Home » Posts tagged 'platelet aggregation inhibitor'
Tag Archives: platelet aggregation inhibitor
Evategrel



Evategrel
CAS 2760609-74-1
MF C21H26ClNO7S MW 472.0 g/mol
(2Z)-2-[(4R)-1-[(1S)-1-(2-chlorophenyl)-2-methoxy-2-oxoethyl]-4-(propan-2-yloxycarbonyloxymethylsulfanyl)piperidin-3-ylidene]acetic acid
(Z)-[(4R)-1-[(1S)-1-(2-chlorophenyl)-2-methoxy-2-oxoethyl]-4-{[({[(propan-2-yl)oxy]carbonyl}oxy)methyl]sulfanyl}piperidin-3-ylidene]acetic acid
platelet aggregation inhibitor, CG-0255, CG 0255, 9FKJ76ZX22
Evategrel (CG-0255) is a promising new antiplatelet drug, a thioether prodrug, designed to improve upon clopidogrel (Plavix) by offering faster action, consistent potency, and overcoming resistance, with both oral and intravenous (IV) formulations available for emergency use. It works by rapidly converting to the same active metabolite as clopidogrel (H4) through simple hydrolysis, bypassing the CYP enzymes that can cause variability and resistance with clopidogrel. Clinical trials show it’s well-tolerated, potent, and has potential to become a superior P2Y12 inhibitor for preventing blood clots in cardiovascular conditions.
Key Features
- Fast & Potent: Achieves significant platelet inhibition (IPA) within 15-30 minutes.
- Consistent Activation: Relies on liver carboxylesterases, avoiding CYP2C19 variability, leading to less individual response difference.
- Dual Formulation: First P2Y12 inhibitor with both IV (for emergencies/surgery) and oral forms.
- Overcomes Resistance: Specifically designed to address clopidogrel resistance issues.
- Low Drug-Drug Interactions: Expected to have minimal interactions.
How it Works
- Prodrug: Evategrel is inactive when administered.
- Hydrolysis: Liver esterase enzymes quickly break it down (hydrolyze it) in a single step.
- Active Metabolite: This process creates H4, the same active antiplatelet molecule as clopidogrel’s active form.
- Platelet Inhibition: H4 blocks the P2Y12 receptor on platelets, preventing them from clumping (aggregating).
Development & Potential
- Developed by China-based CureGene.
- Shows promise as a “best-in-class” P2Y12 antagonist, potentially benefiting patients with acute coronary syndromes (ACS) or those undergoing PCI (percutaneous coronary intervention).
SYN
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2023144782&_cid=P10-MKNELX-27983-1

Synthesis Example 1


Steps 11 and 12. Synthesize la-1 and la-2

The solution of 1–13 (1.8 g, 3.4 mmol) in TFA (10 mL) was stirred at room temperature for 30 minutes. After stirring, the reaction mixture was added to a saturated NaHCO3 solution (100 mL), followed by collection with EtOAc (100 mL * 3). The combined organic layers were washed with saturated NaHCO3 , dried over Na2SO4 , and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by reversed-phase column chromatography (C18, CH3CN / H2O = 80/20 ) to give la (550 mg, 34% yield). la was further purified by chiral column chromatography to give la-1 and la-2.
the:
LC-MS [M+l]+ = 472.1

57.59 (s, 1H), 7.38 (d, J = 4 Hz, 1H), 7.32-7.26 (m, 2H), 5.86 (s, 1H), 5.22 (dd, 12.2, 2.6 Hz, 1H), 5.00-4.83 (m, 3H), 4.50 (dd, J = 66.2, 11.9 Hz, 1H), 3.82 (s, 1H), 3.70 (d, J = 4.9 Hz, 3H), 3.52 (dd, J = 37.9, 12.9 Hz, 1H), 2.92-2.64 (m, 2H), 2.45-2.30 (m, 1 H), 1.95-1.84 (m, 1H), 1.30 ( 6.2 Hz, 6H)O
la-1:
NMR (400 MHz, CDC13) 6 7.65 (s, 1H), 7.46 – 7.43 (m, 1H), 7.33 (dd, J = 6.3, 2.7 Hz, 2H), 5.91 (s, 1H), 5.27 (d, J = 12.3 Hz, 1H), 5.04 – 4.87 (m, 3H), 4.49 (d, J = 13.7 Hz, 1H), 3.88 (s, 1H), 3.75 (s, 3H), 3.58 (d, J = 14.0 Hz, 1H), 2.87 (s, 2H), 2.44 (s, 1H), 1.95 (dd, J = 14.2, 3.3 Hz, 1H), 1.35 (d, J = 6.2 Hz, 6H)O
la-2:
NMR (400 MHz, CDCh) 5 7.63 (s, 1H), 7.44 (dt, J = 8.2, 3.1 Hz, 1H), 7.35 – 7.31 (m,
2H), 5.92 (s, 1H), 5.25 (d, J = 12.3 Hz, 1H), 5.07 (s, 1H), 4.94 (td, J = 12.5, 6.5 Hz, 2H), 4.68 (d, J = 13.4 Hz, 1H), 3.87 (s, 1H), 3.76 (s, 3H), 3.50 (d, J = 13.4 Hz, 1H), 2.90 (s, 1H), 2.75 (d, J = 12.3 Hz, 1H), 2.44 (s, 1H), 1.96 (d, 7 = 13.2 Hz, 1H), 1.34 (d, J = 6.3 Hz, 6H) =
PAT
- Pharmaceutical composition of antiplatelet drug, and use thereofPublication Number: WO-2023144782-A1Priority Date: 2022-01-28
- Antiplatelet drugs and uses thereofPublication Number: US-2023295089-A1Priority Date: 2020-07-29



AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

join me on Linkedin
Anthony Melvin Crasto Ph.D – India | LinkedIn
join me on Researchgate
RESEARCHGATE

join me on Facebook
Anthony Melvin Crasto Dr. | Facebook
join me on twitter
Anthony Melvin Crasto Dr. | twitter
+919321316780 call whatsaapp
EMAIL. amcrasto@gmail.com

……
/////////evategrel, platelet aggregation inhibitor, CG-0255, CG 0255, 9FKJ76ZX22
Sumecigrel, Vicagrel



Sumecigrel, VICAGREL
CAS 1314081-53-2
MF C18H18ClNO4S MW379.858
- (S)-2-(2-ACETOXY-6,7-DIHYDROTHIENO(3,2-C)PYRIDINE-5(4H)-YL)-2-(2-CHLOROPHENYL)ACETIC ACID METHYL ESTER
- METHYL (.ALPHA.S)-2-(ACETYLOXY)-.ALPHA.-(2-CHLOROPHENYL)-6,7-DIHYDROTHIENO(3,2-C)PYRIDINE-5(4H)-ACETATE
- METHYL (2S)-2-(2-ACETYLOXY-6,7-DIHYDRO-4H-THIENO(3,2-C)PYRIDIN-5-YL)-2-(2-CHLOROPHENYL)ACETATE
- METHYL (S)-(2-(ACETYLOXY)-6,7-DIHYDROTHIENO(3,2-C)PYRIDIN-5(4H)-YL)(2-CHLOROPHENYL)ACETATE
- THIENO(3,2-C)PYRIDINE-5(4H)-ACETIC ACID, 2-(ACETYLOXY)-.ALPHA.-(2-CHLOROPHENYL)-6,7-DIHYDRO-, METHYL ESTER, (.ALPHA.S)-
- VICAGREL
methyl (S)-2-(acetyloxy)-6,7-dihydrothieno[3,2- c]pyridin-5(4H)-ylacetate
platelet aggregation inhibitor, 8A63K3TN0U, VICAGREL
- Pharmacokinetic/Pharmacodynamic Study of Vicagrel Capsules and Clopidogrel Tablets in Healthy CYP2C19 Normal MetabolizersCTID: NCT07067775Phase: Phase 1Status: CompletedDate: 2025-09-09
- Efficacy and Safety Study of Vicagrel in Patients With Acute Coronary Syndrome (ACS) Undergoing Percutaneous Coronary Intervention (PCI)CTID: NCT06577519Phase: Phase 3Status: RecruitingDate: 2024-10-01
- PK/PD Study of Vicagrel and Clopidogrel in Healthy Subjects With Different CYP2C19 MetabolizersCTID: NCT05162053Phase: Phase 1Status: CompletedDate: 2023-11-03
- A Clinical Trial to Evaluate the Effect of Food on PK and PD of Vicagrel Capsules in Healthy Adult SubjectsCTID: NCT04919551Phase: Phase 1Status: CompletedDate: 2021-11-01
- The Efficacy, Safety and Pharmacokinetic of Antiplatelet Therapy for VicagrelCTID: NCT03599284Phase: Phase 2Status: CompletedDate: 2019-09-23
- Pharmacokinetics and Pharmacodynamics of Vicagrel in Healthy Adult Subjects of Different CYP2C19
- CTID: NCT03942458
- Phase: Phase 1
- Status: Completed
- Date: 2019-09-19
Sumecigrel (also known as
vicagrel) is an investigational small molecule drug classified as a P2Y12 inhibitor and antiplatelet agent. It is currently under clinical development for the treatment of various cardiovascular and peripheral conditions.
Key Information
- Therapeutic Class: Antiplatelet agent; P2Y12 inhibitor. These types of drugs work by preventing platelets in the blood from sticking together and forming clots, which is a key process in conditions like heart attack and stroke.
- Developer: Jiangsu Vcare PharmaTech.
- Clinical Status: It is currently in the pre-registration phase for acute coronary syndrome (ACS). It has also been under investigation for ischemic stroke and peripheral arterial disease.
- Synonyms: The drug is also widely referred to by its USAN (United States Adopted Name) and INN (International Nonproprietary Name) designation, vicagrel.
Chemical Details
- Formula:
C18H18ClNO4SC sub 18 H sub 18 ClNO sub 4 SC18H18ClNO4S.
- CAS Number: 1314081-53-2.
- UNII: 8A63K3TN0U.
For more detailed information regarding its regulatory status, you can check the official precisionFDA or PubChem databases.
SYN
SYN
https://patentscope.wipo.int/search/en/detail.jsf?docId=CN85433897&_cid=P22-MITPA1-71386-1
SYN
https://patentscope.wipo.int/search/en/detail.jsf?docId=EP75374721&_cid=P22-MITPA1-71386-1


Example 3
(2S)-Methyl 2-(2-oxo-7,7a-dihydrothieno[3,2-c]pyridin-5(2H,4H,6H)-yl)-2-(2-chlorophenyl)-acetate (IV-1)

[0036] 58.1 g (0.15 mol) of (R)-methyl 2-(2-chlorophenyl)-2-(4-nitrophenylsulfonyloxy)-acetate ( II-1), 32.3 g (0.17 mol) of 5,6,7,7a-tetrahydrothieno[3,2-c]pyridin-2(4H)-one hydrochloride ( III-1), and 37.8g (0.38 mol) of potassium bicarbonate were added to 500 ml of acetonitrile. The reaction was stirred under a nitrogen atmosphere at room temperature for 26 hrs. The reaction solution was allowed to stand and the insoluble material was filtered off, to obtain a dark red mother liquor. The solvent was evaporated under reduced pressure, and 35.4 g of an oil product was obtained after purification by flash column chromatography (petroleum ether:ethyl acetate = 4:1). Yield 70%. Recrystalization from ethanol afforded 18.1 g of a pure product (IV-1) as a white solid. mp: 146-148°C, ee = 97.5%, [α] D 19 = +114.0° (c 0.5, MeOH); 1H-NMR (300 MHz, CDCl 3) δ 1.79-1.93 (m, 1 H), 2.30-2.40 (m, 1 H), 2.56-2.70 (m, 1 H), 3.00-3.27 (m, 2 H), 3.72 (s, 3 H), 3.79-3.93 (m, 1 H), 4.12-4.19 (m, 1 H), 4.89 (d, 1 H, J= 5.6 Hz), 6.00 (d, 1 H, J = 5.2 Hz), 7.26-7.50 (m, 4 H); 13C-NMR (75 MHz, CDCl 3) δ 33.9, 34.0, 49.0, 49.7, 51.1, 51.6, 52.2, 52.4, 67.3, 76.6, 77.0, 77.4, 126.6, 126.8, 127.2, 129.8, 130.1, 132.7, 134.8, 167.2, 167.4, 170.8, 198.6; ESI-MS m/ z 338.1 [M+H] +; HRMS Calcd for C 16H 17NO 3SCl [M+H] + m/ z 338.0618, found 338.0626.
Reference Example 4
(S)-Methyl 2-(2-benzoyloxy-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2-(2-chlorophenyl)-acetate (I-1)

[0038] (2S)-Methyl 2-(2-chlorophenyl)-2-(2-oxo-5,6,7,7a-tetrahydrothieno[3,2-c]pyridinyl)acetate ( IV– 1) (113 mg) was dissolved in acetonitrile (10 ml), 0.10 ml of triethylamine was added, and 151 mg of benzoic anhydride was added dropwise at 0°C, and then the mixture was warmed to room temperature and reacted for 2 hrs. The reaction solution was poured into water (30 ml), the aqueous phase was extracted with ethyl acetate (50 ml x 3), and the organic phase was washed with saturated aqueous sodium bicarbonate solution and saturated saline, dried over anhydrous sodium sulfate, and evaporated, to obtain a crude product, which was subjected to flash column chromatography (petroleum ether:ethyl acetate = 40 : 3), to obtain (S)-methyl 2-(2-benzoyloxy-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2-(2-chlorophenyl)-acetate (I-1) (77 mg). Yield 52%, mp: 84-86°C, ee = 93.5% (chiral HPLC analysis conditions: Chiralpak IC 4.6 mm x 250 mm; column temperature: 25° C; mobile phase: 90% n-hexane/10% isopropanol/0.1% diethylamine; flow rate: 0.5 ml/min; and detection wavelength: UV 254 nm), [α] D20 = +34.00° (c 0.50, MeOH); 1H-NMR (300 MHz, CDCl 3) δ 2.82-2.93 (m, 4 H), 3.57-3.68 (m, 2 H), 3.73 (s, 3 H), 4.95 (s, 1 H), 6.42 (s, 1 H), 7.26-8.17 (m, 9 H); 13C-NMR (75 MHz CDCl 3) δ 25.0, 48.2, 50.4, 52.2, 67.8, 112.1, 125.9, 127.2, 128.5, 128.6, 129.5, 129.8, 130.0, 130.2, 133.9, 134,7, 149.9, 163.5; ESI-MS m/ z 442.1 [M+H] +; HRMS Calcd for C 23H 21NO 4SCl [M+H] +m/ z 442.0891, found 442.0880.
Example 5
(S)-Methyl 2-(2-acetoxy-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2-(2-chlorophenyl)-acetate (I-2)

[0040] Following the method described in Example 4, (2S)-methyl 2-(2-chlorophenyl)-2-(2-oxo-5, 6, 7, 7a-tetrahydrothieno[3,2-c]pyridinyl)acetate (IV-1) (6.5 g) was reacted with acetic anhydride (3.6 ml), to prepare (S)-methyl 2-(2-acetoxy-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2-(2-chlorophenyl)-acetate ( I-2) (6.8 g). Yield 93%. Recrystallization from ethanol afforded a white solid, mp: 73-75°C, ee = 98.9% (chiral HPLC analysis conditions: Chiralpak IC 4.6 mm x 250 mm; column temperature: 25°C; mobile phase: 92% n-hexane/8% tetrahydrofuran/0.1% diethylamine; flow rate: 0.5 ml/min; and detection wavelength: UV 254 nm), [α] D23 = +45.00°(c = 1.0, CH 3OH); 1H-NMR (300 MHz, CDCl 3) δ 2.26 (s, 3 H), 2.65-2.90 (m, 4 H), 3.47-3.69 (m, 2 H), 3.72 (s, 3 H), 4.92 (s, 1 H), 6.26 (s, 1 H), 7.24-7.70 (m, 4 H); 13C-NMR (75 MHz, CDCl 3) δ 20.2, 24.5, 47.6, 49.8, 51.6, 67.3, 111.5, 125.3, 126.6, 128.8, 128.9, 129.3, 129.4, 133.3, 134.2, 149.1, 167.2, 170.7; ESI-MS m/ z 380.0 [M+H] +; HRMS Calcd for C 18H 19NO 4SCl [M+H] +m/ z 380.0723, found 380.0737.
Reference Example 6
(R)-Methyl 2-(2-acetoxy-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2-(2-chlorophenyl)-acetate (I-2′)

[0042] Following the method described in Example 4, (2R)-methyl 2-(2-chlorophenyl)-2-(2-oxo-7,7a-dihydrothieno[3.2-c]pyridin-5(2H,4H,6H)-yl)-acetate ( IV-1′) (prepared following Examples 1-3) was reacted with acetic anhydride, to prepare (R)-methyl 2-(2-acetoxy-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2-(2-chlorophenyl)-acetate ( I-2′), ee = 98.2% (chiral HPLC analysis conditions were the same as those in Example 5), [α] D 23 =-44.00° (c= 1.0, CH 3OH).
Reference Example 7
(S)-Methyl 2-(2-propanoyloxy-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2-(2-chlorophenyl)-acetate (I-3)
[0043] Following the method described in Example 4, (2S)-methyl 2-(2-chlorophenyl)-2-(2-oxo-7, 7a-dihydrothieno[3.2-c]pyridin-5(2H, 4H,6H)-yl)-acetate ( IV-1) (338 mg) was reacted with propionic anhydride (0.27 ml), to prepare (S)-methyl 2-(2-propanoyloxy-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)-2-(2-chlorophenyl)-acetate ( I-3) (267 mg).Yield 66%, ee = 96.5% (chiral HPLC analysis conditions were the same as those in Example 4), [α] D20 = + 36.00°( c 0.50, MeOH); 1H-NMR (300 MHz, CDCl 3) δ 1.23 (t, 3 H, J = 7.4 Hz), 2.55 (q, 2 H, J= 7.7 Hz), 2.76-2.78 (m, 2 H), 2.87-2.88 (m, 2 H), 3.53 (d, 1 H, J = 14.2 Hz), 3.65 (d, 1 H, J = 13.6 Hz), 3.72 (s, 3 H), 4.91 (s, 1 H), 6.26 (s, 1 H), 7.26-7.69 (m, 4 H); 13C-NMR (75 MHz, CDCl 3) δ 8.8, 21.1, 25.0, 27.4, 48.2, 50.3, 52.2, 67.8, 106.2, 111.7, 125.6, 127.2, 129.1, 129.5, 129.8, 130.0, 123.7, 149.8, 171.2; ESI-MS m/ z 394.1 [M+H] +; HRMS Calcd for C 19H 21NO 4SCl [M+H] +m/ z 394.0883, found 394.0880.
PAT
- Optically active 2-hydroxytetrahydrothienopyridine derivatives, preparation method and use in manufacture of medicament thereofPublication Number: KR-102215429-B1Priority Date: 2010-02-02Grant Date: 2021-02-16
- Optically active 2-hydroxy tetrahydrothienopyridine derivatives, preparation method and use in manufacture of medicament thereofPublication Number: EP-3290423-B1Priority Date: 2010-02-02Grant Date: 2021-07-21
- Optically active 2-hydroxy tetrahydrothienopyridine derivatives, preparation method and use in manufacture of medicament thereofPublication Number: US-2015011583-A1Priority Date: 2010-02-02
- Optically active 2-hydroxy tetrahydrothienopyridine derivatives, preparation method and use in manufacture of medicament thereofPublication Number: US-2017121341-A1Priority Date: 2010-02-02
- Optically active 2-hydroxy tetrahydrothienopyridine derivatives, preparation method and use in manufacture of medicament thereofPublication Number: US-2019055260-A1Priority Date: 2010-02-02
- Optically active 2-hydroxy tetrahydrothienopyridine derivatives, preparation method and use in manufacture of medicament thereofPublication Number: US-8772489-B2Priority Date: 2010-02-02Grant Date: 2014-07-08
- Optically active 2-hydroxy tetrahydrothienopyridine derivatives, preparation method and use in manufacture of medicament thereofPublication Number: WO-2011095049-A1Priority Date: 2010-02-02



AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

join me on Linkedin
Anthony Melvin Crasto Ph.D – India | LinkedIn
join me on Researchgate
RESEARCHGATE

join me on Facebook
Anthony Melvin Crasto Dr. | Facebook
join me on twitter
Anthony Melvin Crasto Dr. | twitter
+919321316780 call whatsaapp
EMAIL. amcrasto@gmail.com

……
///////////Sumecigrel, platelet aggregation inhibitor, 8A63K3TN0U, VICAGREL
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO
.....










