish, and other dishes employ fresh or dried fennel leaves. Florence fennel is a key ingredient in some Italian and German salads, often tossed with chicory and avocado, or it can be braised and served as a warm side dish. It may be blanched or marinated, or cooked in risotto.

In Spain the stems of the fennel plant are used in the preparation of pickled eggplants, “berenjenas de Almagro”.

Medicinal uses

Fennel (Foeniculum vulgare) essential oil in clear glass vial

Fennel contains anethole, which can explain some of its medical effects: It, or its polymers, act as phytoestrogens.

The essence of fennel can be used as a safe and effective herbal drug for primary dysmenorrhea, but could have lower potency than mefenamic acid at the current study level.

Intestinal tract

Fennel is widely employed as a carminative, both in humans and in veterinary medicine (e.g., dogs), to treat flatulence by encouraging the expulsion of intestinal gas. Anethole is responsible for the carminative action.

Mrs. Eencher Herbal states:

On account of its carminative properties, fennel is chiefly used medicinally with purgatives to allay their side effects, and for this purpose forms one of the ingredients of the well-known compound liquorice powder. Fennel water has properties similar to those of anise and dill water: mixed with sodium bicarbonate and syrup, these waters constitute the domestic ‘gripe water‘ used to correct the flatulence of infants. Volatile oil of fennel has these properties in concentration. Commercial preparations of fennel  are widely available as alternative treatment for baby colic. Fennel tea, also employed as a carminative, is made by pouring boiling water on a teaspoonful of bruised fennel seeds.

Fennel can be made into a syrup to treat babies with colic (formerly thought to be due to digestive upset), but long-term ingestion of fennel preparations by babies is a known cause of thelarche.

Eyes

In the Indian subcontinent, fennel seeds are also eaten raw, sometimes with some sweetener, as they are said to improve eyesight. Ancient Romans regarded fennel as the herb of sight.Root extracts were often used in tonics to clear cloudy eyes. Extracts of fennel seed have been shown in animal studies to have a potential use in the treatment of glaucoma.

Blood and urine

Fennel may be an effective diuretic and a potential drug for treatment of hypertension.

Breastmilk

There are historical anecdotes that fennel is a galactagogue,improving the milk supply of a breastfeeding mother. This use, although not supported by direct evidence, is sometimes justified by the fact that fennel is a source of phytoestrogens, which promote growth of breast tissue. However, normal lactation does not involve growth of breast tissue. A single case report of fennel tea ingested by a breastfeeding mother resulted in neurotoxicity for the newborn child.

Other uses

Syrup prepared from fennel juice was formerly given for chronic coughs. It is one of the plants which is said to be disliked by fleas, and powdered fennel has the effect of driving away fleas from kennels and stables.

References

  • “Herbs That Work: The Scientific Evidence of Their Healing Powers”; David Armstrong
  • “The Encyclopedia of Herbs: A Comprehensive Reference to Herbs of Flavor and Fragrance”; Arthur O. Tucker and Thomas DeBaggio; 2009
  • “Pocket Guide to Herbal Remedies”; Lane P. Johnson; 2002
  • “Encyclopedia of Natural Medicine”; Michael Murray and Joseph Pizzorno; 1997

seeds

Study links vitamin D deficiency to accelerated bone aging


Robert Ritchie (left) and Hrishikesh Bale used a combination of FTIR spectroscopy and X-ray CT at the Advanced Light Source to find that vitamin D deficiency speeds the aging process of bone and reduces its quality. Photo by Roy Kaltschmidt

Robert Ritchie (left) and Hrishikesh Bale used a combination of FTIR spectroscopy and X-ray CT at the Advanced Light Source to find that vitamin D deficiency speeds the aging process of bone and reduces its quality. Photo by Roy Kaltschmidt

 

