New Drug Approvals

Home » 2018 » March (Page 2)

Monthly Archives: March 2018

Advertisements
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 2,617,653 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,416 other followers

Follow New Drug Approvals on WordPress.com

Categories

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,416 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 year tenure till date Dec 2017, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 50 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 19 lakh plus views on New Drug Approvals Blog in 216 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

Verified Services

View Full Profile →

Categories

Flag Counter
Advertisements

GDC 0575


str1

BAZRWWGASYWYGB-SNVBAGLBSA-N.png

GDC 0575

GDC-0575
CAS:  1196541-47-5

C16 H20 Br N5 O, 378.27

(R)-N-(4-(3-aminopiperidin-1-yl)-5-bromo-1H-indol-3-yl)cyclopropanecarboxamide

N-[4-[(3R)-3-Amino-1-piperidinyl]-5-bromo-1H-pyrrolo[2,3-b]pyridin-3-yl]cyclopropanecarboxamide

Cyclopropanecarboxamide, N-[4-[(3R)-3-amino-1-piperidinyl]-5-bromo-1H-pyrrolo[2,3-b]pyridin-3-yl]-

ARRY-575; GDC-0575; RG 7741; RO 6845979,
  • AK 687476
  • ARRY 575
  • GDC 0575
  • RG 7741

Image result for gdc 0575

GDC-0575, also known as ARRY-575 and RG7741, is a potent and selective CHK1 inhibitor.

GDC-0575 is a highly selective small-molecule Chk-1 inhibitor invented by Array and licensed to Genentech.  Genentech is responsible for all clinical development and commercialization activities. Array received an upfront payment of $28 million and is eligible to receive clinical and commercial milestone payments up to $380 million and up to double-digit royalties on sales.

Chk-1 is a protein kinase that regulates the tumor cell’s response to DNA damage often caused by treatment with chemotherapy. In response to DNA damage, Chk-1 blocks cell cycle progression in order to allow for repair of damaged DNA, thereby limiting the efficacy of chemotherapeutic agents. Inhibiting Chk-1 in combination with chemotherapy can enhance tumor cell death by preventing these cells from recovering from DNA damage. GDC‑0575 is designed to enhance the efficacy of some chemotherapeutic agents.  GDC-0575 is currently advancing in a Phase 1 trial in patients with lymphoma or solid tumors.

  • Originator Array BioPharma
  • Developer Genentech
  • Class Antineoplastics; Small molecules
  • Mechanism of Action Checkpoint kinase 1 inhibitors

Highest Development Phases

  • Phase I Lymphoma; Solid tumours

Most Recent Events

  • 11 Jan 2018 Genentech completes a phase I trial in Lymphoma (Late-stage disease, Metastatic disease, Second-line therapy or greater, Combination therapy, Monotherapy) in France and USA (PO) (NCT01564251)
  • 05 Dec 2017 GDC 0575 is still in phase I trials for Solid tumours and lymphoma in USA and France (Genentech pipeline, December 2017) (NCT01564251)
  • 04 Nov 2017 No recent reports of development identified for phase-I development in Lymphoma in France (PO)

 Array BioPharma

PATENTS

U.S. Patent, 8,841,304

U.S. Patent 8,178,131,

PAPER

Org. Process Res. Dev. 201721664– 668 

Highly Regioselective and Practical Synthesis of 5-Bromo-4-chloro-3-nitro-7-azaindole

 Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
 Department of Pharma Technical Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
Org. Process Res. Dev.201721 (4), pp 664–668
DOI: 10.1021/acs.oprd.7b00060
Abstract Image

We report an efficient and highly regiocontrolled route to prepare a functionalized 7-azaindole derivative—5-bromo-4-chloro-3-nitro-7-azaindole—from readily available parent 7-azaindole featuring a highly regioselective bromination of the 4-chloro-3-nitro-7-azaindole intermediate. In addition to the high efficiency and excellent control of regioisomeric impurities, the process is operationally simple by isolating each product via direct crystallization from the reaction mixture with no liquid–liquid extractions or distillation steps needed. We demonstrated the route on >50 kg scale and 46% overall yield to provide the target product in 97% purity by HPLC, which can serve as a useful building block for the preparation of a series of 3,4,5-substituted-7-azaindole derivatives.

https://pubs.acs.org/doi/suppl/10.1021/acs.oprd.7b00060/suppl_file/op7b00060_si_001.pdf

-Bromo-4-chloro-3-nitro-1H-pyrrolo[2,3-b]pyridine (1)(10)

Into ………….. afford 5-bromo-4-chloro-3-nitro-1H-pyrrolo[2,3-b]pyridine 1 as a tan solid (66.4 kg, 96.2 wt %, 90% yield, 96.9 A % HPLC; unreacted starting material 5: 0.99 A% HPLC; impurity 8: 0.95 A% HPLC): mp 269 °C dec; 1H NMR (300 MHz, DMSO-d6) δ 13.68 (s, 1H), 8.93 (s, 1H), 8.66 (s, 1H); 13C NMR (75 MHz, DMSO-d6) δ 146.9, 146.4, 133.9, 133.2, 12

PATENT

WO 2010118390

https://patents.google.com/patent/WO2010118390A1/und

PATENT

WO 2015027090

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015027090

PATENT

WO 2015027092

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015027092&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

Example 1: Preparation of (i?)-5-bromo-4-(3-amino)piperidin-l-yl)-3- (cyclopropanecarboxamido)-lH-pyrrolo[2,3-&]pyridine:

[0096] Step 1 : Preparation of (i?)-5-bromo-4-(3-(/ert-butoxycarbonylamino)piperidin-l-yl)-3-nitro-lH-pyrrolo[2,3-6]pyridine:

[0097] To an inerted 10 L jacket reactor, equipped with a mechanic stirrer, a nitrogen/vacuum manifold, a thermocouple, and a condenser, were charged 2-methyl-2-butanol (3.30 L), 5-bromo-4-chloro-3-nitro-lH-pyrrolo[2,3-6]pyridine (330 g, 1.00 equiv), (R)-tert-butyl piperidin-3-ylcarbamate (456 g, 2.00 equiv), and N-methylmorpholine (115 g, 1.00 equiv). The reaction mixture was stirred at 85 °C for 48 h and cooled to 20 °C. The mixture was then washed with 15 wt % citric acid aqueous solution (3.30 kg) and water (3.30 kg). The majority of 2-methyl-2-butanol was distilled off under vacuum at 50 °C. Acetonitrile was added to bring the mixture back to its original volume. Continuous distillation was conducted until a total of 10.3 kg of acetonitrile was added. Water (3.20 kg) was slowly charged to the suspension over approximately 1 h at 55 °C. The slurry was slowly cooled to 20 °C over 4 h. The resulting solid was collected by filtration and washed with a 1 : 1 (v/v) mixture of acetonitrile and water (1.60 L). The product was dried in a vacuum oven under nitrogen at 70 °C to provide 358 g (69% yield) of (i?)-5-bromo-4-(3-(ter/-butoxycarbonylamino)piperidin-l-yl)-3-nitro-lH-pyrrolo[2,3-6]pyridine as a yellow solid. !H NMR (600 MHz, DMSO-i/6): δ 13.12 (s, 1H), 8.60 (s, 1H), 8.39 (s, 1H), 6.80 (d, J= 6.8 Hz, 1H), 3.49 (m, 1H), 3.34 (m, 2H), 3.22 (t, J = 11.2 Hz, 1H), 3.00 (t, J = 10.2 Hz, 1H), 1.88 (dd, J = 12.3, 2.8 Hz, 1H), 1.74 (m, 2H), 1.38 (m, 1H), 1.34 (s, 9H). 13C NMR (150 MHz, DMSO-<¾): δ 154.8, 148.9, 148.2, 147.9, 130.6, 128.5, 113.8, 109.6, 77.6, 54.7, 48.9, 47.3, 30.0, 28.1 (3C), 24.2. HRMS-ESI (m/z): [M + H]+ calcd for C17H23BrN504, 440.0928; found, 440.0912.

[0098] Steps 2 and 3: Preparation of (i?)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin- 1 -yl)-3 -(cyclopropanecarboxamido)- 1 H-pyrrolo[2,3 -&]pyridine:

[0099] To an inerted 1 L pressure reactor were charged (i?)-5-bromo-4-(3-(tert-

butoxycarbonylamino)piperidin-l-yl)-3-nitro-lH-pyrrolo[2,3-6]pyridine (75.0 g, 1.00 equiv), 1% Pt + 2% V/C (11.3 g, 15 wt %), N-methylmorpholine (29.3 g, 1.70 equiv), and 2-MeTHF (750 mL). The reaction mixture was stirred at 50 °C at 5 bar of hydrogen for a minimum of 2 h. Cyclopropanecarbonyl chloride (26.7 g, 1.50 equiv) was charged into the reactor over 10 min at 15 °C. The reaction mixture was stirred at 25 °C for 1 h and filtered through Celite. The cake was washed with 2-MeTHF (150 mL). The filtrate was washed with 15 wt % aqueous ammonium chloride solution (450 mL) and water (450 mL) and then distilled in vacuo to 1/3 of it’s original volume. Toluene was added to bring the solution back to its original volume. Continuous vacuum distillation was conducted at 55 °C while adding toluene until the 2-MeTHF was below 2 wt %. The resulting solid was isolated by filtration, washed with toluene and dried in a vacuum oven at 40 °C overnight to give 69.8 g (69% corrected yield) of (i?)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-l-yl)-3-(cyclopropanecarboxamido)-lH-pyrrolo[2,3-6]pyridine (1 :1 toluene solvate) as an off-white solid. 1H NMR (600 MHz, THF-i 8, 4 °C): δ 10.76 (s, 1H), 9.72 (s, 1H), 8.15 (s, 1H), 7.90 (d, J = 2.4 Hz, 1H), 7.18-7.08 (m, 5H), 6.41 (d, J = 7.8 Hz, 1H), 3.82 (m, 1H), 3.60 (m, 1H), 3.44 (t, J = 10.6 Hz, 1H), 3.30 (dd, J= 10.6, 3.9 Hz, 1H), 3.03 (d, J = 10.9 Hz, 1H), 2.29 (s, 3H), 2.08 (m, 1H), 1.89 (m, 2H), 1.66 (m, 1H), 1.37 (s, 9H), 1.36 (m, 1H), 0.95-0.80 (m, 4H). 13C NMR (150 MHz, THF-ci8, 4 °C): δ 170.0, 155.8, 149.0, 147.8, 147.6, 138.4, 129.6 (2C), 128.9 (2C), 126.0, 116.6, 115.6, 111.9, 108.8, 78.5, 55.8, 50.2, 49.1, 31.8, 28.6 (3C), 26.3, 21.5, 15.8, 7.70, 7.56. HRMS-ESI (m/z): [M + H]+ calcd for C21H29BrN503, 478.1448; found, 478.1431.

[00100] Step 4: Preparation of (i?)-5-bromo-4-(3-amino)piperidin-l-yl)-3-(cyclopropanecarboxamido)- 1 H-pyrrolo [2,3 -6]pyridine :

[00101] To an inerted 1 L jacket reactor, equipped with a mechanic stirrer, a nitrogen/vacuum manifold, a thermocouple, and a condenser, were charged (i?)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-l-yl)-3-nitro-lH-pyrrolo[2,3-0]pyridine (1 : 1 toluene solvate) (30.0 g, 1.00 equiv), tetrahydrofuran (180 mL, 6.00 mL/g), followed by 4.5 M sulfuric acid (36.1 mL, 3.00 equiv). The reaction mixture was stirred at 50 ± 5 °C for 2 h and then cooled to 20 °C. An aqueous piperazine solution (42.4 g dissolved in 190 mL of water) was added slowly at 25 °C followed by addition of 15.0 mL of sat’d brine. The aqueous bottom layer was removed. The resulting solution was stirred at 20 °C for 5 min. Water (22.0 mL) was added. Continuous distillation was conducted at 50 °C by adjusting the feed rate of ethanol to match the distillation rate until a total of 260 mL of ethanol was added. Water (340 mL) was added at 50 °C over 1 h. The resulting solid was isolated by filtration, washed with 20% ethanol in water (2 x 60 mL) and dried in a vacuum oven at 50 °C overnight to give 16.4 g (78% corrected yield) of (i?)-5-bromo-4-(3-amino)piperidin-l-yl)-3-(cyclopropanecarboxamido)-l H-pyrrolo [2,3 -b]pyridine as a light yellow solid. (Note: The proton ( H) and carbon- 13 ( C) spectra of freebase product are very broad. Therefore, the spectra shown below are of freebase converted to a bis-HCl salt.) 1H NMR (300 MHz, DMSC ): δ 11.98 (br, 1H), 9.78 (s, 1H), 8.44 (br, 3H), 8.25 (s, 1H), 7.45 (d, J = 2.4 Hz, 1H), 3.57 (m, 1H), 3.43 (m, 1H), 3.41 (m, 1H), 3.28 (m, 1H), 3.14 (m, 1H), 2.15 (m, 1H), 1.90 (penta, J = 6.5 Hz, 1H), 1.81 (m, 1H), 1.72 (m, 1H), 1.52 (m, 1H), 0.83 (m, 4H). 13C NMR (75 MHz, DMSO- 6): 5 172.9, 149.5, 145.9, 145.1, 121.9, 114.2, 113.1, 107.8, 53.8, 51.1, 47.5, 28.6, 24.37, 14.7, 7.55, 7.45. HRMS-ESI (m/z): [M + H]+ calcd for C16H21BrN50, 378.0924; found, 378.0912.

[00102] Example 2:

[00103] Alternatively, the compound (i?)-5-bromo-4-(3-(fer/-butoxycarbonylamino)piperidin- 1 -yl)-3 -(cyclopropanecarboxamido)- 1 H-pyrrolo [2,3 -£]pyridine can be prepared from 5-bromo-4-chloro-3-nitro-lH-pyrrolo[2,3-b]pyridine and (^)-tert-butyl piperidin-3-ylcarbamate via a through process without isolating (i?)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-l-yl)-3-nitro-lH-pyrrolo[2,3-6]pyridine. The changes to existing procedure are shown as below: The solution of (i?)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin- 1 -yl)-3 -nitro- 1 H-pyrrolo [2,3 -6]pyridine was hydrogenated directly in 2-methyl-2-butanol after aqueous washes with 15 wt % citric acid aqueous solution (10.0 g/g) and water (10.0 g/g). The solution concentration in 2-methyl-2-butanol was determined by HPLC weight assay.

PATENT

WO 2016138458

CHK1 is a serine/threonine kinase that regulates cell-cycle progression and is a main factor in DNA-damage response within a cell. CHK1 inhibitors have been shown to sensitize tumor cells to a variety of genotoxic agents, such as chemotherapy and radiation. U.S. Pat. No. 8,178,131 discusses a number of inhibitors of CHK1, including the compound (i?)-N-(4-(3-aminopiperidin-l-yl)-5-bromo-lH-pyrrolo[2,3-b]pyridin-3-yl)cyclopropanecarboxamide (Compound 1), which is being investigated in clinical trials for the treatment of various cancers.

Compound 1

PATENT

U.S. Patent Application, 20160200723

Example 1 Preparation of (R)-5-bromo-4-(3-amino)piperidin-1-yl)-3-(cyclopropanecarboxamido)-1H-pyrrolo[2,3-b]pyridine

Step 1: Preparation of (R)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-1-yl)-3-nitro-1H-pyrrolo[2,3-b]pyridine

To an inserted 10 L jacket reactor, equipped with a mechanic stirrer, a nitrogen/vacuum manifold, a thermocouple, and a condenser, were charged 2-methyl-2-butanol (3.30 L), 5-bromo-4-chloro-3-nitro-1H-pyrrolo[2,3-b]pyridine (330 g, 1.00 equiv), (R)-tert-butyl piperidin-3-ylcarbamate (456 g, 2.00 equiv), and N-methylmorpholine (115 g, 1.00 equiv). The reaction mixture was stirred at 85° C. for 48 h and cooled to 20° C. The mixture was then washed with 15 wt % citric acid aqueous solution (3.30 kg) and water (3.30 kg). The majority of 2-methyl-2-butanol was distilled off under vacuum at 50° C. Acetonitrile was added to bring the mixture back to its original volume. Continuous distillation was conducted until a total of 10.3 kg of acetonitrile was added. Water (3.20 kg) was slowly charged to the suspension over approximately 1 h at 55° C. The slurry was slowly cooled to 20° C. over 4 h. The resulting solid was collected by filtration and washed with a 1:1 (v/v) mixture of acetonitrile and water (1.60 L). The product was dried in a vacuum oven under nitrogen at 70° C. to provide 358 g (69% yield) of (R)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-1-yl)-3-nitro-1H-pyrrolo[2,3-b]pyridine as a yellow solid. 1H NMR (600 MHz, DMSO-d6): δ 13.12 (s, 1H), 8.60 (s, 1H), 8.39 (s, 1H), 6.80 (d, J=6.8 Hz, 1H), 3.49 (m, 1H), 3.34 (m, 2H), 3.22 (t, J=11.2 Hz, 1H), 3.00 (t, J=10.2 Hz, 1H), 1.88 (dd, J=12.3, 2.8 Hz, 1H), 1.74 (m, 2H), 1.38 (m, 1H), 1.34 (s, 9H). 13C NMR (150 MHz, DMSO-d6): δ 154.8, 148.9, 148.2, 147.9, 130.6, 128.5, 113.8, 109.6, 77.6, 54.7, 48.9, 47.3, 30.0, 28.1 (3C), 24.2. HRMS-ESI (m/z): [M+H]+ calcd for C17H23BrN5O4, 440.0928. found, 440.091

Steps 2 and 3: Preparation of (R)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-1-yl)-3-(cyclopropanecarboxamido)-1H-pyrrolo[2,3-b]pyridine

To an inserted 1 L pressure reactor were charged (R)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-1-yl)-3-nitro-1H-pyrrolo[2,3-b]pyridine (75.0 g, 1.00 equiv), 1% Pt+2% V/C (11.3 g, 15 wt %), N-methylmorpholine (29.3 g, 1.70 equiv), and 2-MeTHF (750 mL). The reaction mixture was stirred at 50° C. at 5 bar of hydrogen for a minimum of 2 h. Cyclopropanecarbonyl chloride (26.7 g, 1.50 equiv) was charged into the reactor over 10 min at 15° C. The reaction mixture was stirred at 25° C. for 1 h and filtered through Celite. The cake was washed with 2-MeTHF (150 mL). The filtrate was washed with 15 wt % aqueous ammonium chloride solution (450 mL) and water (450 mL) and then distilled in vacuo to ⅓ of it’s original volume. Toluene was added to bring the solution back to its original volume. Continuous vacuum distillation was conducted at 55° C. while adding toluene until the 2-MeTHF was below 2 wt %. The resulting solid was isolated by filtration, washed with toluene and dried in a vacuum oven at 40° C. overnight to give 69.8 g (69% corrected yield) of (R)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-1-yl)-3-(cyclopropanecarboxamido)-1H-pyrrolo[2,3-b]pyridine (1:1 toluene solvate) as an off-white solid. 1H NMR (600 MHz, THF-d8, 4° C.): δ 10.76 (s, 1H), 9.72 (s, 1H), 8.15 (s, 1H), 7.90 (d, J=2.4 Hz, 1H), 7.18-7.08 (m, 5H), 6.41 (d, J=7.8 Hz, 1H), 3.82 (m, 1H), 3.60 (m, 1H), 3.44 (t, J=10.6 Hz, 1H), 3.30 (dd, J=10.6, 3.9 Hz, 1H), 3.03 (d, J=10.9 Hz, 1H), 2.29 (s, 3H), 2.08 (m, 1H), 1.89 (m, 2H), 1.66 (m, 1H), 1.37 (s, 9H), 1.36 (m, 1H), 0.95-0.80 (m, 4H). 13C NMR (150 MHz, THF-d8, 4° C.): δ 170.0, 155.8, 149.0, 147.8, 147.6, 138.4, 129.6 (2C), 128.9 (2C), 126.0, 116.6, 115.6, 111.9, 108.8, 78.5, 55.8, 50.2, 49.1, 31.8, 28.6 (3C), 26.3, 21.5, 15.8, 7.70, 7.56. HRMS-ESI (m/z): [M+H]+ calcd for C21H29BrN5O3, 478.1448. found, 478.1431.

Step 4: Preparation of (R)-5-bromo-4-(3-amino)piperidin-1-yl)-3-(cyclopropanecarboxamido)-1H-pyrrolo[2,3-b]pyridine

To an inserted 1 L jacket reactor, equipped with a mechanic stirrer, a nitrogen/vacuum manifold, a thermocouple, and a condenser, were charged (R)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-1-yl)-3-nitro-1H-pyrrolo[2,3-b]pyridine (1:1 toluene solvate) (30.0 g, 1.00 equiv), tetrahydrofuran (180 mL, 6.00 mL/g), followed by 4.5 M sulfuric acid (36.1 mL, 3.00 equiv). The reaction mixture was stirred at 50±5° C. for 2 h and then cooled to 20° C. An aqueous piperazine solution (42.4 g dissolved in 190 mL of water) was added slowly at 25° C. followed by addition of 15.0 mL of sat′d brine. The aqueous bottom layer was removed. The resulting solution was stirred at 20° C. for 5 min. Water (22.0 mL) was added. Continuous distillation was conducted at 50° C. by adjusting the feed rate of ethanol to match the distillation rate until a total of 260 mL of ethanol was added. Water (340 mL) was added at 50° C. over 1 h. The resulting solid was isolated by filtration, washed with 20% ethanol in water (2×60 mL) and dried in a vacuum oven at 50° C. overnight to give 16.4 g (78% corrected yield) of (R)-5-bromo-4-(3-amino)piperidin-1-yl)-3-(cyclopropanecarboxamido)-1H-pyrrolo[2,3-b]pyridine as a light yellow solid. (Note: The proton (1H) and carbon-13 (13C) spectra of freebase product are very broad. Therefore, the spectra shown below are of freebase converted to a bis-HCl salt.)1H NMR (300 MHz, DMSO-d6): δ 11.98 (br, 1H), 9.78 (s, 1H), 8.44 (br, 3H), 8.25 (s, 1H), 7.45 (d, J=2.4 Hz, 1H), 3.57 (m, 1H), 3.43 (m, 1H), 3.41 (m, 1H), 3.28 (m, 1H), 3.14 (m, 1H), 2.15 (m, 1H), 1.90 (penta, J=6.5 Hz, 1H), 1.81 (m, 1H), 1.72 (m, 1H), 1.52 (m, 1H), 0.83 (m, 4H). 13C NMR (75 MHz, DMSO-d6): δ 172.9, 149.5, 145.9, 145.1, 121.9, 114.2, 113.1, 107.8, 53.8, 51.1, 47.5, 28.6, 24.37, 14.7, 7.55, 7.45. HRMS-ESI (m/z): [M+H]+ calcd for C16H21BrN5O, 378.0924. found, 378.0912.

Example 2

Alternatively, the compound (R)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-1-yl)-3-(cyclopropanecarboxamido)-1H-pyrrolo[2,3-b]pyridine can be prepared from 5-bromo-4-chloro-3-nitro-1H-pyrrolo[2,3-b]pyridine and (R)-tert-butyl piperidin-3-ylcarbamate via a through process without isolating (R)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-1-yl)-3-nitro-1H-pyrrolo[2,3-b]pyridine. The changes to existing procedure are shown as below: The solution of (R)-5-bromo-4-(3-(tert-butoxycarbonylamino)piperidin-1-yl)-3-nitro-1H-pyrrolo[2,3-b]pyridine was hydrogenated directly in 2-methyl-2-butanol after aqueous washes with 15 wt % citric acid aqueous solution (10.0 g/g) and water (10.0 g/g). The solution concentration in 2-methyl-2-butanol was determined by HPLC weight assay.

PAPER

An Efficient Through-Process for Chk1 Kinase Inhibitor GDC-0575

 Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
 Department of Pharma Technical Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.7b00388

Abstract

Abstract Image

We report an efficient route to prepare Chk1 kinase inhibitor GDC-0575 from 5-bromo-4-chloro-3-nitro-7-azaindole featuring a sequence of nucleophilic aromatic substitution, hydrogenative nitro-reduction, and a robust, high-yielding end-game involving deprotection–crystallization steps. The developed route was demonstrated on 10 kg scale in 30% overall yield to provide the target API in >99.8 A % HPLC purity.

(R)-5-Bromo-4-(3-amino)piperidin-1-yl)-3-(cyclopropanecarboxamido)-1H-pyrrolo[2,3-b]pyridine (GDC-0575)

To ………….. to give (R)-5-bromo-4-(3-amino)piperidin-1-yl)-3-(cyclopropanecarboxamido)-1H-pyrrolo[2,3-b]pyridine as a light yellow solid (5.1 kg, 76% yield, 99.9 A % by HPLC analysis).
Both 1H and 13C spectra of GDC-0575 freebase are very broad.
Therefore, the spectra shown below are of freebase converted to a bis-HCl salt: mp = 267 °C;
1H NMR (300 MHz, DMSO-d6): δ 11.98 (br, 1H), 9.78 (s, 1H), 8.44 (br, 3H), 8.25 (s, 1H), 7.45 (d, J = 2.4 Hz, 1H), 3.57 (m, 1H), 3.43 (m, 1H), 3.41 (m, 1H), 3.28 (m, 1H), 3.14 (m, 1H), 2.15 (m, 1H), 1.90 (penta, J = 6.5 Hz, 1H), 1.81 (m, 1H), 1.72 (m, 1H), 1.52 (m, 1H), 0.83 (m, 4H);
13C NMR (75 MHz, DMSO-d6): δ 172.9, 149.5, 145.9, 145.1, 121.9, 114.2, 113.1, 107.8, 53.8, 51.1, 47.5, 28.6, 24.37, 14.7, 7.55, 7.45;
HRMS–ESI (m/z): [M + H]+ calcd for C16H21BrN5O, 378.0924; found, 378.0912.

REFERENCES

1: Duan W, Gao L, Aguila B, Kalvala A, Otterson GA, Villalona-Calero MA. Fanconi
anemia repair pathway dysfunction, a potential therapeutic target in lung cancer.
Front Oncol. 2014 Dec 19;4:368. doi: 10.3389/fonc.2014.00368. eCollection 2014.
PubMed PMID: 25566506; PubMed Central PMCID: PMC4271581.

Publications

GDC-0575 / Cancer

07/01/2011

Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics

Single-Agent Inhibition of Chk1 Is Antiproliferative in Human Cancer Cell Lines In Vitro and Inhibits Tumor Xenograft Growth In Vivo

K. D. Davies, et al.

GDC-0575 / Cancer

04/05/2011

American Association for Cancer Research Annual Meeting

Chk1 inhibition and Wee1 inhibition combine synergistically to inhibit cellular proliferation

K. D. Davies, et al.

GDC-0575 / Cancer

03/11/2011

International Symposium on Targeted Anticancer Therapies

Preclinical characterization of ARRY-575: A potent, selective, and orally bio-available small molecule inhibitor of Chk1

M. J. Humphries, et al.

///////// GDC0575,  GDC 0575, ARRY-575, GDC-0575, RG 7741, RO 6845979, AK 687476, ARRY 575, GDC 0575, RG 7741, PHASE 1

O=C(Nc1cnc2ncc(Br)c(c12)N3CCC[C@@H](N)C3)C4CC4

AVOID CONFUSING

GLXC-11762   WRONG  COMPD 2097938-64-0

N ATOM MISSING IN RING

Advertisements

Taladegib (LY-2940680),


Taladegib.png

Taladegib

LY2940680; 1258861-20-9; Taladegib; LY-2940680; UNII-QY8BWX1LJ5; QY8BWX1LJ5

CAS 1258861-20-9 FREE , CAS HCL 1258861-21-0
4-Fluoro-N-methyl-N-{1-[4-(1-methyl-1H-pyrazol-5-yl)-1-phthalazinyl]-4-piperidinyl}-2-(trifluoromethyl)benzamide
Benzamide, 4-fluoro-N-methyl-N-[1-[4-(1-methyl-1H-pyrazol-5-yl)-1-phthalazinyl]-4-piperidinyl]-2-(trifluoromethyl)-
LY 2940680

4-fluoro-N-methyl-N-[1-[4-(2-methylpyrazol-3-yl)phthalazin-1-yl]piperidin-4-yl]-2-(trifluoromethyl)benzamide

Molecular Formula: C26H24F4N6O
Molecular Weight: 512.513 g/mol

Taladegib is an orally bioavailable small molecule antagonist of the Hedgehog (Hh)-ligand cell surface receptor smoothened (Smo) with potential antineoplastic activity. Taladegib inhibits signaling that is mediated by the Hh pathway protein Smo, which may result in a suppression of the Hh signaling pathway and may lead to the inhibition of the proliferation of tumor cells in which this pathway is abnormally activated. The Hh signaling pathway plays an important role in cellular growth, differentiation and repair; constitutive activation of this pathway is associated with uncontrolled cellular proliferation and has been observed in a variety of cancers.

Taladegib has been used in trials studying the treatment of Solid Tumor, COLON CANCER, BREAST CANCER, Advanced Cancer, and Rhabdomyosarcoma, among others.

Image result for Taladegib

  • Originator Eli Lilly
  • Developer Eli Lilly; Ignyta
  • Class Antineoplastics; Benzamides; Fluorobenzenes; Phthalazines; Piperidines; Pyrazoles; Small molecules
  • Mechanism of Action Hedgehog cell-signalling pathway inhibitors; SMO protein inhibitors

Highest Development Phases

  • Phase I/II Oesophageal cancer; Small cell lung cancer
  • Phase I Ovarian cancer; Solid tumours
  • Preclinical Basal cell cancer
  • No development reported Cancer

Most Recent Events

  • 04 Nov 2017 No recent reports of development identified for phase-I development in Solid-tumours(Late-stage disease, Second-line therapy or greater) in Japan (PO, Tablet)
  • 02 Jun 2017 Adverse events data from a phase I/II trial in Ovarian cancer (Solid tumours) presented at the 53rd Annual Meeting of the American Society of Clinical Oncology (ASCO-2017)
  • 23 Mar 2017 Ignyta amends its license, development and commercialisation agreement with Eli Lilly for taladegib

SYN

PATENT

WO 2010147917

Preparation 1 ter?-Butyl 1 -(4-chlorophthalazin- 1 -yl)piperidin-4-yl(methyl)carbamate

Heat a mixture of potassium carbonate (21.23 g, 153.6 mmol), 1,4-dichlorophthalazine (26 g, 128 mmol) and methyl-piperidin-4-yl carbamic acid ter?-butyl ester (30.01 g, 134.4 mmol) in N-methylpyrrolidine (200 mL) at 80 0C overnight. Pour the reaction mixture into water, extract with dichloromethane, dry over Na2SC”4, and concentrate under reduced pressure. Add diethylether and filter off the resulting solid (4-chlorophethalazin-1-ol from starting material impurity). Concentrate the filtrate. Purify the resulting residue by flash silica gel chromatography (hexane : ethyl acetate = 2 : 1) to X-18698

-9- provide the title compound as a white solid (17.66 g, 37%). ES/MS m/z (37Cl) 377.0 (M+ 1).

Preparation 2 fer?-Butyl 1 -(4-chlorophthalazin- 1 -yl)piperidin-4-ylcarbamate

Prepare the title compound by essentially following the procedure described in Preparation 1 , using piperidin-4-yl-carbamic acid tert-butyl ester. Cool the reaction mixture and pour into water (500 mL). Extract with ethyl acetate, wash with water, dry over Na2SC”4, and remove the solvents under reduced pressure to provide the title compound as a yellow solid (36 g, 97%). ES/MS m/z 363.0 (M+l).

Preparation 3 ter?-Butyl methyl( 1 -(4-( 1 -methyl- lH-pyrazol-5 -yl)phthalazin- 1 -yl)piperidin-4- yl)carbamate

Place sodium carbonate (3.82 g, 36.09 mmol), tert-butyl 1 -(4-chlorophthalazin- 1-yl) piperidin-4-yl(methyl)carbamate (6.8 g, 18.04 mmol) and 1 -methyl- lH-pyrazole-5-boronic acid pinacol ester (5.63 g, 27.1 mmol) in a flask with a mixture of toluene (50 mL), ethanol (17 mL), and water (17 mL). Degas the mixture for 10 min with nitrogen gas. Add tetrakis(triphenylphosphine)palladium (0.4 g, 0.35 mmol) and heat the mixture at 74 0C overnight. Cool the mixture to ambient temperature and dilute with dichloromethane. Wash the organic portion with brine, dry over Na2SC”4, and concentrate under reduced pressure. Purify the resulting residue by flash silica gel chromatography X-18698

-10-

(hexane : ethyl acetate : 2 M NH3 in MeOH = 20 : 5 : 1) to provide the title compound as a yellow foam (5.33 g, 70%). ES/MS m/z 423.2 (M+ 1).

Alternate procedure to prepare tert-butyl methyl(l-(4-(l-methyl-lH-pyrazol-5-yl)phthalazin-l-yl)piperidin-4-yl)carbamate: Preparations 4 – 6

Preparation 4

1 ,4-Dibromophthalazine


Charge a pressure tube with phosphorus pentabromide (24.5 g, 54.1 mmol) and

2,3-dihydro-phthalazine-l,4-dione (5.00 g, 30.8 mmol). Seal the tube and heat at 140 0C for 6-7 h. Allow to cool overnight. Carefully open the tube due to pressure. Chisel out the solid and pour into ice water. Allow to stir in ice water and collect the resulting solid by vacuum filtration. Dry in a vacuum oven to obtain the final product (8.31 g, 93%). ES/MS (79Br, 81Br) m/z 288.8 (M+). Ref: Can. J. Chem. 1965, 43, 2708.

Preparation 5 ter?-Butyl 1 -(4-bromophthalazin- 1 -yl)piperidin-4-yl(methyl)carbamate


Combine 1 ,4-dibromophthalazine (0.70 g, 2.38 mmol), N-methylpyrrolidone (7.0 mL), potassium carbonate (395 mg, 2.86 mmol), and methyl-piperidin-4-yl-carbamic acid ter?-butyl ester (532 mg, 2.38 mmol). Heat at 80 0C overnight. Cool and pour into water. Collect the solid and dry in a vacuum oven at ambient temperature overnight to obtain the final product (0.96 g, 95%). ES/MS m/z (81Br) 421.0 (M+ 1).

X-18698

-11-

Preparation 6 fer?-Butyl methyl (l-(4-(l -methyl- lH-pyrazol-5-yl)phthalazin-l-yl)piperidin-4- yl)carbamate


Charge a reaction tube with fer?-butyl l-(4-bromophthalazin-l-yl)piperidin-4-yl(methyl)carbamate (500 mg, 1.2 mmol), 1 -methyl- lH-pyrazole-5-boronic acid pinacol ester (370 mg, 1.8 mmol), sodium carbonate (252 mg, 2.4 mmol), toluene (3.75 mL), ethanol (1.25 mL), and water (1.25 mL). Degas the reaction mixture with nitrogen for 10 min. Add tetrakis (triphenylphosphine) palladium (137.1 mg, 118.7 μmol). Bubble nitrogen through the reaction mixture for another 10 min. Cap the reaction vial and heat at 90 0C overnight. Cool the reaction and filter through a silica gel pad eluting with 5% MeOH : CΗ2CI2. Concentrate the fractions under reduced pressure. Purify the resulting residue using silica gel chromatography (2% 2 N NH3 in MeOHiCH2Cl2) to obtain the final product (345.6 mg, 69%). ES/MS m/z 423.2 (M+ 1).

Preparation 7 ter?-Butyl 1 -(4-( 1 H-pyrazol-5 -yl)phthalazin- 1 -yl)piperidin-4-yl(methyl)carbamate

Prepare the title compound by essentially following the procedure described in Preparation 3, using tert-buty\ l-(4-chlorophthalazin-l-yl)piperidin-4-yl(methyl)carbamate and lH-pyrazole-3-boronic acid pinacol ester to provide 580 mg,

(67%). ES/MS m/z 409.2 (M+ 1).

Preparation 8 X-18698

-12- tert- Butyl 1 -(4-(I -methyl- lH-pyrazol-5-yl)phthalazin- 1 -yl)piperidin-4-ylcarbamate

Prepare the title compound by essentially following the procedure described in Preparation 3, using tert-bυXy\ 1 -(4-chlorophthalazin- 1 -yl)piperidin-4-ylcarbamate to provide 5.92 g (94%). ES/MS m/z 308.8 (M+).

Preparation 9 iV-methyl- 1 -(4-( 1 -methyl- lH-pyrazol-5-yl)phthalazin- 1 -yl)piperidin-4-amine


Dissolve tert-bvAyl methyl(l-(4-(l-methyl-lH-pyrazol-5-yl)phthalazin-l-yl)piperidin-4-yl)carbamate (7.77 g, 18.39 mmol) in dichloromethane (100 mL). Add an excess of 1 M hydrogen chloride in diethyl ether (20 mL, 80 mmol) to the solution and stir at ambient temperature for 2 h. Concentrate under reduced pressure. Purify the resulting residue by flash silica gel chromatography (dichloromethane : 2 M NΗ3 in MeOH = 10 : 1) to provide the title compound as a yellow foam (5.83 g, 98%). ES/MS m/z 323.2 (M+ 1).

Example 1

4-Fluoro-N-methyl-N-(l-(4-(l-methyl-lH-pyrazol-5-yl)phthalazin-l-yl)piperidin-4-yl)-2- (trifluoromethyl)benzamide

Treat a solution of N-methyl-1 -(4-(I -methyl- lH-pyrazol-5-yl)phthalazin-l-yl)piperidin-4-amine (2.8 g, 8.68 mmol) and triethylamine (3.36 mL, 26.1 mmol) in CH2Cl2(30 mL) with 4-fluoro-2-(trifluoromethyl)benzoyl chloride (2.14 mL, 10.42 mmol). Stir for 3 h at ambient temperature. Concentrate the reaction mixture under reduced pressure. Purify the resulting residue by flash silica gel chromatography (hexane : ethyl acetate : 2 M ΝH3 in MeOH = 20 : 5 : 1) to provide the free base as a yellow foam (3.83 g, 86%). ES/MS m/z 513.0 (M+ 1).

Example Ia

4-Fluoro-N-methyl-N-(l-(4-(l-methyl-lH-pyrazol-5-yl)phthalazin-l-yl)piperidin-4-yl)-2- (trifluoromethyl)benzamide hydrochloride X-18698

-14-

Dissolve 4-fluoro-N-methyl-N-(l -(4-(I -methyl- lH-pyrazol-5-yl)phthalazin-l- yl)piperidin-4-yl)-2-(trifluoromethyl)benzamide (7.13 g, 13.91 mmol) in dichloromethane (100 mL) and add excess 1 N HCl in diethyl ether (30 mL, 30 mmol). Remove the solvents under reduced pressure to provide the title compound (7.05 g, 92%). ES/MS m/z 513.0 (M+ 1). NMR showed a 2:l mixture of amide rotamers. Major rotamer; 1H NMR (400 MHz, DMSOd6): δ 8.34 (m, IH), 8.26 (m, 2H), 7.95 (m, IH), 7.75 (m, IH), 7.64 (m, 2H), 7.55 (m, IH), 6.72 (d, IH, J=2Hz), 5.15 (br, IH), 4.71 (m, IH), 4.22 (m, 2H), 3.84 (s, 3H), 3.48 (m, 2H), 2.65 (s, 3H), 2.19 (m, 2H), 1.89 ( m, 2H). Minor rotamer; 1H NMR (400 MHz, DMSOd6): δ 8.27 (m, IH), 8.24 (m, 2H), 7.94 (m, IH), 7.73 (m, IH), 7.63 (m, 3H), 6.70 (d, IH, J=2Hz), 5.15 (br, IH), 4.71 (m, IH), 4.07 ( m, 2H), 3.81 (s, 3H), 3.16 (m, 2H), 2.92 (s, 3H), 1.90 (m, 2H), 1.62 ( m 2H).

PATENT

CN 106279114

Example 5 Preparation of title compound LY-2940680 [0061] Embodiment

[0062] Compound 10 (0.2g, 0.429mmo 1,1 eq.) Was dissolved in a mixed solution of 18mL of toluene, 6 mL of ethanol, 6 mL of water was added to a solution of 0.091g (0.858mmol, 2eq.) Sodium carbonate which ester (CAS No. 847818-74-0) and 0.098g (0.472mmol, 1 · leq.) in 1-methyl -1H- pyrazole-5-boronic acid, degassed with nitrogen for 20min after addition of 60mg of four (triphenylphosphine) palladium, degassed with nitrogen for lOmin, homogeneous reaction was stirred at reflux for 12h at 74 ° C; after completion the reaction was cooled to room temperature, diluted with methylene chloride, the organic phase washed three times with brine, dried no over anhydrous sodium sulfate, and concentrated under reduced pressure to give a crude product, purified by column chromatography (eluent dichloromethane / methanol, a volume ratio of 30: 1) to give the desired product as a pale yellow foam LY-2940680 (0 · 202g, 92% yield).

[0063] The title compound of detection data LY-2940680:

[0064] 1 ^: 951 ^ 4 ^^ (3001 ^, 0) (: 13) 38.09 ((1 (1,1 = 7.7 ^ 11 (17.74 ^, 210,7.85 (111,210, 7.65 (d, J = 1.80 hz, 1H), 7.47-7.28 (m, 3H), 6.59 (d, J = 1.77Hz, 1H), 4.93 (m, lH), 4.21-4.08 (m, 2H), 4.05 (s, 3H), 3.44 -3.35 (m, 2H), 2.76 (s, 3H), 2.35-2.11 (m, 2H), 2.04-1,88 (m, 2H) ppm; 13C NMR (300Mz, CDC13) S168.0,163.8,159.9,147.4 , 138.2,136.7,132.0,131.9, 131.5,129.4,129.0,128.0,126.3,124.6,121.4,119.5,114.5,109.1,56.9,51.4,38.3, 31.8,29.7,28.4ppm; MS (ESI) m / z: [M + H] + = 513.20181.

PATENT

CN 201610630493

PATENT

CN 106831718

str1

Paper

A novel and efficient route for synthesis of Taladegib

Taladegib (LY-2940680), a small molecule Hedgehog signalling pathway inhibitor, was obtained from N-benzyl-4-piperidone via Borch reductive amination, acylation with 4-fluoro-2-(trifluoromethyl)benzoyl chloride, debenzylation, substitution with 1,4-dichlorophthalazine and Suzuki cross-coupling reaction with 1-methyl-1H-pyrazole-5-boronic acid. The advantages of this synthesis route were the elimination of Boc protection and deprotection and the inexpensive starting materials. Furthermore, the debenzylation reaction was achieved with simplified operational procedure using ammonium formate as hydrogen source that provided high reaction yield. This synthetic procedure was suitable for large-scale production of the compound for biological evaluation and further study.

Synthesis of Taladegib (LY-2940680)

purified by flash silica gel chromatography (dichloromethane/MeOH, 30:1) to provide Taladegib as a yellow foam. Yield 0.20 g, 92%; m.p. 95 °C;

1 H NMR (300 MHz, CDCl3 ) δ 8.09 (dd, J = 7.6, 7.7 Hz, 2H), 7.90–7.80 (m, 2H), 7.65 (d, J = 1.8 Hz, 1H), 7.47–7.28 (m, 3H), 6.59 (d, J = 1.8 Hz, 1H), 4.97–4.89 (m, 1H), 4.21–4.08 (m, 2H), 4.05 (s, 3H), 3.44–3.35 (m, 2H), 2.76 (s, 3H), 2.35–2.11(m, 2H), 2.04–1.88 (m, 2H);

13C NMR (75 MHz, CDCl3 ) δ 168.0, 163.8, 159.9, 147.4, 138.2, 136.7, 132.0, 131.9, 131.5, 129.4, 129.0, 128.0, 126.3, 124.6, 121.4, 119.5, 114.5, 109.1, 56.9, 51.4, 38.3, 31.8, 29.7, 28.4; MS calcd for C26H24F4 N6 O [M + H]+: 513.2026; found: 513.2018.

Patent ID

Patent Title

Submitted Date

Granted Date

US2017209574 COMBINATION THERAPIES
2015-10-02
US8273742 DISUBSTITUTED PHTHALAZINE HEDGEHOG PATHWAY ANTAGONISTS
2010-12-23
US2016375142 TARGETED THERAPEUTICS
2016-04-26
US9000023 DISUBSTITUTED PHTHALAZINE HEDGEHOG PATHWAY ANTAGONISTS
2012-08-21
2012-12-13

////////////PHASE 2, Taladegib, LY-2940680,

CN1C(=CC=N1)C2=NN=C(C3=CC=CC=C32)N4CCC(CC4)N(C)C(=O)C5=C(C=C(C=C5)F)C(F)(F)F

DIOSMIN, диосмин , ديوسمين , 地奥司明 ,


Diosmin.svg

ChemSpider 2D Image | Diosmin | C28H32O15

Diosmin.png

DIOSMIN

  • Molecular FormulaC28H32O15
  • Average mass608.545 Da

5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

3′,5,7-Trihydroxy-4′-methoxyflavone-7-rutinoside
4H-1-Benzopyran-4-one, 7-((6-O-(6-deoxy-α-L-mannopyranosyl)-β- D-glucopyranosyl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-
4H-1-Benzopyran-4-one, 7-((6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosyl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-
4H-1-Benzopyran-4-one, 7-[[6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranosyl]oxy]-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-
520-27-4 [RN]
5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-oxo-4H-chromen-7-yl 6-O-(6-deoxy-α-L-mannopyranosyl)-β-D-glucopyranoside
диосмин [Russian] [INN]
ديوسمين [Arabic] [INN]
地奥司明 [Chinese] [INN]
Barosmin / Dalfon (Servier) / Detralex / Diosven / Dioven / Diovenor / Flebosmil / Flebosten / Hemerven / Insuven / Litosmil / Varinon / Ven-detrex / Venosmine, Barosmin,  Diosmine, Venosmine, Diosmil,
Diosmin is a bioflavonoid that strengthens vascular walls.
Diosmin is a semisynthetic drug indicated for the treatment of venous disease. Diosmin is a flavone that can be found in the plant Teucrium gnaphalodes. Diosmin is available as a prescription medicine in several European countries, and is available as a nutritional supplement in the United States and the rest of Europe. It should be noted that clinical studies have been inconclusive and no articles have been published pertaining to its use in the treatment of vascular disease. When used in rats, diosmin has been effective at mitigating hyperglycaemia, and may also have antineurodegenerative properties.

Diosmin is a flavone, a member of the flavonoid family. Diosmin aglycone is diosmetin. It can be found in Teucrium gnaphalodes, a plant endemic to the Iberian Peninsula.[1]

IR KBR

 SYNTHESIS

Drug

Diosmin is a semisynthetic flavonoid molecule derived from citrus d (modified hesperidin). It is an oral phlebotropic drug used in the treatment of venous disease, i.e., chronic venous insufficiency (CVI) including spider and varicose veins, leg swelling (edema), stasis dermatitis and venous ulcers. It is also used as a stand-alone or surgical adjunctive therapy in hemorrhoidal disease (HD).

There are extensive clinical trials that show diosmin improves all stages of venous disease including venous ulcers and improves quality of life.[2] There are no prospective studies in arterial disease.

Diosmin is currently a prescription medication in some European countries (under the Dio-PP, Venotec, Daflon etc. tradenames), and is sold as a nutritional supplement in the United States.

Diosmin has been found to be effective in mitigating hyperglycemia in diabetic rats.[3] It is also speculated that diosmin might have potential in the treatment of neurodegenerative diseases,[4] such as Alzheimer’s disease.

Mechanisms

Diosmin improves lymphatic drainage by increasing the frequency and intensity of lymphatic contractions, and by increasing the total number of functional lymphatic capillaries. Furthermore, diosmin with hesperidine decreases the diameter of lymphatic capillaries and the intralymphatic pressure.Diosmin prolongs the vasoconstrictor effect of norepinephrine on the vein wall, increasing venous tone, and therefore reducing venous capacitance, distensibility, and stasis. This increases the venous return and reduces venous hyperpressure present in patients suffering from CVI.

At the microcirculation level, diosmin reduces capillary hyperpermeability and increases capillary resistance by protecting the microcirculation from damaging processes.

Diosmin reduces the expression of endothelial adhesion molecules (ICAM1VCAM1), and inhibits the adhesion, migration, and activation of leukocytes at the capillary level. This leads to a reduction in the release of inflammatory mediators, principally oxygen free radicals and prostaglandins (PGE2, PGF2a).

Society and culture

Diosmin is distributed in the U.S. as a dietary supplement.[5][6]

Diosmin was first reported by O. A. Osterle and G. Wander in HeIv. Chim. Acta. 8, 519 – 536, 1925 and is a naturally occurring flavonoid glycoside that can be isolated from various plant sources, i.e from the peel of the citrus fruit or hesperidin. Diosmin is a protecting agent and is used for the treatment of chronic venous insufficiency, lymphedema, hemorrhoids and varicose veins. It has been also used for other therapeutic purposes such as cancer, premenstrual syndrome, colitis, and diabetes.

The several references are reported in the prior art for conversion of hesperidin to diosmin.

Zemplen and Bogner, in Ber. 76, 452, 1943 reported monobromination of acetylated flavanones by liquid bromine in chloroform solution in presence of ultraviolet radiation to obtain flavone derivative by following loss of hydrogen bromide and deacetylation with alcoholic alkali. The conversion of hesperidin to diosmin reported is 37%.

In the journal reference, J. Org. Chem., 16, 930 – 933, 1951, by N. B. Lorette et. al. N-bromosuccinimide was used for the bromination of acetylated hesperidin in chloroform and benzoyl peroxide was used as a catalyst. Diosmin yield was 44%.

Studies in Organic Chemistry (Amsterdam) (1982), Volume Date 1981, 11, 115-119 describes conversion of Hesperidin, neohesperidin and naringin to diosmin, neodiosmin, and rhoifolin respectively by dehydrogenation with iodine in pyridine. Tianran Chanwu Yabjiu Yu Kaif (2006), 18(6), 896-899 describes separation and purification of diosmin by macroporous resins, and reported 95% pure diosmin.

ES459076 describes the preparation of diosmin by bromination and debromination of hesperidin acetate in tetrahydrofuran with 2-carboxy ethyl triphenyl phosphonium bromide followed by saponification with potassium tertiary butoxide.

ES465156 describes diosmin preparation by reaction of hesperidin with aqueous sodium hydroxide, iodine and pyridine with 66% yield.

DE2740950 describes iodination-dehydroiodination of hesperidin in the presence of pyridine and iodine resulting 89% of diosmin.

EP52086 claims a process for the preparation of diosmin comprising of total acetylation of hesperidin or related flavone by heating it in acetic anhydride and pyridine followed by selective dehydrogenation or oxidation by means of SeO2 in isoamyl alcohol and then deprotection by means of alkaline hydrolysis with inorganic bases under hot condition. The isolated diosmin is purified by base acid treatment with overall reported yield is of 60%.

US4078137 describes a process for diosmin comprising of acetylation of hesperidin, thereby brominating it and the brominated product is hydrolysed to isolate diosmin with bromine content less then 0.1% with over all 65% yield.

In BE 904614, diosmin was prepared by iodination of hesperidin followed by elimination of HI. In the process, iodine in dimethylformamide and pyridine were successively added to hesperidin and the resulting mixture was heated at 100°C to give 96% pure diosmin.

EP 860443 describes the process that involves reaction of hesperidin with iodine in presence of pyridine at reflux temperature for 5 hours. The reaction mixture is cooled to 5°C and the isolated diosmin is purified using base acid treatment to get the quality of diosmin above 90% with 75 % yield.

FR2760015 provides industrial dehydrogenation of hesperidin with potassium iodide in DMSO in presence of cone. H2SO4 resulted in diosmin with 73% yield and pharmacopoeial quality.

WO2000011009 describes reaction of hesperidin with iodine in presence of pyridine and anhydrous alkaline earth metal base. The process involves purifying the reaction mass using morpholine followed by base acid treatment which resulted in diosmin with 80% yield and purity of diosmin meets with pharmacopoeial norms.

EP 1086953 discloses the process for purification of diosmin by reacting with pulverized zinc in aqueous solution followed by filtration and acidification.

Diosmin which is produced by many of the prior art processes is often found to contain impurities and is contaminated with various byproducts, for instance hesperidin, Isorhoifin, acetyl lisovanilone, 6-Iododiosmin, linarin, diosmetin and other organic volatile impurities. Some of the major impurities are resulted from hesperidin during extraction. The impurities of hesperidin have a major effect on the final assay of diosmin. The impurities vary depending upon the source of hesperidin. It is worthy to note that direct crystallization of crude diosmin with aqueous base acid solution does not necessarily improve the assay / purity of diosmin.

The process described in Studies in Organic Chemistry (Amsterdam) (1982), Volume Date 1981, 11, 115-119 is different from the present inventors process.

Although ES459076 teaches the preparation of diosmin by bromination and debromination of hesperidin acetate in tetrahydrofuran with 2-carboxy ethyl triphenyl phosphonium bromide, it does not teach about the final purity of diosmin with pharmaceutical quality as required.

ES465156 and DE2740950 although disclose method of preparation, does not teach a process that gives yields as are taught by present invention.

EP52086 and US4078137 uses acetic anhydride for acetylation of hesperidine with yields around 60%, which are phenomenally less as compared with yields of process described by present invention.

Sequence of addition of reactants in the process as taught by BE 904614 is different than the teachings of the present invention.

FR2760015 teaches use of different reactants under conditions that are different from the teachings of the present invention.

Invention disclosed in present application does not use morpholine as disclosed in WO2000011009.

Though there are reported several processes for preparation of diosmin in the prior art, present invention describes a novel systematic process for the preparation of diosmin by converting hesperidin to diosmin at optimum level i.e. % conversion, and keeping the impurities at minimum level which results in consistently pure diosmin with good yield and the desired quality. The process allows recovery and recycle of major contributing chemicals and solvents such as methanol, pyridine and iodine, without impact on quality, purity or yield of the process making the process more economical and ecofriendly. It is surprisingly found that quality diosmin output obtained is independent of hesperidin quality used

Diosmin

Title: Diosmin
CAS Registry Number: 520-27-4
CAS Name: 7-[[6-O-(6-Deoxy-a-L-mannopyranosyl)-b-D-glucopyranosyl]oxy]-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one
Additional Names: 3¢,5,7-trihydroxy-4¢-methoxyflavone-7-rutinoside; 5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(O6-a-L-rhamnopyranosyl-b-D-glucopyranosyloxy)chromen-4-one; 5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-b-rutinosyloxy-4H-chromen-4-one; diosmetin 7-b-rutinoside; barosmin; buchu resin
Trademarks: Diosmil (Bellon); Diosven (CT); Diovenor (Innothža); Flebosmil (Bouchara); Flebosten (Bonomelli); Hemerven (Interdelta); Insuven (Berenguer); Litosmil (Evans); Tovene (Kali-Chemie); Varinon (Exa); Ven-Detrex (Zyma); Venosmine (Geymonat)
Molecular Formula: C28H32O15
Molecular Weight: 608.54
Percent Composition: C 55.26%, H 5.30%, O 39.44%
Literature References: Naturally occurring flavonic glycoside; rhamnoglycoside of diosmetin, q.v. Isolation from various plant sources: O. A. Oesterle, G. Wander, Helv. Chim. Acta 8, 519 (1925). Elucidation of structure: G. Zemplén, R. Bognár, Ber. 76, 452 (1943). Prepn from hesperidin, q.v.: eidem, ibid.; N. B. Lorette et al., J. Org. Chem. 16, 930 (1951). Isoln from lemon peel (Citrus limon Linn. Rutaceae): R. M. Horowitz, J. Org. Chem. 21, 1184 (1956); from Zanthoxylum avicennae, Rutaceae: H. R. Arthur et al.,J. Chem. Soc. 1956, 632; H. R. Arthur et al., ibid. 1959, 4007; from flowers of Sophora microphylla Ait. Leguminosae: L. H. Briggs et al., ibid. 1960, 1955. Toxicology studies: H. Heusser, W. Osswald, Arch. Farmacol. Toxicol. 3, 33 (1977). NMR spectrum: J. L. Nieto, A. M. Gutierrez, Spectrosc. Lett. 19, 427 (1986). Mechanism of action: C. Boudet, L. Peyrin, Arch. Int. Pharmacodyn. 283,312 (1986). Pharmacology: J. R. Caseley-Smith, J. R. Caseley-Smith, Agents Actions 17, 1 (1985); M. Damon et al., Arzneim.-Forsch. 37, 1149 (1987). HPLC determn in biological fluids: D. Baylocq et al., Ann. Pharm. Fr. 41, 115 (1983). Clinical study in post-phlebitic ulcers: M. C. Nguyen, K. Morere, Gaz. Med. 92, 71 (1985); in acute hemorrhoids: A. Tajana et al., Minerva Med. 79,387 (1988). Clinical trial in chronic venous insufficiency: R. Laurent et al., Int. Angiol. 7, Suppl. 2, 39 (1988).
Derivative Type: Monohydrate
Molecular Formula: C28H32O15.H2O
Molecular Weight: 626.56
Percent Composition: C 53.67%, H 5.47%, O 40.86%
Properties: mp 275-277° (dec) (Zemplén). Also reported as fine needles from aq pyridine or aq DMF, mp 283° (dec) (Briggs). uv max (ethanol): 255, 268, 345 nm (log e 4.28, 4.25, 4.30). Practically insol in water, alcohol.
Melting point: mp 275-277° (dec) (Zemplén); mp 283° (dec) (Briggs)
Absorption maximum: uv max (ethanol): 255, 268, 345 nm (log e 4.28, 4.25, 4.30)
Derivative Type: Flavonoid extract
Trademarks: Daflon (Servier); Flebopex (Profarma); Flebotropin (Bago)
Therap-Cat: Capillary protectant.
Keywords: Vasoprotectant.

PAPER

Lee, Sanghyun; Natural Product Sciences 2002, VOL 8(4), P127-128

Siciliano, Tiziana; Journal of Agricultural and Food Chemistry 2004, VOL 52(21), P6510-6515 

 Yin, Feng; Zhongguo Tianran Yaowu 2004, VOL 2(3), P149-151 

Markovic, D.; Farm. Glasnik 1949, VOL 5(No. 7;No. 8), P135-48;153-62 

Nakaoki, Tahitiro; Yakugaku Zasshi 1938, VOL 58, P639-47(in German 197-201)

Wander, G.; Pharmaceutical Journal 1925, VOL 115, P520 

Morita, Naokata; Yakugaku Zasshi 1967, VOL 87(3), P319-20 

“PhysProp” data were obtained from Syracuse Research Corporation of Syracuse, New York (US)

Narasimhachari, N.; Proceedings – Indian Academy of Sciences, Section A 1949, VOL 30A, P151-62 

Horowitz, Robert M.; Journal of Organic Chemistry 1956, VOL 21, P1184-5 

paper

Spectroscopy Letters , An International Journal for Rapid Communication , Volume 19, 1986 – Issue 51H NMR Spectra at 360 MHz of Diosmin and Hesperidin in DMSO Solution

Pages 427-434 | Received 03 Jan 1986, Accepted 03 Jan 1986, Published online: 06 Dec 2006

PAPER

Journal of Natural Products, 2013, vol. 76, 1, pg. 8 – 12

https://pubs.acs.org/doi/suppl/10.1021/np300460a/suppl_file/np300460a_si_001.pdf

1 H NMR, 13C NMR, HMQC and HMBC spectra of diosmin (5) ……………….S2

str1

PAPER

 Journal of Molecular Liquids, 2014, vol. 199, pg. 35 – 41

PATENT

https://patents.google.com/patent/CN102653549A/en

BRIEF DESCRIPTION

[0012] BRIEF I: iodine purification process Figure 2: Synthesis of diosmin roadmap

detailed description

[0013] Main reaction: The 80Kg Hesperidin, 40Kg soda ash, 400kg90% ethanol, 80L pyridine, 24kg iodine successively into reactor closed good pot opening, with stirring and heated to 110 ° c with a microwave, heat stirring, until the orange leather glycosides completely dissolved, about ten minutes. Hesperidin is completely dissolved, the solvent was slowly added to 80L of pyridine, combined with sodium iodide 8Kg, heated to 110 ° C, the reaction was stirred for 3-4 hr incubation, the sample is then detected by HPLC detection method, when a peak area less than hesperidin the reaction was terminated when 5% diosmin peak area, heat recovery of the solvent pyridine.

[0014] The filter press: End recovered 25Kg pyridine was added a paste of methanol, was press iodine recycling of waste, the recovery is completed, washed with purified water of 62 ° C, colorless and transparent until the washing water to the water 3 t, remove the filter cake to afford crude diosmin, 125. 4Kg.

[0015] Purification: 16Kg sodium hydroxide into dissolving tank, add purified water 500Kg, dissolved under stirring, and after dissolution the crude into the tank, and the water plus t I stir crystals were filtered into a stainless steel frame filter kettle, adding 42Kg hydrochloric acid, adjusted to PH 6.7, 25Kg of methanol was added, after stirring for 30min, the precipitate was allowed to stand, the I h.

[0016] Washing: The crystalline material tank into the filter press, ere washed with purified water, the washing water to colorless far, four tons of water, remove the filter cake to afford fine diosmin, 118. 5Kg. [0017] The dried, pulverized, mixed: semi-finished products into the oven dried 11.2 hours, 82 ° C temperature conditions, the dried material was crushed with a grinder, then put double cone blender and mixed overall speed 15r / min, each of the positive and negative inversion 20min, diosmin have finished 72Kg, a yield of 90.0%.

[0018] Packaging: for medical packaging with double polyethylene bags, into the drum after passing inspection, into finished products.

[0019] The recovery of iodine: iodine-containing filtrate generated pressure filtration step was slowly added sulfuric acid to adjust the PH 4, left for 5 hours, vacuum distillation, collecting high-boiling fraction, 20Kg hydrogen peroxide was slowly added, stand for 2 hours, filtered, the recovered iodine cloth, can be re-purified to obtain purified iodine! .

[0020] Processing pyridine in water: pyridine pyridine recovered after 400Kg containing moisture added to the kettle, 35Kg of potassium hydroxide was added, heated to 105 ± 5 ° C, collecting it pyridine (105 ° C before the liquid front , is defective, back again into the reaction vessel, then 105 ° C out is a good product), Hugh moisture meter by Karl Fischer detected, less than 2%.

PATENT

https://patents.google.com/patent/CN102875621A/en

diosmin chemical name is 3 ‘, 5,7-trihydroxy-4’ – methoxy flavone, i.e. (7 – {[6-0- (6-deoxy-mannose -a -L- sugar) _β -D- glucopyranosyl] oxy} -5_ hydroxy-2- (3-hydroxy-_4_ methoxyphenoxy) -4H-L–benzopyran-4-one), the following structure Figure:

[0003]

Figure CN102875621AD00031

[0004] Diosmin has a comprehensive effect on vascular transfusion system to the venous system, micro-circulatory system and the lymphatic system has a powerful effect. Diosmin can be significantly reduced in addition to the adhesion of leukocytes to vascular endothelial cells, migration, inhibition of leukocyte disintegration and release of inflammatory mediators such as histamine, bradykinin, complement, leukotrienes, prostaglandins, free radical scavenging and the like, It may also reduce blood viscosity, to enhance flow of red blood cells, thus reducing the microcirculation stasis, mainly used in clinical treatment of chronic venous insufficiency.

[0005] diosmin content in natural plant is very low, direct extraction of high cost, so it is through the oxygen

Hesperidin is prepared by chemical synthesis; hesperidin formula below:

[0006]

Figure CN102875621AD00032

[0007] diosmin synthesis process generally as follows:

[0008] hesperidin and an oxidant, and a solvent after mixing an alkaline reagent can be synthesized by heating the reaction Diosmin; wherein said oxidizing agent is iodine, mainly basic agent mainly inorganic bases, typically hydrogen sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, an alkaline substance, etc., the solvent is pyridine or dimethylformamide.

[0009] Preparation of diosmin conventional synthesis method will inevitably pyridine or dimethylformamide as the reaction solvent, in particular in the main pyridine; as pyridine, dimethylformamide as a reaction solvent after the treatment process is not easy divisible, thus resulting in higher residual solvent in the product; the same time, since the two types of the organic solvent is pyridine, a large irritating odor on the human body have a greater toxic effects, and therefore in the production process and on the environment endanger personnel more apparent.

Example 8

[0081] In addition hesperidin 1000L reaction vessel 100 g, 47 g of sodium hydroxide and 12 g of iodine, and finally adding morpholine: water (60: 40) mixed solvent O. 8 liters, stir until completely dissolved. after heating to 85-90 ° C. was stirred incubated for 9 hours. the reaction liquid becomes viscous liquid was added 3 g of sodium thiosulfate, recovered at 85-90 ° C under vacuum conditions to a 70-80% morpholinyl, after complete recovery morpholine, O. 8 liters of water was added, stirred uniformly filtered to collect the waste. washed with water to give diosmin crude product. the crude product diosmin O. 8-liter and water was added 30 g of sodium hydroxide. stirred to dissolve completely after high-speed centrifuge filtration. into the crystallizer, water was added to the filtrate I. 5 liters of sulfuric acid was added slowly acidified to PH 2-3. standing, filtered and washed with water. diosmin give crude crystals. The crude crystals add water O. 8-liter and 30 g of sodium hydroxide and stirred to dissolve completely, placed in a crystallizer tank, to force saliva I. 5 liters of sulfuric acid was added slowly acidified to PH 2-3. Standing, was filtered, washed with water the drying, grinding to give the finished Diosmin 80. I g. Product purity by HPLC 95.26%, the yield was 80.1%, iodine residual, residual solvent, associated impurities, the content of all standards

PATENT

https://patents.google.com/patent/WO2010092592A2/en

Example – 1

100 gm of hesperidin , 700 ml of pyridine, 9.8 gm of sodium hydroxide and 45.6 gm of iodine were charged in 2 liter clean glass assembly, The resulting solution was heated to 95-1050C for 9 – 10 hours. Reaction was monitored by HPLC to get hesperidin less than 1 %. The pyridine was recovered completely by distillation. Charged methanol to the resulting solid, the reaction mass was heated to reflux and filtered at room temperature. Iodine was recovered from mother liquor, solid obtained was treated with sodium thiosulfate solution and 900 ml, 5% aqueous NaOH solution. pH 2-4 was adjusted with cone, sulfuric acid. Reaction mass was filtered to obtain crude diosmin. Yield : 80 – 86 gm. Recovery of iodine from above methanol mother liquor: Distilled methanol and pyridine mixture. The obtained residue was acidified with sulfuric acid. The resulting pH was less than 1. The brown precipitate formed was filtered. The resulting filtrate was oxidized with hydrogen peroxide at 0-10°C and filtered to obtain crude iodine having assay 50 – 60 %, which was steam distilled to obtain pure iodine with assay 95 %.

Example – 2

100 gm of crude diosmin as prepared in example 1 and 1800 ml of dimethylformamide was charged in 3 liter clean glass assembly. The resulting mass was heated to 90-950C to obtain clear solution. 200 ml of water was added at 90- 950C and maintained for 30 min. The reaction mass was cooled and filtered. The wet solid was collected.

Charged wet solid obtained in 3 liter clean glass assembly and charged 900 ml of water, 900 ml of 5% aqueous NaOH solution. Distilled out approximately 900 ml of water under vacuum below 5O0C. Charged 1000 ml of water and the resulting reaction mass was treated with charcoal and filtered through hyflow. pH 1.8-2.2 was adjusted using sulfuric acid. Stirred the mass for 30 min, filtered and washed it with water, hot water. Solid was dried. Yield : 80 – 85 gm. Assay : 99.9 %.

Example – 3

100 gm of crude diosmin as prepared in example 1, 1800 ml of dimethylformamide and 1800 ml of water was charged in 5 liter clean glass assembly. The resulting solution was heated to 90-950C to obtain slurry and maintained for 30 min. Cooled the reaction mass and filtered, washed with water and hot water. The obtained solid was dried. Yield: 90 – 95 gm. Assay : 97 %. Example – 4

100 gm of crude diosmin as prepared in example 1 and 1800 ml of dimethylformamide was charged in 3 liter clean glass assembly. The resulting solution was heated to 90-950C to obtain clear solution.charged 360 ml of water at 90-950C and maintained for 30 min. The reaction mass was filtered, washed with water and with hot water. Solid obtained was dried. Yield: 90 – 95 gm. Assay : 99.5 %.

Example – 5

100 gm of crude diosmin as prepared in example 1 and 1800 ml of dimethylformamide was charged in 3 liter clean glass assembly. The resulting solution was heated to 90-950C to obtain clear solution, charged 900 ml of water at 90-950C and maintained for 30 min. The reaction mass was filtered, washed with water and with hot water. Solid obtained was dried. Solid obtained was 90 — 95 gm. Assay obtained was 98.8 %.

Example – 6

100 gm of hesperidin , 700 ml of recovered pyridine, 9.8 gm of sodium hydroxide and 45.6 gm of iodine were charged in 2 liter clean glass assembly . The resulting solution was heated to 95-1050C for 9 – 10 hrs. Reaction was monitored by HPLC. Pyridine was recovered completely by distillation. Charged methanol to the resulting solid, the reaction mass was heated to reflux and filtered at room temperature. The solid obtained was treated with sodium thiosulfate solution and 900 ml, 5% aqueous NaOH solution. pH 2-4 was adjusted with cone, sulfuric acid. Reaction mass was filtered to obtain crude diosmin. Crude diosmin obtained was 80 – 86 gm. Purity was 98.6 %.

Example – 7

100 gm of hesperidin , 700 ml of recovered Pyridine, 9.8 gm of sodium hydroxide and 48 gm (assay 95 %) of recovered iodine were charged in 2 liter clean glass assembly.. The resulting solution was heated to 95-1050C for 9 – 10 hours. Reaction was monitored by HPLC to get hesperidin less than 1 %. The pyridine was recovered by distillation. Charged methanol to the resulting solid, the reaction mass was heated to reflux and filtered at room temperature. The solid obtained was treated with sodium thiosulfate solution and 900 ml, 5% aqueous NaOH solution. pH 2-4 was adjusted with cone, sulfuric acid. Reaction mass was filtered to obtain crude diosmin. Yield:80 – 86 gm. Purity : 95.3 %.

PATENT

WO-2018039923

Method for preparing diosminum comprising the steps of mixing amide solvent, hesperidin, alkaline reagent and iodine, and heating the reaction to obtain diosmin . Diosmin is a naturally occurring flavonoid glycoside that can be obtained from various plant sources. It is used in therapy due to its pharmacological activity as phlebotonic and vascular protecting agent, and useful for treating chronic venous insufficiency.

0047]
Example 1
1.1 Oxidation reaction: Open the vacuum pump, vacuum inhale 1500L of dimethylformamide into the reaction tank, and add sodium hydroxide to adjust the pH of the solvent between 6 and 7. Add 250.00kg of hesperidin and stir it while feeding. The material and the solvent are in full contact; 125 kg of iodine is added into the reaction tank at a constant rate for reaction; the temperature of the reaction tank is controlled between 70° C. and 100° C. for 14 hours.
1.2 Solvent recovery: After the reaction is complete, open the valve of the turnover tank and dehydration tank and close the return valve. Control the temperature of the material to start depressurizing the solvent at 90°C to 110°C. During the recovery process, attention should be paid to observe the recovery temperature and recovery conditions. When the material is dilute, stop the solvent recovery and enter the next process.
1.3 Crude product crystallization, filtration, washing: open the reaction tank vacuum valve, pump 1500L of purified water from the upper part of the reaction tank, start the mixer, stir for 10-20min, then add 1500L of purified water and stir for 1h; after the mixing is accepted, when the temperature of the crystallization liquid drops After 35°C, the crystallization liquid is pumped into the plate and frame filter press for filtration, and the filtrate is temporarily stored in the storage tank; after the filtered plate nozzle no liquid flows out, the 18000L purified water pump is pumped into the frame filter press for washing; The water wash is discharged into a waterless collection tank for sewage treatment, and the water is washed until the pH of the effluent is measured with a pH test paper of 6 to 7. The beaker sample is observed to be colorless and transparent; after the washing is completed, the water inlet valve is closed and the air pressure is turned on. The valve is air-pressed, the air pressure is controlled at 0.07~0.09 MPa, and the time is maintained for 3 hours. The filter cake is collected and put into the turnover barrel for marking.

[0051]
1.4 Secondary Dissolution and Filtration: Open the dissolving tank and stir. In the dissolving tank, add 75 kg of alkali A to 1300 L of purified water. After the solution is completely dissolved, add the filter cake in the circulating drum to the tank; after the filter cake is added and stirring is continued for 1 h, Add 1300L of purified water into the tank, stir for 30 minutes, and stand for 3 hours. Filter the filtrate with a frame filter press. The filtered solution is finely filtered by a fine filter and then pumped into a clean area crystallizer.

[0052]
1.5 secondary crystallization: open the stirrer, slowly put 160 ~ 230kg 36% hydrochloric acid into the clean area crystallization tank, the measured pH of the solution is between 5.0 ~ 6.0, after stirring 20min measured the pH of the solution should be stable and qualified , Stir 1h, make the original record of the process.
1.6 Fine filtration and washing: The crystallization liquid is vacuum-inhaled into the box type filter press for filtration; after the filtration is completed, the washed water is washed with 18,000 to 20,000 L of purified water. After the washing is completed, it is checked that the washing liquid should be colorless and transparent, and the filtrate should be filtrated. Discharge into the sewage treatment system.
1.7 Fine Drying: Open the hot air circulation oven, control the temperature at 100 °C ~ 130 °C, drying time is maintained at 10 ~ 16h; when dried 10h, timely sampling, with a quick moisture meter to determine the moisture, when the sample moisture is less than 5%, Stop drying; after passing the drying, close the oven and transport the material to the next process.
1.8 Fine-grinding: The dried product is crushed with a crusher. The crushing sieve is 80 mesh to obtain Diosmin.
The quality standards of all raw materials in Example 1 are shown in Table 1.
Table 1 Raw material quality standards

[Table 0001]

Original accessories name specification Quality Standard
Hesperidin EC In line with “Hesperidin Quality Standard”
New solvent Industrial grade Meet the “new solvent quality standards”
Alkali A Industrial grade In accordance with the “Alkaline A Quality Standard”
iodine Pharmaceutical grade In line with “Iodine Quality Standards”
hydrochloric acid Analytical purity In line with the “Hydrochloric Acid Quality Standard”
Diosmin Yield Calculation Method:
Diosmin product yield = (Diosmin Fine Quality) / (Hesperidin weight) × 100%

References

  1. Jump up^ Flavonoid Aglycones and Glycosides from Teucrium gnaphalodes. F. A. T. Barberán, M. I. Gil, F. Tomás, F. Ferreres and A. Arques, J. Nat. Prod., 1985, 48 (5), pages 859–860, doi:10.1021/np50041a040
  2. Jump up^ Jantet, G. (2002-06-01). “Chronic venous insufficiency: worldwide results of the RELIEF study. Reflux assEssment and quaLity of lIfe improvEment with micronized Flavonoids”. Angiology53(3): 245–256. ISSN 0003-3197PMID 12025911.
  3. Jump up^ Leelavinothan Pari, Subramani Srinivasan, Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide-induced diabetic rats, Biomedicine & Pharmacotherapy, Volume 64, Issue 7, September 2010, Pages 477-481.
  4. Jump up^ Sirlak, Mustafa; Akar, A. Ruchan; Eryilmaz, Sadik; Cetinkanat, Elif Kuzgun; Ozcinar, Evren; Kaya, Bulent; Elhan, Atilla Halil; Ozyurda, Umit (2010-01-01). “Micronized purified flavonoid fraction in pretreating CABG patients”Texas Heart Institute Journal37 (2): 172–177. ISSN 1526-6702PMC 2851420Freely accessiblePMID 20401289.
  5. Jump up^ “Nutratech dietary supplement notification” (PDF). FDA. November 3, 2000. Archived from the original (PDF) on December 9, 2006.
  6. Jump up^ “Stragen Pharma dietary supplement notification” (PDF). FDA. September 6, 2005.

Patent

Publication numberPriority datePublication dateAssigneeTitle
DE2740950A1 *1977-09-101979-03-22Merck Patent GmbhA process for the production of flavones
EP0860443A1 *1997-02-211998-08-26Innokem, SARLIndustrial process for the production of diosmine starting from hesperidine
WO2000011009A2 *1998-08-192000-03-02Innokem, S.A.R.L.Method for industrial production of diosmin from hesperidin by reaction with iodine and pyridine

Publication numberPriority datePublication dateAssigneeTitle

CN102070689A *2011-01-252011-05-25湖南圆通药业有限公司Method for producing diosmin
CN102653549A *2011-12-282012-09-05长沙富能生物技术有限公司Synthesis method of diosmin raw medicine meeting EP7 version quality standards
CN102875621A *2012-10-262013-01-16成都澜绮制药有限公司Synthesis method of diosmin
RU2481353C1 *2011-12-222013-05-10Закрытое акционерное общество “Активный Компонент”Commercial method for preparing officinal diosmin and crystalline form thereof (versions)
CN103772336A *2014-02-232014-05-07闻永举Semi-synthesis method of phenolic hydroxyl flavonoid compounds and iodine recycling method
CN103435666A *2013-07-302013-12-11李玉山Novel production technology of diosmin
CN105732744A *2016-04-292016-07-06南京正大天晴制药有限公司Method for preparing green and economic diosmin
Publication numberPriority datePublication dateAssigneeTitle
DE2740950A1 *1977-09-101979-03-22Merck Patent GmbhA process for the production of flavones
EP1086953A1 *1999-09-242001-03-28IsochemProcess for the purification of diosmine
WO2010092592A2 *2009-02-112010-08-19Elder Pharmaceuticals Ltd.Process for the preparation of diosmin
CN102653549A *2011-12-282012-09-05长沙富能生物技术有限公司Synthesis method of diosmin raw medicine meeting EP7 version quality standards
Diosmin
Diosmin.svg
Clinical data
AHFS/Drugs.com International Drug Names
Routes of
administration
oral
ATC code
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard 100.007.537
Chemical and physical data
Formula C28H32O15
Molar mass 608.545 g/mol
3D model (JSmol)

//////////DIOSMIN, диосмин ديوسمين 地奥司明 , Barosmin,  Diosmine, Venosmine, Diosmil,  

COC1=C(O)C=C(C=C1)C1=CC(=O)C2=C(O)C=C(O[C@@H]3O[C@H](CO[C@@H]4O[C@@H](C)[C@H](O)[C@@H](O)[C@H]4O)[C@@H](O)[C@H](O)[C@H]3O)C=C2O1

Amenamevir アメナメビル


Image result for Amenamevir

841301-32-4.png

Amenamevir  アメナメビル

M-5220

CAS 841301-32-4
Chemical Formula: C24H26N4O5S
Molecular Weight: 482.555

N-(2,6-dimethylphenyl)-N-[2-[[4-(1,2,4-oxadiazol-3-yl)phenyl]amino]-2-oxo-ethyl]-1,1-dioxo-thiane-4-carboxamide
UNII:94X46KW4AE
2H-Thiopyran-4-carboxamide, N-(2,6-dimethylphenyl)tetrahydro-N-[2-[[4-(1,2,4-oxadiazol-3-yl)phenyl]amino]-2-oxoethyl]-, 1,1-dioxide

N-(2-((4-(1,2,4-oxadiazol-3-yl)phenyl)amino)-2-oxoethyl)-N-(2,6-dimethylphenyl)tetrahydro-2H-thiopyran-4-carboxamide 1,1-dioxide

PMDA 

Image result for Amenalief

2017/7/3 PMDA APPROVED JAPAN Amenamevir Amenalief

BRAND

Maruho

COMPANY

str1

Image result for Amenalief

Amenamevir, also known as ASP2151, is a herpes virus helicase-primase inhibitor. ASP2151 had significantly better anti-HSV activity against herpes simplex keratitis than valacyclovir and acyclovir after systemic or topical use.

アメナメビル
Amenamevir

C24H26N4O5S : 482.55
[841301-32-4]

Amenamevir is an oral helicase-primase inhibitor launched in 2017 in Japan for the treatment of herpes zoster (shingles). The product is being marketed by Maruho.

Amenamevir had been in phase III clinical trials for herpes simplex virus;

In August 2012, Astellas Pharma granted Maruho development and commercialization rights in Japan.

US 20050032855

WO 2006082822

WO 2006082820

WO 2006082821

WO 2009123169

WO 2010047295

JP 2006241144

Patent

JP 2010180169

The publicly known crystal (following and alpha type crystal) of the compound A of disclosure to the aforementioned Patent document 2 is obtained by re-crystallizing from an ethanol water mixed solvent, and has the melting point of about 220 to 222 degree C. The present invention relates to multi-form crystals other than the alpha form crystal concerned, and relates to beta, gamma, delta, and epsilon type crystal specifically. In a surprising thing, each of these multi-form crystals is crystals stable to a degree usable as a medicinal manufacture field object, and has a preferable property in the surface of solubility, absorbency, stability, and/or a handling property

PATENT

US20050032855, EP1844776A1.

REFERENCES

1: Ohtsu Y, Otsuka S, Nakamura T, Noguchi K. Regulated bioanalysis of conformers – A case study with ASP2151 in dog plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Aug 1;997:56-63. doi: 10.1016/j.jchromb.2015.05.028. Epub 2015 May 28. PubMed PMID: 26093120.

2: James SH, Larson KB, Acosta EP, Prichard MN. Helicase-primase as a target of new therapies for herpes simplex virus infections. Clin Pharmacol Ther. 2015 Jan;97(1):66-78. doi: 10.1002/cpt.3. Epub 2014 Nov 18. Review. PubMed PMID: 25670384.

3: Muylaert I, Zhao Z, Elias P. UL52 primase interactions in the herpes simplex virus 1 helicase-primase are affected by antiviral compounds and mutations causing drug resistance. J Biol Chem. 2014 Nov 21;289(47):32583-92. doi: 10.1074/jbc.M114.609453. Epub 2014 Oct 2. PubMed PMID: 25278021; PubMed Central PMCID: PMC4239612.

4: Biswas S, Sukla S, Field HJ. Helicase-primase inhibitors for herpes simplex virus: looking to the future of non-nucleoside inhibitors for treating herpes virus infections. Future Med Chem. 2014 Jan;6(1):45-55. doi: 10.4155/fmc.13.192. Review. PubMed PMID: 24358947.

5: Andrei G, Snoeck R. Advances in the treatment of varicella-zoster virus infections. Adv Pharmacol. 2013;67:107-68. doi: 10.1016/B978-0-12-405880-4.00004-4. Review. PubMed PMID: 23886000.

6: Sasaki S, Miyazaki D, Haruki T, Yamamoto Y, Kandori M, Yakura K, Suzuki H, Inoue Y. Efficacy of herpes virus helicase-primase inhibitor, ASP2151, for treating herpes simplex keratitis in mouse model. Br J Ophthalmol. 2013 Apr;97(4):498-503. doi: 10.1136/bjophthalmol-2012-302062. Epub 2013 Jan 29. PubMed PMID: 23361434.

7: Katsumata K, Chono K, Kato K, Ohtsu Y, Takakura S, Kontani T, Suzuki H. Pharmacokinetics and pharmacodynamics of ASP2151, a helicase-primase inhibitor, in a murine model of herpes simplex virus infection. Antimicrob Agents Chemother. 2013 Mar;57(3):1339-46. doi: 10.1128/AAC.01803-12. Epub 2012 Dec 28. PubMed PMID: 23274658; PubMed Central PMCID: PMC3591930.

8: Chono K, Katsumata K, Suzuki H, Shiraki K. Synergistic activity of amenamevir (ASP2151) with nucleoside analogs against herpes simplex virus types 1 and 2 and varicella-zoster virus. Antiviral Res. 2013 Feb;97(2):154-60. doi: 10.1016/j.antiviral.2012.12.006. Epub 2012 Dec 20. PubMed PMID: 23261844.

9: Chono K, Katsumata K, Kontani T, Shiraki K, Suzuki H. Characterization of virus strains resistant to the herpes virus helicase-primase inhibitor ASP2151 (Amenamevir). Biochem Pharmacol. 2012 Aug 15;84(4):459-67. doi: 10.1016/j.bcp.2012.05.020. Epub 2012 Jun 9. PubMed PMID: 22687623.

10: Katsumata K, Weinberg A, Chono K, Takakura S, Kontani T, Suzuki H. Susceptibility of herpes simplex virus isolated from genital herpes lesions to ASP2151, a novel helicase-primase inhibitor. Antimicrob Agents Chemother. 2012 Jul;56(7):3587-91. doi: 10.1128/AAC.00133-12. Epub 2012 Apr 23. PubMed PMID: 22526302; PubMed Central PMCID: PMC3393391.

11: Tyring S, Wald A, Zadeikis N, Dhadda S, Takenouchi K, Rorig R. ASP2151 for the treatment of genital herpes: a randomized, double-blind, placebo- and valacyclovir-controlled, dose-finding study. J Infect Dis. 2012 Apr 1;205(7):1100-10. doi: 10.1093/infdis/jis019. Epub 2012 Feb 20. PubMed PMID: 22351940.

12: Himaki T, Masui Y, Chono K, Daikoku T, Takemoto M, Haixia B, Okuda T, Suzuki H, Shiraki K. Efficacy of ASP2151, a helicase-primase inhibitor, against thymidine kinase-deficient herpes simplex virus type 2 infection in vitro and in vivo. Antiviral Res. 2012 Feb;93(2):301-4. doi: 10.1016/j.antiviral.2011.11.015. Epub 2011 Dec 4. PubMed PMID: 22155691.

13: Katsumata K, Chono K, Sudo K, Shimizu Y, Kontani T, Suzuki H. Effect of ASP2151, a herpesvirus helicase-primase inhibitor, in a guinea pig model of genital herpes. Molecules. 2011 Aug 25;16(9):7210-23. doi: 10.3390/molecules16097210. PubMed PMID: 21869749.

14: Andrei G, Snoeck R. Emerging drugs for varicella-zoster virus infections. Expert Opin Emerg Drugs. 2011 Sep;16(3):507-35. doi: 10.1517/14728214.2011.591786. Epub 2011 Jun 24. Review. PubMed PMID: 21699441.

15: Chono K, Katsumata K, Kontani T, Kobayashi M, Sudo K, Yokota T, Konno K, Shimizu Y, Suzuki H. ASP2151, a novel helicase-primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes simplex virus types 1 and 2. J Antimicrob Chemother. 2010 Aug;65(8):1733-41. doi: 10.1093/jac/dkq198. Epub 2010 Jun 9. PubMed PMID: 20534624

///////////Amenamevir, アメナメビル, japan 2017, ASP2151, ASP 2151, M-5220, MARUHO, Amenalief
O=C(C(CC1)CCS1(=O)=O)N(C2=C(C)C=CC=C2C)CC(NC3=CC=C(C4=NOC=N4)C=C3)=O

NEW DRUG APPROVALS HITS 20 LAKH VIEWS IN 218 COUNTRIES


NEW DRUG APPROVALS

https://newdrugapprovals.org/

ALL ABOUT DRUGS, LIVE, BY DR ANTHONY MELVIN CRASTO, WORLDDRUGTRACKER, HELPING MILLIONS, 9 MILLION HITS ON GOOGLE, PUSHING BOUNDARIES,2.5 LAKH PLUS CONNECTIONS WORLDWIDE, 18 LAKH PLUS VIEWS ON THIS BLOG IN 216 COUNTRIES, THE VIEWS EXPRESSED ARE MY PERSONAL AND IN NO-WAY SUGGEST THE VIEWS OF THE PROFESSIONAL BODY OR THE COMPANY THAT I REPRESENT, USE CTRL AND+ KEY TO ENLARGE BLOG VIEW……………………A 90 % PARALYSED MAN IN ACTION FOR YOU, I AM SUFFERING FROM TRANSVERSE MYLITIS AND BOUND TO A WHEEL CHAIR, WITH DEATH ON THE HORIZON, I HAVE LOT TO ACHEIVE

 

 

 

 

 

 

 

 

 

 

 

 

 

Elobixibat hydrate, エロビキシバット水和物


Elobixibat skeletal.svgChemSpider 2D Image | Elobixibat | C36H45N3O7S2Elobixibat.png

Elobixibat

  • Molecular FormulaC36H45N3O7S2
  • Average mass695.888 Da
 CAS 439087-18-0 [RN]
A3309
AZD7806
Glycine, N-[(2R)-2-[[2-[[3,3-dibutyl-2,3,4,5-tetrahydro-7-(methylthio)-1,1-dioxido-5-phenyl-1,5-benzothiazepin-8-yl]oxy]acetyl]amino]-2-phenylacetyl]-
N-{(2R)-2-[({[3,3-Dibutyl-7-(methylsulfanyl)-1,1-dioxido-5-phenyl-2,3,4,5-tetrahydro-1,5-benzothiazepin-8-yl]oxy}acetyl)amino]-2-phenylacetyl}glycine
A-3309
AJG-533
AZD-7806
A-3309; AJG-533; Goofice
Image result for Elobixibat

Elobixibat hydrate

Approved 2018/1/19 Japan pmda

TRADE NAME Goofice  to EA Pharma

エロビキシバット水和物

C36H45N3O7S2▪H2O : 713.9
[1633824-78-8] CAS OF HYDRATE

Image result for Goofice

Gooffice ® tablet 5 mg (hereinafter referred to as Gooffice ® ) is an oral chronic constipation remedy drug containing as active ingredient Erobi vat having bile acid transporter inhibitory action. It is the world’s first bile acid transporter inhibitor.

Elobixibat is an inhibitor of the ileal bile acid transporter (IBAT),[1] undergoing development in clinical trials for the treatment of chronic constipation and irritable bowel syndrome with constipation (IBS-C).

Mechanism of action

IBAT is the bile acid:sodium symporter responsible for the reuptake of bile acids in the ileum which is the initial step in the enterohepatic circulation. By inhibiting the uptake of bile acids, elobixibat increases the bile acid concentration in the gut, and this accelerates intestinal passage and softens the stool. Following several phase II studies, it is now undergoing phase III trials.[2]

Drug development

The drug was developed by Albireo AB, who licensed it to Ferring Pharmaceuticals for further development and marketing.[3] Albireo has partnered with Ajinomoto Pharmaceuticals, giving the Japan-based company the rights to further develop the drug and market it throughout Asia.[4]

  • OriginatorAstraZeneca
  • DeveloperAlbireo Pharma; EA Pharma
  • Class2 ring heterocyclic compounds; Amides; Carboxylic acids; Laxatives; Small molecules; Sulfides; Sulfones; Thiazepines
  • Mechanism of ActionSodium-bile acid cotransporter-inhibitors
  • Orphan Drug StatusNo
  • New Molecular EntityYes

Highest Development Phases

  • RegisteredConstipation
  • DiscontinuedDyslipidaemias; Irritable bowel syndrome

Most Recent Events

Approved 2018/1/19 japan pmda

  • 24 Jan 2018Elobixibat is still in phase II trials for Constipation in Indonesia, South Korea, Taiwan, Thailand and Vietnam (Albireo pipeline, January 2018)
  • 24 Jan 2018Discontinued – Phase-II for Irritable bowel syndrome in USA and Europe (PO) (Alberio pipeline, January 2018)
  • 19 Jan 2018Registered for Constipation in Japan (PO) – First global approval
  • In 2012, the compound was licensed to Ajinomoto (now EA Pharma) by Albireo for exclusive development and commercialization rights in several Asian countries. At the same year, the product was licensed to Ferring by Albireo worldwide, except Japan and a small number of Asian markets, for development and marketing. However, in 2015, this license between Ferring and Albireo was terminated and Albireo is seeking partner for in the U.S. and Europe. In 2016, Ajinomoto and Mochida signed an agreement on codevelopment and comarketing of the product in Japan.

Elobixibat

albireo_logo_nav.svg

Elobixibat is an IBAT inhibitor approved in Japan for the treatment of chronic constipation, the first IBAT inhibitor to be approved anywhere in the world.  EA Pharma Co., Ltd., a company formed via a 2016 combination of Eisai’s GI business with Ajinomoto Pharmaceuticals and focused on the gastrointestinal disease space, is the exclusive licensee of elobixibat for the treatment of gastrointestinal disorders in Japan and other select countries in Asia (not including China) and is expected to co-market elobixibat in Japan with Mochida Pharmaceutical Co., Ltd., and to co-promote elobixibat in Japan with Eisai, under the trade name GOOFICE®.

We also believe that elobixibat has potential benefit in the treatment of NASH based on findings on relevant parameters in clinical trials of elobixibat that we previously conducted in patients with chronic constipation and in patients with elevated cholesterol and findings on other parameters relevant to NASH from nonclinical studies that we previously conducted with elobixibat or a different IBAT inhibitor. In particular, in a clinical trial in dyslipidemia patients, elobixibat given for four weeks reduced low-density lipoprotein (LDL) cholesterol, with the occurrence of diarrhea being substantially the same as the placebo group. Also, in other clinical trials in constipated patients, elobixibat given at various doses and for various durations reduced LDL-cholesterol and, in one trial, increased levels of glucagon-like peptide 1 (GLP-1). Moreover, A4250 (an IBAT inhibitor) showed significant improvement (p < 0.05) on the nonalcoholic fatty liver disease activity score in an established model of NASH in mice known as the STAM™ model and improvement in liver inflammation and fibrosis in another preclinical mouse model. We are considering conducting a Phase 2 clinical trial of elobixibat in NASH

These benzothiazepines possess ileal bile acid transport (IBAT) inhibitory activity and accordingly have value in the treatment of disease states associated with hyperlipidaemic conditions and they are useful in methods of treatment of a warm-blooded animal, such as man. The invention also relates to processes for the manufacture of said benzothiazepine derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments to inhibit IBAT in a warm-blooded animal, such as man.
It is well-known that hyperlipidaemic conditions associated with elevated
concentrations of total cholesterol and low-density lipoprotein cholesterol are major risk factors for cardiovascular atherosclerotic disease (for instance “Coronary Heart Disease: Reducing the Risk; a Worldwide View” Assman G., Carmena R. Cullen P. et al; Circulation 1999, 100, 1930-1938 and “Diabetes and Cardiovascular Disease: A Statement for Healthcare Professionals from the American Heart Association” Grundy S, Benjamin I., Burke G., et al; Circulation, 1999, 100, 1134-46). Interfering with the circulation of bile acids within the lumen of the intestinal tracts is found to reduce the level of cholesterol. Previous established therapies to reduce the concentration of cholesterol involve, for instance, treatment with HMG-CoA reductase inhibitors, preferably statins such as simvastatin and fluvastatin, or treatment with bile acid binders, such as resins. Frequently used bile acid binders are for instance cholestyramine and cholestipol. One recently proposed therapy (“Bile Acids and Lipoprotein Metabolism: a Renaissance for Bile Acids in the Post Statin Era” Angelin B, Eriksson M, Rudling M; Current Opinion on Lipidology, 1999, 10, 269-74) involved the treatment with substances with an IBAT inhibitory effect.
Re-absorption of bile acid from the gastro-intestinal tract is a normal physiological process which mainly takes place in the ileum by the IBAT mechanism. Inhibitors of EBAT can be used in the treatment of hypercholesterolaemia (see for instance “Interaction of bile acids and cholesterol with nonsystemic agents having hypocholesterolaemic properties”, Biochemica et Biophysica Acta, 1210 (1994) 255- 287). Thus, suitable compounds having such inhibitory IBAT activity are also useful in the treatment of hyperlipidaemic conditions.

Compounds possessing such IBAT inhibitory activity have been described, see for instance the compounds described in WO 93/16055, WO 94/18183, WO 94/18184, WO 96/05188, WO 96/08484, WO 96/16051, WO 97/33882, WO 98/38182, WO 99/35135, WO 98/40375, WO 99/35153, WO 99/64409, WO 99/64410, WO 00/01687, WO 00/47568, WO 00/61568, WO 01/68906, DE 19825804, WO 00/38725, WO 00/38726, WO 00/38727, WO 00/38728, WO 00/38729, WO 01/68906, WO 01/66533, WO 02/50051 and EP 0 864 582.
A further aspect of this invention relates to the use of the compounds of the invention in the treatment of dyslipidemic conditions and disorders such as hyperlipidaemia, hypertrigliceridemia, hyperbetalipoproteinemia (high LDL), hyperprebetalipoproteinemia (high VLDL), hyperchylomicronemia, hypolipoproteinemia, hypercholesterolemia, hyperlipoproteinemia and hypoalphalipoproteinemia (low HDL). In addition, these compounds are expected to be useful for the prevention and treatment of different clinical conditions such as atherosclerosis, arteriosclerosis, arrhythmia, hyper-thrombotic conditions, vascular dysfunction, endothelial dysfunction, heart failure, coronary heart diseases, cardiovascular diseases, myocardial infarction, angina pectoris, peripheral vascular diseases, inflammation of cardiovascular tissues such as heart, valves, vasculature, arteries and veins, aneurisms, stenosis, restenosis, vascular plaques, vascular fatty streaks, leukocytes, monocytes and/or macrophage infiltration, intimal thickening, medial thinning, infectious and surgical trauma and vascular thrombosis, stroke and transient ischaemic attacks.

PATENTS

WO 2002050051

https://patentscope.wipo.int/search/en/detail.jsf%3Bjsessionid=4E054324A28B9E2E7C3C73102D1560EC.wapp1?docId=WO2002050051&recNum=237&office=&queryString=&prevFilter=%26fq%3DOF%3AWO%26fq%3DICF_M%3A%22A61K%22%26fq%3DPAF_M%3A%22ASTRAZENECA+AB%22&sortOption=Relevance&maxRec=655

STARKE, Ingemar; (SE).
DAHLSTROM, Mikael; (SE).
BLOMBERG, David; (SE)

ASTRAZENECA 

SYNTHESIS

WO 2002050051, WO 1996016051

STR1

PATENT

WO 2003051821

WO 2003020710

TW I291951

WO 2013063512

WO 2013063526

US 20140323412

EP 3012252

PATENT

WO 2003020710

https://patents.google.com/patent/WO2003020710A1/und

STR1

PATENT

WO 2014174066 

WO 02/50051 discloses the compound 1 ,1 -dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(/V-{(R)-1 ‘-phenyl-1 ‘- [/V-(carboxymethyl)carbamoyl]methyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1 ,5-benzothiazepine (elobixibat; lUPAC name: /V-{(2R)-2-[({[3,3-dibutyl-7-(methylthio)-1 ,1 -dioxido-5-phenyl-2,3,4,5-tetrahydro-1 ,5-benzothiazepin-8-yl]oxy}acetyl)amino]-2-phenyl-ethanolyl}glycine). This compound is an ileal bile acid transporter (I BAT) inhibitor, which can be used in the treatment or prevention of diseases such as dyslipidemia, constipation, diabetes and liver diseases. According to the experimental section of WO 02/50051 , the last synthetic step in the preparation of elobixibat consists of the hydrolysis of a ie f-butoxyl ester under acidic conditions. The crude compound was obtained by evaporation of the reaction mixture under reduced pressure and purification of the residue by preparative HPLC using acetonitrile/ammonium acetate buffer (50:50) as eluent (Example 43). After freeze drying the product, no crystalline material was identified.

Example 1

Preparation of crystal modification I

Toluene (1 1 .78 L) was charged to a 20 L round-bottom flask with stirring and 1 ,1 -dioxo-3,3-dibutyl-5-phenyl-7-methylthio-8-(/V-{(R)-1 ‘-phenyl-1 ‘-[/\/’-(i-butoxycarbonylmethyl)carbamoyl]-methyl}carbamoylmethoxy)-2,3,4,5-tetrahydro-1 ,5-benzothiazepine (2.94 kg) was added. Formic acid (4.42 L) was added to the reaction mass at 25-30 °C. The temperature was raised to 1 15-120 °C and stirred for 6 hours. The reaction was monitored by HPLC to assure that not more than 1 % of the starting material remained in the reaction mass. The reaction mass was cooled to 40-43 °C. Purified water (1 1 .78 L) was added while stirring. The reaction mass was further cooled to 25-30 °C and stirred for 15 min.

The layers were separated and the organic layer was filtered through a celite bed (0.5 kg in 3 L of toluene) and the filtrate was collected. The celite bed was washed with toluene (5.9 L), the filtrates were combined and concentrated at 38-40 °C under vacuum. The reaction mass was then cooled to 25-30 °C to obtain a solid.

Ethanol (3.7 L) was charged to a clean round-bottom flask with stirring, and the solid obtained in the previous step was added. The reaction mass was heated to 40-43 °C and stirred at this temperature for 30 min. The reaction mass was then cooled to 25-30 °C over a period of 30 min., and then further cooled to 3-5 °C over a period of 2 h, followed by stirring at this temperature for 14 h. Ethanol (3.7 L) was charged to the reaction mass with stirring, while maintaining the temperature at 0-5 °C, and the reaction mass was then stirred at this temperature for 1 h. The material was then filtered and washed with ethanol (1 .47 L), and vacuum dried for 30 min. The material was dried in a vacuum tray dryer at 37-40 °C for 24 h under nitrogen atmosphere. The material was put in clean double LDPE bags under nitrogen atmosphere and stored in a clean HDPE drum. Yield 1 .56 kg.

Crystal modification I has an XRPD pattern, obtained with CuKal -radiation, with

characteristic peaks at °2Θ positions: 3,1 ± 0.2, 4,4 ± 0.2, 4,9 ± 0.2, 5,2 ± 0.2, 6,0 ± 0.2, 7,4 ± 0.2, 7,6 ± 0.2, 7,8 ± 0.2, 8,2 ± 0.2, 10,0 ± 0.2, 10,5 ± 0.2, 1 1 ,3 ± 0.2, 12,4 ± 0.2, 13,3 ± 0.2, 13,5 ± 0.2, 14,6 ± 0.2, 14,9 ± 0.2, 16,0 ± 0.2, 16,6 ± 0.2, 16,9 ± 0.2, 17,2 ± 0.2, 17,7 ± 0.2, 18,0 ± 0.2, 18,3 ± 0.2, 18,8 ± 0.2, 19,2 ± 0.2, 19,4 ± 0.2, 20,1 ± 0.2, 20,4 ± 0.2, 20,7 ± 0.2, 20,9 ± 0.2, 21 ,1 ± 0.2, 21 ,4 ± 0.2, 21 ,8 ± 0.2, 22,0 ± 0.2, 22,3 ± 0.2, 22,9 ± 0.2, 23,4 ± 0.2, 24,0 ± 0.2, 24,5 ± 0.2, 24,8 ± 0.2, 26,4 ± 0.2,27,1 ± 0.2 and 27,8 ± 0.2. The X-ray powder diffractogram is shown in FIG. 4.

PATENT

WO 2014174066

エロビキシバット水和物
Elobixibat Hydrate

C36H45N3O7S2▪H2O : 713.9
[1633824-78-8]

References

  1. Jump up^ “INN for A3309 is ELOBIXIBAT”. AlbireoPharma. Archived from the original on 18 January 2012. Retrieved 5 December 2012.
  2. Jump up^ Acosta A, Camilleri M (2014). “Elobixibat and its potential role in chronic idiopathic constipation”Therap Adv Gastroenterol7 (4): 167–75. doi:10.1177/1756283X14528269PMC 4107709Freely accessiblePMID 25057297.
  3. Jump up^ Grogan, Kevin. “Ferring acquires rights to Albireo’s bowel drug”PharmaTimes. Retrieved 23 March 2017.
  4. Jump up^ “Ajinomoto Pharmaceuticals and Albireo Announce Japan and Asia License Agreement for Elobixibat”. Albireo. Retrieved 5 December2012.[permanent dead link]
Elobixibat
Elobixibat skeletal.svg
Clinical data
Routes of
administration
Oral
ATC code
  • None
Legal status
Legal status
  • Investigational
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C36H45N3O7S2
Molar mass 695.89 g/mol
3D model (JSmol)

//////////Elobixibat hydrate, japan 2018, A-3309, AJG-533, Goofice, A 3309, AJG 533, AZD 7806

CCCCC1(CN(C2=CC(=C(C=C2S(=O)(=O)C1)OCC(=O)NC(C3=CC=CC=C3)C(=O)NCC(=O)O)SC)C4=CC=CC=C4)CCCC

FDA approves new HIV treatment Trogarzo (ibalizumab-uiyk) for patients who have limited treatment options


Image result for ibalizumab-uiykImage result for taiMed Biologics USA Corp

FDA approves new HIV treatment Trogarzo (ibalizumab-uiyk),for patients who have limited treatment options

Today, the U.S. Food and Drug Administration approved Trogarzo (ibalizumab-uiyk), a new type of antiretroviral medication for adult patients living with HIV who have tried multiple HIV medications in the past (heavily treatment-experienced) and whose HIV infections cannot be successfully treated with other currently available therapies (multidrug resistant HIV, or MDR HIV).Trogarzo is administered intravenously once every 14 days by a trained medical professional and used in combination with other antiretroviral medications. Continue reading.

 

 

March 6, 2018

Release

Today, the U.S. Food and Drug Administration approved Trogarzo (ibalizumab-uiyk), a new type of antiretroviral medication for adult patients living with HIV who have tried multiple HIV medications in the past (heavily treatment-experienced) and whose HIV infections cannot be successfully treated with other currently available therapies (multidrug resistant HIV, or MDR HIV).Trogarzo is administered intravenously once every 14 days by a trained medical professional and used in combination with other antiretroviral medications.

“While most patients living with HIV can be successfully treated using a combination of two or more antiretroviral drugs, a small percentage of patients who have taken many HIV drugs in the past have multidrug resistant HIV, limiting their treatment options and putting them at a high risk of HIV-related complications and progression to death,” said Jeff Murray, M.D., deputy director of the Division of Antiviral Products in the FDA’s Center for Drug Evaluation and Research. “Trogarzo is the first drug in a new class of antiretroviral medications that can provide significant benefit to patients who have run out of HIV treatment options. New treatment options may be able to improve their outcomes.”

The safety and efficacy of Trogarzo were evaluated in a clinical trial of 40 heavily treatment-experienced patients with MDR HIV-1 who continued to have high levels of virus (HIV-RNA) in their blood despite being on antiretroviral drugs. Many of the participants had previously been treated with 10 or more antiretroviral drugs. The majority of participants experienced a significant decrease in their HIV-RNA levels one week after Trogarzo was added to their failing antiretroviral regimens. After 24 weeks of Trogarzo plus other antiretroviral drugs, 43 percent of the trial’s participants achieved HIV RNA suppression.

The clinical trial focused on the small patient population with limited treatment options and demonstrated the benefit of Trogarzo in achieving reduction of HIV RNA. The seriousness of the disease, the need to individualize other drugs in the treatment regimen, and safety data from other trials were considered in evaluating the Trogarzo development program.

A total of 292 patients with HIV-1 infection have been exposed to Trogarzo IV infusion. The most common adverse reactions to Trogarzo were diarrhea, dizziness, nausea and rash. Severe side effects included rash and changes in the immune system (immune reconstitution syndrome).
The FDA granted this application Fast TrackPriority Review and Breakthrough Therapy designations. Trogarzo also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The FDA granted approval of Trogarzo to TaiMed Biologics USA Corp.

Theratechnologies Announces FDA Approval of Breakthrough Therapy, Trogarzo™ (ibalizumab-uiyk) Injection, the First HIV-1 Inhibitor and Long-Acting Monoclonal Antibody for Multidrug Resistant HIV-1


NEWS PROVIDED BY

Theratechnologies Inc. 


  •  First HIV treatment approved with a new mechanism of action in more than 10 years
  • Infused every two weeks, only antiretroviral treatment (ART) that does not require daily dosing
  • Trogarzo™ has no drug-drug interactions and no cross-resistance with other ARTs

MONTREALMarch 6, 2018 /PRNewswire/ – Theratechnologies Inc. (Theratechnologies) (TSX: TH) and its partner TaiMed Biologics, Inc. (TaiMed) today announced that the U.S. Food and Drug Administration (FDA) has granted approval of Trogarzo™ (ibalizumab-uiyk) Injection. In combination with other ARTs, Trogarzo™ is indicated for the treatment of human immunodeficiency virus type 1 (HIV-1) infection in heavily treatment-experienced adults with multidrug resistant HIV-1 infection failing their current antiretroviral regimen.1

Trogarzo™ represents a critical new treatment advance as the first HIV therapy with a new mechanism of action approved in 10 years and proven effectiveness in difficult-to-treat patients with limited options. Unlike all other classes of ARTs, Trogarzo™ is a CD4-directed post-attachment HIV-1 inhibitor that binds to CD4+ receptors on host cells and blocks the HIV virus from infecting the cells.1

“Today’s approval of Trogarzo™ by the FDA is great news for people infected with difficult-to-treat multidrug resistant HIV. We look forward to bringing this much-needed therapy to patients in the U.S within six weeks,” said Luc Tanguay, President and Chief Executive Officer, Theratechnologies Inc. “We are grateful to the patients, investigators, as well as the FDA who supported the clinical development of Trogarzo™, and are helping address this critical unmet medical need.”

Trogarzo™ previously received Breakthrough Therapy and Orphan Drug designations as well as Priority Review status from the FDA, underscoring the significance of the treatment for this patient population.

“I witnessed some of the earliest cases of HIV and AIDS, at a time when the diagnosis was terrifying to patients because in many cases it was a death sentence,” said David Ho, M.D., chief scientific advisor of TaiMed and scientific director and CEO of the Aaron Diamond AIDS Research Center. “Since then, treatment advances and the discovery that combinations of ARTs was the best way to bring viral load below the level of detection have allowed most people to manage HIV like a chronic condition and live long, healthy lives. However, this is not the reality for people whose HIV is resistant to multiple drugs and whose viral load is not controlled, which is why TaiMed dedicated the past decade to advancing ibalizumab in the clinic. For these patients, it represents the next breakthrough.”

Up to 25,000 Americans with HIV are currently multidrug resistant, of which 12,000 are in urgent need of a new treatment option because their current treatment regimen is failing them and their viral load has risen to detectable levels, jeopardizing their health and making HIV transmittable.2-13 The best way to prevent the transmission of multidrug resistant HIV is to control the virus in those living with it. According to new guidance from the Centers for Disease Control and Prevention (CDC), the HIV virus cannot be transmitted if it is being fully suppressed.13

“I’ve struggled with multidrug resistant HIV for almost 30 years and it was completely debilitating to feel like I had run out of options – I made no long-term plans,” said Nelson Vergel, founder of the Program for Wellness Restoration (PoWeR) and Trogarzo™ patient. “Since starting treatment with Trogarzo™ six years ago and getting my viral load to an undetectable level, I have been my happiest, most productive self. Trogarzo™ is a new source of hope and peace of mind for people whose treatments have failed them, and I feel incredibly lucky to have been able to participate in the clinical trial program.”

TaiMed and Theratechnologies partnered on the development of Trogarzo™ so patients who can benefit from the treatment have access to it. For patients who need assistance accessing Trogarzo™ or who face challenges affording medicines, Theratechnologies has a team of patient care coordinators available to help. Patients can get assistance and expert support by contacting THERA patient support™ at 1-833-23-THERA (84372).

“In Phase 3 ibalizumab trials, we saw marked improvements in patients’ health who not only were heavily treatment-experienced and had limited remaining treatment options, but in cases they also had extremely high viral loads and significantly impaired immune systems,” said Edwin DeJesus, M.D., Medical Director for the Orlando Immunology Center. “As an investigator for ibalizumab clinical trials over nearly 10 years, it was remarkable and inspiring to see the dramatic effect ibalizumab had on such vulnerable patients. As a clinician, I am excited that we will now have another option with a different mechanism of action for our heavily pretreated patients who are struggling to keep their viral load below detection because their HIV is resistant to multiple drugs.”

Clinical Trial Findings

Clinical studies show that Trogarzo™, in combination with other ARTs, significantly reduces viral load and increases CD4+ (T-cell) count among patients with multidrug resistant HIV-1.

The Phase 3 trial showed:1

  • Trogarzo™ significantly reduced viral load within seven days after the first dose of functional monotherapy and maintained the treatment response when combined with an optimized background regimen that included at least one other active ART for up to 24 weeks of treatment, while being safe and well tolerated.
  • More than 80% of patients achieved the study’s primary endpoint – at least a 0.5 log10 (or 70%) viral load reduction from baseline seven days after receiving a 2,000 mg loading dose of Trogarzo™ and no adjustment to the failing background regimen.
  • The average viral load reduction after 24 weeks was 1.6 log10 with 43% of patients achieving undetectable viral loads.

Patients experienced a clinically-significant mean increase in CD4+ T-cells of 44 cells/mm3, and increases varied based on T-cell count at baseline. Rebuilding the immune system by increasing T-cell count is particularly important as people with multidrug resistant HIV-1 often have the most advanced form of HIV.1

The most common drug-related adverse reactions (incidence ≥ 5%) were diarrhea (8%), dizziness (8%), nausea (5%) and rash (5%). No drug-drug interactions were reported with other ARTs or medications, and no cross-resistance with other ARTs were observed.1

About Trogarzo™ (ibalizumab-uiyk) Injection

Trogarzo™ is a humanized monoclonal antibody for the treatment of multidrug resistant HIV-1 infection. Trogarzo™ binds primarily to the second extracellular domain of the CD4+ T receptor, away from major histocompatibility complex II molecule binding sites. It prevents HIV from infecting CD4+ immune cells while preserving normal immunological function.

IMPORTANT SAFETY INFORMATION

Trogarzo™ is a prescription HIV medicine that is used with other antiretroviral medicines to treat human immunodeficiency virus-1 (HIV-1) infections in adults.

Trogarzo™ blocks HIV from infecting certain cells of the immune system. This prevents HIV from multiplying and can reduce the amount of HIV in the body.

Before you receive Trogarzo™, tell your healthcare provider if you:

  • are pregnant or plan to become pregnant. It is not known if Trogarzo™ may harm your unborn baby.
  • are breastfeeding or plan to breastfeed. It is not known if Trogarzo™ passes into breast milk.

Tell your healthcare provider about all the medicines you take, including all prescription and over-the-counter medicines, vitamins, and herbal supplements.

Trogarzo™ can cause serious side effects, including:

Changes in your immune system (Immune Reconstitution Inflammatory Syndrome) can happen when you start taking HIV-1 medicines.  Your immune system might get stronger and begin to fight infections that have been hidden in your body for a long time.  Tell your health care provider right away if you start having new symptoms after starting your HIV-1 medicine.

The most common side effects of Trogarzo™ include:

  • Diarrhea
  • Dizziness
  • Nausea
  • Rash

Tell your healthcare provider if you have any side effect that bothers you or that does not go away. These are not all the possible side effects of Trogarzo™. For more information, ask your healthcare provider or pharmacist.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.  You may also report side effects to at 1-833-23THERA (1-833-238-4372).

 

About Theratechnologies

Theratechnologies (TSX: TH) is a specialty pharmaceutical company addressing unmet medical needs to promote healthy living and an improved quality of life among HIV patients. Further information about Theratechnologies is available on the Company’s website at www.theratech.com and on SEDAR at www.sedar.com.

/////Trogarzo, ibalizumab-uiyk, fda 2018, Fast TrackPriority Review, Breakthrough Therapy designations,  Orphan Drug designation

Forodesine Hydrochloride


Immucillin H.svg

ChemSpider 2D Image | Forodesine | C11H14N4O4

Forodesine.png

Forodesine

  • Molecular FormulaC11H14N4O4
  • Average mass266.253 Da
(2R,3R,4S,5S)-2-(hydroxymethyl)-5-(4-hydroxy-5H-pyrrolo[3,2-d]pyrimidin-7-yl)pyrrolidine-3,4-diol
209799-67-7 [RN]
3,4-pyrrolidinediol, 2-(hydroxymethyl)-5-(4-hydroxy-5H-pyrrolo[3,2-d]pyrimidin-7-yl)-, (2R,3R,4S,5S)-
4H-Pyrrolo[3,2-d]pyrimidin-4-one, 7-[(2S,3S,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)-2-pyrrolidinyl]-3,5-dihydro-
7-[(2S,3S,4R,5R)-3,4-Dihydroxy-5-(hydroxyméthyl)-2-pyrrolidinyl]-1,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one
Fodosine
immucillin H
(1S)-1-(9-deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol
(1S)-1,4-dideoxy-4-imino-(9-deazahypoxanthin-9-yl)-D-ribitol
1,4-DIDEOXY-4-AZA-1-(S)-(9-DEAZAHYPOXANTHIN-9-YL)-D-RIBITOL
7-[(2S,3S,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one
7-[(2S,3S,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-1,5-dihydropyrrolo[2,3-e]pyrimidin-4-one
7-[(2S,3S,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)pyrrolidin-2-yl]-3,5-dihydro-4H-pyrrolo[3,2-d]pyrimidin-4-one
8574770 [Beilstein]
BCX1777
BCX-1777 freebase
BCX-1777 freebase;Immucillin-H
BCX-1777|BCX1777|Fodosine® (proposed trade name)|immucillin H|immucillin-H

CAS No. : 284490-13-7

Molecular Formula: C11H15ClN4O4

Average Mass: 302.72 g/mol

Forodesine (INN; also known as Immucillin H; trade names Mundesine and Fodosine) is a transition-state analog inhibitor of purine nucleoside phosphorylase[1] studied for the treatment of patients with T-cell acute lymphoblastic leukemia (T-ALL) and for treatment of B-cell acute lymphocytic leukemia (B-ALL).

Forodesine was originally discovered by Vern Schramm‘s laboratory at the Albert Einstein College of Medicine in New York and Industrial Research Limited in New Zealand.

Forodesine is being developed by BioCryst Pharmaceuticals. As of 2008, it is currently in phase II clinical trials.[2].

In 2006, BioCryst entered into a licensing agreement with Mundipharma International Holdings Limited to develop and commercialize forodesine in markets across Europe, Asia, and Australasia for use in oncology.[3]

In April 2017, forodesine was approved in Japan for the treatment of relapsed/refractory peripheral T-cell lymphoma.[4]

ema

On 20 September 2010, orphan designation (EU/3/10/780) was granted by the European Commission to Mundipharma Research Limited, United Kingdom, for forodesine for the treatment of chronic lymphocytic leukaemia

EU/3/10/780: Public summary of opinion on orphan designation: Forodesine for the treatment of chronic lymphocytic leukaemia

Active substance Forodesine hydrochloride
Decision number P/69/2010
PIP number EMEA-000785-PIP01-09
Pharmaceutical form(s) Hard capsule
Condition(s)/indication(s) Cutaneous T-cell lymphoma (CTCL)
Route(s) of administration Oral use
PIP applicant Applicant: Mundipharma Research Ltd
E-mail: paediatric@mundipharma-rd.eu
Country: United Kingdom
Phone: +44 1223424900
Fax: +44 1223426054
Decision type W: decision granting a waiver in all age groups for the listed condition(s)

P/69/2010: European Medicines Agency decision on the granting of a product specific waiver for forodesine hydrochloride (EMEA-000785-PIP01-09)

On 20 September 2010, orphan designation (EU/3/10/780) was granted by the European Commission to Mundipharma Research Limited, United Kingdom, for forodesine for the treatment of chronic lymphocytic leukaemia.

What is chronic lymphocytic leukaemia?

Chronic lymphocytic leukaemia (CLL) is cancer of a type of white blood cell called B lymphocytes. In this disease, the lymphocytes multiply too quickly and live for too long, so that there are too many of them circulating in the blood. The cancerous lymphocytes look normal, but they are not fully developed and do not work properly. Over a period of time, the abnormal cells replace the normal white blood cells, red blood cells and platelets (components that help the blood to clot) in the bone marrow (the spongy tissue inside the large bones in the body). CLL is the most common type of leukaemia and mainly affects older people. It is rare in people under the age of 40 years. CLL is a long-term debilitating and life-threatening disease because some patients develop severe infections. What is the estimated number of patients affected by the condition? At the time of designation, CLL affected approximately 3 in 10,000 people in the European Union (EU)*. This is equivalent to a total of around 152,000 people, and is below the threshold for orphan designation, which is 5 people in 10,000. This is based on the information provided by the sponsor and the knowledge of the Committee for Orphan Medicinal Products (COMP).

What treatments are available? Treatment for CLL is complex and depends on a number of factors, including the extent of the disease, whether it has been treated before, and the patient’s age, symptoms and general state of health. Patients whose CLL is not causing any symptoms or is only getting worse very slowly may not need

Forodesine Hydrochloride was originally developed by BioCryst Pharmaceuticals and then licensed to Mundipharma and in particular is marketed in Japan under the trade name Mundesine®. Forodesine Hydrochloride is a transitional analogue inhibitor of purine nucleoside phosphorylase (PNP). Mundesine® is approved for the treatment of peripheral T-cell lymphoma (PTCL).

Mundesine® is a capsule that contains 100mg of free Forodesine per capsule. The recommended dose is 300mg orally, twice daily.

In 2004, the compound was eligible for orphan drug treatment for non-Hodgkin’s lymphoma (NHL), chronic myelogenous leukemia (CLL) and hairy cell leukemia, respectively. In 2007, the compound was eligible for the EU orphan drug for the treatment of acute lymphoblastic leukemia (ALL) and cutaneous T-cell lymphoma (CTCL). In 2010, the compound was eligible for EU orphan drug for treatment of CLL. In 2006, the compound obtained Japanese orphan drug eligibility for CTCL treatment.

Forodesine, or 7-[(2S,3S,4R,5R)-3,4-dihydroxy-5-(hydroxymethyl)-2-pyrrolidinyl]-l,5-dihydropyrrolo[2,3-e]pyrimidin-4-one, is an inhibitor of purine nucleoside phosphorylase. It is currently in development as a treatment for peripheral T-Cell Lymphoma .

W099/19338 describes a compound genus as a new class of inhibitors of nucleoside metabolism, including Forodesine. The compounds effect as inhibitors of purine nucleoside phosphorylase is taught as efficacious to suppress T-cell function and to treat infections caused by protozoan parasites.

WO00/61783 describes a number of processes for preparing molecules described in W099/19338. Reaction scheme 3 on page 23 of the published application describes a synthesis of Forodesine, characterised by the removal of two acid labile protecting groups in the final step to yield the hydrochloride salt.

Forodesine is a particularly difficult molecule to make on a commercial scale. The current process for manufacture requires a coupling reaction under cryogenic temperature conditions of -55C. Subsequent steps involve the use of a high pressure hydrogenation reaction. Such extreme reaction conditions provide for safety concerns, particularly when conducted on a bulk scale. Further the products of the reaction were extremely challenging to purify. The effect of all this is to require more sophisticated and expensive equipment at the manufacturing plant; all of which add up to an increased cost of goods for patients. Accordingly a new manufacturing process was sought.

Surprisingly a new route has been invented which is shorter, cheaper, less dangerous and provides an increased overall yield whilst still conforming to the required purity profile.

The current manufacturing process is described in Fig 1.

5C

, MeOH, reflux xchange

tallisation

Fig l

Within the diagram, the following acronyms are used, wherein NCS is N-Chlorosuccinimide, OTBDMS is t-butyldimethylsiloxy protecting group, MtBE is methyl t-butyl ether, (BOC)20 is di-t-butyldicarbonate and BOC is t-butyloxycarbonyl protecting group,

Particularly problematic in this process is the requirement to conduct the coupling of process step (iii) at exceptionally low temperature. Further challenges are provided by process step (v) the hydrogenation reaction to remove the benxylyoxymethyl (BOM) protecting group, before removing the other acid labile protecting groups.

Conducting hydrogenation reactions with their need for a high pressure environment requires specialist equipment. Such apparatus is expensive, adding to the cost of the materials produced. Despite the use of specialist equipment, safety concerns can never be eradicated. Whilst BOM can, in certain circumstances, be acid labile, treatment of analogues of the molecules described in Fig 1 with acid has always resulted in incomplete removal of the protecting group, leading to a large number of partially deprotected impurities. This makes purification exceptionally difficult as well as reducing the overall yield for the step.

A new improved process has been developed as described in Fig 2:

Toluene

Fig 2

The new route has a number of clear advantages. The coupling reaction (ix) is conducted at a warmer -15°C, rather than the challenging cryogenic conditions of -55°C required previously. It eradicates the hydrogenation step, avoiding the need for dangerous high pressure conditions. It also makes the overall process much quicker and cheaper; not only are the conditions challenging, but the reagents used in large quantities such as palladium are expensive and environmentally challenging.

The classical method to remove a BOM protecting group is by catalytic hydrogenation. It is however known to be unstable in acid conditions. For this reasons there have been previous attempts to remove BOM at the same time as the three acid labile protecting groups. This has always been unsuccessful as treatment with acid typically resulted in incomplete deprotection, leading to a mixture of products. This made for a tricky purification and a reduced yield. Surprisingly under the particular conditions described herein it has been possible to effect the transformation in greater yield and without a difficult purification. The final product is obtained in equal or greater purity than material obtained from the previous route.

PATENT

WO2013158746A1 *

Scheme 13

HO OH 1 . HCI/Acetone, MeOH OCH,

2. PPh3, imidazole I

HO (EtO)2POCH2CN

OH O O

Ribose Λ 13a

References for preparation of compound 13a:

1. Mishra, Girija Prasad; Rao, Batchu Venkateswara; Tetrahedron: Asymmetry (2011), 22(7), 812-817.

2. Brock, E. Anne; Davies, Stephen G.; Lee, James A.; Roberts, Paul M.; Thomson,

James E; Organic Letters (2011), 13(7), 1594-1597.

3. WO 2010/085377 A2 (incorporated by reference).

4. Yadav, J. S.; Reddy, P. Narayana; Reddy, B. V. Subba; Synlett (2010), (3), 457- 461.

5. Song, Kai; Zheng, Guo-jun; Huaxue Shiji (2010), 32(2), 171-172.

6. Prabhakar, Peddikotla; Rajaram, Singanaboina; Reddy, Dorigondla Kumar;

Shekar, Vanam; Venkateswarlu, Yenamandra; Tetrahedron: Asymmetry (2010), 21(2), 216-221.

7. CN 101182342 A.

8. Baird, Lynton J.; Timmer, Mattie S. M.; Teesdale-Spittle, Paul H.; Harvey, Joanne

E; Journal of Organic Chemistry (2009), 74(6), 2271-2277.

9. Wang, Xiang-cheng; Wang, Gang; Qu, Gang-lian; Huaxue Shijie (2008), 49(4), 226-228.

10. Ivanova, N. A.; Valiullina, Z. R.; Shitikova, O. V.; Miftakhov, M. S; Russian

Journal of Organic Chemistry (2007), 43(5), 742-746.

11. Braga, Fernanda Gambogi; Coimbra, Elaine Soares; Matos, Magnum de Oliveira;

Lino Carmo, Arturene Maria; Cancio, Marisa Damato; da Silva, Adilson David; European Journal of Medicinal Chemistry (2007), 42(4), 530-537.

12. Wender, Paul A.; Bi, F. Christopher; Buschmann, Nicole; Gosselin, Francis; Kan, Cindy; Kee, Jung-Min; Ohmura, Hirofumi; Organic Letters (2006), 8(23), 5373- 5376.

13. Fei, Xiangshu; Wang, Ji-Quan; Miller, Kathy D.; Sledge, George W.; Hutchins, Gary D.; Zheng, Qi-Huang; Nuclear Medicine and Biology (2004), 31(8), 1033- 1041.

14. Abdel-Rahman, Adel A.-H.; Abdel-Megied, Ahmed E.-S.; Goda, Adel E.-S.; Zeid,

Ibrahim F.; El Ashry, El Sayed H; Nucleosides, Nucleotides & Nucleic Acids (2003), 22(11), 2027-2038.

15. Palmer, Andreas M.; Jager, Volker; European Journal of Organic Chemistry

(2001), (7), 1293-1308.

16. Paquette, Leo A.; Bailey, Simon; Journal of Organic Chemistry (1995), 60(24),

7849-56.

17. Classon, Bjoern; Liu, Zhengchun; Samuelsson, Bertil; Journal of Organic

Chemistry (1988), 53(26), 6126-30.

18. Kissman, Henry M.; Baker, B. R; Journal of the American Chemical Society

(1957), 79 5534-40.

References for cyclizations related to preparation of compounds of type 13d:

1. Davies, Stephen G.; Durbin, Matthew J.; Goddard, Euan C; Kelly, Peter M.;

Kurosawa, Wataru; Lee, James A.; Nicholson, Rebecca L.; Price, Paul D.;

Roberts, Paul M.; Russell, Angela J.; Scott, Philip M.; Smith, Andrew D; Organic & Biomolecular Chemistry (2009), 7(4), 761-776.

2. Davies, Stephen G.; Nicholson, Rebecca L.; Price, Paul D.; Roberts, Paul M.;

Russell, Angela J.; Savory, Edward D.; Smith, Andrew D.; Thomson, James E; Tetrahedron: Asymmetry (2009), 20(6-8), 758-772.

3. Davies, Stephen G.; Nicholson, Rebecca L.; Price, Paul D.; Roberts, Paul. M.;

Smith, Andrew D; Synlett (2004), (5), 901-903.

4. Brock, E. Anne; Davies, Stephen G.; Lee, James A.; Roberts, Paul M.; Thomson, James E; Organic Letters (2011), 13(7), 1594-1597.

5. Gary B. Evans, Richard H. Furneaux, Andrzej Lewandowicz, Vern L. Schramm, and Peter C. Tyler, Journal of Medicinal Chemistry (2003), 46, 3412-3423.

PATENT

WO 2016110527

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016110527

STR2

STR1

The invention also provides for the synthesis of a compound of formula (II)

By reacting a compound of Formula (VII)

With di-t-butyldicarbonate.

Preferably the reaction is conducted at -10 to -20°C, in methyl t-butyl ether & heptane

The invention also provides for the synthesis of a compound of formula (VII)

By reacting a compound of Formula (IV)

With a suitable base to form

Before reacting with a compound of Formula (III)

Example 1

Stage 1 Manufacture of (III)

Compound of formula (III) (approx. 130g) in toluene solution is added to a suspension of N-Chlorosuccinimide in toluene at 20°C over a period of 90min. The reaction mixture is stirred at 20°C for 1 hour then chilled to 0°C and stirred for a further hour. The precipitated succinimide by-product is removed by filtration and the filtered solution charged directly to a 45% potassium hydroxide solution (aq) containing

tetrabutylammonium bromide. The reaction mixture is stirred at 0°C and completion of reaction is confirmed by GC analysis. Water is then added to the two-phase mixture to dissolve inorganic precipitates and the toluene product solution is washed with a 28% ammonium hydroxide/acetic acid buffer mixture with sodium chloride added. After phase separation the organic phase solution is stabilised with triethylamine. Magnesium sulfate is added to dry the solution. After filtration, the yield of (III) is determined by R.O.E. and GC purity.

Stage 2 Manufacture of (II)

Stage 2a Lithiation

A suspension of compound of formula (IV) (approx. 200g) in MtBE is chilled to -15°C and treated with /7-Hexyl lithium (2.5M in hexanes) added over 2h, maintaining the reaction mixture at -15°C. The mixture is then stirred for 3h at -15°C.

Stage 2b Coupling with (IV)

After lithiation is complete, a compound formula (III) in toluene solution is added to the reaction mixture maintaining the contents at -15°C. The reaction mixture is then stirred at this temperature for 1.5h.

Stage 2c Boc anhydride quench

A solution of di-t-butyldicarbonate in MtBE is added to the above reaction mixture at -15°C. The solution is stirred for a further 30min.

Workup and Purification

The reaction mixture is quenched by addition of RO water, then filtered. The aqueous layer is separated and run to waste. The organic layer is again washed with water. The organic layer is concentrated to a low volume and solvent replaced by heptane. The mix is stirred for 16h and filtered again.

The solution is passed through a silica gel column and eluted with heptane. The resulting solution is treated with charcoal – stirred for 3h, then filtered. The product (II) is progressed as a solution in heptane to the next stage.

Stage 3 Manufacture of Crude Forodesine (la)

Stage 3 Deprotection with cone. HCI

Concentrated hydrochloric acid is added to (II) in heptane and the mixture stirred. The acid phase is separated off and stirred for 16h at ambient temperature. The solution is then heated to 40°C for 6h. The water is then distilled off under reduced pressure to a minimum volume.

Ethanol is then added to precipitate the crude Forodesine (la) which is isolated by filtration after cooling 0-5°C. It is washed with ethanol and dried in a vacuum oven at 75°C to a constant weight.

Stage 4a Decolourization of crude Forodesine (la) using Ion-Exchange Column

Crude Forodesine (la) is dissolved in water and loaded onto a freshly prepared ion-exchange column containing Dowex 50WX4 resin in the Na+ form activated with 30% sodium hydroxide solution. The ion-exchange column is eluted with 4 x lOOmL water followed by 4 x lOOmL 2M HCI. The HCI fractions are collected separately as they contain the desired product. The 2M HCI fractions are combined and concentrated under vacuum with minimum RO water added to dissolve the residue. 1,4-Dioxane is added to the aqueous solution to precipitate the product. The mixture is stirred at 20°C for 1.5h. The product is filtered, washed with 1,4-dioxane and dried in a vacuum oven at 35°C to a constant weight to give decolourised BCX1777.

Stage 4b Recrystallization of Forodesine

Decolourised Forodesine is added to in 0.6M dilute hydrochloric acid and heated to 45°C to dissolve. The resulting solution is hot filtered and washed through with some RO Water. The solution is cooled to 20°C and ethanol added over at least lh. The mixture is then seeded with Forodesine HCI. The resulting slurry is stirred for 8h at 20°C, then cooled to 2°C for a further 1.5h. The product is isolated by filtration, washed twice with cold ethanol then dried in a vacuum oven at 75°C to a constant weight to give a white crystalline Forodesine HCI (approx. 50g).

While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. Moreover, all embodiments described herein are considered to be broadly applicable and combinable with any and all other consistent embodiments, as appropriate.

PAPER

 Journal of Medicinal Chemistry (2009), 52(4), 1126-1143.

Third-Generation Immucillins: Syntheses and Bioactivities of Acyclic Immucillin Inhibitors of Human Purine Nucleoside Phosphorylase

Carbohydrate Chemistry Team, Industrial Research Limited, P.O. Box 31310, Lower Hutt 5040, New Zealand, Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461
J. Med. Chem.200952 (4), pp 1126–1143
DOI: 10.1021/jm801421q
Publication Date (Web): January 26, 2009
Copyright © 2009 American Chemical Society

* To whom correspondence should be addressed. Phone: +64-4-9313040. Fax: +64-4-9313055. E-mail: g.evans@irl.cri.nz., †

Carbohydrate Chemistry Team, Industrial Research Limited.

, ‡

Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University.

Abstract Image

References

External links

  • “From cell biology to therapy: forodesine”Hematology Meeting Reports2 (5): 106–111. 2008.
  • Gore, L; Stelljes, M; Quinones, R (2007). “Forodesine treatment and post-transplant graft-versus-host disease in two patients with acute leukemia: Facilitation of graft-versus-leukemia effect?”. Seminars in Oncology34 (6 Suppl 5): S35–9. doi:10.1053/j.seminoncol.2007.11.005PMID 18086346.
  • 18 December 2006 Fodosine orphan designation by the European Commission for acute lymphoblastic leukaemia.
  • BioCryst Pharmaceuticals, Inc. have entered into an exclusive license agreement with Mundipharma for develop and commercialize BioCryst’s lead compound, Forodesine.
  • Birmingham, Alabama – February 2, 2006 Mundipharma will obtain rights in markets across Europe, Asia and Australasia to Forodesine™ in the field of oncology in exchange for a $10 million up-front payment. Furthermore, Mundipharma will commit up to an additional $15 million to assist in the evaluation of Forodesine’s™ therapeutic safety and efficacy profile. BioCryst may also receive future event payments totalling $155 million in addition to royalties on product sales of Forodesine™ by Mundipharma.
  • News BioCryst provides Fodosine update March 27, 2007. “Voluntarily Placed on Hold by BioCryst (…) we don’t think the final response rate will be as high as 18%”.
  • The European Commission granted a marketing authorisation valid throughout the European Union for Atriance on 22 August 2007 for acute lymphoblastic leukaemia. What benefit has Atriance shown during the studies? Atriance was shown to be effective in a proportion of the patients in both studies. In the first study, among the 39 children and young adults who se cancer had not responded to two or more previous treatments, five (13%) had a complete response to treatment after a month, with no evidence of disease and normal blood counts. In the second study, among the 28 adults and adolescents with cancer that had not responded to two or more previous tre atments, five (18%) had a complete response to treatment. In both studies, more patients had a partial response to Atriance treatment, with blood counts returning towards normal levels.
  • Lino Berton collects all the information on Forodesine in www.linoberton.com site, putting them in a row. In 2014 he published the book Qualcosa che non muore where he tells his incredible experience in the closed trial early in 2007.
  • Il Giornale.it (in Italian). “Come si boicotta un farmaco che funziona”. Dated 08-01-2016.
Forodesine
Immucillin H.svg
Clinical data
Trade names Mundesine and Fodosine
Routes of
administration
oral
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
Chemical and physical data
Formula C11H14N4O4
Molar mass 266.26 g·mol−1
3D model (JSmol)

/////////Forodesine Hydrochloride, Forodesine, BCX 1777, Immucillin-H, FOSODINE, JAPAN 2017

DAROLUTAMIDE, WO 2018036558, 苏州科睿思制药有限公司 , New patent


DAROLUTAMIDE, WO 2018036558, 苏州科睿思制药有限公司 , New patent

CRYSTAL FORM OF ANDROGEN RECEPTOR ANTAGONIST MEDICATION, PREPARATION METHOD THEREFOR, AND USE

张晓宇 [CN]

一种式(I)所示ODM-201的晶型B,其特征在于,其X射线粉末衍射在衍射角2θ为16.2°±0.2°、9.0°±0.2°、22.5°±0.2°处有特征峰。

Image loading...

Novel crystalline forms of an androgen receptor antagonist medication, particularly ODM-201 (also known as darolutamide; designated as Forms B and C), processes for their preparation and compositions comprising them are claimed. Represents a first filing from Crystal Pharmaceutical Co Ltd and the inventors on this API.

Orion and licensee Bayer are codeveloping darolutamide, an androgen receptor antagonist, for treating castration-resistant prostate cancer and metastatic hormone-sensitive prostate cancer.

专利CN102596910B公开了ODM-201的制备方法,但并未公开任何的晶型信息。专利WO2016120530A1公开了式(I)(CAS号:1297538-32-9)所示的晶型I,式(Ia)(CAS号:1976022-48-6)所示的晶型I’和式(Ib)(CAS号:1976022-49-7)所示的晶型I”。文献Expert Rev.Anticancer Ther.15(9),(2015)已报道:ODM-201是由1:1比例的(Ia)和(Ib)两种非对应异构体组成,即为式(I)所示结构。因此,现有关于ODM-201的晶型只有晶型I报道。

Image loading...

Prostate cancer has become an important disease threatening the health of men. Its incidence is higher in western countries and shows a year-by-year upward trend. In the past, Asian countries with a lower incidence of the disease have also seen an increase in the number of patients in recent years. Clinical treatment of prostate cancer commonly used methods are surgical resection, radiation therapy and blocking androgen endocrine therapy. Androgen is closely related to the growth of prostate and the occurrence of prostate cancer. Therefore, endocrine therapy has become an effective way to treat prostate cancer. The method includes orchidectomy, estrogen therapy, gonadotropin-releasing hormone analog therapy, gonadotropin-releasing hormone antagonist therapy, androgen antagonistic therapy, etc., wherein androgen antagonist therapy can be both early treatment of prostate cancer can also be combined Surgery for adjuvant therapy is currently one of the main clinical treatment of prostate cancer. Androgen receptor as a biological target of androgen play an important role in the field of biomedical research.

Clinical trials have shown that exogenous androgen administration to patients with prostate cancer can lead to an exacerbation of the patient’s condition; conversely, if the testicles are removed and the level of androgens in the patient is reduced, the condition is relieved, indicating that androgens contribute to the development of prostate cancer Significant influence. According to receptor theory, androgen must bind with androgen receptor (AR) to cause subsequent physiological and pathological effects, which is the basis for the application of androgen receptor (AR) antagonist in the treatment of prostate cancer. In vitro experiments have shown that AR antagonists can inhibit prostate cell proliferation and promote apoptosis. Depending on the chemical structure of AR antagonists, they can be divided into steroidal AR antagonists and non-steroidal AR antagonists. Non-steroidal anti-androgen activity is better, there is no steroid-like hormone-like side effects, it is more suitable for the treatment of prostate cancer.

ODM-201 (BAY-1841788) is a non-steroidal oral androgen receptor (AR) antagonist used clinically to treat prostate cancer. The binding affinity of ODM-201 to AR was high, with Ki = 11nM and IC50 = 26nM. Ki was the dissociation constant between ODM-201 and AR complex. The smaller the value, the stronger the affinity. half maximal inhibitory concentration “refers to the half-inhibitory concentration measured, indicating that a certain drug or substance (inhibitor) inhibits half the amount of certain biological processes. The lower the value, the stronger the drug’s inhibitory ability. In addition, ODM-201 does not cross the blood-brain barrier and can reduce neurological related side effects such as epilepsy. Bayer Corporation has demonstrated in clinical trials the effectiveness and safety of ODM-201, demonstrating its potential for treating prostate cancer.

The chemical name of ODM-201 is: N – ((S) -l- (3- (3- chloro-4-cyanophenyl) -lH-pyrazol-l-yl) -propan- The chemical name contains the tautomer N – ((S) -1- (3- (3- 4-cyanophenyl) -1H-pyrazol- 1 -yl) -propan-2-yl) -5- (1 -hydroxyethyl) 1297538-32-9, the structural formula is shown in formula (I) :

Image loading...

The different crystalline forms of solid chemical drugs can lead to differences in their solubility, stability, fluidity and compressibility, thereby affecting the safety and efficacy of pharmaceutical products containing the compounds (see K. Knapman, Modern Drug Discovery, 3, 53 -54,57,2000.), Resulting in differences in clinical efficacy. It has been found that new crystalline forms (including anhydrates, hydrates, solvates, etc.) of the active ingredients of the medicinal product may give rise to more processing advantages or provide substances with better physical and chemical properties such as better bioavailability, storage stability, ease Processed, purified or used as an intermediate to promote conversion to other crystalline forms. The new crystalline form of the pharmaceutical compound can help improve the performance of the drug and broaden the choice of starting material for the formulation.

Patent CN102596910B discloses the preparation of ODM-201, but does not disclose any crystal form information. Patent WO2016120530A1 discloses a crystalline form I represented by the formula (I) (CAS number: 1297538-32-9), a crystalline form I ‘represented by the formula (Ia) (CAS number: 1976022-48-6) and a compound represented by the formula (CAS No. 1976022-49-7). Document Expert Rev. Anticancer Ther. 15 (9), (2015) It has been reported that ODM-201 is composed of a 1: 1 ratio of (Ia) And (Ib), which is the structure shown in Formula (I), so the only existing crystal form I for ODM-201 is reported.

Image loading...

However, the lower solubility of Form I and the high hygroscopicity, and the preparation of Form I requires the use of highly toxic acetonitrile solvents, which are carcinogenic in animals and are the second class of solvents that should be controlled during the process development stage. Form I preparation method is more complex, long preparation cycle, the process needs heating, increasing the cost of industrial preparation, is not conducive to industrial production. In order to overcome the above drawbacks, there is still a need in the art for a systematic and comprehensive development of other polymorphs of ODM-201 of formula (I), simplifying the preparation thereof, enabling its pharmacological development and releasing its potential, Preparation of a better formulation of the drug ingredients.

The inventors found through experiments that Form B and Form C of the present invention, and found that Form B and Form C of the present invention have more excellent properties than the prior art. Dissolution is a prerequisite for drug absorption, and increased solubility will help to increase the bioavailability of the drug and thereby improve the drug’s druggability. Compared with the prior art, the crystalline forms B and C of the invention have higher solubility and provide favorable conditions for drug development. Compared with the prior art, the crystalline forms B and C of the invention also have lower hygroscopicity. Hydroscopic drug crystal form due to adsorption of more water lead to weight changes, so that the raw material crystal component content is not easy to determine. In addition, the crystalline form of the drug substance absorbs water and lumps due to high hygroscopicity, which affects the particle size distribution of the sample in the formulation process and the homogeneity of the drug substance in the preparation, thereby affecting the dissolution and bioavailability of the sample. The crystal form B and the crystal form C have the same moisture content under different humidity conditions, and overcome the disadvantages caused by high hygroscopicity, which is more conducive to the long-term storage of the medicine, reduces the material storage and the quality control cost.

In addition, the present invention provides Form B and Form C of ODM-201 represented by formula (I), which have good stability, excellent flowability, suitable particle size and uniform distribution. The solvent used in the preparation method of crystal form B and crystal form C of the invention has lower toxicity, is conducive to the green industrial production, avoids the pharmaceutical risk brought by the residue of the toxic solvent, and is more conducive to the preparation of the pharmaceutical preparation. The novel crystal type provided by the invention has the advantages of simple operation, no need of heating, short preparation period and cost control in industrialized production. Form B and Form C of the present invention provide new and better choices for the preparation of pharmaceutical formulations containing ODM-201, which are of great significance for drug development.

The problem to be solved by the invention

The main object of the present invention is to provide a crystal form of ODM-201 and a preparation method and use thereof.

//////////DAROLUTAMIDE, WO 2018036558, 苏州科睿思制药有限公司 , New patent, CRYSTAL

ANTHONY MELVIN CRASTO gets Outstanding contribution in Pharma at World Health and wellness Congress award, 14th Feb, 2018, at Taj Lands ends, Bandra, Mumbai, India


 

All my hard work gets International recognition and makes me feel to work more
Bestowed on me an International award for Outstanding contribution in Pharma at World Health and wellness Congress award, 14th Feb, 2018, at Taj Lands ends, Bandra, Mumbai, India

My family Shobha Crasto Lionel crastoAishal Crasto too get all credit for sacrifices done to help me achieve this honour.

They help me in my activities and have to sacrifice tremendously in time patience finances vacations and several other factors.

I now feel like an open superstar with 9 million google hits, 60lakh blog views, dozen plus bogs and 5lakh viewers in USA alone and 60 lakh Views in 216 countries and 7 continents
#worlddrugtracker#helpingmillions#opensuperstar#amcrasto

%d bloggers like this: