New Drug Approvals

Home » Preclinical drugs » Process Development and Good Manufacturing Practice Production of a Tyrosinase Inhibitor via Titanium-Mediated Coupling between Unprotected Resorcinols and Ketones

Process Development and Good Manufacturing Practice Production of a Tyrosinase Inhibitor via Titanium-Mediated Coupling between Unprotected Resorcinols and Ketones

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Categories

Blog Stats

  • 4,186,290 hits

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,792 other subscribers

add to any

Share

(S)-4-(2,4-Dihydroxyphenyl)-N-(1-phenylethyl)piperidine-1-carboxamide (1)

In a………………….. to yield crude 1 (3.51 kg, 77%, 97.7 A% purity). Recrystallization: In a 100 L double jacketed reactor were charged crude 1 (3.51 kg, 10.31 mol, 1.0 equiv), iPrOH (27.0 L, 7.5 vol), AcOH (74.1 g), and water (27.0 L, 7.5 vol). The suspension was warmed to reflux and turned to a solution after 30 min of reflux. Heating was stopped, and the reaction medium was allowed to cool to 23 °C over 20 h. The suspension was filtered through a 25 μm filter medium; the cake was washed with a mixture of water (3.6 L) and AcOH (7.3 g) and the solid collected and dried under vacuum at 45 °C for 48 h to yield 1 (2.86 kg, 81%, 98.5 A% purity).
1H NMR (400 MHz, DMSO-d6): δ 9.11 (s, 1H), 8.96 (s, 1H), 7.30–7.31 (m, 4), 7.19–7.20 (m, 1H), 6.79 (d, J = 8.3 Hz, 2H), 6.7 (d, J = 7.9 Hz, 2H), 6.28 (d, J = 2.4 Hz, 1H), 6.16 (dd, J = 8.3, 2.4 Hz, 1H), 4.85–4.87 (m, 1 H), 4.13 (d, J = 12.9 Hz, 2H), 2.85 (t, J = 11.9 Hz, 1H), 2.70 (t, J = 12.7 Hz, 2H), 1.64 (d, J = 12.1 Hz, 2H), 1.40–1.41 (m, 5H).
13C NMR (101 MHz, DMSO-d6) δ 156.6, 156.0, 155.2, 146.3, 127.9, 126.7, 126.1, 125.9, 122.5, 106.0, 102.4, 49.3, 44.4, 34.7, 31.8, 31.7, 22.9;
mp: 200–201 °C;
HRMS (m/z, ES+) for C20H25N2O3 (M + H)+ calcd. 341.1865, measd. 341.1859.

Process Development and Good Manufacturing Practice Production of a Tyrosinase Inhibitor via Titanium-Mediated Coupling between Unprotected Resorcinols and Ketones

Nestlé Skin Health R&D, 2400 Route des colles BP 87, 06902 Sophia-Antipolis Cedex, France
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.7b00036

ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Thibaud Gerfaud

Thibaud Gerfaud

Team Leader Process Chemistry

Nestlé Skin Health Logo

Boiteau Jean-Guy

Boiteau Jean-Guy

Head of Process Research & Development

Nestlé Skin Health

Nestlé Skin Health Logo

Abstract

Abstract Image

A concise and economically attractive process for the synthesis of a novel tyrosinase inhibitor has been developed and implemented on a multikilogram scale under GMP. A major achievement to the success of the process is the development of a direct coupling between free resorcinol and ketone. First developed under basic conditions, this coupling has been turned to a novel titanium(IV) mediated process allowing good selectivity, easy isolation, and high atom efficiency. Other key steps feature an alkene reduction by palladium catalyzed transfer hydrogenation and a urea formation using N,N′-disuccinimidyl carbonate as the carbonyl source. This route allowed us to produce kilogram batches of the candidate to support preclinical and clinical studies.

Figure

Boiteau, J.-G.; Bouquet, K.; Talano, S.; Millois-Barbuis, C. Patent WO 2010/063774 A1, 2010.

More………………

str1

Cas 1228342-28-6
MF C20 H24 N2 O3,
MW  340.42
1-Piperidinecarboxamide, 4-(2,4-dihydroxyphenyl)-N-[(1S)-1-phenylethyl]-
  • 4-(2,4-Dihydroxyphenyl)-N-[(1S)-1-phenylethyl]-1-piperidinecarboxamide
  • 4-(2,4-Dihydroxyphenyl)piperidine-1-carboxylic acid N-((S)-1-phenylethyl)amide
Inventors Jean-Guy Boiteau , Karine Bouquet , Sandrine Talano , Barbuis Corinne Millois
Applicant Galderma Research & Development

Hyperpigmentation disorders such as melasma are characterized by an increase in melanin synthesis which accumulates in the epidermis and is responsible for a darkening of the skin. Melanogenesis occurs in the basal layer of the epidermis into specific organelles of the melanocytes called melanosomes.

A detailed analysis of the biosynthetic pathway reveals that tyrosinase is a key enzyme in melanogenesis and is responsible for the oxidation of tyrosine into DOPA (3,4-dihydroxyphenylalanine) and DOPA quinone.

It is a melanogenesis inhibitor working through the inhibition of tyrosinase (IC50 = 0.1 μM on normal human epidermal melanocytes) currently under development at Nestlé Skin Health R&D for the topical treatment of hyperpigmentation disorders. REF 1-5

WO 2010063774

Novel 4- (azacycloalkyl)benzene-l ,3-diol compounds as tyrosinase inhibitors, process for the preparation thereof and use thereof in human medicine and in cosmetics

The invention relates to novel 4- (azacycloalkyl) benzene-1, 3-diol compounds as industrial and useful products. It also relates to the process for the preparation thereof and to the use thereof, as tyrosinase inhibitors, in pharmaceutical or cosmetic compositions for use in the treatment or prevention of pigmentary disorders.

Skin pigmentation, in particular human skin pigmentation, is the result of melanin synthesis by dendritic cells, melanocytes. Melanocytes contain organelles called melanosomes which transfer melanin into the upper layers of keratinocytes which are then transported to the surface of the skin through differentiation of the epidermis (Gilchrest BA, Park HY, Eller MS, Yaar M, Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol 1996; 63: 1-10; Hearing VJ, Tsukamoto K, Enzymatic control of pigmentation in mammals. FASEB J 1991; 5: 2902-2909) .

Among the enzymes of melanogenesis, tyrosinase is a key enzyme which catalyses the first two steps of melanin synthesis. Homozygous mutations of tyrosinase cause oculocutaneous albinism type I characterized by a complete lack of melanin synthesis (Toyofuku K, Wada I, Spritz RA, Hearing VJ, The molecular basis of oculocutaneous albinism type 1 (OCAl) : sorting failure and degradation of mutant tyrosinases results in a lack of pigmentation. Biochem J 2001; 355: 259-269) .

In order to treat pigmentation disorders resulting from an increase in melanin production, for which there is no treatment that meets all the expectations of patients and dermatologists, it is important to develop new therapeutic approaches.

Most of the skin-lightening compounds that are already known are phenols or hydroquinone derivatives.

These compounds inhibit tyrosinase, but the majority of them are cytotoxic to melanocytes owing to the formation of quinones. There is a risk of this toxic effect causing a permanent depigmentation of the skin. The obtaining of compounds that can inhibit melanogenesis while at the same time being very weakly cytotoxic or devoid of toxicity to melanocytes is most particularly sought.

Among the compounds already described in the literature, patent application WO 99/15148 discloses the use of 4-cycloalkyl resorcinols as depigmenting agents .

Patent FR2704428 discloses the use of 4-halo-resorcinols as depigmenting agents.

Patent applications WO 2006/097224 and WO 2006/097223 disclose the use of 4-cycloalkylmethyl resorcinols as depigmenting agents.

Patent application WO 2005/085169 discloses the use of alkyl 3- (2, 4-dihydroxyphenyl) propionate as a depigmenting agent.

Patent application WO 2004/017936 discloses the use of 3- (2, 4-dihydroxyphenyl) acrylamide as a depigmenting agent.

Patent application WO 2004/052330 discloses the use of 4- [ 1, 3] dithian-2-ylresorcinols as depigmenting agents .

More particularly, patent EP0341664 discloses the use of 4-alkyl resorcinols as depigmenting agents, among which 4-n-butyl resorcinol, also known as rucinol, is part of the composition of a depigmenting cream sold under the name Iklen®.

The applicant has now discovered, unexpectedly and surprisingly, that novel compounds of 4- (azacycloalkyl) benzene-1, 3-diol structure have a very good tyrosinase enzyme-inhibiting activity and a very low cytotoxicity. Furthermore, these compounds have a tyrosinase enzyme-inhibiting activity that is greater than that of rucinol while at the same time being less cytotoxic with respect to melanocytes than rucinol.

These compounds find uses in human medicine, in particular in dermatology, and in the cosmetics field.

FR 2939135

References

  1. Briganti, S.; Camera, E.; Picardo, M. Pigm. Cell Res. 2003, 16, 101, DOI: 10.1034/j.1600-0749.2003.00029.x

  2. 2.

    Brenner, M.; Hearing, V. J. Photochem. Photobiol. 2008, 84, 539, DOI: 10.1111/j.1751-1097.2007.00226.x

  3. 3.

    (a) Schallreuter, K. U.; Kothari, S.; Chavan, B.; Spencer, J. D. Exp. Dermatol. 2008, 17, 395, DOI: 10.1111/j.1600-0625.2007.00675.x

    (b) Cooksey, C. J.; Garratt, P. J.;Land, E. J.; Pavel, S.; Ramsden, C. A.; Riley, P. A.; Smit, N. P.J. Biol. Chem. 1997, 272, 26226, DOI: 10.1074/jbc.272.42.26226

    (c) Stratford, M. R. L.; Ramsden, C. A.; Riley, P. A.Bioorg. Med. Chem. 2013, 21, 1166, DOI: 10.1016/j.bmc.2012.12.031

  4. 4.