A team of scientists led by researchers at Lawrence Berkeley National Laboratory and the Univ. of California, Berkeley, have recently used a combination of Fourier transform infrared spectroscopy and X-ray computed tomography at the Advanced Light Source to find that vitamin D deficiency speeds the aging process of bone and reduces its quality.FULL STORY

http://www.rdmag.com/news/2013/07/study-links-vitamin-d-deficiency-accelerated-bone-aging?et_cid=3362718&et_rid=523036890&type=cta

Novartis teams with India’s Biological E for typhoid vaccine development


Novartis teams with India’s Biological E for typhoid vaccine…

 

Novartis and Indian biopharma Biological E have entered into a development and licensing agreement  to deliver accessible and affordable typhoid and paratyphoid A vaccines to the developing world. Yearly, over 21 million cases and 5 million cases of typhoid and paratyphoid A… read more ›

read all at

http://blogs.terrapinn.com/vaccinenation/2013/07/10/novartis-teams-indias-biological-typhoid-vaccine-development/?pk_campaign=Blog_Newsletter_Vaccine%20Nation&pk_kwd=2013-07-10&elq=f2955f5ac0f942289fabfdbbde71072c&elqCampaignId=4765&pk_campaign=Blog_Newsletter_Vaccine%20Nation&pk_kwd=2013-07-10&elq=f2955f5ac0f942289fabfdbbde71072c&elqCampaignId=4765

H7N9 vaccines in development–where are we?


influenza h7n9 vaccine development (Photo Credit: CDC/Cynthia S. Goldsmith and Thomas Rowe)

Since early 2013, the newly emergent H7N9 avian influenza virus has been infecting humans in China, leading to the temporary closure of numerous poultry markets in a bid to control the outbreak. In recent weeks, the rate at which new cases are reported has been declining – but some experts are asking whether this is just the calm before the storm. The development of a vaccine against the virus is therefore still of great interest – but where are we with vaccine development?

Inovio Pharmaceuticals announced on July 8th that in a preclinical study of its influenza DNA vaccine, 100% of the vaccinated animals were protected against sickness and death when challenged with a lethal dose of A/Anhui/1/13 strain of H7N9 virus. On the same day, Novavax made an announcement that enrolment had begun for a Phase I clinical trial of its monovalent virus-like particle (VLP) vaccine candidate – again based on the A/Anhui/1/13 strain

read all at

http://blogs.terrapinn.com/vaccinenation/2013/07/09/h7n9-vaccines-developmentwhere/?pk_campaign=Blog_Newsletter_Vaccine%20Nation&pk_kwd=2013-07-10&elq=f2955f5ac0f942289fabfdbbde71072c&elqCampaignId=4765&pk_campaign=Blog_Newsletter_Vaccine%20Nation&pk_kwd=2013-07-10&elq=f2955f5ac0f942289fabfdbbde71072c&elqCampaignId=4765

J and J Submits Leukemia Drug, Ibrutinib for Approval


IBRUTINIB

1-[(3R)-3-[4-amino-3-(4-phenoxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]piperidin-1-yl]prop-2-en-1-one

New Drug Application Submitted to U.S. FDA for Ibrutinib in the Treatment of Two B-Cell Malignancies
If approved, ibrutinib will address a high unmet need in relapsed/refractory chronic lymphocytic leukemia and relapsed/refractory mantle cell lymphoma

RARITAN, N.J., July 10, 2013

Janssen Research & Development, LLC announced the submission of a New Drug Application for ibrutinib to the U.S. Food and Drug Administration (FDA) for its use in the treatment of previously treated patients with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL), and for its use in the treatment of previously treated patients with mantle cell lymphoma (MCL). The regulatory submission for ibrutinib is supported by data from two pivotal Phase 2 studies, one in relapsed/refractory CLL/SLL (PCYC-1102) and one in relapsed/refractory MCL (PCYC-1104), both of which were published in The New England Journal of Medicine online on June 19, 2013. Ibrutinib is a novel Bruton’s tyrosine kinase (BTK) inhibitor being jointly developed by Janssen and Pharmacyclics, Inc. for the treatment of B-cell malignancies.

If approved, ibrutinib would be the first in a class of oral BTK inhibitors and is one of the first medicines to file for FDA approval via the new Breakthrough Therapy Designation pathway. Ibrutinib will be co-commercialized in the U.S. by Janssen Biotech, Inc. and Pharmacyclics.

“The FDA submission is another important milestone for ibrutinib since we formed our strategic partnership with Pharmacyclics just 18 months ago,” said Peter F. Lebowitz, M.D., Ph.D., Global Oncology Head, Janssen. “Both companies recognize that there is great unmet need among these patient populations, and together in close collaboration with the FDA, as part of its Breakthrough Therapy Designation pathway, we have been able to accelerate the ibrutinib development program for the benefit of patients.”

About Chronic Lymphocytic Leukemia

Chronic Lymphocytic Leukemia (CLL) is a slow-growing blood cancer that starts in the white blood cells (lymphocytes), most commonly from B-cells. CLL is the second most common adult leukemia. Approximately 16,000 patients in the US are diagnosed each year with CLL. The prevalence of CLL is approximately 113,000 in the US. The disease is a chronic disease of the elderly with an average survival of about 5 years. Patients commonly receive multiple lines of treatment over the course of their disease.

In CLL the genetic mutation 17p deletion occurs when the short arm of chromosome 17 is missing.  Del 17p is associated with abnormalities of a key tumor suppressor gene, TP53, which results in poor response to chemoimmunotherapy and worse treatment outcomes. It occurs in about 7% of treatment naive CLL patients and is estimated to be approximately 20% to 40% of relapsed or refractory patients harboring the mutation.

About Ibrutinib

Ibrutinib , previously publicly known as PCI-32765, is an experimental drug candidate for the treatment of various types of cancer. It was first synthesized at Celera Genomics as a selective inhibitor of Bruton’s tyrosine kinase (Btk).It was later discovered to have anti-lymphoma properties in vivo by scientists at Pharmacyclics, Inc.Ibrutinib is currently under development by Pharmacyclics, Inc and Johnson & Johnson‘sJanssen Pharmaceutical division for chronic lymphocytic leukemiamantle cell lymphoma,diffuse large B-cell lymphoma, and multiple myeloma. It also has potential effects against autoimmune arthritis.

Janssen Biotech, Inc. and Pharmacyclics entered a collaboration and license agreement in December 2011 to co-develop and co-commercialize ibrutinib. Ibrutinib was designed to specifically target and selectively inhibit an enzyme called Bruton’s tyrosine kinase (BTK). BTK is a key mediator of at least three critical B-cell pro-survival mechanisms occurring in parallel – regulation of apoptosis, adhesion, and cell migration and homing. Through these multiple signals, BTK regulation helps to direct malignant B-cells to lymphoid tissues, thus allowing access to a micro environment necessary for survival.

The effectiveness of ibrutinib alone or in combination with other treatments is being studied in several B-cell malignancies, including chronic lymphocytic leukemia/small lymphocytic lymphoma, mantle cell lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, Waldenstrom’s macroglobulinemia and multiple myeloma. To date five Phase III trials have been initiated with ibrutinib and a total of 26 trials are currently registered on www.clinicaltrials.gov.

About Pharmacyclics

Pharmacyclics® is a clinical-stage biopharmaceutical company focused on developing and commercializing innovative small-molecule drugs for the treatment of cancer and immune mediated diseases. Our mission and goal is to build a viable biopharmaceutical company that designs, develops and commercializes novel therapies intended to improve quality of life, increase duration of life and resolve serious unmet medical healthcare needs; and to identify promising product candidates based on scientific development and administrational expertise, develop our products in a rapid, cost-efficient manner and pursue commercialization and/or development partners when and where appropriate.

Presently, Pharmacyclics has three product candidates in clinical development and several preclinical molecules in lead optimization. The Company is committed to high standards of ethics, scientific rigor, and operational efficiency as it moves each of these programs to viable commercialization.

The Company is headquartered in Sunnyvale, California and is listed on NASDAQ under the symbol PCYC. To learn more about how Pharmacyclics advances science to improve human healthcare visit  at http://www.pharmacyclics.com.

Omthera files heart drug anti-triglyceride, Epanova with FDA


 

july, 10, 2013

Omthera Pharmaceuticals, which is in the process of being acquired by AstraZeneca, has filed its anti-triglyceride drug Epanova with regulators in the USA.The Princeton, New Jersey-based company is seeking approval from the US Food and Drug Administration to sell Epanova, a coated soft gelatin capsule containing a mixture of polyunsaturated free fatty acids derived from fish oils, for the treatment of patients with severe hypertriglyceridemia. The submission is based on two Phase III trials (EVOLVE and ESPRIT) examining the effectiveness of Epanova in lowering very high triglycerides, and in reducing non-HDL cholesterol in combination with a statin. Both trials were conducted under a special protocol assessment with the FDA.

The filing will please AstraZeneca which announced at the end of May that it will buy Omthera for $12.70 per share, or around $323 million. In addition to the cash payment, each Omthera shareholder will receive contingent value rights of up to $4.70 per share – or around $120 million in total – if specified milestones related to Epanova are achieved.

When the deal was announced, Omthera chief executive Gerald Wisler said he expects AstraZeneca to “maximise the value of Epanova not only as a monotherapy treatment for dyslipidemia but also as a treatment for cardiovascular disease in combination with Crestor (atorvastatin)”, the firm’s cholesterol blockbuster.

Chelsea Therapeutics Resubmits New Drug Application for NORTHERA(TM) (droxidopa) for the Treatment of Symptomatic NOH


Droxidopa

 

Submission Includes Successful 300 mg Bioequivalence Study

*  Six Month Review Decision Expected Under PDUFA

July 9, 2013

— Chelsea Therapeutics International, Ltd. today announced that it resubmitted a New Drug Application (NDA) to the U.S. Food and Drug Administration (FDA) seeking approval to market NORTHERA(TM) (droxidopa), an orally active synthetic precursor of norepinephrine, for the treatment of symptomatic neurogenic orthostatic hypotension (NOH) in patients with primary autonomic failure (Parkinson’s disease, multiple system atrophy and pure autonomic failure), dopamine beta hydroxylase deficiency and non-diabetic autonomic neuropathy.

http://www.pharmalive.com/chelsea-resubmits-northera-nda

 

L-DOPS (L-threo-dihydroxyphenylserine; DroxidopaSM-5688) is a psychoactive drugand synthetic amino acid precursor which acts as a prodrug to the neurotransmittersnorepinephrine (noradrenaline) and epinephrine (adrenaline).[1] Unlike norepinephrine and epinephrine themselves, L-DOPS is capable of crossing the protective blood–brain barrier(BBB)

GSK files Supplemental New Drug Applications for melanoma combo, signs Immunocore pact


GSK files melanoma combo, signs Immunocore pact

July 09, 2013

GlaxoSmithKline has filed its two newly-approved drugs Tafinlar and Mekinist to be used in combination for melanoma with regulators in the USA.

Supplemental New Drug Applications have been made to the US Food and Drug Administration for use of Tafinlar (dabrafenib), a BRAF inhibitor, in combination with Mekinist (trametinib), a MEK inhibitor for the treatment of adults with unresectable or metastatic melanoma with a BRAF V600 E or K mutation. The files are based on data from a Phase I/II study comparing dabrafenib monotherapy to the combo.

read all at

http://www.pharmatimes.com/Article/13-07-09/GSK_files_melanoma_combo_signs_Immunocore_pact.aspx

Tafinlar (dabrafenib)

Mekinist (trametinib)

Nanotechnology, its applications in medicine, pharmaceuticals,drug developments


 

Nanotechnology can be defined as a technology which deals with manipulation, study, and designing and developing particles, bio-molecules of the size more than 1 nm and less than 100 nanometer, with the intention of modification enhancement or lowering a particular property of a molecule or a particle, which can be used in developing a device or molecule

One of the major applications of nanotechnology is in the area of nanoelectronics with MOSFET‘s being made of small nanowires ~10 nm in length. Here is a simulation of such a nanowire.

.Nanotechnology involves developing materials or devices in the size range of 1 nm to 100 nanometer. At this scale quantum mechanical effects have very important implications in the quantum realm; nanotechnology controls the properties of material on an atomic level.

 

 

A serious cause of concern about nanotechnology is its safety and hazardous effects on environment and health, nanomaterial is required to be handled with special care and requires special methods for its disposal.
Drugs that use nanotechnology are also required to qualify for its effectiveness and safety, safety studies are very important factors as so far there is not enough data of drugs developed using nanotechnology and tested for safety.

Nanostructures provide this surface with superhydrophobicity, which lets water droplets roll down the inclined plane.

In pharmaceuticals nanotechnology has wide applications some of which are given below.

1. Targeting a drug to a particular tissue, to, enhancing absorption of a drug molecule in a particular tissue
2. To reduce degradation of a drug and enhance bioavailability and reduce untoward toxic effect of a drug molecule.
3. To enhance the microbial stability of a product
4. In cosmetics zinc oxide nanoparticles are used to increase its antimicrobial properties , and titanium dioxide nano particles effectively block UV rays in both cases concentrations required are very low compared to conventional use.
5. Nanoemulsions for increasing the absorption of a drug molecules.
6. To develop molecules as tracer marker compound to identify the toxic and untoward effects or spilage

Graphical representation of a rotaxane, useful as a molecular switch.

Novel Drugs: Cancer Chemotherapy Using Nanoparticles developed with Nanotechnology May Reduce Harmful Side Effects of Antineoplastic Agents.Chemotherapy for cancer is most of the time associated with one or the other harmful side effect of antineoplastic drugs as these chemotherapeutic drugs themselves are very cytotoxic, i.e. they damage normal cells too.
Antineoplastic drugs bring about their anticancer action by inhibiting cancerour cells growth by virtue of alkylation of nucleotides in cancerous cells or by inhibition of folic acid uptake by cancerous cells or by inhibiting cell division by binding with tubulin and microtubulin in a cancerous cells, it is likely that these drug are also absorbed in to normal tissues, leading to untoward serious cytotoxic effects , like kidney damage and nerve damage in chemotherapy with cisplatin, a drug of choice in most of anticancer chemotherapies.
A new drug delivery technique is being studied which uses Nanotechnology to deliver a cytotoxic drugs specifically directly in to the cancer cells , such drug delivery technique will be able to provide an efficient cancer chemotherapy that do not have much side effects as they pose today , it was observed that with nanoparticle drug delivery system  the concentration of drug required to kill the cancerous cell is lesser than required in conventional chemotherapy therapy.

This DNA tetrahedron is an artificially designed nanostructure of the type made in the field of DNA nanotechnology. Each edge of the tetrahedron is a 20 base pair DNA double helix, and each vertex is a three-arm junction.

As the drug is absorbed efficiently in to targeted cells and also drug is protected from degradation in blood stream , certain class of the anticancerdrugs are very unstable and stay in plasma for a very little time, therefor to achieve the required effect a higher concentration of drug may be required to be administrated.Nanotechnology drug delivery system involves placing an anticancer drug in to a tiny particles known as nanoparticles which recognize cancerous cells and deliver the drug only to cancerous cells , as nanoparticles are very minute particles (1 nm to 100 nanometer) , the dose of drug required to kill the cancerous cells were also found to be very low as compared to conventional therapy . As the required effective dose it self gets reduced than conventional therapy , the harmful effect of anticancer drug are also likely to be reduced.

This device transfers energy from nano-thin layers of quantum wells to nanocrystals above them, causing the nanocrystals to emit visible light.

A team of scientists from the Massachusetts Institute of Technology and Brigham and Women’s Hospital conducted study. They stored an prodrug of cisplatin (which is used in most of cancer chemotherapies) within nanoparticles which they developed to target a specific protein in cancerous cells in prostate gland.
After these prodrug loaded nanoparticles were absorbed by cancerous cells the prodrug was released in to the cancerous cells and was converted in to an active form . The team demonstrated that these prodrug carrying nanoparticles were able to kill cancer cells in culture more efficiently than the drug alone.

Study was conducted by researchers, led by Dr. Omid Farokhzad and Dr. Stephen Lippard, to study nanoparticle drug delivery system for an effective and safer option for chemotherapy in living animals. Their research work is published in Proceedings of the National Academy of Sciences, in Jan 2011 issue of the journal, the study was funded in part by NIH’s National Cancer Institute (NCI) and National Institute for Biomedical Imaging and Bioengineering (NIBIB).

By applying this drug delivery by nanoparticles they were able to shrink tumors in mice with smaller doses of the drug to reduce harmful side effects. Only 30% of the dose of prodrug of cisplatin was required to diminish the tumor by using the drug carrying nanoparticles, than that of standard dose of cisplatin as such.
Researchers initially studied different doses of nanoparticle bound drug in rats and mice, both the types of animals maintained their body weight and survived at higher doses of the drug when drug was delivered using nanoparticles than when injected without nanoparticles. It was also found that the kidney damage was less in rats which received the nanoparticle bound drug.

Also it was found that binding nanoparticles provided greater stability of cisplatin prodrug in blood stream than that of injected alone , after one hour about 77 % of prodrug was found in blood stream when it was delivered using nanoparticles compared to only 16% available drug in case of drug delivered without nanoparticles, cispaltin is very unstable drug and remains in blood for very short time , which calls for more dose to get the desired effect.

 

Transdermal drug delivery system new requirements for quality and for regulatory submissions

 

US FDA issued new guidelines for Transdermal drug delivery system and related drug delivery systems.

US FDA stated in its new guidelines on transdermal drug delivery system and related drug delivery systems that the initial drug load concentration has tremendous potential for impacting quality of product its safety and efficacy and it has great potential for drug abuse.

There are many advantages and disadvantages of transdermal drug delivery system TDDS , like a drug can be administered without pain to patient, patients to like the dosage form greatly as they wont feel as they are on medication, and a constant plasma drug concentration can be easily achieved for a drug for a longer period of time without giving the untoward effect of initial higher plasma level of a drug as in case of conventional dosage forms, also drug escape the first pass metabolism through transdermal drug delivery , some a critical drugs which are known to save life are also administered as Transdermal patches for example nitroglycerin in congestive cardiac diseases.

There are some serious effects observed in resent time, like accidental high dose of a drug up on accidental sticking on handling or accidental contact with skin which has lead individual serious and to fatal conditions some times a life threatening one.

The fatal untoward effects are also seen in health care providers which accidentally handled the patches and got drug dose from remaining drug load from the used transdermal drug delivery patch.

The important factor.

The drug concentration which is required to be loaded on to a Transdermal drug delivery or related drug delivery systems is very high than that of the actual drug being absorbed and required to be achieved in to plasma of a patient.

Nanotechnology cancer treatments would use gold particles to carry anticancer drugs straight to the cancer. Learn about nanotechnology cancer treatments.

 

US FDA guidelines for Transdermal drug delivery patches and related drug delivery systems

In order to finally achieve consistent low residual drug with the desired quality of the Transdermal drug delivery systems ,

1. US FDA requires a drug manufacturers to submit the initial loaded drug concentration in the transdermal drug delivery patch and related drug delivery systems , be provided in the application for investigational new drug applications (INDs), new drug applications (NDAs), abbreviated new drug applications (ANDAs), and supplemental new drug applications (sNDAs) for TDDS, TMDS, and topical patch products.

2.US FDA now requires that the all justifications for initial drug load or concentration should be included in the application.

3.It also states that a proper scientific risk based approach must be taken to minimize the drug residue in the system so that a lowest possible concentration remains in the system.

4.The amount of residual drug in the transdemanl drug delivery system must not exceed than those already approved by FDA .

5. US FDA also requires that the information of  product and process development and how the final formulation is justified should be given in the common technical document (CTD) formatted application in section for Pharmaceutical Development.

US FDA has put emphasis on following points

1.) Quality By Design Concept 
2.) Minimizing Residual Drug 

The transdermal drug delivery patches and related products , be developed with the intention of giving efficacy and safety as well,
The quality by design concept basically requires a formulator to plan for a desired quality, quality of a drug can be best achieved when it is planed than when it  monitored.

Planing of quality of a drug product through logical application of past findings and research data and chemistry of drug molecule and exceipients being used, to achieve minimum drug load and this can lead to achieve minimum residual drug in transdermal drug delivery systems after use. Which will ensure that the abuse potential of the transdermal drug delivery systems are taken care of.

Buckminsterfullerene C60, also known as the buckyball, is a representative member of the carbon structures known as fullerenes. Members of the fullerene family are a major subject of research falling under the nanotechnology umbrella.

Nanotechnology and Cancer

Nanotechnology is one of the most popular areas of scientific research, especially with regard to medical applications. We’ve already discussed some of the new detection methods that should bring about cheaper, faster and less invasive cancer diagnoses. But once the diagnosis occurs, there’s still the prospect of surgery, chemotherapy or radiation treatment to destroy the cancer. Unfortunately, these treatments can carry serious side effects. Chemotherapy can cause a variety of ailments, including hair loss, digestive problems, nausea, lack of energy and mouth ulcers.

But nanotechnologists think they have an answer for treatment as well, and it comes in the form of targeted drug therapies. If scientists can load their cancer-detecting gold nanoparticles with anticancer drugs, they could attack the cancer exactly where it lives. Such a treatment means fewer side effects and less medication used. Nanoparticles also carry the potential for targeted and time-release drugs. A potent dose of drugs could be delivered to a specific area but engineered to release over a planned period to ensure maximum effectiveness and the patient’s safety.

These treatments aim to take advantage of the power of nanotechnology and the voracious tendencies of cancer cells, which feast on everything in sight, including drug-laden nanoparticles. One experiment of this type used modified bacteria cells that were 20 percent the size of normal cells. These cells were equipped with antibodies that latched onto cancer cells before releasing the anticancer drugs they contained.

Another used nanoparticles as a companion to other treatments. These particles were sucked up by cancer cells and the cells were then heated with a magnetic field to weaken them. The weakened cancer cells were then much more susceptible to chemotherapy.

It may sound odd, but the dye in your blue jeans or your ballpoint pen has also been paired with gold nanoparticles to fight cancer. This dye, known as phthalocyanine, reacts with light. The nanoparticles take the dye directly to cancer cells while normal cells reject the dye. Once the particles are inside, scientists “activate” them with light to destroy the cancer. Similar therapies have existed to treat skin cancers with light-activated dye, but scientists are now working to use nanoparticles and dye to treat tumors deep in the body.

From manufacturing to medicine to many types of scientific research, nanoparticles are now rather common, but some scientists have voiced concerns about their negative health effects. Nanoparticles’ small size allows them to infiltrate almost anywhere. That’s great for cancer treatment but potentially harmful to healthy cells and DNA. There are also questions about how to dispose of nanoparticles used in manufacturing or other processes. Special disposal techniques are needed to prevent harmful particles from ending up in the water supply or in the general environment, where they’d be impossible to track.

Gold nanoparticles are a popular choice for medical research, diagnostic testing and cancer treatment, but there are numerous types of nanoparticles in use and in development. Bill Hammack, a professor of chemical engineering at the University of Illinois, warned that nanoparticles are “technologically sweet” [Source: Marketplace]. In other words, scientists are so wrapped up in what they can do, they’re not asking if they should do it. The Food and Drug Administration has a task force on nanotechnology, but as of yet, the government has exerted little oversight or regulation.

robotics

A mechanical white blood cell attacks bacteria. The bacteria cannot develop immunity to mechanical devices as it would towards a drug

Nanotechnology, perhaps, has been most popularly recognized for it’s applications in robotics.  Nano-robotics, although having many applications in other areas (such as particle manipulation and, has the most useful and variety of uses in medical fields.

Drugs have been shown to be effective during treatment and so has surgery. However, both are only temporary. We do not have much control over the drugs that have entered our body. As mentioned in the “Applications in Drugs and Therapeutics” page, nanotechnology can play an important role by being used for designing drug delivery systems.

Nanorobots, once fully developed, will be more effective than drugs. This is because nanobots cab always be present in the body, fighting off pathogens such as viruses and tumors. Nanorobots will not require any additional treatment and will become relatively cheap after development.

Some of the potential applications for nano-robotics in medicine include early diagnosis and targeted drug delivery for cancer, biomedical instrumentation, surgery, pharmacokinetics, monitoring of diabetes, and health care. Medical nanotechnology in the future will use nanorobots injected into the patient to perform treatments at cellular levels 

Some other possible applications using medical nanorobots are as follows:

·        To cure skin diseases, a cream containing nanorobots may be used. This cream would remove the right amounts of dead skin cells, remove excess oils which may cause oily skin, insert missing oils, apply the specifically right amounts of natural moisturizing compounds. Dermatological problems would thus be avoided or removed.

·        A mouthwash full of water and smart nanorobots could identify and destroy pathogenic bacteria, particles of food, plaque, or tartar, while allowing the harmless flora of the mouth to flourish. Being suspended in liquid and able to swim about, devices would be able to reach surfaces beyond reach of toothbrush bristles or the floss fibers. As short-lifetime medical nano-devices, the bots could be built to last only a few minutes in the body before falling apart into materials of the sort found in foods (such as fibers and other organic compounds). This would not cause any toxic harmful effects in the body, and there would be no need for toothbrushes.

·        Medical nanodevices could augment the immune system by finding and disabling unwanted bacteria and viruses. When an invader is identified, it can be punctured, letting its contents spill out and ending its effectiveness. If the contents were known to be hazardous by themselves, then the immune machine could hold on to it long enough to dismantle it more completely. With even more innovation, pathogens could be broken down into simple substances such as oxygen and extra cellular material which can be used for benefit of the body!

·        Devices working in the bloodstream could nibble away at arteriosclerotic deposits, widening the affected blood vessels. Various nano-devices could restore the strength of the arteries and veins. With such applications, many heart attacks would be prevented.

More Background on Nanotechnology:

 

bullet Nanotechnology BasicsFor students and other learners
bullet Managing Magic A brief overview of the challenges posed by advanced nanotechnology
bullet Nanotechnology on an Upward Slope An online PowerPoint presentation
bullet Turn on the Nanotech High BeamsAn essay published by Future Brief
bullet Nano SimulationA way to visualize what is meant by molecular manufacturing
bullet Debating the Future of NanotechnologyPerspective from the Foresight Institute
bullet Safe Utilization of Advanced NanotechnologyOne of the founding papers of CRN
bullet 5-Minute Nanosystems A quick summary of Eric Drexler’s foundational work on nanotechnology
bullet Nanotechnology Press KitCompiled and published by Nanotechnology Now