New Drug Approvals

Home » 2014 (Page 43)

Yearly Archives: 2014

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,817,100 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Total Synthesis and Biological Studies of TMC-205 and Analogues as Anticancer Agents and Activators of SV40 Promoter


Abstract Image
TMC 205
6-[3-Methyl-1(E),3-butadienyl]-1H-indole-3-carboxylic acid
C14 H13 N O2
227.2585
Mitsubishi Tanabe Pharma (Innovator) now in biological testing
TMC-205 is a natural fungal metabolite with antiproliferative activity against cancer cell lines. The light- and air-sensitivity prevented in-depth exploitation of this novel indole derivative. Herein, we report the first synthesis of TMC-205. On the basis of its reactivity with reactive oxygen species, we developed air-stable analogues of TMC-205. These analogues are 2–8-fold more cytotoxic than TMC-205 against HCT-116 colon cancer cell line. Importantly, at noncytotoxic dose levels, these analogues activated the transcription of luciferase reporter gene driven by simian virus 40 promoter (SV40). Further, these small molecules also inhibit firefly luciferase, presumably by direct interaction.
Total Synthesis and Biological Studies of TMC-205 and Analogues as Anticancer Agents and Activators of SV40 Promoter
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
ACS Med. Chem. Lett., Article ASAP
DOI: 10.1021/ml500025p

SYNTHESIS…………..http://pubs.acs.org/doi/suppl/10.1021/ml500025p/suppl_file/ml500025p_si_001.pdf

Synthesisof TMC-205 (1):MeOH (1.5 mL) and aqueous
NaOH (4 M, 2.5 mL) were added to a 25-mL oven-driedround-
bottomed flask containing6(20 mg, 0.080 mmol) un-der an open atmosphere at 23°C
. The resulting solution was
covered from light and stirred in an 80°Coil bath for 2.25 h. The solution was then cooled to 23°C
, and steps
subsequent to cooling were performed in a dark environment. The solution was washed with CH2Cl2
(1 mL), and
then the aqueous layer was acidified with KHSO4
(3 M, 10 mL). The aqueous layerwas ex
tracted with EtOAc(10 mL×3). The combined organic layers were dried over Na2SO4
, filtered, and concentrated under reduced
pressure using a rotary evaporator (T
water bath= 30°C) to afford 16 mg of TMC-205 (1)
as a pale yellow solid
(88% yield, >
95% purity).
Data for TMC-205 (1):
Rf= 0.24 (40% EtOAc in hexanes);
IR (film):νmax
= 3432 (broad, O-H), 2920,2851,1644 (C=O), 1528, 1451, 1349 cm-1;
1H NMR (500 MHz, 293K, CD3OD):δ
= 7.99 (d,J= 8.3 Hz, 1H, 4-H), 7.92 (s, 1H, 2-H), 7.48 (br s,1H, 7-H), 7.35 (dd,J= 8.3, 1.5 Hz, 1H, 5-H), 6.94 (d,J= 16 Hz, 1H, 10-H),
6.67 (d,J= 16 Hz, 1H, 9-H), 5.10 (br s, 1H, 12-H), 5.03 (br s, 1H, 12-H), 1.98 (s, 3H, 13-H);
13C NMR
(75MHz, 293 K, CD3OD):δ= 169.0, 143.7, 139.0, 134.0, 133.8, 131.3, 130.7, 127.3, 122.1, 121.3, 116.7, 111.1,
109.9, 18.8;
HRMS (EI+) calcd for C14H13NO2
[M+] 227.0946, found 227.0936.
see
TMC-205, a new transcriptional up-regulator of SV40 promoter produced by an undentified fungus. Fermentation, isolation, physico-chemical properties, structure determination and biological activities
J Antibiot 2001, 54(8): 628
A new transcriptional up-regulator designated TMC-205 was discovered from the fermentation broth of an unidentified fungal strain TC 1630 by using an SV40 promoter-luciferase reporter assay. Based on spectroscopic analyses, its structure was determined to be (E)-6-(3-methyl-1,3-butadienyl)- H-indole-3-carboxylic acid. Expression of the luciferase activity was activated ca. 2-, 4-, and 6-fold by 1, 10, and 100 microM TMC-205, respectively. TMC-205 activated the transcriptional activity in a manner dependent on the presence of the enhancer element of SV40 in its promoter region.

Inovio Kicks Off Study of Cervical Cancer Immunotherapy INO 3112



Inovio Kicks Off Study of Cervical Cancer Immunotherapy

 

Inovio Pharmaceuticals Inc. announced it has initiated a Phase 1/2a clinical trial to evaluate safety, immunogenicity, clinical responses and disease-free survival of its DNA immunotherapy product, INO-3112, in treating human papillomavirus (HPV)-associated cervical cancer. Read more…

FULL STORYhttp://www.dddmag.com/news/2014/06/inovio-kicks-study-cervical-cancer-immunotherapy?et_cid=4010798&et_rid=523035093&type=cta

Inovio Pharmaceuticals Inc. announced it has initiated a Phase 1/2a clinical trial to evaluate safety, immunogenicity, clinical responses and disease-free survival of its DNA immunotherapy product, INO-3112, in treating human papillomavirus (HPV)-associated cervical cancer. INO-3112 is a combination of Inovio’s lead active immunotherapy product, VGX-3100, and its proprietary immune activator expressing interleukin-12 (IL-12). VGX-3100 is currently being evaluated in a randomized Phase 2 efficacy trial for the treatment of high grade cervical dysplasia (pre-cancer).

New e-book: Case Studies in Sample Storage


 

New e-book: Case Studies in Sample Storage

Learn how lab professionals solved their sample storage problems at leading research organizations. Case studies include adapting sample storage for changing demands in compound management and incorporating sample libraries from acquired companies.

DOWNLOAD E-BOOK

http://b2b-affiliate-networks.com/brooks/user-group-symposium-book/drug-development.php?utm_source=Drug%20Development%20%26%20Discovery&utm_medium=textad&utm_campaign=User%20Group%20Symposium%20Book&pos=2&adtype=boombox_ad&type=cta&adcategory=paid

 

 

 

 

About Hepatitis


mynaturalcures's avatarMy Natural Cures

Here are the most important information about hepatitis.

Five different hepatitis viruses have been identified: type A; type B; type C; type D, or delta virus; and type E. Type A is probably the most prevalent type of viral hepatitis worldwide, followed by types B, E, C, and D.

Hepatitis A and E are transmitted through fecally contaminated food or water. Other modes of transmission include needle sharing among intravenous drug abusers; sexual contact; maternal transmission; and transmission by blood transfusion.

A simple blood test is used to determine that a person has one or more of the different types of hepatitis.

Acute hepatitis is typically characterized by flu-like symptoms (including fever, headaches, fatigue, nausea and vomiting) and jaundice. Chronic hepatitis is often asymptomatic.

Vaccines are available to protect against hepatitis A and B. Additionally, immune globulin for hepatitis A or hepatitis B is recommended when someone has been exposed…

View original post 61 more words

होम्योपैथिक दवा ; मूलेन आयल ; कान के सभी रोगों की अचूक और सटीक दवा ; MULLEIN OIL ; THE HOMOEOPATHIC REMEDIY FOR ALL “EAR” DISORDERS ; THE MOST SAFEST NATURAL REMEDY


Dr.D.B.Bajpai's avatar**आधुनिक युग आयुर्वेद ** ई०टी०जी० आयुर्वेदास्कैन ** DIGITAL AYURVEDA TRIDOSHO SCANNER**AYURVED H. T. L. WHOLE-BODY SCANNER**आयुषव्यूज रक्त केमिकल केमेस्ट्री परीक्षण अनालाइजर ** डिजिटल हैनीमेनियन होम्योपैथी स्कैनर **

होम्योपैथिक चिकित्सा विग्यान मे ऐसी बहुत सी दवाओ की भरमार और बहुतायत है जो कठिन से कठिन और लाइलाज बीमारी के इलाज के लिये परम उपयोगी है /

लेकिन समस्या यह है कि इतनी प्रभाव्कारी चिकित्सा विग्यान के होते हुये भी लोग और देश के जन मानस को जानकारी के अभाव मे पता ही नही है कि जिन बीमारियो को जिसे वे समझते है कि कोई इलाज नही है, ऐसी इन सभी बीमारियों का इलाज मौजूद है और सटीक और अचूक इलाज है /

होम्योपैथी की MULLEIN OIL एक ऐसी दवा है जिसे “कान” या “INTERNAL EAR ” से सम्बन्धित बीमारियो मे उपयोग कर्ते है /

मूलेन आयल MULLEIN OIL द्वा का नाम है और इसी नाम से बज़ार मे होम्योपैथिक स्टोरर्स मे मिलती है /

यह होम्योपैथिक दवा VERBASCUM नाम के यूरोप महाद्वीप मे पैदा होने वाले एक पेड़ से पैदा होने वाले फूलों से बनाते है / Verbascum…

View original post 378 more words

Biocon chief Kiran Mazumdar-Shaw receives Kiel Institute’s ‘2014 Global Economy Prize’


The award, established in 2005 by the Kiel Institute, is bestowed upon individuals who have been pioneers in finding solutions to global economic problems.

The award, established in 2005 by the Kiel Institute, is bestowed upon individuals who have been pioneers in finding solutions to global economic problems.
BANGALORE: Biotech major Biocon today said its Chairperson and Managing Director Kiran Mazumdar-Shaw has been awarded the Kiel Institute’s most coveted ‘2014 Global Economy Prize’ for Business.

She was honoured at the institute’s 100th anniversary celebrations at Kiel in Germany.

The award, established in 2005 by the Kiel Institute, is bestowed upon individuals who have been pioneers in finding solutions to global economic problems by strongly influencing and implementing eco ..

With Prof. Thaler and President Sirleaf — in Kiel, Germany.

 

http://economictimes.indiatimes.com/news/news-by-company/corporate-trends/biocon-chief-kiran-mazumdar-shaw-receives-kiel-institutes-2014-global-economy-prize/articleshow/37076858.cms


Signing the register at the Kiel Institute for the World Economy.
 — in Kiel, Germany.

 

 

With Lord Mayor of Kiel and President Dennis Snower of Kiel Institute. — in Kiel, Germany.

 

 

 

Signed register at the Kiel Institute. — in Kiel, Germany.

AZD 6564 in preclinical for Antifibrinolytics


Abstract Image

AZD 6564

ACS Med. Chem. Lett., 2014, 5 (5), pp 538–543
DOI: 10.1021/ml400526d

SYNTHESIS SUPP INFO…..http://pubs.acs.org/doi/suppl/10.1021/ml400526d/suppl_file/ml400526d_si_001.pdf

NMR PG 16/32 AS ABOVE

Figure imgf000012_0002R1 = NEOPENTYL R2=H

5-[(2R,4S)-2-(2,2-Dimethylpropyl)piperidin-4-yl]-1,2-oxazol-3(2H)-one

5-((2R,4S)-2-Neopentylpiperidin-4-yl)isoxazol-3(2H)-one

238.326

C13 H22 N2 O2

Antifibrinolytics

AstraZeneca (Innovator)

SYNTHESIS SUPP INFO…..http://pubs.acs.org/doi/suppl/10.1021/ml400526d/suppl_file/ml400526d_si_001.pdf

NMR PG 16 0F 32

……………………..

Discovery of the fibrinolysis inhibitor AZD6564, acting via interference of a protein – Protein interaction
ACS Med Chem Lett 2014, 5(5): 538

http://pubs.acs.org/doi/abs/10.1021/ml400526d

Abstract Image

A class of novel oral fibrinolysis inhibitors has been discovered, which are lysine mimetics containing an isoxazolone as a carboxylic acid isostere. As evidenced by X-ray crystallography the inhibitors bind to the lysine binding site in plasmin thus preventing plasmin from binding to fibrin, hence blocking the protein–protein interaction. Optimization of the series, focusing on potency in human buffer and plasma clotlysis assays, permeability, and GABAa selectivity, led to the discovery of AZD6564 (19) displaying an in vitro human plasma clot lysis IC50 of 0.44 μM, no detectable activity against GABAa, and with DMPK properties leading to a predicted dose of 340 mg twice a day oral dosing in humans.

SUPP INFO…..http://pubs.acs.org/doi/suppl/10.1021/ml400526d/suppl_file/ml400526d_si_001.pdf

 

Step 9: 5,((2R,4S),2,Neopentylpiperidin,4,yl)isoxazol,3(2H),one

Starting from (2R,4S),methyl 2,neopentyl,4,(3,oxo,2,3,dihydroisoxazol,5,
yl)piperidine,1,
carboxylate (0.8 g, 2.7 mmol) and following the procedure described in 15, Step8
the title
compound was obtained (0.44 g, 69 %):
1H NMR (600 MHz, DMSO,d6) δ 0.92 (s, 9H), 1.11 –1.34 (m, 3H), 1.35 – 1.46 (m, 1H), 1.79 – 1.98 (m, 2H), 2.65 – 2.93 (m, 3H),
3.03 – 3.14 (m,1H), 5.74 (s, 1H);13C NMR (101 MHz, CH4,d4) δ 177.39, 174.72, 95.42, 54.83, 49.32, 45.50,
37.13, 34.75, 31.19, 30.07, 28.06;
[α]20D+43.8 (MeOH/H2O 1:1, c = 1); HRMS calculated for[C13H23N2O2]+: 239.1759; found: 239.1753
Compounds of formula I- V may be prepared by the following route:Scheme A. Preparation of intermediatesMETHOD A

Figure imgf000015_0001

O

L C^O”

 

Figure imgf000015_0002

METHOD B

O

Figure imgf000015_0003

 

Figure imgf000015_0004

METHOD C

 

Figure imgf000016_0001

METHOD D

RIB(OR)2

 

Figure imgf000016_0002

X = Cl, Br

 

Figure imgf000016_0003

METHOD E

Figure imgf000017_0001

METHOD F

Figure imgf000017_0002

METHOD G

 

Figure imgf000018_0001

R1 = 1-methyl-1 H-tetrazol-5-yl and 2-methyl-2H-tetrazol-5-yl

Scheme B. Formation of 5-isoxazol-3-ones

°Y I ‘relative

Figure imgf000019_0001
Figure imgf000019_0002

°Y J ‘relative

Figure imgf000019_0003

………………….

http://www.google.com/patents/EP2417131A1?cl=en

Example 14

5-((2R,4S)-2-Neopentylpiperidin-4-yl)isoxazol-3(2H)-one

Step 1 : Cis-methyl 2-neopentyl-4-(3-oxo-23-dihvdroisoxazol-5-yl)piperidine-l-carboxylate The compound was prepared as described in Example 1, Step 2 starting from cis-methyl 4-(3- ethoxy-3-oxopropanoyl)-2-neopentylpiperidine-l -carboxylate (2.68 g, 8.19 mmol) which resulted in cis-methyl 2-neopentyl-4-(3-oxo-2,3-dihydroisoxazol-5-yl)piperidine-l- carboxylate (1.60 g, 66 %) : IH NMR (400 MHz, cdcl3) δ 0.89 (s, 9H), 1.18 (dd, IH), 1.45 (dd, IH), 1.80 – 1.92 (m, 2H), 1.97 – 2.17 (m, 2H), 2.94 – 3.02 (m, IH), 3.11 – 3.23 (m, IH), 3.71 (s, 3H), 3.88 – 3.99 (m, IH), 4.22 – 4.32 (m, IH), 5.72 (s, IH); m/z (MH+) 297.

Step 2: (2R,4S)-Methyl 2-neopentyl-4-(3-oxo-2,3-dihvdroisoxazol-5-yl)piperidine-l- carboxylate

Following the procedure described in Example 1, Step 3, racemic cis-methyl 2-neopentyl-4- (3-oxo-2,3-dihydroisoxazol-5-yl)piperidine-l -carboxylate (1.60 g, 5.4 mmol) was subjected to chiral separation using Chiralcel IC mobile phase heptane/IP A/FA 60/40/0.1 which resulted in (2R,4S)-methyl 2-neopentyl-4-(3-oxo-2,3-dihydroisoxazol-5-yl)piperidine-l-carboxylate (0.8 g, 2.7 mmol).

Step 3: 5-((2R,4S)-2-Neopentylpiperidin-4-yl)isoxazol-3(2H)-one

5 Starting from (2R,4S)-methyl 2-neopentyl-4-(3-oxo-2,3-dihydroisoxazol-5-yl)piperidine-l- carboxylate (0.8 g, 2.7 mmol) and following the procedure described in Example 1, Step 4 the title compound was obtained (0.44 g, 69 %): 1H NMR (600 MHz, DMSO-d6) δ 0.89 (s, 9H), 1.18 (m, 2H), 1.50 (m, 2H), 1.82-1.90 (m, 2H), 2.70-2.85 (m, 3H), 3.08 (m, IH), 5.71 (s, IH). [α]20 D +43.8 (MeOH/H2O 1:1, c = 1); HRMS calculated for [C13H23N2O2]+: 239.1759; found: 10 239.1753.


ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

amcrasto@gmail.com

MOBILE-+91 9323115463
GLENMARK SCIENTIST ,  INDIA
web link
http://anthonycrasto.jimdo.com/

Congratulations! Your presentation titled “Anthony Crasto Glenmark scientist, helping millions with websites” has just crossed MILLION views.
アンソニー     安东尼   Энтони    안토니     أنتوني
join my process development group on google
you can post articles and will be administered by me on the google group which is very popular across the world
LinkedIn group
 
blogs are
 
shark

========================

 

Takeda Pharmaceutical


Takeda Pharmaceutical

by

Dr. Rainer Steinbach

Rainer studied chemistry and economics in Germany (Bonn, Marburg) and did postdoctoral work at Stanford University (CA, USA). He held various positions (R&D, Market Research, Marketing, Strategic Planning, Sourcing, etc) while working at Rütgers, Novartis, Syngenta, SK, Clariant, Archimica. His international background (he worked out of Belgium, Germany, Italy, Switzerland and the USA) combined with broad experience gained in China and India (he audited more than 200 companies) is the foundation of CAP INTELLIGENCE.

Dr Rainer Steinbach of CAP Intelligence profiles Japan’s most global drugs firm

Takeda is the largest Asian pharmaceuticals company. The company started as early as 1977 to establish major co-operations with Western firms. As a result, it has the most global orientation amongst Japanese pharmaceutical companies. The latest major acquisition, Nycomed, is part of this globalisation strategy.

 

History

Takeda dates back to 1781, when Chobei Takeda started selling Japanese and Chinese traditional medicines. In 1895, the firm started the first production of pharmaceuticals in Osaka. Research activities started in 1914 and in 1944 fermentation activities were added.

In 1981, the antibiotics Takesulin and Pansporin were launched in Japan. In 1985, Takeda formed TAP Pharmaceuticals, a 50:50 joint venture (JV) in the US with Abbott Laboratories. TAP began marketing the prostate cancer treatment leuprorelin (Lupron) in the same year. 1997 saw the launch in Europe of candesartan celexetil (Blopress/Kensen), an anti-hypertensive agent which is also marketed by AstraZeneca.

In 2008, Takeda acquired Millennium Pharmaceutical of Cambridge, Massachusetts, an oncology research specialist, for $8.8 billion. Larger still was the acquisition of Swiss company Nycomed for €9.6 billion ($13.3 billion) in 2011, not including Nycomed’s US-based dermatological business. Nycomed had itself grown substantially by acquiring the pharmaceuticals interests of Altana in Germany and Bradley Pharmaceuticals in 2007.

The acquired parts of Nycomed had revenues of about €2.84 billion in 2011 and a workforce of about 11,800 employees, plus production locations in 11 countries worldwide. Its revenues were mainly in Europe (48%), Russia (17%) and Latin America (13%), plus other emerging markets. The acquisition also gained Takeda access to romiflumast (Daliresp), a new drug against chronic obstructive pulmonary disease.

 

In 2012, Takeda acquired URL Pharma, a privately owned company headquartered in Philadelphia and employing about 500, for an upfront payment of $800 million and future performance-based contingent earn out payments. URL’s 2011 revenues amounted of nearly $600 million, over two thirds coming from colchicine (Colcrys), which is used to treat and prevent gout flares. URL Pharma was sold to Sun Pharma in January 2013.

Table 1 – Locations of Takeda sites

Structure

Takeda is a public share company that is listed at the Tokyo and Osaka stock exchange, with the ticker symbol 4502. The main shareholders are financial institutions (33%), foreign investors (30%), some 280,000 individuals (27%) security companies and others (10%). The three biggest single shareholders are Nippon Life Insurance, with 7.1%, Japan Trustee Services Bank (4.4%) and the Master Trust Bank of Japan (4.3%).

The company is headquartered in Osaka, with its European headquarters in London and the American one headquarters Deerfield, Illinois. It has 17 manufacturing sites and three JV manufacturing sites, the most important of which are listed in Table 1. It employs a global workforce of about 30,500. Regional data about this are not published, apart from in Japan itself. CAP Intelligence estimates the workforce split as 31% in Japan, 30% in Europe, 25% in the USA and 14% in the rest of the world.

As of today, the Takeda Group has 61 consolidated companies and 14 affiliates. Major subsidiaries include: Takeda Nycomed Pharmaceuticals, Takeda Europe Holdings (Amsterdam), Takeda USA Holdings (New York), Millennium Chemicals (Cambridge, Massachusetts), Nihon Pharmaceutical, Wako Pure Chemicals and Mizuzawa Industrial Chemicals (all Japan) and Tianjin Takeda Pharmaceuticals (China).

Takeda’s financial year starts on April 1 and ends on March 31. The company’s financial results are reported in Yen, but are given here in US dollars for ease of comparison with other profiled firms. Figure 1 shows revenues, EBITDA, operating income and net earnings for the years since 2002.

In the year to March 2013, earnings fell by 13.3% to $16.57 billion, but EBITDA was up by 6.1% to $5.52 million and operating income was 27.4% up to $4.28 billion while earnings more than doubled to $3.48 million. Consequently, the net profit margin shot up from the 8% mark in the previous two years to 21.2%.

Figure 1 – Takeda’s revenues & profits ($ billion), 2011-2013 fiscal years

 

Main activities

Takeda is overwhelmingly focused on ethical products, which account for 90% of its revenues. Within this, cardiovascular and metabolic therapies account for 74%, followed by oncology with 13.5% and inflammatory with the other 2.5%. The remainder of its revenues is split between consumer healthcare products, including cold remedies and vitamin-containing products (4%), and others (6%). The company’s five best selling products account for close to $10 billion in sales, more than half of the total (Figure 2).

Sales are 47% in Japan, 23% in North America, 16% in Europe, 4% each in the rest of Asia, Russia and the CIS and Latin America and 2% in the rest of the world. As the Japanese market will not deliver major growth opportunities, the company’s objective is to be strongly present in emerging markets, especially China and Russia. Sales and marketing efforts have been intensified to this end. In fiscal 2012, Takeda all started an e-commerce website for direct selling in Japan called the Takeda Online Shop as part of the consumer healthcare business.

Takeda’s stated vision is “to embody global pharmaceutical leadership through innovation, culture, and growth, guided by an unwavering commitment to significantly improve the lives of patients”. Its strategy includes:

  • A strong focus on emerging markets
  • An improved presence in China and Korea
  • The integration of Nycomed and reducing over-reliance on the Japanese and American markets
  • Leveraging Nycomed’s strength in emerging markets to drive growth and combine the strength of both companies
  • Securing a top market share by establishing new products and maximising the sales of the existing portfolio
  • Concentration of management resources into new core therapeutic areas of metabolic and cardiovascular disease, oncology and diseases of the central nervous system (CNS), plus exploring further immunology and inflammatory medications
  • Increasing promotional efficiency
  • Making strategic investments actively and flexibly, while pursuing all opportunities, including M&A, product acquisition and the introduction of pipeline drugs

Takeda is one of the few Japanese pharmaceuticals companies that have a truly global presence. Because of this, in addition to its Japanese competitors, such as Astellas, Eisai, Mitsubishi, Otsuka, Shionogi, Taiho and Teijin, it also competes with all the major international companies, including generics companies. The strongest competitors in its main area of cardiovascular and metabolic drugs are AstraZeneca, Bayer, Bristol-Myers Squibb (BMS), Boehringer Ingelheim (BI), Daiichi Sankyo, Dainippon Sumitomo, Merck & Co., Novartis, Pfizer and Sanofi.

Table 2 – Takeda’s leading brands by sales, 2010-2013 fiscal years

R&D structure

About 6,000 Takeda employees work in R&D. In 2012-2013, the company invested more than $3.9 billion in R&D, almost 21% of total revenues. It has R&D sites in: Osaka and Fujisawa in Japan; Palo Alto, San Diego, Deerfield, Cambridge, Bozeman and Fort Collins in the US; Cambridge and London, UK; Roskilde, Denmark; Konstanz, Germany; Singapore; Guangzhou, China; and, Sao Jerônimo in Brazil.

Following the opening of the new drug discovery research centre, the Shonan Research Centre in Osaka, a new R&D structure was implemented in early 2011, creating ‘Drug Discovery Units (DDUs)’, with research functions around each of the four core research activities of metabolic diseases, oncology, CNS-related diseases and inflammatory diseases.

In addition, R&D alliances continue to form a key part of Takeda’s strategy. This has included alliances with Advinus Therapeutics in India, Seattle Genetics, Sage Bionetworks, Xoma and Zinfandel Pharma in the US and BC Cancer Agency in Canada. The company has stated that R&D expenditure over the next three years will be divided as follows between different therapeutic areas: oncology 31%, cardiovascular and metabolic 27%, CNS 14%, immunology and respiratory 12%, general medicine and vaccines 16%.

Clinical development

As of July 2013, Takeda had more than 40 products in clinical development, with the main emphasis on cardiovascular and metabolic indications and oncology. These comprised 14 compounds in Phase I, six (all NMEs) in Phase II and 12 (including seven NMEs) in Phase III.

Eight products, including three NMEs, had been submitted for approval and submissions had been filed for: vedolizumab, a monoclonal antibody developed to treat Crown’s disease and ulcerative colitis (Figure 2a); vortioxetine an anti-depressant co-developed with Lundbeck to treat generalised anxiety disorder; and, BLB-750, a vaccine developed to prevent pandemic influenza. Amongst the developmental drugs in Phase III are:

  • Alisertib (MLN8237, Figure 2b), a developmental kinase inhibitor to treat non-small lung cancer, breast cancer, ovarian cancer and T-cell lymphoma
  • Fasiglifam (TAK-875, Figure 2c), an experimental drug against diabetes mellitus, belonging to the group of fatty acid receptor agonists
  • Ixazomib (MLN7908, Figure 2d), a protease inhibitor developed to treat multiple myeloma and relapsed primary amyloidosis
  • Orteronel (TAK 700, Figure 2e), an experimental non-steroidal proteasome inhibitor developed to treat prostate cancer
  • Trebananib (AMG 386), a developmental antineoplastic immunoglobulin that is being co-developed with Amgen
  • Trelagliptin (SYR-472, Figure 2f), a long-acting dipeptidyl peptidase-4 inhibitor developed to treat Type 2 diabetes
  • Vonoprazan (TAK-438, Figure 2g) an acid blocker developed to treat peptic ulcer and other acid-related diseases

Figure 3 – Pipeline drugs at Takeda

Key products

The main market products from Takeda have already been listed above in Table 2. The five most important by sales in the most recent fiscal year are as follows in alphabetical order, with the generic name first and the brand name in brackets after. Further information about the rest of the portfolio is available from CAP Intelligence.

Bortezomib (Velcade, Figure 3a) belongs to the class of targeted intra-cellular tumour therapeutics. It was the first therapeutic protease inhibitor ever approved and was originally developed by Myogenics, a company that was sold to Leukosite. This firm was in turn acquired by Millennium, which ultimately became part of Takeda.

Amongst others, bortezomib is approved against multiple myeloma and mantle cell lymphoma. Chemically, it is an N-protected dipeptide. The protection group contains a boron atom which binds the catalytic site of the 26S proteasome that regulates protein expression. Bortezomib is co-marketed with Johnson & Johnson (J&J) under the same trade name Velcade. Pharmstandard markets it in Russia.

Depending on the specific indication multiple myeloma, competing drugs include: other targeted tumour therapeutics, such as lenalidomide (Revlimid), pomalidomide (Pomast) and thalidomide (Thalidomide), all by Celgene; enzyme inhibitors, such as carfilzomib (Kyprolix by Onyx); and, topomerase inhibitors, such as doxorubicin (Doxil/Caelyx) by J&J.

Candesartan (Blopress/Kensen, Figure 3b) belongs to the class of angiotensin II receptor antagonists (ARBs) or ‘sartans’, which are chemically 2-tetrazoylbiphenyl derivatives. The drug is used for treatment of hypertension (high blood pressure). Depending on the specific indication, competing drugs include:

  • Other sartans, such as irbesartan (Avarpro/Avalide by BMS, Approvel by Sanofi or Irbetan by Shionogi), olmesartan (Olmetec by Daiichi Sankyo), telmisartan (Micardis by BI) and valsartan (Diovan by Novartis)
  • Angiotensin-converting enzyme inhibitors  or ‘prils’, such as benazepril (Lotensin by Novartis), captopril (Capoten by BMS), enalapril (Vasotec by Merck & Co.), fosinopril (Monopril by BMS), lisinopril (Prinivil by Merck & Co., Zestril by AstraZeneca), perindopril (Coversyl by Servier), quinapril (Accupril by Pfizer), ramipril (Tritace by Sanofi, Altace by King), zofenopril (Zofenopril, Zopranol or Zantipres by Menarini)
  • Renin inhibitors or ‘kirens’, such as aliskiren (Tekturna/Rasilez by Novartis)
  • Drugs from other classes, such as calcium channel blockers

Figure 3 – Key market products by Takeda

Lansoprazole (Takepron/Ogast/Lansox, Figure 4c) belongs to the sub-group or proton pump inhibitors (PPIs) or ‘prazoles’ in the class of drugs for acid-related disorders. PPIs reduce acid secretion by inhibiting the enzyme ATPase in gastric parientel cells.

Lansoprazole is used to treat stomach ulcers, peptic ulcers and gastroesophagal reflux. The originator drug is marketed by Takeda but is now generic, being marketed as Lansul and Lansoptol by Krka, Lansopran by Sawai and Opiren by Almirall and as an over-the-counter drug by Novartis under the name Prevacid 24H. Depending on the specific indication, lansoprazole competes with:

  • Other PPIs, such as dexlansoprazole (Dexilant Takeda), Nexium by AstraZeneca, omeprazole (Losec and Prilosec, also by Astra Zeneca, plus generic versions), pantoprazole (by Nycomed) and rabeprazole (Aciphex and Pariet by J&J)
  • H2-antagonists (‘tidines’), such as cimetidine (Tagamet by Glaxo Smithkline (GSK)), famotidine (Pepicidine and Pepcid by J&J and Merck & Co., Gaster by Astellas, loratidine (Claritin by Schering Plough and Shionogi), nizatidine (Tazac by Eli Lilly), ranitidine (Zantac by GSK)
  • Prostaglandins or ‘prosts’, such as misoprostol (Cytotex by Pfizer)
  • Non-classified drugs, such as repabimide (e.g. Mucosta by Otsuka), teprenone (Seftac by Sawai, Selbex by Eisai), etc.

Leuprorelin (Leuplin/Enatoe, Figure 3d) is an analogue to the gonadotropin-releasing hormone (GnRH) and acts as agonist at pituitary GnRH receptors. It regulates down the secretion of gonadotropins-luteinizing hormones (LHs) and follicle-stimulating hormones (FSHs), reducing estradiol and testosterone levels in both sexes.

Leuprolin is marketed by various companies, such as Eligard by Sanofi and Astellas and Vidadur by Bayer. Competing GnRH medications include goserelin (Zalodex by AstraZeneca), buserelin (Suprefact by Sanofi), histrelin (Vantas and Supprelin by Elan), triptorelin (Decapentyl by Ipsen, Gonapeptyl by Ferring, Trelstar by Watson), deslorelin (Ovuplant by Peptech) and nafarelin (Synarel by Pfizer).

Pioglitazone (Actos/Glustin/Zanctos, Figure 3e) belongs to the sub group of insulin sensitisers in the class of anti-diabetic drugs. These work against the core problem of Type II diabetes, insulin resistance. In India, the drug is marketed by Zydus Cadila. Depending on the specific indication, competing drugs include:

  • Insulin sensitisers, such as metformin (e.g. Glucophage by Merck & Co. or Daiichi Sankyo; Glycoran by Nippon Shinyaku; Metgluco/Melbin by Dainippon Sumitomo, etc.) and ‘glitazones’, such as rosiglitazone (Avandia by GSK)
  • Insulin secretagogues, which trigger the release of insulin by inhibiting the K-ATPase channel of the pancreatic beta cells, including sulfonyl ureas, such as glimeripide (Amaryl by Sanofi), glipizide (Gluctrol by Pfizer), gliclazide (Diamicron Servier), glibenclamide (e.g. Glimel by Dong-A), etc; meglitinides or ‘glinides’, such as nateglinide (e.g. Starlix by Par), repaglinide (e.g. Prandin by Novo Nordisk), glucagon-like peptide 1 analogues, such as exenatide (Byetta/Bydurone by Amylin and Eli Lilly), liraglutide (Victoza by Novo Nordisk) and lixenatide (Lyxumia by Sanofi); and, dipeptidyl dipetidase-4 inhibitors, such as linagliptin (Trajenta by Eli Lilly and BI), sitagliptin (Januvia by Merck), saxagliptin (Onglyza by AstraZeneca and BMS), vidagliptin (Galvus by Novartis), etc.
  • Insulin analogues, including long-acting insulins, such as insulin glargine (Lantus by Sanofi) and insulin detemir (Levemir by Novo Nordisk), and short-acting insulins, such as insulin lispro (Humalog by Eli Lilly) or insulin glulisine (Apidra by Sanofi), etc.
  • Alpha-glucosidase inhibitors, such as acarbose (Glucobay by Bayer), miglitol (Diastabol by Sanofi), voglibose (Basen by Takeda) and other non-classified drugs
  • Sodium-glucose transport protein inhibitors, such as canaglifozin (Invokanna by Jansssen) and empaglifozin, which is under investigation by Eli Lilly and BI
  • Amylin analogues, such as pramlintide (Symlin by Amylin)

 http://www.specchemonline.com/articles/view/takeda-pharmaceutical#.U6fUjUCs_yV

Contact:


Dr Rainer Steinbach
CEO
CAP Intelligence
Tel: +49 231 73 56 84
E-mail: rainer.steinbach@cap-intelligence.de
Website: http://www.cap-intelligence.de

Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial.


Angiogenesis is a valid target in the treatment of epithelial ovarian cancer. Trebananib inhibits the binding of angiopoietins 1 and 2 to the Tie2 receptor, and thereby inhibits angiogenesis. We aimed to assess whether the addition of trebananib to single-agent weekly paclitaxel in patients with recurrent epithelial ovarian cancer improved progression-free survival.

Lancet Oncol. 2014 Jun 17. pii: S1470-2045(14)70244-X. doi: 10.1016/S1470-2045(14)70244-X.

http://www.ncbi.nlm.nih.gov/pubmed/24950985

 

old cut paste

Amgen’s Experimental Ovarian Cancer Drug, Trebananib, Shows Positive Results In Late Stage Clinical Trials

STRUCTURAL FORMULA ,Trebananib, AMG-386
Monomer
MDKTHTCPPC PAPELLGGPS VFLFPPKPKD TLMISRTPEV TCVVVDVSHE 50
DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL HQDWLNGKEY 100
KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSRDELT KNQVSLTCLV 150
KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK LTVDKSRWQQ 200
GNVFSCSVMH EALHNHYTQK SLSLSPGKGG GGGAQQEECE WDPWTCEHMG 250
SGSATGGSGS TASSGSGSAT HQEECEWDPW TCEHMLE 287
Disulfide bridges location
7-7′ 10-10′ 42-102 42′-102′ 148-206
148′-206′ 239-246 239′-246′ 275-282 275′-282′

CAS REGISTRY NUMBER 894356-79-7
MOLECULAR FORMULA C2794H4248N752O886S30

Trebananib

Immunoglobulin G1 (synthetic human Fc domain fragment) fusion protein with
angiopoietin 1/angiopoietin 2-binding peptide (synthetic)

http://www.ama-assn.org/resources/doc/usan/trebananib.pdf

http://www.genome.jp/dbget-bin/www_bget?dr:D10177

Amgen’s Experimental Ovarian Cancer Drug, Trebananib, Shows Positive
Medical Daily
Amgen, a large biotechnology company out of Thousand Oaks, Calif. has announced that its drug for reoccurring ovarian cancer has shown positive results in Phase III clinical trials. The trials sought to stop the progression of ovarian cancer and extend

read all at

http://www.medicaldaily.com/articles/16448/20130612/amgen-drug-ovarian-cancer-drug-anti-metastasis-drug-recurring-ovarian-cancer.htm

 

seagull

Sanofi gives back rights to Merrimack cancer drug


Sanofi gives back rights to Merrimack cancer drug

After a series of late-stage failures, Sanofi has returned the rights to the cancer compound MM-121 to Merrimack Pharmaceuticals.

MM-121, a monoclonal antibody designed to block ErbB3 activation in patients with heregulin-positive tumours, has been tested in Phase II trials in partnership with the French giant in ovarian, breast and lung cancer. However, none of them have met their primary endpoints and Sanofi has decided  to pull the plug, although it will continue to fund the existing MM-121 Phase II programme for the next six months.

SAR256212 (MM-121)


SAR256212 (MM-121) HER3 ErbB3 antibody

SAR256212 (MM-121) HER3 ErbB3 antibody

Targeting ErbB3

ErbB3 is a kinase-dead critical mediator of pro-survival signaling through PI3K/AKT activation and potentially through activation of other pathways involved in proliferation, differentiation, and survival of cancer cells.20 Signaling is mediated by ErbB3 ligands such as heregulin (HRG) and epidermal growth factor receptor (EGFR) ligands like betacellulin (BTC).21 Signaling through ErbB3 is a major mechanism by which cancer cells acquire resistance to targeted therapies (including EGFR and HER2 inhibitors); chemotherapies; and, potentially, radiotherapy.20,21References:
20. Schoeberl et al. Cancer Res. 2010;70:2485-2494; 21. Schoeberlet al. Sci Signal. 2009;2:ra31;  

Investigational anti-ErbB3 mAB

SAR256212 is an investigational fully human monoclonal antibody that targets the HER3 (ErbB3) receptor.21 SAR256212 potently inhibits ligand-induced signaling through HER3.21 By targeting ErbB3, SAR256212 blocks heregulin (HRG1-β1) binding to HER3, induces HER3 internaliztion and degradation, and blocks BTC-induced phosphorylation of HER3, leading to inhibition of HRG1-β1- and BTC-induced survival signaling.20 SAR256212 activity has been evaluated in a broad range of preclinical tumor xenograft models.21

The clinical significance of these findings is currently under investigation.

SAR256212 | Sanofi Oncology Pipeline

SAR256212 (MM-121). SAR256212 (MM-121) HER3 ErbB3 antibody. Targeting ErbB3. ErbB3 is a kinase-dead critical mediator of pro-survival signaling …

VIDEO...http://www.sanofioncology.com/pipeline/SAR256212.aspx

 

Clinical development

SAR256212 is being codeveloped with Merrimack Pharmaceuticals Inc. SAR256212 is currently being investigated in a phase I trial in patients with refractory advanced solid tumors; in a phase I/II trial, in combination with erlotinib, in patients with NSCLC; in a phase I trial in combination with the investigational agent SAR245408 in solid tumors; in a phase I trial in combination with cetuximab and irinotecan in solid tumors; and in a phase I trial in combination with multiple chemotherapeutic agents in solid tumors. SAR256212 is also being investigated in a phase II trial in ER/PR+ HER2- breast cancer patients in combination with exemestane. In combination with paclitaxel, SAR256212 is being studied in a phase II trial in ER/PR+ HER2- breast cancer and TNBC, and a phase II trial in platinum-resistant/refractory ovarian cancer.

ER=estrogen receptor; HER2=human epidermal growth factor receptor 2; PR=progesterone receptor; TNBC=triple negative breast cancer.

SAR256212 is an investigational agent and has not been approved by the FDA or any other regulatory agency worldwide for the uses under investigation

ErbB3 is a critical activator of phosphoinositide 3-kinase (PI3K) signaling in epidermal growth factor receptor (EGFR; ErbB1), ErbB2 [human epidermal growth factor receptor 2 (HER2)], and [hepatocyte growth factor receptor (MET)] addicted cancers, and reactivation of ErbB3 is a prominent method for cancers to become resistant to ErbB inhibitors. In this study, we evaluated the in vivo efficacy of a therapeutic anti-ErbB3 antibody, MM-121. We found that MM-121 effectively blocked ligand-dependent activation of ErbB3 induced by either EGFR, HER2, or MET. Assessment of several cancer cell lines revealed that MM-121 reduced basal ErbB3 phosphorylation most effectively in cancers possessing ligand-dependent activation of ErbB3. In those cancers, MM-121 treatment led to decreased ErbB3 phosphorylation and, in some instances, decreased ErbB3 expression. The efficacy of single-agent MM-121 was also examined in xenograft models. A machine learning algorithm found that MM-121 was most effective against xenografts with evidence of ligand-dependent activation of ErbB3. We subsequently investigated whether MM-121 treatment could abrogate resistance to anti-EGFR therapies by preventing reactivation of ErbB3. We observed that an EGFR mutant lung cancer cell line (HCC827), made resistant to gefitinib by exogenous heregulin, was resensitized by MM-121. In addition, we found that a de novo lung cancer mouse model induced by EGFR T790M-L858R rapidly became resistant to cetuximab. Resistance was associated with an increase in heregulin expression and ErbB3 activation. However, concomitant cetuximab treatment with MM-121 blocked reactivation of ErbB3 and resulted in a sustained and durable response. Thus, these results suggest that targeting ErbB3 with MM-121 can be an effective therapeutic strategy for cancers with ligand-dependent activation of ErbB3.
Cancer Res. 2010 Mar 15;70(6):2485-94. doi: 10.1158/0008-5472.CAN-09-3145. Epub 2010 Mar 9.

An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation.

Author information

  • 1Merrimack Pharmaceuticals, Inc, Cambridge, Massachusetts, USA.