    Chang, T. S. Int. J. Mol. Sci. 2009, 10, 2440, DOI: 10.3390/ijms10062440

  5. 5.

    Hypopigmentation effect have already been demonstrated for resorcinols; see:

    (a) Kim, D. S.; Kim, S. Y.;Park, S. H.; Choi, Y. G.; Kwon, S. B.; Kim, M. K.; Na, J. I.; Youn, S. W.; Park, K. C. Biol. Pharm. Bull. 2005,28, 2216, DOI: 10.1248/bpb.28.2216

    (b) Khemis, A.; Kaiafa, A.;Queille-Roussel, C.; Duteil, L.; Ortonne, J. P. Br. J. Dermatol.2007, 156, 997, DOI: 10.1111/j.1365-2133.2007.07814.x

////////////

O=C(N[C@@H](C)c1ccccc1)N2CCC(CC2)c3ccc(O)cc3O


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

DR ANTHONY CRASTO

Follow New Drug Approvals on WordPress.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,792 other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

View Full Profile →

TWITTER

  • RT @IndiaDST: The 2nd SCO Young Scientists Conclave #SCO_YSC is being hosted @jncasr , an autonomous institute of @IndiaDST , at its campus… 19 hours ago
  • RT @SciUp: Our Understanding Polymorphism online course is only a week away! This five-session course aims to give chemists and engineers a… 19 hours ago
  • RT @SciUp: Join us in Boston, US in May to get up-to-date intel on #flowchemistry. Our '5th Flow Chemistry & Continuous Processing' Confer… 19 hours ago
  • RT @SciUp: Join us online for our 'Work Up and Product Isolation' short course on 23-24 February & you will lean how to design simple and p… 19 hours ago
  • RT @thomasraji: Happy Birthday Mummyji !! Thanks for all your support and your invaluable life lessons.😍😍🎂💐💐🤩 You're not getting older...… 19 hours ago
  • RT @GuwahatiNiper: 74वें गणतंत्र दिवस कार्यक्रम की झलकियां। Glimpses of the 74th Republic Day programme. @Pharmadept @rajneeshtingal @bhagw1 day ago
  • RT @dst_neelima: DST supported NCoE on CCU at IITB was the knowledge partner in the parallel event organised by ETWG G20 on CCUS on 5 th Fe… 1 day ago
  • RT @dst_neelima: Glad to represent DST India In an International Conference on CCUS organised as a parallel event to Energy Transition Work… 1 day ago
  • Glimpse of 2nd National One Day Symposium on “Drug Discovery Research in India: Current State and Future Prospects… twitter.com/i/web/status/1… 2 days ago
  • RT @africureonline: World Cancer Day is observed annually on February 4th to raise awareness about the impact of cancer on individuals and… 2 days ago
  • RT @CSIRCIMAP: Activity 13: Dr N Kalaiselvi, DG CSIR & Secretary, DSIR under #CSIR_OneWeekOneLab inaugurated the ‘High Throughput Instrumen… 3 days ago
  • Career counseling to pharma students, At Govindrao Nikam College Of Pharmacy Sawarde,Tal - Chiplun, Ratnagiri, Mh 4… twitter.com/i/web/status/1… 3 days ago
  • RT @bluetech_media: We are proud to welcome Dr.@Anthony Melvin Crasto Advisor Africure Pharma, Global A WDT API INT RnD, Ex Glenmark LS, Wo… 3 days ago
  • Meet me at Global PHT 2023. as Guest of honor and speaker 𝐆𝐥𝐨𝐛𝐚𝐥 𝐏𝐡𝐚𝐫𝐦𝐚 𝐇𝐞𝐚𝐥𝐭𝐡𝐜𝐚𝐫𝐞 𝐓𝐞𝐜𝐡𝐧𝐨𝐥𝐨𝐠𝐲 𝐄𝐱𝐩𝐨 & 𝐒𝐮𝐦𝐦𝐢𝐭 𝟐𝟎𝟐𝟑… twitter.com/i/web/status/1… 4 days ago
  • Lifetime achievement award nomination at GlobalPHT 2023 𝐆𝐥𝐨𝐛𝐚𝐥 𝐏𝐡𝐚𝐫𝐦𝐚 𝐇𝐞𝐚𝐥𝐭𝐡𝐜𝐚𝐫𝐞 𝐓𝐞𝐜𝐡𝐧𝐨𝐥𝐨𝐠𝐲 𝐄𝐱𝐩𝐨 & 𝐒𝐮𝐦𝐦𝐢𝐭 (𝐆𝐥𝐨𝐛𝐚𝐥… twitter.com/i/web/status/1… 4 days ago

bloglovin

Follow my blog with Bloglovin The title of your home page You could put your verification ID in a comment Or, in its own meta tag Or, as one of your keywords Your content is here. The verification ID will NOT be detected if you put it here.
%d bloggers like this: