New Drug Approvals

Home » Posts tagged 'MERCK'

Tag Archives: MERCK

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,480,595 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,841 other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,841 other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Ibrexafungerp citrate


Ibrexafungerp.png
Ibrexafungerp citrate.png
Structure of IBREXAFUNGERP

Ibrexafungerp citrate

アイブレキサフンジェルプクエン酸塩;
FormulaC44H67N5O4. C6H8O7
cas1965291-08-0free 1207753-03-4
Mol weight922.1574

Brexafemme, fda approved 2021, 2021/6/1

Antifungal, Cell wall biosynthesis inhibitor, Treatment of invasive fungal infections due to Candida spp. or Aspergillus spp., vulvovaginal candidiasis

SCY-078 citrate, MK-3118; SCY-078, 

  • WHO 10597

UNII-M4NU2SDX3E

M4NU2SDX3E

(1R,5S,6R,7R,10R,11R,14R,15S,20R,21R)-21-[(2R)-2-amino-2,3,3-trimethylbutoxy]-5,7,10,15-tetramethyl-7-[(2R)-3-methylbutan-2-yl]-20-(5-pyridin-4-yl-1,2,4-triazol-1-yl)-17-oxapentacyclo[13.3.3.01,14.02,11.05,10]henicos-2-ene-6-carboxylic acid;2-hydroxypropane-1,2,3-tricarboxylic acid

  • Originator Merck & Co; SCYNEXIS
  • Class Antifungals; Glycosides; Triterpenes
  • Mechanism of ActionBeta-1,3-D glucan synthetase inhibitors
  • Orphan Drug StatusYes – Invasive bronchopulmonary aspergillosis; Candidiasis
  • RegisteredVulvovaginal candidiasis
  • Phase IIICandidiasis
  • Phase IIInvasive bronchopulmonary aspergillosis
  • Phase IUnspecified
  • PreclinicalPneumocystis pneumonia
  • 01 Jun 2021Registered for Vulvovaginal candidiasis (In adolescents, In children, In the elderly, In adults) in USA (PO)
  • 01 May 2021Ibrexafungerp – SCYNEXIS receives Qualified Infectious Disease Product status for Vulvovaginal candidiasis (Recurrent, Prevention) in USA
  • 30 Apr 2021Efficacy data from phase III VANISH-303 and VANISH-306 trials in Vulvovaginal Candidiasis presented at the 2021 American College of Obstetricians and Gynecologists Annual Meeting (ACOG-2021)

Ibrexafungerp, sold under the brand name Brexafemme, is an antifungal medication used to treat vulvovaginal candidiasis (VVC) (vaginal yeast infection).[1] It is taken by mouth.[1]

Ibrexafungerp is a triterpenoid antifungal.[1]

Ibrexafungerp was approved for medical use in the United States in June 2021.[1][2] It is the first approved drug in a novel antifungal class.[2]

Medical uses

Ibrexafungerp is indicated for the treatment of adult and postmenarchal pediatric females with vulvovaginal candidiasis (VVC).[1][2]

Syn

https://www.sciencedirect.com/science/article/abs/pii/S0960894X20307721

Abstract

We previously reported medicinal chemistry efforts that identified MK-5204, an orally efficacious β-1,3-glucan synthesis inhibitor derived from the natural product enfumafungin. Further extensive optimization of the C2 triazole substituent identified 4-pyridyl as the preferred replacement for the carboxamide of MK-5204, leading to improvements in antifungal activity in the presence of serum, and increased oral exposure. Reoptimizing the aminoether at C3 in the presence of this newly discovered C2 substituent, confirmed that the (Rt-butyl, methyl aminoether of MK-5204 provided the best balance of these two key parameters, culminating in the discovery of ibrexafungerp, which is currently in phase III clinical trials. Ibrexafungerp displayed significantly improved oral efficacy in murine infection models, making it a superior candidate for clinical development as an oral treatment for Candida and Aspergillus infections.

References

  1. Jump up to:a b c d e f g https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214900s000lbl.pdf
  2. Jump up to:a b c “Scynexis Announces FDA Approval of Brexafemme (ibrexafungerp tablets) as the First and Only Oral Non-Azole Treatment for Vaginal Yeast Infections”Scynexis, Inc. (Press release). 2 June 2021. Retrieved 2 June 2021.

Further reading

External links

  • “Ibrexafungerp”Drug Information Portal. U.S. National Library of Medicine.
  • Clinical trial number NCT03734991 for “Efficacy and Safety of Oral Ibrexafungerp (SCY-078) vs. Placebo in Subjects With Acute Vulvovaginal Candidiasis (VANISH 303)” at ClinicalTrials.gov
  • Clinical trial number NCT03987620 for “Efficacy and Safety of Oral Ibrexafungerp (SCY-078) vs. Placebo in Subjects With Acute Vulvovaginal Candidiasis (Vanish 306)” at ClinicalTrials.gov

Ibrexafungerp, also known as SCY-078 or MK-3118, is a novel enfumafungin derivative oral triterpene antifungal approved for the treatment of vulvovaginal candidiasis (VVC), also known as a vaginal yeast infection.1,9 It was developed out of a need to treat fungal infections that may have become resistant to echinocandins or azole antifungals.1 Ibrexafungerp is orally bioavailable compared to the echinocandins caspofunginmicafungin, and anidulafungin; which can only be administered parenterally.1,2 Similar to echinocandins, ibrexafungerp targets the fungal β-1,3-glucan synthase, which is not present in humans, limiting the chance of renal or hepatic toxicity.6,9

Ibrexafungerp was granted FDA approval on 1 June 2021.9

β-1,3-glucan synthase is composed of a catalytic subunit, FKS1 or FKS2, and a GTP-binding regulatory subunit, Rho1.5,6 This synthase is involved in the synthesis of β-1,3-glucan, a fungal cell wall component.6

Ibrexafungerp acts similarly to the echinocandin antifungals, by inhibiting the synthesis of β-1,3-glucan synthase.1,9 While echinocandins bind to the FKS1 domain of β-1,3-glucan synthase, enfumafungin and its derivatives bind at an alternate site which allows them to maintain their activity against fungal infections that are resistant to echinocandins.3,4

Ibrexafungerp has been shown in animal studies to distribute well to vaginal tissue, making it a favourable treatment for vulvovaginal candidiasis.4

  1. Wring SA, Randolph R, Park S, Abruzzo G, Chen Q, Flattery A, Garrett G, Peel M, Outcalt R, Powell K, Trucksis M, Angulo D, Borroto-Esoda K: Preclinical Pharmacokinetics and Pharmacodynamic Target of SCY-078, a First-in-Class Orally Active Antifungal Glucan Synthesis Inhibitor, in Murine Models of Disseminated Candidiasis. Antimicrob Agents Chemother. 2017 Mar 24;61(4). pii: AAC.02068-16. doi: 10.1128/AAC.02068-16. Print 2017 Apr. [Article]
  2. Hector RF, Bierer DE: New beta-glucan inhibitors as antifungal drugs. Expert Opin Ther Pat. 2011 Oct;21(10):1597-610. doi: 10.1517/13543776.2011.603899. Epub 2011 Jul 25. [Article]
  3. Kuhnert E, Li Y, Lan N, Yue Q, Chen L, Cox RJ, An Z, Yokoyama K, Bills GF: Enfumafungin synthase represents a novel lineage of fungal triterpene cyclases. Environ Microbiol. 2018 Sep;20(9):3325-3342. doi: 10.1111/1462-2920.14333. Epub 2018 Sep 13. [Article]
  4. Larkin EL, Long L, Isham N, Borroto-Esoda K, Barat S, Angulo D, Wring S, Ghannoum M: A Novel 1,3-Beta-d-Glucan Inhibitor, Ibrexafungerp (Formerly SCY-078), Shows Potent Activity in the Lower pH Environment of Vulvovaginitis. Antimicrob Agents Chemother. 2019 Apr 25;63(5). pii: AAC.02611-18. doi: 10.1128/AAC.02611-18. Print 2019 May. [Article]
  5. Ha YS, Covert SF, Momany M: FsFKS1, the 1,3-beta-glucan synthase from the caspofungin-resistant fungus Fusarium solani. Eukaryot Cell. 2006 Jul;5(7):1036-42. doi: 10.1128/EC.00030-06. [Article]
  6. Perlin DS: Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci. 2015 Sep;1354:1-11. doi: 10.1111/nyas.12831. Epub 2015 Jul 17. [Article]
  7. Wring S, Murphy G, Atiee G, Corr C, Hyman M, Willett M, Angulo D: Clinical Pharmacokinetics and Drug-Drug Interaction Potential for Coadministered SCY-078, an Oral Fungicidal Glucan Synthase Inhibitor, and Tacrolimus. Clin Pharmacol Drug Dev. 2019 Jan;8(1):60-69. doi: 10.1002/cpdd.588. Epub 2018 Jun 27. [Article]
  8. Ghannoum M, Arendrup MC, Chaturvedi VP, Lockhart SR, McCormick TS, Chaturvedi S, Berkow EL, Juneja D, Tarai B, Azie N, Angulo D, Walsh TJ: Ibrexafungerp: A Novel Oral Triterpenoid Antifungal in Development for the Treatment of Candida auris Infections. Antibiotics (Basel). 2020 Aug 25;9(9). pii: antibiotics9090539. doi: 10.3390/antibiotics9090539. [Article]
  9. FDA Approved Drug Products: Brexafemme (Ibrexafungerp) Oral Tablet [Link]
Clinical data
Trade namesBrexafemme
Other namesSCY-078
License dataUS DailyMedIbrexafungerp
Pregnancy
category
Contraindicated[1]
Routes of
administration
By mouth
Drug classAntifungal
ATC codeNone
Legal status
Legal statusUS: ℞-only [1]
Identifiers
showIUPAC name
CAS Number1207753-03-4as citrate: 1965291-08-0
PubChem CID46871657as citrate: 137552087
UNIIA92JFM5XNU
KEGGD11544as citrate: D11545
ChEMBLChEMBL4297513as citrate: ChEMBL4298168
Chemical and physical data
FormulaC44H67N5O4
Molar mass730.051 g·mol−1
3D model (JSmol)Interactive image
hideSMILESC[C@H](C(C)C)[C@]1(CC[C@@]2([C@H]3CC[C@H]4[C@]5(COC[C@]4(C3=CC[C@]2([C@@H]1C(=O)O)C)C[C@H]([C@@H]5OC[C@@](C)(C(C)(C)C)N)N6C(=NC=N6)C7=CC=NC=C7)C)C)C
hideInChIInChI=1S/C44H67N5O4/c1-27(2)28(3)39(7)18-19-41(9)30-12-13-33-40(8)23-52-25-44(33,31(30)14-17-42(41,10)34(39)37(50)51)22-32(35(40)53-24-43(11,45)38(4,5)6)49-36(47-26-48-49)29-15-20-46-21-16-29/h14-16,20-21,26-28,30,32-35H,12-13,17-19,22-25,45H2,1-11H3,(H,50,51)/t28-,30+,32-,33+,34-,35+,39-,40-,41-,42+,43+,44+/m1/s1Key:BODYFEUFKHPRCK-ZCZMVWJSSA-N

/////////Ibrexafungerp citrate, Brexafemme, アイブレキサフンジェルプクエン酸塩 , SCY-078 citrateUNII-M4NU2SDX3EM4NU2SDX3E, MK-3118; SCY-078, Orphan Drug, Merck,  SCYNEXIS, WHO 10597, ANTI FUNGAL

CC(C)C(C)C1(CCC2(C3CCC4C5(COCC4(C3=CCC2(C1C(=O)O)C)CC(C5OCC(C)(C(C)(C)C)N)N6C(=NC=N6)C7=CC=NC=C7)C)C)C.C(C(=O)O)C(CC(=O)O)(C(=O)O)O

wdt-2

NEW DRUG APPROVALS

ONE TIME

$10.00

Molnupiravir, EIDD 2801


CID 145996610.png

EIDD 2801

Molecular Formula: C13H19N3O7
Molecular Weight: 329.31 g/mol

[(2R,3S,4R,5R)-3,4-dihydroxy-5-[4-(hydroxyamino)-2-oxopyrimidin-1-yl]oxolan-2-yl]methyl 2-methylpropanoate

UNII YA84KI1VEW

CAS 2349386-89-4

Molnupiravir (development codes MK-4482 and EIDD-2801) is an experimental antiviral drug which is orally active (can be taken orally) and was developed for the treatment of influenza. It is a prodrug of the synthetic nucleoside derivative N4-hydroxycytidine, and exerts its antiviral action through introduction of copying errors during viral RNA replication.[1][2] Activity has also been demonstrated against coronaviruses including SARSMERS and SARS-CoV-2.[3]

The drug was developed at Emory University by the university’s drug innovation company, Drug Innovation Ventures at Emory (DRIVE). It was then acquired by Miami-based company Ridgeback Biotherapeutics, who later partnered with Merck & Co. to develop the drug further.

 

Safety Controversy

In April 2020, a whistleblower complaint by former Head of US Biomedical Advanced Research and Development Authority (BARDA) Rick Bright revealed concerns over providing funding for the further development of molnupiravir due to similar drugs having mutagenic properties (producing birth defects).[4] A previous company, Pharmasset, that had investigated the drug’s active ingredient had abandoned it. These claims were denied by George Painter, CEO of DRIVE, noting that toxicity studies on molnupiravir had been carried out and data provided to regulators in the US and UK, who permitted safety studies in humans to move forward in the spring of 2020. Also at this time, DRIVE and Ridgeback Biotherapeutics stated they planned future safety studies in animals.[5]

COVID-19

After being found to be active against SARS-CoV-2 in March 2020, molnupiravir was tested in a preliminary human study for “Safety, Tolerability, and Pharmacokinetics” in healthy volunteers in the UK and US.[6] In June 2020, Ridgeback Biotherapeutics announced it was moving to Phase II trials to test the efficacy of the drug as a treatment for COVID-19.[7] Two trials of small numbers of hospitalized and non-hospitalized patients in the US and the UK were underway in July.[8][9] In late July 2020, and without yet releasing any medical data, Merck, which had been partnering with Ridgeback Biotherapeutics on developing the drug, announced its intention to move molnupiravir to late stage trials beginning in September 2020.[10] On October 19 2020, Merck began a one year Stage 2/3 trial focused on hospitalized patients.[11]

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

  •  

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter 

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

PATENT

WO 2019113462

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019113462

Example 10: Synthesis of EIDD-2801

A 1L round bottom flask was charged with uridine (25 g, 102.38 mmol) and acetone (700 mL). The reaction mixture was allowed to stir at rt. The slurry was then treated with sulfuric acid (0.27 mL, 5.12 mmol). Stirring was allowed to continue at rt for 18 hours. The reaction was quenched with 100 mL of trimethylamine and was used in the next step without further pruficication.

A 1L round bottom flask was charged with the reaction mixture from the previous reaction. Triethylamine (71.09 mL, 510.08 mmol) and 4-dimethylaminopyridine (0.62 g, 5.1 mmol) were then added. The flask was cooled using an ice bath and then 2-methylpropanoyl 2-methylpropanoate (17.75 g, 112.22 mmol) was slowly added. The reaction mixture was allowed to stir at rt until the reaction was complete. The reaction mixture was concentrated under reduced pressure, and the residue was dissolved in 600 mL ethyl acetate and washed with saturated aqueous bicarbonate solution x 2, water x 2 and brine x 2. The organics were dried over sodium sulfate and concentrated under reduced pressure to yield a clear colorless oil. The crude product was used in the next step without further purification.

A 1L round bottom flask was charged with the crude product from above (36 g, 101.59 mmol) and MeCN (406.37 mL). The reaction mixture was allowed to stir until all the starting material was dissolved. Next, 1,2, 4-triazole (50.52 g, 731.46 mmol) was added followed by the addition of N,N-diethylethanamine (113.28 mL, 812.73 mmol). The reaction mixture was allowed to stir at rt until all solids dissolved. The reaction was then cooled to 0°C using an ice bath. Phosphorous oxychloride (24.44 mL, 152.39 mmol) was added slowly. The slurry that formed was allowed to stir under argon while slowly warming to rt. The reaction was then allowed to stir until complete by TLC (EtOAc). The reaction was then quenched by the addition of lOOmL of water. The slurry then became a dark colored solution, which was

then concentrated under reduced pressure. The residue was dissolved in DCM and washed with water and brine. The organics were then dried over sodium sulfate, filtered, and concentrated under reduced pressure. The product was purified by silica gel chromatography (2 x 330 g columns). All fractions containing product were collected and concentrated under reduced pressure.

A 500 mL round bottom flask was charged with the product from the previous step (11.8 g, 29.11 mmol) and isopropyl alcohol (150 mL). The reaction mixture was allowed to stir at rt until all solids dissolved. Next, hydroxylamine (1.34 mL, 43.66 mmol) was added and stirring continued at ambient temperature. When the reaction was complete (HPLC) some solvent was removed under high vacuum at ambient temperature. The remaining solvent was removed under reduced pressure at 45°C. The resulting residue was dissolved in EtOAc and was washed with water and brine. The organics were dried over sodium sulfate, filtered, and concentrated under reduced pressure to yield oil. Crystals formed upon standing at rt. The crystals were collected by filtration, washed with ether x 3, and dried in vacuo to provide the product as a white solid.

A 200 mL round bottom flask was charged with the product from the previous step (6.5 g, 17.6 mmol) and formic acid (100 mL, 2085.6 mmol). The reaction mixture was allowed to stir at rt overnight. The progress of the reaction was monitored by HPLC. The reaction mixture was concentrated under reduced pressure at 42°C to yield a clear, pale pink oil. Next, 30 mL of ethanol was added. Solvent was then removed under reduced pressure. MTBE (50 mL) was added to the solid and heated. Next, isopropyl alcohol was added and heating was continued until all solid material dissolved (5 mL). The solution was then allowed to cool and stand at rt.

A solid started to form after about lhr. The solids were collected by filtration, washed with MTBE, and dried in vacuo to yield the EIDD-2801 as a white solid. The filtrate was concentrated under reduced pressure to yield a sticky solid, which was dissolved in a small amount of isopropyl alcohol with heating. The solution was allowed to stand at rt overnight. A solid formed in the flask, which was collected by filtration, rinsed with isopropyl alcohol and MTBE, and dried in vacuo to an additional crop of desired product.

EIDD-2801 (25 g) was dissolved in 250 mL of isopropyl alcohol by heating to 70°C to give a clear solution. The warm solution was polish filtered and filtrate transferred to 2L three neck flask with overhead stirrer. It was warmed back to 70°C and MTBE (250 mL) was slowly added into the flask. The clear solution was seeded and allowed to cool slowly to rt with stirring for 18 hrs. The EIDD-2801 solid that formed was filtered and washed with MTBE and dried at 50°C under vacuum for l8hours. The filtrate was concentrated, redissolved in 50 mL isopropyl alcohol and 40 mL MTBE by warming to give clear solution and allowed to stand at rt to give a second crop of EIDD-2801.

Example 11: General synthesis for Deuteration

389 390

The lactone 389 (0.0325 mol) was added to a dry flask under an argon atmosphere and was then dissolved in dry THF (250 mL). The solution as then cooled to -78°C and a DIBAL-D solution in toluene (0.065 mol) was dropwise. The reaction was allowed to stir at -78°C for 3-4 hours. The reaction was then quenched with the slow addition of water (3 mL). The reaction was then allowed to stir while warming to rt. The mixture was then diluted with two volumes of diethyl ether and was then poured into an equal volume of saturated sodium potassium tartrate solution. The organic layer was separated, dried over MgSCri. filtered, and concentrated under reduced pressure. The residue was purified on silica eluting with hexanes/ethyl acetate. The resulting lactol 390 was then converted to an acetate or benzolyate and subjected to cytosine coupling conditions and then further elaborated to N-hydroxycytidine.

PATENT

WO 2019173602

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019173602

PAPER

ChemRxiv (2020), 1-3.

AND

ChemRxiv (2020), 1-2

PAPER

A Concise Route to MK-4482 (EIDD-2801) from Cytidine: Part 2
Synlett (2020), Ahead of Print.

https://www.thieme-connect.de/media/synlett/EFirst/supmat/sup_st-2020-v0498-l_10-1055_a-1275-2848.pdf

 

A new route to MK-4482 was developed. The route replaces uridine with the more available and less expensive cytidine. Low-cost, simple reagents are used for the chemical transformations, and the yield is improved from 17% to 44%. A step is removed from the longest linear sequence, and these advancements are expected to expand access to MK-4482 should it become a viable drug substance.

To a 20 mL vial was added N-hydroxycytidine acetonide ester 5 (0.25 g, 96% purity) followed by formic acid (4 mL). The resultant solution was stirred at room temperature for 4 h 20 min. Solvent was removed under reduced pressure and fresh EtOH (5 mL) was added. The resultant solution was again concentrated under vacuum to afford an oil. Methyl tert-butyl ether and IPA (5 mL each) were successively added as described earlier for preparation of compound 4 and concentrated to give 0.205 g of crude material (77% assay yield, 79% purity). This material was purified by silica gel column chromatography in 8 % MeOH/ Chloroform to afford 130 mg of EIDD-2801 as a solid (60% isolated yield corrected for purity, 98% purity) 1H NMR (600 MHz, CD3OD): δ 6.91 (d, J = 8.2 Hz, 1H), 5.82 (d, J = 4.8 Hz, 1H), 5.61 (d, J = 8.2 Hz, 1H), 4.29 (d, J = 3.6 Hz, 2H), 4.14 (t, J = 4.9 Hz, 1H), 4.08 (p, J = 4.9 Hz, 2H), 2.62 (septet, J = 7.0 Hz, 1H), 1.19 (d, J = 7.0 Hz, 6H); 13C NMR (151 MHz, CD3OD): δ 178.6, 151.81, 146.44, 132.04, 99.84, 90.74, 82.88, 74.67, 71.80, 65.23, 35.45, 27.49, 19.65, 19.61.

One-Pot Transamination/Deprotection of 4 to EIDD-2801: To acetonide ester 4 (1.03 g, 77% Purity) in a 100 mL single neck round bottom flask was added hydroxylamine sulfate (1.09 g, 3.2 equiv.) followed by 40% IPA (20 mL prepared by mixing 12 mL of water and 8 mL of 99.5% IPA. The resultant solution was heated to 78˚C (internal temperature 72-73 ˚C) for 23 h upon which time HPLC showed the formation of EIDD-2801. Solvent was removed on a rotary evaporator and isopropanol (20 mL) was then added. The resulting slurry was sonicated for 5 minutes. The insoluble residue was then filtered and the filtrate concentrated under reduced pressure to afford crude material. (1.34 g, 38% purity, 69% assay yield). The resultant material was purified by silica gel chromatography (5-6% MeOH/DCM) to provide pure EIDD-2801 as two fractions (0.26 g, >99% purity, 36% corrected yield) as an yellow solid and 0.27 g (69.5% purity, 26% corrected yield) as a pinkish solid. The lower purity material was subjected to a second column purification again using 7% MeOH/ DCM to afford 0.137 g of material with 90% purity by NMR. The combined yield thus was estimated to be 53%. The 1H NMR spectrum of the product thus obtained matched the one obtained in the sequential approach as outlined above.

SYN

image

image

image

A High‐Yielding Synthesis of EIDD‐2801 from Uridine** - Steiner - -  European Journal of Organic Chemistry - Wiley Online Library

A High‐Yielding Synthesis of EIDD‐2801 from Uridine** - Steiner - -  European Journal of Organic Chemistry - Wiley Online Library

EIDD-2801 was isolated in 69% yield (307 mg) and ≥99% purity as a white
solid.
1H-NMR (300 MHz, MeOH-d4) δ 6.91 (d, J= 8.3 Hz, 1H), 5.82 (d, J= 4.8 Hz, 1H), 5.61 (d, J= 8.2 Hz, 1H), 4.29
(d, J= 3.6 Hz, 2H), 4.15-4.07 (m, 3H), 2.62 (sept, J= 7.0 Hz, 1H), 1.18 (d, J= 7.0 Hz 6H);

13C-NMR (75 MHz,
MeOH-d4Ϳ δ 178.2, 151.5, 146.1, 131.7, 99.5, 90.4, 82.5, 74.3, 71.5, 64.9, 35.1, 19.3, 19.3. The NMR data
is in agreement with previously published values.[2] HRMS (ESI, positive mode): m/z [M + H]+
Calcd for
[C13H20N3O7 +H]+
: 330.1296, found: 330.1297.

SYN

https://www.chemistryviews.org/details/ezine/11278339/High-Yielding_Synthesis_of_Antiviral_Drug_Candidate.html

C. Oliver Kappe, Doris Dallinger, University of Graz, Austria, and colleagues have developed an improved synthesis of EIDD-2801 from uridine (pictured below) by strategically reordering the synthetic steps. The reaction sequence starts with the activation of uridine with 1,2,4-triazole and continues with a telescoped acetonide protection/esterification and a telescoped hydroxyamination/acetonide deprotection. Telescoped reaction sequences consist of two or more than one one-pot procedures that are performed back-to-back without a work-up step in-between. A continuous flow process was used for the final acetonide deprotection, which improved selectivity and reproducibility.

SYN

https://www.frontiersin.org/articles/10.3389/fphar.2020.01013/full

Frontiers | Turning the Tide: Natural Products and Natural-Product-Inspired  Chemicals as Potential Counters to SARS-CoV-2 Infection | Pharmacology

 

SYN

http://www.rsc.org/suppdata/d0/cc/d0cc05944g/d0cc05944g1.pdf

To a solution of 5’-O-isobutyrylcytidine 4 (1.0 g, 90% purity, 2.87 mmol, 1.0 eq) in 2-propanol (15 ml), hydroxylamine sulphate (2.12 g, 12.93 mmol, 4.5 eq.) was added and reaction was stirred for 20 h at 78 C. Upon completion, the reaction was cooled to room temperature. The organic layer (upper layer) was separated from biphasic reaction mixture. The aqueous layer was washed with 2-propanol (2 X 5 mL). The combined organic layer was concentrated using rotary evaporation and the crude was purified by column chromatography with a gradient of 2-15% methanol in dichloromethane to yield EIDD-2801 (1) as a white solid (963 mg, 94% purity, 96% yield). 1H NMR (600 MHz, D2O) δ 6.98 (d, J = 8.3 Hz, 1H), 5.87 (d, J = 5.0 Hz, 1H), 5.78 (d, J = 8.2 Hz, 1H), 4.39 – 4.33 (m, 3H), 4.28 (dd, J = 6.6, 3.4 Hz, 2H), 2.69 (hept, J = 7.0 Hz, 1H), 1.17 (d, J = 3.7 Hz, 3H), 1.16 (d, J = 3.7 Hz, 3H). 13C NMR (126 MHz, D2O) δ 18.1, 18.2, 33.9, 48.8, 63.6, 69.6, 72.5, 81.0, 88.5, 98.8, 131.1, 151.1, 179.8 ppm; LRMS: 330.1 [M+H]+ ; HRMS (ESI): calcd. for C13H19N3O7 [M+H]+ 330.1296, found 330.1302; Purity: 94% (assessed by qNMR).

https://pubs.rsc.org/en/content/articlehtml/2020/cc/d0cc05944g

A concise route to MK-4482 (EIDD-2801) from cytidine,Chemical  Communications - X-MOL

A concise route to MK-4482 (EIDD-2801) from cytidine - Chemical  Communications (RSC Publishing) DOI:10.1039/D0CC05944G

image file: d0cc05944g-f2.tif
  Fig. 2 A new route to MK-4482 from cytidine.

References

  1. ^ Toots M, Yoon JJ, Cox RM, Hart M, Sticher ZM, Makhsous N, et al. (October 2019). “Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia”Science Translational Medicine11 (515): eaax5866. doi:10.1126/scitranslmed.aax5866PMC 6848974PMID 31645453.
  2. ^ Toots M, Yoon JJ, Hart M, Natchus MG, Painter GR, Plemper RK (April 2020). “Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model”. Translational Research218: 16–28. doi:10.1016/j.trsl.2019.12.002PMID 31945316.
  3. ^ Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, et al. (April 2020). “An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice”Science Translational Medicine12 (541): eabb5883. doi:10.1126/scitranslmed.abb5883PMC 7164393PMID 32253226.
  4. ^ Halford, Bethany. “An emerging antiviral takes aim at COVID-19”. Retrieved 1 August 2020.
  5. ^ Cohen, Jon; Piller, Charles (13 May 2020). “Emails offer look into whistleblower charges of cronyism behind potential COVID-19 drug”. Science. Retrieved 1 August 2020.
  6. ^ “COVID-19 First In Human Study to Evaluate Safety, Tolerability, and Pharmacokinetics of EIDD-2801 in Healthy Volunteers”ClinicalTrials.gov. Retrieved 1 June 2020.
  7. ^ “Ridgeback Biotherapeutics Announces Launch of Phase 2 Trials Testing EIDD-2801 as Potential Treatment for COVID-19”Business Wire. Retrieved 4 July 2020.
  8. ^ “A Safety, Tolerability and Efficacy of EIDD-2801 to Eliminate Infectious Virus Detection in Persons With COVID-19”ClinicalTrials.gov. Retrieved 4 July 2020.
  9. ^ “The Effect of EIDD-2801 on Viral Shedding of SARS-CoV-2 (COVID-19)”ClinicalTrials.gov. Retrieved 4 July 2020.
  10. ^ Court, Emma (31 July 2020). “Merck pushes ahead on COVID-19 treatment, vaccines”. Retrieved 31 July 2020.
  11. ^ ClinicaL trials register : Efficacy and Safety of Molnupiravir (MK-4482) in Hospitalized Adult Participants With COVID-19 (MK-4482-001)

Story image

Electron microscope image of SARS virus in a tissue culture isolate, courtesy of CDC Public Health Image Library.

The drug EIDD-1931 was effective against SARS and MERS viruses in the laboratory, and a modified version (EIDD-2801) could potentially be valuable against 2019-nCoV.

https://news.emory.edu/stories/2020/02/coronavirus_eidd/index.html

Emory, collaborators testing antiviral drug as potential treatment for coronaviruses

09812-buscon5-emory.jpg

An antiviral compound discovered at Emory University could potentially be used to treat the new coronavirus associated with the outbreak in China and spreading around the globe. Drug Innovation Ventures at Emory (DRIVE), a non-profit LLC wholly owned by Emory, is developing the compound, designated EIDD-2801.

In testing with collaborators at the University of North Carolina at Chapel Hill and Vanderbilt University Medical Center, the active form of EIDD-2801, which is called EIDD-1931, has shown efficacy against the related coronaviruses SARS (Severe Acute Respiratory Syndrome)- and MERS-CoV (Middle East Respiratory Syndrome Coronavirus). Some of the data was recently published in Journal of Virology.

EIDD-2801 is an oral ribonucleoside analog that inhibits the replication of multiple RNA viruses, including respiratory syncytial virus, influenza, chikungunya, Ebola, Venezuelan equine encephalitis virus, and Eastern equine encephalitis viruses.

“We have been planning to enter human clinical tests of EIDD-2801 for the treatment of influenza, and recognized that it has potential activity against the current novel coronavirus,” says George Painter, PhD, director of the Emory Institute for Drug Development (EIDD) and CEO of DRIVE. “Based on the drug’s broad-spectrum activity against viruses including influenza, Ebola and SARS-CoV/MERS-CoV, we believe it will be an excellent candidate.”

“Our studies in the Journal of Virology show potent activity of the EIDD-2801 parent compound against multiple coronaviruses including SARS and MERS,” says Mark Denison, MD, the Stahlman Professor of Pediatrics and director of pediatric infectious diseases at Vanderbilt University School of Medicine.  “It also has a strong genetic barrier to development of viral resistance, and its oral bioavailability makes it a candidate for use during an outbreak.”

“Generally speaking, seasonal flu is still a much more common threat than this coronavirus, however, novel emerging coronaviruses represent a considerable threat to global health as evidenced by the new 2019-nCoV,” said Ralph Baric, PhD, an epidemiology professor at the University of North Carolina’s Gillings School of Global Public Health. “But the reason the new coronavirus is so concerning is that it’s much more likely to be deadly than the flu – fatal for about one in 25 people versus one in 1,000 for the flu.”

The development of EIDD-2801 has been funded in whole or in part with Federal funds from  the National Institute of Allergy and Infectious Diseases (NIAID), under contract numbers HHSN272201500008C and 75N93019C00058, and from the Defense Threat Reduction Agency (DTRA), under contract numbers HDTRA1-13-C-0072 and HDTRA1-15-C-0075, for the treatment of Influenza, coronavirus, chikungunya,  and Venezuelan equine encephalitis virus.

About DRIVE:  DRIVE is a non-profit LLC wholly owned by Emory started as an innovative approach to drug development.  Operating like an early stage biotechnology company, DRIVE applies focus and industry development expertise to efficiently translate discoveries to address viruses of global concern. Learn more at: http://driveinnovations.org/

Emory-discovered antiviral is poised for COVID-19 clinical trials

The nucleoside inhibitor has advantages over Gilead’s remdesivir but has yet to be tested in humans

https://cen.acs.org/biological-chemistry/infectious-disease/Emory-discovered-antiviral-poised-COVID/98/i12?utm_source=Facebook&utm_medium=Social&utm_campaign=CEN&fbclid=IwAR1yIuxNNrelRhKBdPp2hz3oRlqFrDtFYgTPEEORPf1G2R30RIhPIYD9Iwg

Asmall-molecule antiviral discovered by Emory University chemists could soon start human testing against COVID-19, the respiratory disease caused by the novel coronavirus. That’s the plan of Ridgeback Biotherapeutics, which licensed the compound, EIDD-2801, from an Emory nonprofit.

EIDD-2801 works similarly to Gilead Sciences’ remdesivir, an unapproved drug that was developed for the Ebola virus and is being studied in five Phase III trials against COVID-19. Both molecules are nucleoside analogs that metabolize into an active form that blocks RNA polymerase, an essential component of viral replication.

But remdesivir can only be given intravenously, meaning it would be difficult to deploy widely. In contrast, EIDD-2801 can be taken in pill form, says Mark Denison, a coronavirus expert and director of the infectious diseases division at Vanderbilt Medical School. Denison partnered with Emory and researchers at the University of North Carolina to test the compound against coronaviruses.

 

EIDD-2801 has other promising features. Many antivirals work by introducing errors into the viral genome, but, unlike other viruses, coronaviruses can fix some mistakes. In lab experiments, EIDD-2801 “was able to overcome the coronavirus proofreading function,” Denison says.

He also notes that while remdesivir and EIDD-2801 both block RNA polymerase, they appear to do it in different ways, meaning they could be complementary.

Unlike remdesivir, EIDD-2801 lacks human safety data. Ridgeback founder and CEO Wendy Holman says she expects the US Food and Drug Administration to give the green light for a Phase I study in COVID-19 infections within “weeks, not months.”

“weeks, not months.”

Molnupiravir
MK-4482.svg
Clinical data
Other names MK-4482, EIDD-2801
Legal status
Legal status
  • US: Investigational drug
Identifiers
CAS Number
PubChem CID
UNII
Chemical and physical data
Formula C13H19N3O7
Molar mass 329.31 g·mol−1
3D model (JSmol)

////////EIDD 2801, EMORY, CORONA VIRUS,  COVID 19, mk 4482, molnupiravir, merck

CC(C)C(=O)OC[C@H]2O[C@@H](N1C=CC(=NC1=O)NO)[C@H](O)[C@@H]2O

NEW DRUG APPROVALS

ONE TIME

$10.00

Application IdApplication NumberApplication DateCountryTitle
US3338280141717017208.02.2021USN4-HYDROXYCYTIDINE AND DERIVATIVES AND ANTI-VIRAL USES RELATED THERETO
US3052515951675577907.12.2018USN4-HYDROXYCYTIDINE AND DERIVATIVES AND ANTI-VIRAL USES RELATED THERETO
WO2021159044PCT/US2021/01698407.02.2021WON4-HYDROXYCYTIDINE AND DERIVATIVES AND ANTI-VIRAL USES RELATED THERETO
WO2021137913PCT/US2020/05485708.10.2020WO4′-HALOGEN CONTAINING NUCLEOTIDE AND NUCLEOSIDE THERAPEUTIC COMPOSITIONS AND USES RELATED THERETO
str1
str2
str3

FDA approves new treatment for hospital-acquired and ventilator-associated bacterial pneumonia


The U.S. Food and Drug Administration today approved a new indication for the previously FDA-approved drug, Zerbaxa (ceftolozane and tazobactam) for the treatment of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) in patients 18 years and older. The FDA initially approved Zerbaxa in 2014 to treat complicated intra-abdominal infections and for complicated urinary tract infections.

“A key global challenge we face as a public health agency is addressing the threat of antimicrobial-resistant infections,” said FDA Principal Deputy Commissioner Amy Abernethy, M.D., Ph.D. “Hospital-acquired and ventilator-associated bacterial pneumonia are serious infections that can result in death in some patients. New therapies to treat these infections are important to …

https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-hospital-acquired-and-ventilator-associated-bacterial-pneumonia?utm_campaign=060319_PR_FDA%20approves%20treatment%20for%20hospital-acquired%20and%20ventilator-associated%20bacterial%20pneumonia&utm_medium=email&utm_source=Eloqua

June 03, 2019

The U.S. Food and Drug Administration today approved a new indication for the previously FDA-approved drug, Zerbaxa (ceftolozane and tazobactam) for the treatment of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) in patients 18 years and older. The FDA initially approved Zerbaxa in 2014to treat complicated intra-abdominal infections and for complicated urinary tract infections.

“A key global challenge we face as a public health agency is addressing the threat of antimicrobial-resistant infections,” said FDA Principal Deputy Commissioner Amy Abernethy, M.D., Ph.D. “Hospital-acquired and ventilator-associated bacterial pneumonia are serious infections that can result in death in some patients. New therapies to treat these infections are important to meet patient needs because of increasing antimicrobial resistance. That’s why, among our other efforts to address antimicrobial resistance, we’re focused on facilitating the development of safe and effective new treatments to give patients more options to fight life-threatening infections.”

HABP/VABP occur in patients in hospitals or other health care facilities and can be caused by a variety of bacteria. According to data from the U.S. Centers for Disease Control and Prevention, HABP and VABP are currently the second most common type of hospital-acquired infection in the United States, and are a significant issue in patients in the intensive care unit (ICU).

The safety and efficacy of Zerbaxa for the treatment of HABP/VABP, administered via injection, was demonstrated in a multinational, double-blind study that compared Zerbaxa to another antibacterial drug in 726 adult patients hospitalized with HABP/VABP. The study showed that mortality and cure rates were similar between Zerbaxa and the comparator treatment.

The most common adverse reactions observed in the HABP/VABP trial among patients treated with Zerbaxa were elevated liver enzyme levels, renal impairment or failure, and diarrhea.
Zerbaxa should not be used in patients with known serious hypersensitivity to components of Zerbaxa, as well as hypersensitivity to piperacillin/tazobactam or other members of the beta lactam class of antibacterial drugs.

Zerbaxa received FDA’s Qualified Infectious Disease Product (QIDP) designation for the treatment of HABP/VABP. The QIDP designation is given to antibacterial and antifungal drug products intended to treat serious or life-threatening infections under the Generating Antibiotic Incentives Now (GAIN) title of the FDA Safety and Innovation Act. As part of QIDP designation, the Zerbaxa marketing application for the HABP/VABP indication was granted Priority Review under which the FDA’s goal is to take action on an application within an expedited time frame.

The FDA granted the approval of Zerbaxa for the treatment of HABP/VABP to Merck & Co., Inc.

//////////////ceftolozane,  tazobactam, FDA 2019,  Zerbaxa,  HABP/VABP, Merck , Qualified Infectious Disease Product,  (QIDP),  Priority Review

Vericiguat, ベルイシグアト


Vericiguat.pngImage result for vericiguatImage result for vericiguat

Vericiguat

BAY 102; BAY-1021189; MK-1242

1350653-20-1
Chemical Formula: C19H16F2N8O2

Molecular Weight: 426.3878

Vericiguat; 1350653-20-1; UNII-LV66ADM269; Methyl (4,6-diamino-2-(5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)pyrimidin-5-yl)carbamate; BAY-1021189; LV66ADM269

Methyl (4,6-diamino-2-(5-fluoro-1-((2-fluorophenyl)methyl)-1H-pyrazolo(3,4-b)pyridin-3-yl(pyrimidin-5-yl)carbamate

methyl N-[4,6-diamino-2-[5-fluoro-1-[(2-fluorophenyl)methyl]pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-5-yl]carbamate

Methyl{4,6-diamino-2-[5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridi- n-3-yl]pyrimidin-5-yl}carbamate

  • Originator Bayer HealthCare Pharmaceuticals
  • Developer Bayer HealthCare Pharmaceuticals; Merck & Co
  • Mechanism of Action Guanylate cyclase stimulants
  • Phase III Chronic heart failure
  • Phase I Coronary artery disease
  • 28 May 2018 Phase II VITALITY HFpEF trial for Chronic heart failure in Austria, USA, Belgium, Portugal, Canada, Spain, Hungary and Greece (PO) (EudraCT2018-000298-65) (NCT03547583)
  • 17 May 2018 Phase-I clinical trials in Coronary artery disease (In adults, In the elderly) in Moldova and Germany (PO) (NCT03504982)
  • 20 Apr 2018 Bayer in collaboration with Merck Sharp & Dohme Corp. plans a phase I trial for Coronary Artery Disease in the Netherlands, Moldova and Germany (NCT03504982)

Vericiguat, also known as BAY1021189 or BAY10-21189, is a potent and orally active sGC stimulator (Soluble Guanylate Cyclase Stimulator). Direct stimulation of soluble guanylate cyclase (sGC) is emerging as a potential new approach for the treatment of renal disorders. sGC catalyzes the formation of cyclic guanosine monophosphate (cGMP), deficiency of which is implicated in the pathogenesis of chronic kidney disease (CKD).

Vericiguat, discovered at Bayer, is the first soluble guanylate cyclase (sGC) stimulator. Vericiguat is currently being studied in a Phase III clinical program for the treatment of heart failure with reduced ejection fraction (HFrEF)

ベルイシグアト
Vericiguat

C19H16F2N8O2 : 426.38
[1350653-20-1]

Vericiguat hydrochloride.png

Vericiguat hydrochloride

cas 1350658-96-6

PHASE 3 MERCK/BAYER

Chemical Names: UNII-5G76IGF54K; 5G76IGF54K; ; 1350658-96-6; Carbamic acid, N-(4,6-diamino-2-(5-fluoro-1-((2-fluorophenyl)methyl)-1H-pyrazolo(3,4-b)pyridin-3-yl)-5-pyrimidinyl)-, methyl ester, hydrochloride (1:1); Methyl (4,6-diamino-2-(5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo(3,4-b)pyridin-3-yl)pyrimidin-5-yl)carbamate hydrochloride
Molecular Formula: C19H17ClF2N8O2
Molecular Weight: 462.846 g/mol

Image result for DRUG FUTURE Vericiguat

Clip

https://www.thieme-connect.com/products/ejournals/pdf/10.1055/s-0036-1590758.pdf

Image result for vericiguat

Significance: Vericiguat (BAY 1021189) is an orally available soluble guanylate cyclase (sGC) stimulator that has entered phase-three trials for the once-daily treatment of chronic heart failure. Key steps in the synthesis depicted are (1) construction of the 5-fluoro-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine-3-carboxylate C by condensation of the 5-amino-1H-pyrazole-3-carboxylate A with the aldehyde B and (2) construction of the pyrimidine-4,5,6-triamine derivative H through reaction of [(E)-phenyldiazenyl]malononitrile (G) with amidine F.

Comment: Experimental details are provided for the noteworthy four-step synthesis (not shown) of the crystalline 2-fluoro-(3-morpholin-4-yl)acrylaldehyde B from commercially available 2,2,3,3- tetrafluoro-1-propanol. The synthesis of pyrazole A is described in a patent (A. Straub et al. WO 2000/006569 A1). The [(E)-phenyldiazenyl]malononitrile (G) was generated in situ by reaction of phenyldiazonium chloride with malononitrile.

M. FOLLM ANN * E T AL. (BAYER AG, WUPPERTAL , GE RMANY) Discovery of the Soluble Guanylate Cyclase Stimulator Vericiguat (BAY 1021189) for the Treatment of Chronic Heart Failure J. Med. Chem. 2017, 60, 5146–5161
Clip
Image result for vericiguat
Image result for vericiguat
Image result for vericiguat
Image result for vericiguatImage result for vericiguatImage result for vericiguat
24. Yield 2.2 g (70%). 1 H NMR (400 MHz, DMSO-d6): δ = 8.89 (dd, J = 9.0, 2.8 Hz, 1H), 8.66 (m, 1H), 7.99 and 7.67 (2 br s, 1H), 7.32−7.40 (m, 1H), 7.19−7.26 (m, 1H), 7.10−7.19 (m, 2H), 6.22 (br s, 4H), 5.79 (s, 2H), 3.62 (br s, 3H). LC-MS (method d): tR (min) = 0.79. MS (ESI +): m/z = 427 [M + H]+
PATENT
US 8,802,847

Example 13

Methyl{4,6-diamino-2-[5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridi- n-3-yl]pyrimidin-5-yl}carbamate

Method A:

4.0 g (77.0% by weight, 8.36 mmol) of the compound from Example 12 in 37.9 ml of isopropanol were heated to 35.degree. C. and then 0.84 ml (10.87 mmol) of methyl chloroformate was added dropwise. The mixture was stirred at 35.degree.-40.degree. C. for 20 h and heated to 50.degree. C., and 9.5 ml of methanol were added. Subsequently, 1.9 ml of triethylamine were added dropwise within 0.5 h and rinsed in with 1.3 ml of methanol, and the mixture was stirred at 50.degree. C. for 1 h. Thereafter, the reaction mixture was cooled to RT and stirred at RT for 1 h, and the solids were filtered off with suction, washed three times with 8 ml each time of ethanol, suction-dried and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 3.4 g of crude product. 3.0 g of the crude product were stirred in 8 ml of DMSO for 5 min, 13.0 ml of ethyl acetate and 50 mg of activated carbon were added, and the mixture was heated at reflux (84.degree. C.) for 15 min. The suspension was hot-filtered and the filter residue was washed with 1.9 ml of ethyl acetate.sup.1). 60 ml of ethyl acetate and 16 ml of ethanol were heated to 60.degree. C., and the combined filtrates were added dropwise and stirred at 60.degree. C. for 1.5 h. The suspension was cooled to RT within 25 min, stirred for a further 1.5 h, cooled further to 0.degree.-5.degree. C. and stirred for a further 1 h. The solids were filtered off with suction, washed twice with 6.4 ml each time of ethyl acetate, suction-dried and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 2.2 g (70.0% of theory) of the title compound. 1) According to the preparation process described, the di-dimethyl sulphoxide solvate is obtained at this point, and this is characterized in Tables 2 and 4 by the reflections in the x-ray diffractogram and bands in the IR spectrum.

MS (ESIpos): m/z=427 (M+H).sup.+

.sup.1H NMR (400 MHz, DMSO-d.sub.6): .delta.=3.62 (br s, 3H), 5.79 (s, 2H), 6.22 (br s, 4H), 7.10-7.19 (m, 2H), 7.19-7.26 (m, 1H), 7.32-7.40 (m, 1H), 7.67 and 7.99 (2 br s, 1H), 8.66 (m, 1H), 8.89 (dd, 1H) ppm.

The di-dimethyl sulphoxide solvate of the compound of the formula (I) has the advantage of much better filterability than the substance in the prior art. Furthermore, the preparation process via the di-dimethyl sulphoxide solvate of the compound of the formula (I) leads to a very high purity of the compound of the formula (I).

Method B:

4.0 g (10.8 mmol) of the compound from Example 12 Method B in 37.9 ml of isopropanol were heated to 35.degree. C. and then 1.1 ml (14.1 mmol) of methyl chloroformate were added dropwise. The mixture was stirred at 35.degree.-40.degree. C. for 16.5 h and cooled to RT, and 2.1 ml of aqueous ammonia (28%) were added. Subsequently, 4.2 ml of water were added and the mixture was stirred for 2.5 h. The solids were filtered off with suction, washed twice with 5 ml each time of water, suction-dried and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 4.4 g of crude product.

Method C:

4.0 g (10.8 mmol) of the compound from Example 12 Method B in 37.9 ml of isopropanol were heated to 35.degree. C. and then 1.1 ml (14.1 mmol) of methyl chloroformate were added dropwise. The mixture was stirred at 35.degree.-40.degree. C. for 16.5 h, and 9.5 ml of methanol were added at 50.degree. C. Subsequently, 2.42 ml of triethylamine were added dropwise within 20 min and rinsed in with 1.3 ml of methanol, and the mixture was stirred at 50.degree. C. for 1 h. Thereafter, the reaction mixture was cooled to RT and stirred at RT for 1 h, and the solids were filtered off with suction, washed three times with 8 ml each time of methanol, suction-dried and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 4.3 g of crude product.

Method D:

6.9 g of the crude product were stirred in 18.4 ml of DMSO for 5 min, 30.0 ml of ethyl acetate and 115 mg of activated carbon were added, and the mixture was heated at reflux (84.degree. C.) for 15 min. The suspension was hot-filtered and the filter residue was washed with 4.4 ml of ethyl acetate. 138 ml of ethyl acetate were heated to 50.degree. C., and the combined filtrates were added dropwise and stirred at 45-50.degree. C. for 1 h. The suspension was cooled to 0.degree.-5.degree. C. within 1.5 h and stirred for a further 1 h. The solids were filtered off with suction, washed twice with 14.8 ml each time of ethyl acetate and suction-dried for 1 h. 6.4 g of the di-dimethyl sulphoxide solvate were obtained as a moist product.sup.1).

Method E:

2.0 g of the di-dimethyl sulphoxide solvate were stirred at reflux temperature in 40 ml of ethyl acetate and 11.1 ml of ethanol for 17 h, cooled to RT and stirred for a further 1 h. The solids were filtered off with suction, washed four times with 1.4 ml each time of ethyl acetate and dried in a vacuum drying cabinet at 50.degree. C. under a gentle nitrogen stream. This gave 1.4 g of the title compound present in polymorph I.

Method F:

0.5 g of the di-dimethyl sulphoxide solvate were stirred at reflux temperature in 12.5 ml of solvent for 17 h, cooled to RT and stirred for a further 1 h. The solids were filtered off with suction, washed with 2 ml of solvent and suction-dried for 30 min. This gave 0.3 g of the title compound present in polymorph I.

The following solvents were used:

1.) 9 ml of ethyl acetate/3.5 ml of ethanol/0.3 ml of water

2.) 12.5 ml of isopropanol

3.) 12.5 ml of isopropanol/0.3 ml of water

4.) 12.5 ml of methanol

5.) 12.5 ml of methanol/0.3 ml of water

6.) 12.5 ml of acetonitrile

7.) 12.5 ml of acetone

8.) 12.5 ml of tetrahydrofuran,

9.) 12.5 ml of methyl tert-butyl ether

Table 1 indicates the reflections of the x-ray diffractogram. Table 3 shows the bands of the IR spectrum.

The compound (I) in crystalline polymorph I is notable for higher stability and more particularly for the fact that it is stable in the micronization process and hence no conversion and recrystallization takes place.

The compound of the formula (I) can be prepared by processes described above. This affords the compound of the formula (I) in a crystal polymorph referred to hereinafter as polymorph I. Polymorph I has a melting point of 257.degree. C. and a characteristic x-ray diffractogram featuring the reflections (2 theta) 5.9, 6.9, 16.2, 16.5, 24.1 and 24.7, and a characteristic IR spectrum featuring the band maxima (in cm.sup.-1) 1707, 1633, 1566, 1475, 1255 and 1223 (Tables 1 and 3, FIGS. 1 and 5).

Surprisingly, four further polymorphs, a monohydrate, a dihydrate, a DMF/water solvate and a di-dimethyl sulphoxide solvate, and also a triacetic acid solvate of the compound of the formula (I) were found. The compound of the formula (I) in polymorph II melts at approx. 253.degree. C.; the compound of the formula (I) in polymorph III has a melting point of approx. 127.degree. C. Polymorph IV of the compound of the formula I melts at a temperature of 246.degree. C., while polymorph V has a melting point of 234.degree. C. The monohydrate contains approx. 4.1% water, the dihydrate contains 7.8% water, the DMF/water solvate contains 13.6% dimethylformamide and 0.9% water, the di-DMSO solvate contains 26.8% dimethyl sulphoxide and the triacetic acid solvate contains 29.7% acetate. Each of the crystalline forms mentioned has a characteristic x-ray diffractogram and IR spectrum (Tables 2 and 3, FIGS. 1-4, 6-14).

TABLE 1
X-ray diffractometry for polymorphs I to V

FIGURES

FIG. 1: IR spectrum of the compound of the formula (I) in polymorphs I, II and III

FIG. 2: IR spectrum of the compound of the formula (I) in polymorphs IV, V and as the triacetic acid solvate

FIG. 3: IR spectrum of the compound of the formula (I) as the di-DMSO solvate, DMF/water solvate and monohydrate

FIG. 4: IR spectrum of the compound of the formula (I) as the dihydrate

FIG. 5: X-ray diffractogram of the compound of the formula (I) in polymorph I

FIG. 6: X-ray diffractogram of the compound of the formula (I) in polymorph II

FIG. 7: X-ray diffractogram of the compound of the formula (I) in polymorph III

FIG. 8: X-ray diffractogram of the compound of the formula (I) in polymorph IV

FIG. 9: X-ray diffractogram of the compound of the formula (I) in polymorph V

FIG. 10: X-ray diffractogram of the compound of the formula (I) as the triacetic acid solvate

FIG. 11: X-ray diffractogram of the compound of the formula (I) as the di-DMSO solvate

FIG. 12: X-ray diffractogram of the compound of the formula (I) as the DMF-water solvate

FIG. 13: X-ray diffractogram of the compound of the formula (I) as the monohydrate

FIG. 14: X-ray diffractogram of the compound of the formula (I) as the dihydrate

PATENT

Example 11A

2-[5-Fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidine-4,5,6-triamine

      Variant A: Preparation Starting from Example 7A:
      In pyridine (30 ml), 378 mg (0.949 mmol) of the compound from Example 7A were introduced and then 143 mg (0.135 mmol) of palladium (10% on carbon) were added. The mixture was hydrogenated overnight at RT under standard hydrogen pressure. The suspension was then filtered through kieselguhr and the filtercake was washed with ethanol. The filtrate was concentrated and yielded 233 mg (81% purity, 51% of theory) of the desired compound, which was reacted without further purification.
      Variant B: Preparation Starting from Example 10A:
      In DMF (800 ml), 39.23 g (85.75 mmol) of the compound from Example 10A were introduced and then 4 g of palladium (10% on carbon) were added. The mixture was hydrogenated with stirring overnight under standard hydrogen pressure. The batch was filtered over kieselguhr and the filter product was washed with a little DMF and then with a little methanol, and concentrated to dryness. The residue was admixed with ethyl acetate and stirred vigorously, and the precipitate was filtered off with suction, washed with ethyl acetate and diisopropyl ether and dried under a high vacuum over Sicapent.
      Yield: 31.7 g (100% of theory)
      LC-MS (method 2): R t=0.78 min
      MS (ESIpos): m/z=369 (M+H) +

Working Examples

Example 1

Methyl {4,6-diamino-2-[5-fluoro-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-5-yl}carbamate

      In pyridine (600 ml), 31.75 g (86.20 mmol) of the compound from Example 11A were introduced under argon and cooled to 0° C. Then a solution of 6.66 ml (86.20 mmol) of methyl chloroformate in dichloromethane (10 ml) was added dropwise and the mixture was stirred at 0° C. for 1 h. Thereafter the reaction mixture was brought to RT, concentrated under reduced pressure and co-distilled repeatedly with toluene. The residue was stirred with water/ethanol and then filtered off on a frit, after which it was washed with ethanol and ethyl acetate. Subsequently the residue was again stirred with diethyl ether, isolated by filtration with suction and then dried under a high vacuum.
      Yield: 24.24 g (65% of theory)
      LC-MS (method 2): R t=0.79 min
      MS (ESIpos): m/z=427 (M+H) +
       1H NMR (400 MHz, DMSO-d 6): δ=3.62 (br. s, 3H), 5.79 (s, 2H), 6.22 (br. s, 4H), 7.10-7.19 (m, 2H), 7.19-7.26 (m, 1H), 7.32-7.40 (m, 1H), 7.67 and 7.99 (2 br. s, 1H), 8.66 (m, 1H), 8.89 (dd, 1H).
Patent ID

Title

Submitted Date

Granted Date

US2016324856 USE OF SGC STIMULATORS FOR THE TREATMENT OF NEUROMUSCULAR DISORDERS
2015-01-13
US2016158233 SGC STIMULATORS OR SGC ACTIVATORS AND PDE5 INHIBITORS IN COMBINATION WITH ADDITIONAL TREATMENT FOR THE THERAPY OF CYSTIC FIBROSIS
2014-07-21
2016-06-09
US2013158028 USE OF STIMULATORS AND ACTIVATORS OF SOLUBLE GUANYLATE CYCLASE FOR TREATING SICKLE-CELL ANEMIA AND CONSERVING BLOOD SUBSTITUTES
2011-06-21
2013-06-20
US9845300 PROCESS FOR PREPARING SUBSTITUTED 5-FLUORO-1H-PYRAZOLOPYRIDINES
2017-02-17
US9604948 PROCESS FOR PREPARING SUBSTITUTED 5-FLUORO-1H-PYRAZOLOPYRIDINES
2015-07-10
2016-01-14
Patent ID

Title

Submitted Date

Granted Date

US2017273977 SUBSTITUTED 5-FLUORO-1H-PYRAZOLOPYRIDINES AND THEIR USE
2016-11-10
US8921377 Substituted 5-fluoro-1H-pyrazolopyridines and their use
2013-03-27
2014-12-30
US8420656 Substituted 5-fluoro-1H-pyrazolopyridines and their use
2012-01-26
US9096592 BICYCLIC AZA HETEROCYCLES, AND USE THEREOF
2011-08-31
2014-05-29
US2014038956 Use of sGC stimulators, sGC activators, alone and combinations with PDE5 inhibitors for the treatment of systemic sclerosis (SSc).
2011-05-24
2014-02-06

////////////////Vericiguat,  BAY 102, BAY-1021189, MK-1242, ベルイシグアト , PHASE 3,  MERCK, BAYER

COC(=O)NC1=C(N=C(N=C1N)C2=NN(C3=NC=C(C=C23)F)CC4=CC=CC=C4F)N

Atogepant, атогепант , أتوجيبانت , 阿托吉泮 ,


imgChemSpider 2D Image | atogepant | C29H23F6N5O3Atogepant.pngImage result for AtogepantImage result for AtogepantFigure imgf000011_0002

Atogepant

  • Molecular FormulaC29H23F6N5O3
  • Average mass603.515 Da

AGN 241689; MK 8031

(3S)-N-[(3S,5S,6R)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1H-pyrrolo[2,3-b]pyridine-3,6′-5,7-dihydrocyclopenta[b]pyridine]-3′-carboxamide

Spiro[6H-cyclopenta[b]pyridine-6,3′-[3H]pyrrolo[2,3-b]pyridine]-3-carboxamide, 1′,2′,5,7-tetrahydro-N-[(3S,5S,6R)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)-3-piperidinyl]-2′-ox o-, (6S)-[ACD/Index Name]
атогепант [Russian] [INN]
أتوجيبانت [Arabic] [INN]
阿托吉泮 [Chinese] [INN]
(6S)-N-[(3S,5S,6R)-6-Methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)-3-piperidinyl]-2′-oxo-1′,2′,5,7-tetrahydrospiro[cyclopenta[b]pyridine-6,3′-pyrrolo[2,3-b]pyridine]-3-carboxamide [ACD/IUPAC Name]
10510
1374248-81-3 [RN]
7CRV8RR151
Atogepant; UNII-7CRV8RR151; 7CRV8RR151; AGN-241689; MK-8031; 1374248-81-3

 Spiro(6H-cyclopenta(b)pyridine-6,3′-(3H)pyrrolo(2,3-b)pyridine)-3-carboxamide, 1′,2′,5,7-tetrahydro-N-((3S,5S,6R)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)-3-piperidinyl)-2′-oxo-, (3’S)-

Oral prevention of episodic migraine in adult patients.
 
Innovator – Allergan Phase 3
Allergan announced positive results from Phase 2b/3 clinical trial in Jun 2018 evaluating the efficacy, safety, and tolerability of orally administered Atogepant,  
Being CGRP antagonist, is more efficacious than any other preventative treatment on the market
  • Originator Merck AG
  • Developer Allergan
  • Class Antimigraines; Monoclonal antibodies; Piperidines; Pyridines; Pyrroles; Small molecules; Spiro compounds
  • Mechanism of Action Calcitonin gene-related peptide antagonists

Highest Development Phases

  • Phase II/III Migraine

Most Recent Events

  • 11 Jun 2018 Efficacy and adverse events data from a phase IIb/III trial in Migraine released by Allergan
  • 23 Apr 2018 Allergan completes a phase II/III trial for Migraine (Prevention) in USA (PO) (NCT02848326)
  • 14 Sep 2017 Chemical structure information added

UPDATE………..

FDA APPROVED 2021, 28/9/21, Qulipta

The product was discovered by Merck and, in August 2015, it was licensed to Allergan for worldwide development and marketing.

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

  •  

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter 

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

Synthesis

US20160130273

Figure US20160130273A1-20160512-C00031

 Figure imgf000055_0002
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000057_0002
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000061_0002
 
PATENT
WO 2007133491
PATENT
PRODUCT PATENT
WO 2012064910

INTERMEDIATE 1

Figure imgf000041_0002
Figure imgf000042_0001

carboxylic acid

The title compound can be prepared by either Method I or Method II as described below.

Method I:

Step A: (6S)-3-Iodo-5 J-dihyc ospiro cyclopentar¾1pyrid e-6 ‘-py

one

A solution of sodium nitrite (36.1 g, 523 mmol) in water (20 mL) was added dropwise over 5 min to a solution of (6S -3-amino-5,7-dihydros iro[cyclopenta[ί)]pyridi e-6,3,– pyrrolo[2,3-0]pyridin]-2′(rH)-one (prepared according to the procedures described in

WO2008/020902, 66.0 g, 262 mmol) and -toluenesulfonic acid (149 g, 785 mmol) in acetonitrile (650 mL) at 23 °C. After stirring for 30 min, a solution of potassium iodide (109 g, 654 mmol) in water (20 mL) was added over 5 min. The resulting mixture was stirred at 23 °C for 40 min, then diluted with water (1 L) and basified by the addition of solid NaOH (33.0 g, 824 mmol) with stirring. Iodine by-product was reduced by the addition of 10% aqueous sodium thio sulfate solution and stirring for an additional 30 min. The solids were collected by filtration, washed with water, and dried under nitrogen atmosphere to give the title compound, which was used without further purification. MS: mlz = 363.9 (M + 1).

Step B: Methyl (65V2′-oxo-lΛ2 5J-tetrahydrospiroicvclopenta[6]p ridine-6.3′-pyrlΌlo[2. – 6]py ridine] – 3 -car boxy late

A solution of (65)-3-iodo~5 ,7-dihydrospiro[cyclopenta[&]pyridine-6,3′- pyrrolo[2,3-&]pyridin]-2′(rH)-one (51.0 g, 140 mmol), sodium acetate (23.0 g, 281 mmol) and dichloro l,l’~bis(diphenylphosphino)ferrocene palladium(II) dichloromethane adduct (2.9 g, 3.5 mmol) in MeOH (560 mL) was pressurized to 120 psi of CO at 23 °C and then heated at 80 °C for 12 h with stirring. The reaction mixture was diluted with water (1 L), and the precipitate collected by filtration, washed with water, and dried under nitrogen atmosphere to give the title compound, which was used without further purification. MS: mlz = 296.1 (M + 1).

Figure imgf000042_0002

3 -carboxylic acid

A mixture of methyl (6S)-2′-oxo-r,2′,5,7-tetrahydrospiro[cyclopenta[i)]pyridine- 6,3′-pyrrolo[2,3-&]pyridine]-3-carboxylate (30.0 g, 102 mmol) and aqueous 6 N sodium hydroxide solution (50.8 mL, 305 mmol) in MeOH (920 mL) was heated at reflux for 1 h. The mixture was allowed to cool to 23 °C before it was acidified to pH ~6 with aqueous 1 N hydrochloric acid solution, resulting in a black precipitate which was removed by filtration. The filtrate was concentrated under reduced pressure to a volume of ~100 mL and then partitioned between water (500 mL) and 2-methyltetrahydrofuran (2- eTHF, 250 mL). The aqueous layer was extracted with 2-MeTHF (5 χ 250 mL), and the combined organic layers were dried over sodium sulfate and concentrated to provide the title compound. MS: mlz ~ 282.0 (M + 1).

Method II:

Step A: Dimethyl 5-bromopyridine-2,3-dicarboxylate

Concentrated sulfuric acid (1 L, 18.7 mol) was added slowly over 10 min to a . suspension of pyridine-2,3-dicarboxylic acid (5.00 kg, 29.9 mol) in methanol (50 L), dissolving the suspension. The resulting mixture was heated at reflux for 48 h then cooled to 40 °C.

Bromine (8.0 kg, 50 mol) was added slowly over 2 h in 1-kg portions, keeping the temperature below 55 °C. The reaction mixture was then heated at 55 °C for 24 h, cooled to 50 °C and additional Br2 (4.0 kg, 25 mol) was added slowly over 1 h in 1-kg portions, keeping temperature below 55 °C. The reaction mixture was heated at 55 °C for 24 h, concentrated to a minimum volume (internal temp -30 °C, solution may occasionally foam), then diluted with isopropyl acetate (50 L) and washed with a saturated aqueous sodium sulfite solution (3 x 20 L) (final extract is ~pH 8) followed by water (20 L). The organic layer was concentrated to

approximately 15 L then diluted with heptane (40 L). The resulting slurry was stirred for 24 h at 23 °C. The solids were filtered, washed with heptane (10 L), and dried to give the title compound. Step B: (5-Bromopyridine-23-diyl)dimcthanol

Sodium borohydride (15.9g, 420 mmol) was added portionwise over 30 min to a solution of dimethyl 5-bromopyridine-2,3-dicarboxylate (20 g, 73 mmol) in ethanol (460 mL) precooled to 0 °C. A solution of calcium chloride (23.3 g, 209 mmol) in 150 mL was added slowly at 0 °C, and the reaction mixture was warmed to 23 °C and stirred overnight. Excess sodium borohydride was quenched by slow addition of aqueous 2 N HCl solution (230 mL, 460 mmol), followed by a stirring at 23 °C for 2 h. The mixture was concentrated to dryness.

Saturated aqueous sodium bicarbonate solution was added to the residue until a pH of approximately 7 was reached. The aqueous mixture was extracted with 2-methyltetrahydrofuran (4 x 200 mL). The combined organic layers were dried over sodium sulfate then treated with a solution of 4 N HC1 in dioxane (25 mL, 100 mmol). The resulting solid was filtered, washed with 2-methyltetrahydrofuran, and dried to give the title compound as a hydrochloride salt. MS: m!z = 218.1 (M + 1). Step C: (5-Bromopyridine-2,3-diyI)dimethanediyl dimethanesulfonate

A slurry of (5-bromopyridine-2,3-diyl)dimethanol hydrochloride (12.9g, 59.2 mmol) in tetrahydrofuran (400 mL) at 0 °C was treated with triethylamine (37.1 mL, 266 mmol). To the resulting mixture was added portionwise methanesulfonic anhydride (30.9 g, 177 mmol), keeping temperature below 5 °C. The reaction mixture was stirred at 0 °C for 1 h, then partitioned between saturated aqueous sodium bicarbonate solution (500 mL) and ethyl acetate (500 mL). The organic layer was washed saturated aqueous sodium bicarbonate solution, dried over magnesium sulfate, and concentrated to give the title compound. MS: m/z – 376.0 (M + 1).

Step D: 3-Bromo-r-{[2-(trimethylsilyl)ethoxy]methyl}-5,7- dihyjirpspiro [cyclop

(5-Bromopyridine-2,3-diyI)dimethanediyl dimethanesulfonate (17.0 g, 45.4 mmol) was added to a mixture of l-{[2-(trimetliylsilyl)ethoxy]methyl}-l}3-dihydro-2H- pyrrolo[2,3-&]pyridin-2-one (prepared according to the procedures described in

WO2008/020902, 14.0 g, 53.0 mmol) and cesium carbonate (49.0 g, 150 mmol) in ethanol (500 mL) 23 °C, and the resulting mixture was stirred for 20 h. The reaction mixture was

concentrated then partitioned between ethyl acetate (500 mL) and water (500 mL). The organic layer was dried over magnesium sulfate and concentrated. The residue was purified via silica gel chromatography (heptane initially, grading to 100% EtOAc) to give the title compound. MS: m/z = 448.1 (M + 1).

Step E: Methyl (6<Sf)-2′-oxo-r-{r2-(trimethylsilyl ethoxylmethyli-r,2′,5 J- tetrahydrospiro [cy clopenta[6] pyridine-6 ,3 ‘-pyrrolo [2, 3 -b]py ridinel -3 -carboxy late

A mixture of 3-bromo-r-{[2-(trimethylsilyl)ethoxy]methyl}-5,7- dihydrospiro[cyclopenta[¾]pyridine-6,3′-pyrrolo[2,3-¾pyridin]-2′(rH)-one (22.0 g, 49.3 mmol), PdCl2(dppf)»CH Cl2 (2.012g, 2.46 mmol), and sodium acetate (8.1g, 99 mmol) in in methanol (150 mL) was pressurized to 300 psi of carbon monoxide and then heated at 85 °C for 72 h. The reaction mixture was allowed to cool then concentrated. The residue was purified via silica gel chromatography (heptane initially, grading to 100% EtOAc) to give the title compound as a racemic mixture. MS: m/z – 426.1 (M +1). Resolution of the enantiomers by supercritical fluid chromatography (SFC) using a ChiralPak AD-H column and eluting with 40% ethanol in C02 (0.05% diethylamine as modifier) provided the title compound as the second enantiomer to elute.

Figure imgf000045_0001

A solution of methyl (65)-2′-oxo- -{[2-(trimethylsilyl)ethoxy]methyl}-r!2′f5,7- tetrahydrospiro[cyclopenta[&]pyridine-6,3′-pyrrolo[2,3-&]pyridine]-3-carboxylate (238 g, 559 mmol) in methanol (2 L) was saturated with HCI gas, allowing temperature to increase to 55 °C. The reaction mixture was cooled to 23 °C, stirred for 20 h, then concentrated. Aqueous 10 N sodium hydroxide (400 mL, 4 mol) was added to a solution of the residue in methanol (2 L), and the resulting mixture was heated at reflux for 2 h. The solution was cooled to 23 °C and the pH was adjusted to 3 with concentrated HCI. The resulting solid was filtered, washed with water then heptane, and dried to give the title compound. MS: m!z = 282.2 (M + 1).

INTERMEDIATE 15

Figure imgf000066_0001
Figure imgf000066_0002

hydrochloride

Step A: (5SSR & 5j?,6y)-6-Methvi-l-r2.2.2-trifluoroethvn-5-(2,3.6-trifluorophenvnpiperidin-2- one

Essentially following the procedures described in Intermediate 14, but using 2,3,6-trifluorophenylboronic acid in place of 2,3,5-trifluorophenylboronic acid, the title compound was obtained. MS: m/z = 326.0 (M + 1).

Step B: GS.5S.6R & 3i?,5J?.6 ‘ -3-Azido-6-methyl-i-r2.2.2 rifluoroethyl)-5-(2.3.6- trifluorophenyl)piperidin-2-one

To a stirred solution of lithium 6w(trimethylsilyl)amide (1.0 M in THF, 4.80 mL,

4.80 mmol) in THF (20 mL) at -78 °C was added a cold (-78 °C) solution of (5S,6R & 5i?,6,S)-6- methyl-l-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-2-one (1.30 g, 4,00 mmol) in THF (10 mL) dropwise, keeping the internal temperature of the reaction mixture below -65 °C. The resulting mixture was stirred at -78 °C for 30 min, then a cold (-78 °C) solution of 2,4,6- triisopropylbenzenesulfonyl azide (Harmon et l. (1973) J Org. Chem. 38, 11-16) (1.61 g, 5.20 mmol) in THF (10 mL) was added dropwise, keeping the internal temperature of the reaction mixture below -65 °C. The reaction mixture was stirred at -78 °C for 30 min, then AcOH (1.05 mL, 18.4 mmol) was added. The resulting mixture was allowed to warm slowly to ambient temperature and was poured into saturated aqueous sodium bicarbonate (50 mL) and the mixture was extracted with EtOAc (2 χ 75 mL). The combined organic layers were washed with brine, then dried over sodium sulfate, filtered, and concentrated to dryness in vacuo. The crude product was purified by silica gel chromatography, eluting with a gradient of hexanes:EtOAc – 100:0 to 20:80, to give the diastereomeric azide products (3R,5Sf6R & 3S, ;5i?,65)-3-azido-6- methyl-l-(2,2,2-trifluoroethyl)-5-(2f3,5-trifluorophenyl)piperidin-2-one, which eluted second, and the title compound, which eluted first. MS: mlz = 367.1 (M+ 1).

Step C: ferf-Butyl [(3&5^6^ν6^Φν1-2-οχο-1-(2.2,2-ΐπΑηοΓθ£υΐν1 -5-ί2.3,6- trifluorophenyl)piperidin-3-yl|carbamate

To a solution of ( S,5S,6R & 3JR,5if,6S)-3-azido-6-methyl-l-(2,2,2- trifiuoroethyl)-5-(2,3,5-trifluorophenyl)piperidin-2-one (280 mg, 0.764 mmol) and di-tert-butyl dicarbonate (217 mg, 0.994 mmol) in EtOH (5 mL) was added 10% palladium on carbon (25 mg, 0.024 mmol) and the resulting mixture was stirred vigorously under an atmosphere of hydrogen (ca. 1 atm) for 1 h. The reaction mixture was filtered through a pad of Celite® washing with EtOH, and the filtrate was concentrated in vacuo to give a crude solid. The crude product was purified by silica gel chromatography, eluting with a gradient of hexanes:EtOAc – 100:0 to 30:70, to give the racemic title compound. Separation of the enantiomers was achieved by SFC on a ChiralTech IC column, eluting with C02:MeOH:CH CN – 90:6.6:3.3, to give tert- butyl [(3i?,5i?,65)-6-methyl-2-oxo-l-(2J2,2-trifluoroemyl)-5-(2,3J6-tri¾orophenyl)piperidin-3- yl]carbamate as the first major peak, and fert-butyl [(3Sf5S,6R)-6-methyl-2-oxo-l -(2,2,2- trifluoroethyl)-5-(2,3,6-trifiuorophenyl)piperidin-3-yl]carbamate, the title compound, as the second major peak. MS: mlz = 463.2 (M + Na).

Step D: (3&5^6i?)-3-Amino-6-methyi-l-(2,2.2-trifluoroethyl)-5-(2,3,6- trifluorophenyl)piperidin-2-one hydrochloride

A solution of tert-butyl [(35′,55′,6ii)-6-methyl-2-oxo-l-(2J2,2-trifluoroethyl)-5-

(2s3,6-trifluorophenyl)piperidin-3-yl]carbamate (122 mg, 0.277 mmol) in EtOAc (10 mL) was saturated with HCl (g) and aged for 30 min. The resulting mixture was concentrated in vacuo to give the title compound. MS: mlz = 341.1 (M + 1); lH NM (500 MHz, CD3OD) δ 7.33 (qd, 1H, J- 9.3, 4.9 Hz), 7.05 (tdd, 1H, J= 9.8, 3.7, 2.2 Hz), 4.78 (dq, 1H, J= 15.4, 9.3 Hz), 4.22 (dd, 1H, J = 12.2, 6.6 Hz ), 4.06 (ddd, 1H, J- 13.3, 4.5, 2.7 Hz ), 3.97 (m, 1H), 3.73 (dq, 1H, J = 15.4, 8.8 Hz), 2.91 (qt, 1H, J- 12.7, 3.1 Hz), 2.36 (ddd, 1H, J= 12.7, 6.4, 2.0 Hz), 1.22 (d, 3H, J = 6.6 Hz).

EXAMPLE 4

Figure imgf000075_0001

f6SyN-[f3£5£6iO-6-Methyl-2-QXO-i-(2,2,,2-trifl^yl]-2′-oxo-l\2 5J~tetrahydrospiro[cyciopen^

carboxamide dihvdrochloride

To a stirred mixture of (6>$)-2′-οχο-Γ,2′,5,7- tetrahydrospirotcyclopenta[6]pyridine-6,3′-pyrroio[2,3-6]pyridine]-3-carboxylic acid (described in Intermediate 1) (264 mg, 0.939 mmol), (35′,5S’36J?)-3-amino-6-methyl-l-(2,2,2-trifluoroethyl)- 5-(2f3s6-trifluorophenyl)piperidin-2-one hydrochloride (described in Intermediate 15) (295 mg, 0.782 mmol), HOBT (144 mg, 0.939 mmol), and EDC (180 mg, 0.939 mmol) in DMF (8 mL) was added 7V,N-diisopropylethylamine (0.34 mL, 1.96 mmol), and the resulting mixture was stirred at ambient temperature for 3 h. The reaction mixture was then poured into saturated aqueous sodium bicarbonate (30 mL) and extracted with EtOAc (2 χ 40 mL). The combined organic layers were washed with brine, dried over sodium sulfate, and concentrated in vacuo. The residue was purified by silica gel chromatography, eluting with a gradient of

CH2Cl2:MeOH:NH40H – 100:0:0 to 90:10:0.1, to give the product, which was treated with HC1 in EtOAc at 0 °C to afford the title compound. HRMS: m/z = 604.1783 (M + 1), calculated m/z = 604.1778 for C29H24F6N5O3. iH NMR (500 MHz, CD3OD) δ 9.09 (s, 1H), 8.69 (s, 1H), 8.18 (dd, 1H, J = 5.9, 1.5 Hz), 7.89 (dd5 1H, J= 7.3, 1.5 Hz), 7.30 (m, 1H), 7.23 (dd, 1H, J= 7.3, 5.9 Hz), 7.03 (m, 1H), 4.78 (m, 1H), 4.61 (dd, 1H, J = 11.5, 6.6 Hz), 4.05 (dd, 1H, J= 13.8, 2.8 Hz), 3.96 (m, 1H), 3.84 (d, 1H, J= 18.6 Hz), 3.76 (d, 1H, J = 18.6 Hz), 3.73 (d, 1H, J= 17.3 Hz), (m, 1H), 3.61 (d, 1H, J = 17.3 Hz), 3.22 (m, 1H), 2.38 (m, 1H), 1.34 (d, 3H, J= 6.6 Hz).

 
POLYMORPHS
US 20160130273
Monohydrate, trihydrate, and carboxamide L-tartaric acid cocrystal;
 
  • Schemes 1 to 15 described below.
  • [0122]
    Scheme 1 illustrates a route to 3-aminopiperidinone intermediates of type 1.5 which may be used to prepare compounds of the present invention. Aryl acetone 1.1 can be alkylated using the iodoalanine derivative 1.2 under basic conditions to provide keto ester 1.3.
  • [0123]
    Reductive amination followed by cyclization and epimerization provides primarily cis-substituted lactam 1.4 as a racemic mixture. Chiral resolution using normal-phase liquid chromatography, for example, and removal of the Boc protecting group with HCl in EtOAc furnishes 3-aminopiperidinone 1.5 as a hydrochloride salt.
  • [0000]
    Figure US20160130273A1-20160512-C00020
  • [0124]
    An alternative sequence to 3-aminopiperidinone intermediates of type 1.5 is shown in Scheme 2. Reductive amination of keto ester 1.3 with ammonia followed by epimerization provides 2.1 as a mostly cis-substituted racemic mixture. Chiral resolution of the enantiomers provides 2.2. N-Alkylation with LiHMDS as base, for example, and an alkyl halide or epoxide affords 1.4. Removal of the Boc protecting group with HCl then affords 1.5 as a hydrochloride salt.
  • [0000]
    Figure US20160130273A1-20160512-C00021
  • [0125]
    A third method to 3-aminopiperidinone intermediates of type 1.5 is shown in Scheme 3. N-Alkylation of 5-bromo-6-methylpyridin-2(1H)-one (3.1) using cesium carbonate as base and an alkyl halide followed by nitration provides 3.2. Palladium-catalyzed cross-coupling with an aryl boronic acid then affords 3.3. Hydrogenation using platinum oxide under acidic conditions and chiral resolution of the mostly cis-substituted racemic product mixture provides 1.5 as a single enantiomer.
  • [0000]
    Figure US20160130273A1-20160512-C00022
  • [0126]
    A synthetic route to 3-aminopiperidinone intermediates of type 4.4 is shown in Scheme 4. Aryl acetonitrile 4.1 can be alkylated using the iodoalanine derivative 1.2 under basic conditions to provide cyano ester 4.2. Reductive cyclization using hydrogen and palladium hydroxide on carbon or Raney nickel, epimerization, and chiral resolution affords cis lactam 4.3 as a single enantiomer. N-Alkylation and removal of the Boc protecting group then provides 4.4 as a hydrochloride salt.
  • [0000]
    Figure US20160130273A1-20160512-C00023
  • [0127]
    Scheme 5 illustrates an alternative route to 3-aminopiperidinone intermediates of type 4.4. The arylacetonitrile 5.1 may be condensed with acrylate 5.2 at elevated temperature to give the 4-cyanobutanoate ester 5.3. Hydrogenation of nitrile 5.3 using Raney nickel catalyst and an ethanolic solution of ammonia affords the corresponding amine product, which typically cyclizes in situ to provide piperidinone 5.4. N-Alkylation of lactam 5.4 may be accomplished by a variety of methods known to those skilled in the art of organic synthesis, the exact choice of conditions being influenced by the nature of the alkylating agent, R1X. Electrophilic azidation of the resulting substituted lactam 5.5 can be accomplished using similar methodology to that described by Evans and coworkers (Evans et al. (1990) J. Am. Chem. Soc. 112, 4011-4030) to provide the azide 5.6 as a mixture of diastereoisomers, which can be separated by chromatography. The desired cis diastereomer of azide 5.6 may be reduced by catalytic hydrogenation in the presence of di-tert-butyl dicarbonate to give the corresponding Boc-protected amine 5.7, and separation of the enantiomers using chiral HPLC or SFC leads to the (3S,5S)-isomer 5.8. Finally, standard deprotection affords the desired 3-aminopiperidinone intermediate 4.4 as a hydrochloride salt.
  • [0000]
    Figure US20160130273A1-20160512-C00024
  • [0128]
    Another approach to 3-aminopiperidinone intermediates of interest, which is particularly useful for preparing 3-amino-6-methyl-5-arylpiperidin-2-ones such as 1.5, is outlined in Scheme 6. The pyridin-2(1H)-one 3.1 may be converted to the N-substituted pyridinone 6.1 by treatment with a suitable electrophile (R1X) under basic conditions. Pyridinone 6.1 can then be subjected to Suzuki-Miyaura coupling with the boronic acid 6.2, and the resulting 5-arylpyridinone 6.3 may be hydrogenated using, for example, platinum(IV) oxide catalyst to afford the corresponding 5-arylpiperidinone 6.4, which is usually obtained as predominantly the cis isomer. Further elaboration of piperidinone 6.4 may be achieved using analogous methodology to that described in Scheme 5. Specifically, electrophilic azidation followed by one-pot reduction and Boc protection leads to carbamate 6.6, and the desired enantiomer may be obtained using chiral chromatography. In some cases, the desired diastereomer of azide 6.5 may be isolated as a racemic mixture of the (3S,5S,6R)- and (3R,5R,6S)-isomers following silica gel chromatography of the crude product, and this mixture may be elaborated as outlined in Scheme 6. In other cases, it may be advantageous to take a mixture of diastereomers of azide 6.5 forward to the corresponding carbamate 6.6. The mixture of carbamate 6.6 diastereomers may be epimerized under basic conditions, such as potassium carbonate in EtOH, to afford a mixture that is significantly enriched in the desired (3S,5S,6R)- and (3R,5R,6S)-isomers, further purification may be employed to obtain the enantiomer of interest as outlined herein.
  • [0000]
    Figure US20160130273A1-20160512-C00025
    Figure US20160130273A1-20160512-C00026
  • [0129]
    A synthetic route to the azaoxindole pyridine acid intermediate 7.4 is shown in Scheme 7. Diazotization of aminopyridine 7.1, whose preparation is described in WO 2008/020902, followed by treatment with potassium iodide in the presence of NaNOprovides iodide 7.2. Palladium-catalyzed carbonylation in methanol then affords ester 7.3, which may be saponified with sodium hydroxide to furnish 7.4.
  • [0000]
    Figure US20160130273A1-20160512-C00027
  • [0130]
    An alternative synthesis of the azaoxindole pyridine acid intermediate 7.4 is shown in Scheme 8. Esterification of diacid 8.1 followed by bromination provides 8.2. Reduction with sodium borohydride then furnishes diol 8.3. Alkylation of the protected azaoxindole 8.4 with the bis-mesylate produced from 8.3 affords the spirocycle 8.5. Palladium-catalyzed carbonylation in methanol followed by chiral resolution gives ester 8.6 as a single enantiomer. Removal of the SEM protecting group under acidic conditions and hydrolysis of the ester using sodium hydroxide then provides 7.4.
  • [0000]
    Figure US20160130273A1-20160512-C00028
  • [0131]
    A synthetic route to diazaoxindole carboxylic acid intermediate 9.7 is shown in Scheme 9. Esterification of acid 9.1 is followed by vinylation under palladium catalysis to afford divinyl pyridine 9.2. Ozonolysis with a borohydride reductive workup then yields diol 9.3. After mesylation and treatment with sodium choride, the resulting dichloro intermediate 9.4 can be alkylated with oxindole 9.5 under basic conditions to give spirocycle 9.6, following chiral resolution of the enantiomers. Dechlorination under buffered hydrogenation conditions and acidic deprotection affords acid 9.7.
  • [0000]
    Figure US20160130273A1-20160512-C00029
  • [0132]
    Useful derivatives of the intermediates described herein may be prepared using well-precedented methodology. One such example is illustrated in Scheme 10, in which the azaoxindole intermediate 7.4 is converted to the corresponding nitrile derivative 10.2, which may be used to prepare compounds of the present invention. Bromination of 7.4 with N-bromosuccinimide in boron trifluoride dihydrate provides the bromo derivative 10.1, which may be converted to the desired nitrile 10.2 using zinc cyanide and a palladium catalyst as shown.
  • [0000]
    Figure US20160130273A1-20160512-C00030
  • [0133]
    A synthetic route to the azaoxindole indane acid intermediate 11.17 is shown in Scheme 11. Esterification of diacid 11.1 followed by hydrogenation using palladium on carbon as a catalyst provides aniline 11.2. Dibenzylation under basic conditions with heat affords 11.3, and reduction of the diester with LiAlHfurnishes diol 11.4. Chlorination with thionyl chloride provides benzyl chloride 11.5. Palladium-catalyzed amination of bromide 11.6 with tert-butylamine gives 11.7. Sequential treatment with n-hexyllithium and methyl chloroformate (2×) affords azaoxindole ester 11.8. Alkylation with the benzylchloride 11.5 under basic conditions in the presence of the cinchonidine-derived catalyst 11.12 (prepared via the alkylation of cinchonidine 11.10 with benzyl bromide 11.11) affords spirocycle 11.13. Deprotection of the azaoxindole using methanesulfonic acid with heat and debenzylation under standard hydrogenation conditions provides aniline 11.14. Diazotization followed by treatment with potassium iodide provides iodide 11.15. Palladium-catalyzed carbonylation in methanol then affords ester 11.16, which may be saponified with sodium hydroxide to furnish 11.17.
  • [0000]
    Figure US20160130273A1-20160512-C00031
  • [0134]
    An alternative synthesis of the azaoxindole pyridine acid intermediate 11.17 is shown in Scheme 12. Alkylation of the azaoxindole ester 11.8 with dibenzyl bromide 12.1 followed by chiral resolution of the enantiomers provides ester 12.2. Sequential deprotection of the azaoxindole using methanesulfonic acid with heat and hydrolysis of the ester provides 11.17.
  • [0000]
    Figure US20160130273A1-20160512-C00032
  • [0135]
    A synthetic route to the diazaoxindole carboxylic acid intermediate 13.4 is shown in Scheme 13. Alkylation of dibromide 12.1 with oxindole 9.5 under basic conditions and subsequent chiral resolution affords spirocycle 13.2. Dechlorination under buffered hydrogenation conditions and ester hydrolysis then affords acid 13.4.
  • [0000]
    Figure US20160130273A1-20160512-C00033
  • [0136]
    Useful derivatives of the intermediates described herein may be prepared using well-precedented methodology. One such example is illustrated in Scheme 14, in which the azaoxindole intermediate 11.17 is converted to the corresponding nitrile derivative 14.2, which may be used to prepare compounds of the present invention. Treatment of 11.17 with bromine in acetic acid provides the bromo derivative 14.1, which may be converted to the desired nitrile 14.2 using zinc cyanide and a palladium catalyst as shown.
  • [0000]
    Figure US20160130273A1-20160512-C00034
  • [0137]
    Scheme 15 illustrates conditions that can be used for the coupling of 3-aminopiperidinone intermediates, such as 15.1, and carboxylic acid intermediate 15.2, to produce, in this instance, amides 15.3. These standard coupling conditions are representative of the methods used to prepare the compounds of the present invention.
  • [0000]
    Figure US20160130273A1-20160512-C00035
  • [0138]
    The previous methods for synthesizing the lactam intermediate suffered from one or more drawbacks: racemic mixture was separated by chiral-HPLC, separation of diasteromixture by crystallization and/or use of costly PtO2. The process of the instant invention utilizes a transaminase induced dynamic kinetic resolution providing high diastereoselectivity at positions C5 and C6. N-mono-trifluoroethylation was discovered and developed. Cis and trans isomer at the alpha position of the amine was successfully controlled by crystallization in the presence of arylaldehyde derivatives. Overall, synthetic steps are shorter, practical and efficient and yield is dramatically improved.
      • Example 1 Isopropyl 2-(tert-butoxycarbonylamino)-3-(methylsulfonyloxy)propanoate (2)

     

    • [0139]
      Figure US20160130273A1-20160512-C00036
    • [0140]
      To a solution of N-tert-butyl-L-serine isopropyl ester 1 (12 g, 48.5 mmol)* and methanesulfonyl chloride (4.0 ml) in dichloromethane (100 mL), triethylamine (7.2 ml) was added slowly under an ice bath. The reaction mixture was stirred at room temperature for 1 h, then 1 N HCl (40 mL) was added with stirring. The organic layer was separated, washed with 1 N HCl (40 ml) and brine (40 ml), dried over MgSO4, and concentrated in vacuo to give 2 (14.5 g, 91.9%) as a solid. 1H NMR (CDCl3, 500 MHz): δ 5.45 (s, broad, 1H), 5.13 (m, 1H), 4.62-4.47 (m, 3H), 3.04 (s, 3H), 1.48 (s, 9H), 1.31 (d, J=6.4 Hz, 6H); 13C NMR (CDCl3, 100 MHz): δ 168.0, 135.1, 80.6, 70.5, 69.1, 53.3, 37.4, 28.3, 21.7, 21.6; HRMS m/z calcd. for C12H23NO7S 348.1087 (M+Na). found 348.1097
    • [0000]
      * preparation of 1 was reported in J. Med. Chem., 2010, 53, 6825-6837 6825

Isopropyl 2-(tert-butoxycarbonylamino)-3-iodopropanoate (3)

    • [0141]
      Figure US20160130273A1-20160512-C00037
    • [0142]
      To a solution of 2 (392 g) in acetone (3.14 L), sodium iodide (542 g) was added. The reaction temperature went up to 29° C. from 17° C. The reaction mixture was maintained at room temperature over weekend. The mixture was filtrated and washed with MTBE. The filtrate and washings were combined and concentrated. The residue was treated with MTBE and water with a small amount of sodium thiosulfate. The organic layer was washed with water and concentrated to an oil. The oil was charged slowly into a mixture of water (2 L) and DMF (300 ml) with a small amount of seed at 5° C. The crystals were filtered and dried to give 3 (400 g, 93% yield).

Isopropyl 4-(4-bromophenyl)-2-(tert-butoxycarbonylamino)-5-oxohexanoate (5) and isopropyl 4-phenyl-2-(tert-butoxycarbonylamino)-5-oxohexanoate (6)

    • [0143]
      Figure US20160130273A1-20160512-C00038
    • [0144]
      To a solution of 4 (51.7 g, 243 mmol) in DMF (850 ml) was added 3 (88 g, 246 mmol). The resulting solution was cooled to 5° C. and Cs2CO(240 g) was added in one portion. The suspension was warmed to 15° C. and stirred at this temperature for 2.5 h. Additional Cs2CO(25 g) was charged and the mixture was stirred for additional 8 h or until HPLC analysis indicated the conversion was greater than 95%. The batch was then slowly quenched into a mixture of 2N HCl (850 mL) and MTBE (900 mL) at 5-20° C. Organic layer was separated and aqueous layer extracted with MTBE (400 mL). Combined organic layers were washed with 5% NaHCO3solution (400 mL) twice. The resulting solution containing desired product 5 (90% LC purity) was concentrated under vacuum. The residue was dissolved in isopropanol (1 L). To the solution was added K2CO(25 g), potassium formate (34 g) and 10% Pd/C (20 g). The mixture was warmed up to 60° C. and stirred for 2 h. The mixture was filtered after cooling to room temperature. The HPLC analysis of the filtrate indicated that the solution contained 6 (54.7 g, 95 wt %, 62% yield). The crude product was used directly in the next step without further purification. The compound 6 is a mixture of two pair of diastereomers 6-1 and 6-2, partially separable by flash chromatography on silica gel with ethyl acetate and heptane as a eluant (1:10). 6-1: 1H NMR (CDCl3, 500 MHz): δ 7.35 (m, 2H), 7.30 (m, 1H), 7.20 (m, 2H), 5.17 (br, 1H), 4.95 (m, 1H), 4.76 (br, 1H), 3.73 (m, 1H), 2.70 (br, 1H), 2.07 (s, 1H), 1.45 (s, 9H), 1.29 (d, J=6.6 Hz, 3H), 1.28 (d, J=6.6 Hz, 3H); 6-2: 1H NMR (CDCl3, 500 MHz): δ 5.12 (m, 1H), 4.70 (m, 1H), 3.27 (m, 1H), 2.80 (m 1H), 2.34 (s, 3H), 1.50 (s, 9H), 1.26 (d, J=6.6 Hz, 3H), 1.25 (d, J=6.6 Hz, 3H); HRMS m/z: cacld. for 6-1: C20H29NO386.1938 (M+Na). found 386.1947.

Isopropyl 2-((tert-butoxycarbonyl)amino)acrylate (7)

    • [0145]
      Figure US20160130273A1-20160512-C00039
    • [0146]
      To a solution of 1 (10.05 g, 40.6 mmol) in DMF (100 mL) was added MsCl (4.12 mL, 52.8 mmol) under ice-cooling. Triethylamine (14.16 mL, 102.0 mmol) was then added dropwise via an addition funnel over 30 min, while maintaining the reaction temperature between 0-5° C. When the addition was complete, the cooling bath was removed and the yellow heterogeneous reaction mixture was aged at room temperature under N2for overnight. The reaction mixture was diluted with ice cold water (1 L) and MTBE (1 L). The layers were separated and the aqueous layer was back-extracted with MTBE (500 mL). The organic layers were combined and washed with 1M citric acid (750 mL), water (1 L) and then 10% aqueous NaCl (1 L). The organic solution contained 7 (8.652 g, 93% yield). Solvent was switched to DMSO at <40° C. and use solution directly in next step.

Isopropyl 4-phenyl-2-(tert-butoxycarbonylamino)-5-oxohexanoate (6)

    • [0147]
      Figure US20160130273A1-20160512-C00040
    • [0000]
      Compound 6 was prepared from 7 in DMSO in the presence of 0.5 equiv. Cs2COwith 1.05 equiv. of phenylacetone at room temperature in 79% yield.

tert-Butyl(5S,6R)-6-methyl-2-oxo-5-phenylpiperidin-3-ylcarbamate (8)

    • [0148]
      Figure US20160130273A1-20160512-C00041
    • [0149]
      To a 5 L RBF with overhead stirring, a temperature control, a pH probe and a base addition line, was added sodiumtetraborate decahydrate (26.7 g) and DI water (1.4 L). After all solids were dissolved, isopropylamine (82.8 g) was added. The pH of the buffer was adjusted to pH 10.5 using 6 N HCl. The buffer was cooled to room temperature. Then, pyridoxal-5-phosphate (2.8 g) and SEQ ID NO: 1 (70 g) were added and slowly dissolved at room temperature.
    • [0150]
      An oil (197.9 g, containing 70.7 wt % keto ester 6 (140 g, 0.385 mol) were dissolved in DMSO (1.4 L). The solution was added to the flask over 5-10 min and the reaction was heated to 55° C. The pH was adjusted to 10.5 according to a handheld pH meter and controlled overnight with an automated pH controller using 8 M aqueous isopropylamine. The reaction was aged for 24 h.
    • [0151]
      After confirmation of >95A % conversion by HPLC, the reaction was extracted by first adding a mixture of iPA:IPAc (3:4, 2.8 L) and stirring for 20 min. The phases were separated and the aqueous layer was back extracted with a mixture of iPA:IPAc (2:8, 2.8 L). The phases were separated, the organic layers were combined and washed with DI water (0.5 L). The HPLC based assay yield in the organic layer was 8 (114.6 g) with >60:1 dr at the positions C5 and C6. The ratio of stereoisomers at position C2 was ˜1:1. The extract was concentrated and dissolved in CH2Cl2. The organic solution was washed with water then saturated aqueous NaCl, concentrated and crystallized from MTBE/n-hexane (2:3). The crystal was filtered at room temperature and washed with MTBE/n-hexane (2:3) and dried to afford a cis and trans mixture (˜1:1.2) of the lactam 8 (99.6 g, 80.0%) as crystals.
    • [0000]
      cis: trans (˜1:1.2) mixture but NMR integration was reported as 1:1 (for proton number counts) Mp 87-90.9° C.; 1H NMR (CDCl3, 400 MHz): δ 7.40-7.20 (m, 8H, cis and trans), 7.16-7.12 (m, 2H, cis and trans); 6.56 (broad s, 1H, trans), 6.35 (broad s, 1H, cis), 5.57 (broad d, J=4.6 Hz, 1H, cis), 5.34 (broad d, J=5.7 Hz, 1H, trans), 4.33-4.15 (m, 2H, cis and trans), 3.93 (m, 1H, trans), 3.81 (m, 1H, cis), 3.41 (dt, J=11.8, 5.0 Hz, 1H, cis), 3.29 (dt, J=8.0, 4.4 Hz, 1H, trans), 2.74 (m, 1H, cis), 2.57 (m, 1H, trans), 2.23 (ddd, J=13.5, 8.0, 4.4 Hz, trans), 2.07 (q, J=11.8 Hz, 1H, cis), 1.46 (s, 9H, cis), 1.42 (s, 9H, trans), 1.05 (d, J=6.9 Hz, 3H, trans), 0.89 (d, J=6.9 Hz, 3H, cis); 13C NMR (CDCl3, 100 MHz): δ 171.5(cis), 171.4(trans), 156.0(cis or trans), 155.93 (cis or trans), 140.8 (cis), 139.9 (trans), 128.8 (trans), 128.7 (cis), 128.6 (trans), 128.1 (cis), 127.2(trans), 127.1(cis), 79.9(trans), 79.91(cis), 52.4 (trans), 51.8 (broad, cis), 51.7 (cis), 49.0 (broad, trans), 42.1 (cis), 41.9 (trans), 32.4 (broad, trans), 30.1 (cis), 28.5(cis or trans), 28.53(cis or trans), 18.3 (cis), 18.1 (broad, trans); HRMS m/z cacld. for C17H24N2O3327.1679 (M+Na). found 327.1696

tert-Butyl(5S,6R)-6-methyl-2-oxo-5-phenyl-1-(2,2,2-trifluoroethyl)piperidine-3-ylcarbamate (9) and tert-butyl(5S,6R)-6-methyl-2-oxo-5-phenyl-1-(2,2,2-trifluoroethyl)piperidine-3-yl(2,2,2-trifluoroethyl)carbamate (10)

    • [0152]
      Figure US20160130273A1-20160512-C00042
    • [0153]
      To the solution of 8 (480 g, 1.58 mol) in anhydrous THF (3.8 L) was added lithium tert-amoxide solution in heptane (512 mL, 3.1 M, 1.58 mol) over about 15 min while maintaining the reaction temperature between 15 and 20° C. The resulting solution was then cooled to a temperature between 0 and 2° C. 2,2,2-Trifluoroethyl trifluoromethanesulfonate (368 g, 1.58 mol) was added over 15 min while maintaining the reaction temperature between 0 and 3° C. The solution was agitated at 0° C. for 15 min. DMPU (300 ml) was charged to the mixture through an additional funnel over 30 min while maintaining the reaction temperature between 0 and 3° C. The resulting solution was agitated at 0° C. for 2.5 h. Another 2,2,2-trifluoroethyl trifluoromethanesulfonate (182 g, 0.79 mol) was added to the mixture over 10 min followed by another 3.1 M lithium tert-amoxide solution (104 mL) while maintaining the reaction temperature between 0 and 3° C. The batch was agitated for another 2.5 h at 0° C. The mixture was quenched into a mixture of heptane (4.8 L), water (3.4 L) and 2N HCl solution (280 mL) below 15° C. The phases were separated. The aqueous phase was extracted with heptane (4 L). The combined organic phase was washed with water (2 L). The solution was concentrated to a volume of about 1 L under vacuum between 25 and 50° C. The crude material was passed through a short silica gel plug with heptane/ethyl acetate. The resulting solution was concentrated under vacuum until distillation stopped at a temperature below 50° C., dissolved in IPAc (2 L) and used for the next processing step. The assay yield of 9 for both cis and trans isomers was 85% in the ratio of ˜8 to 1.
    • [0154]
      Analytically pure cis and trans isomers of 9 were isolated by chromatography on silica gel with ethyl acetate and heptane as eluant. 9 (cis): 1H NMR (CDCl3, 500 MHz): δ 7.30 (m, 5H), 5.75 (s, broad, 1H), 4.35 (m, 1H), 4.15 (m, 1H), 3.80 (m, 1H), 3.50 (m, 1H), 3.17 (m, 1H), 2.45 (m, 2H), 1.45 (s, 9H), 0.93 (d, J=6.7 Hz, 3H); 13C NMR (CDCl3, 100 MHz): δ 170.3, 155.9, 140.0, 128.6, 127.6, 127.1, 124.6 (q, J=279 Hz), 79.7, 58.7, 52.2, 45.3 (q, J=33.7 Hz), 41.9, 28.3, 27.4, 13.4; HRMS: m/z calcd for C19H25F3N2O387.1890 (M+H). found: 387.1899. 9 (trans): 1H NMR (CDCl3, 500 MHz): δ 7.40 (m, 2H), 7.30 (m, 3H), 5.55 (br, 1H), 4.53 (br, 1H), 4.45 (m, 1H), 3.78 (m 2H), 3.45 (m, 1H), 3.0 (m, 1H), 2.12 (m, 1H), 1.46 (s, 9H), 1.12 (d, J=7.0 Hz, 3H); 13C NMR (CDCl3, 100 MHz): δ 170.2, 155.9, 139.6, 128.7, 127.9, 127.4, 124.3 (q, J=279 Hz), 80.0, 59.6, 49.1, 46.9 (q, J=34.0 Hz), 42.1, 28.3, 25.3, 13.4; HRMS: m/z calcd for C19H25F3N2O3387.1890 (M+H). found 387.1901.

(3S,5S,6R)-6-Methyl-2-oxo-5-phenyl-1-(2,2,2-trifluoroethyl)piperidine-3-aminium 4-nitrobenzoate (11)

    • [0155]
      Figure US20160130273A1-20160512-C00043
    • [0156]
      To a solution of the crude 9 obtained from above experiment (10 g assay, 25.9 mmol) in iPAC (8 ml) was added p-toluenesulfonic acid monohydrate (6.7 g, 35.2 mmol) and the mixture was stirred at 50-60° C. for 3 hr until the reaction was completed (>99%). The solution was cooled to 15-20° C., and washed with 10% aqueous K2COfollowed by water. The aqueous layers were re-extracted with iPAc (5 ml). The organic layers were combined and heated to 55-60° C. 4-Nitrobenzoic acid (3.9 g, 23.2 mmol) was slowly added in 20 min. The mixture was slowly cooled to room temperature. 5-Nitro-2-hydroxylbenzaldehyde (50 mg) was added and the batch was agitated for at least 12 h. The mixture was filtrated and washed with MeCN to give 11 as crystals. Optionally, a slurry in MeCN was carried out for further purification of 11. The isolated yield was 90%. Mp 205-208° C.; 1H NMR (DMSO-d6, 400 MHz): δ 8.21 (dd, J=9.0, 2.1 Hz, 2H), 8.08 (dd, J=9.0, 2.1 Hz, 2H), 7.37 (t, J=7.4 Hz, 2H), 7.28 (t, J=7.4 Hz, 1H), 7.24 (d, J=7.4 Hz, 2H), 4.65 (ddd, J=15.1, 9.7, 7.7 Hz, 1H), 3.72-3.98 (m, 3H), 3.57 (m, 1H), 2.46 (q, J=12.6 Hz, 1H), 2.25 (m, 1H), 0.90 (d, J=6.4 Hz, 3H); 19F NMR (DMSO-d6, 376 MHz): δ −69 (s); 13C NMR (DMSO-d6, 100 MHz): δ 168.7, 167.3, 148.3, 143.8, 140.1, 130.1, 128.6, 127.4, 127.0, 124.9 (q, J=280.9 Hz), 122.8, 58.7, 49.8, 44.5 (q, J=32.7 Hz), 40.6, 25.3, 13.2.

(5S,6R)-3-Amino-6-methyl-5-phenyl-1-(2,2,2-trifluoroethyl)piperidin-2-one (12)

    • [0157]
      Figure US20160130273A1-20160512-C00044
    • [0158]
      To a mixture of 8 (20.0 g, 65.7 mmol) and Na2S2O(0.52 g, 3.3 mmol) in THF (200 mL) was added tert-BuOLi (6.8 g, 85 mmol) at 16° C. The mixture was stirred at 16° C. for 15 min followed by addition of trifluoroethyl trifluoromethansulfonate (20.6 g, 89 mmol) in one portion. The resulting mixture was stirred for 18 h at 16° C. The reaction mixture was then quenched by addition of toluene (70 mL) followed by 0.5N HCl solution (50 mL). The aqueous layer was separated and extracted with toluene (20 mL). The combined organic layer contained 87% of 9, 6% of 10 and 6% of 8 by HPLC and yield for the desired product 9 was 87%. The organic layer was then stirred with 3N HCl solution (80 ml) and tetrabutylammoniium bromide (0.8 g) for about 3 h until HPLC analysis indicated selective removal of the Boc group in the unreacted 8 was completed. The aqueous layer was removed. The organic layer containing 9 and 10 was then concentrated under vacuum at 60° C. to remove most of solvent. The residue was dissolved in MTBE (60 mL), and 5N HCl solution (65 mL) was added. The diphasic solution was agitated vigorously at 50° C. for about 5 h until the deprotection of 9 was completed while 10 was mainly intact. After addition of heptane (30 mL) to the mixture, the organic layer was separated at 45° C. The aqueous layer was diluted with water (60 mL) and resulting aqueous and washed with heptane (30 mL) at 45° C. The aqueous solution was then mixed with MTBE (100 mL) and basified with 10 N NaOH solution until the pH of the mixture was about 10. The organic layer was separated and the aqueous layer was back-extracted with MTBE (60 mL). The combined organic layers were washed with brine (60 mL). The resulting organic solution was suitable for next reaction. The solution was contained 12 (15.6 g, 83% from 8) with 97% LC purity as a mixture of two diastereomers (cis and trans) in 4 to 1 ratio.

(3S,5S,6R)-6-Methyl-2-oxo-5-phenyl-1-(2,2,2-trifluoroethyl)piperidin-3-aminium 4-methylbenzoate (13)

    • [0159]
      Figure US20160130273A1-20160512-C00045
    • [0160]
      To a suspension of 4-methylbenzoic acid (6.8 g, 49.9 mmol) and 3,5-dichlorosalicylaldehyde (93 mg, 0.49 mmol) in MTBE (40 mL) was added a solution of 12 (13.9 g, 48.5 mmol) in MTBE (about 150 mL) over 1 h at 50° C. The resulting suspension was agitated for about 3 h at 50° C. The solids were collected by filtration after cooling to −5° C. over 1 h. The cake was washed with MTBE (50 mL). The solids were dried in a vacuum oven to give 13 (17.6 g, 86%) as crystals with 99.5% LC purity and 99.6% de. 1H NMR (DMSO-d6, 400 MHz): δ 7.85 (d, J=8.1 Hz, 2H), 7.40 (m, 2H), 7.25 (m, 5H), 6.0 (br, 3H), 4.65 (m, 1H), 3.65-3.80 (m, 2H), 3.45-3.65 (m, 2H), 2.35 (s, 3H), 2.30 (m, 1H), 2.15 (m, 1H), 0.88 (d, J=6.5 Hz, 3H); 13C NMR (DMSO-d6, 100 MHz): δ 172.4, 168.5, 142.1, 141.1, 130.9, 129.7, 129.2, 129.0, 128.0, 125.5 (q, J=279 Hz), 59.1, 51.6, 45.1 (q, J=32 Hz), 41.6, 28.0, 21.5, 13.9.

(S)—N-((3S,5S,6R)-6-Methyl-2-oxo-5-phenyl-1-(2,2,2-trifluoroethyl)piperidine-3-yl)-2′-oxo-1′,2′,5,7-tetrahydrospiro[cyclopenta[b]pyridine-6,3′-pyrrolo[2,3-b]pyridine]-3-carboxamide trihydrate (15)

    • [0161]
      Figure US20160130273A1-20160512-C00046
    • [0162]
      To a suspension of 11 (465 g, 96% wt, 0.99 mol) in iPAc (4.6 L) was added 5% aqueous K3PO(4.6 L). The mixture was stirred for 5 min. The organic layer was separated and washed with 5% aqueous K3PO(4.6 L) twice and concentrated in vacuo and dissolved in acetonitrile (1.8 L).
    • [0163]
      To another flask was added 14 (303 g, 91.4 wt %), acetonitrile (1.8 L) and water (1.8 L) followed by 10 N NaOH (99 mL). The resulting solution was stirred for 5 min at room temperature and the chiral amine solution made above was charged to the mixture and the container was rinsed with acetonitrile (900 mL). HOBT hydrate (164 g) was charged followed by EDC hydrochloride (283 g). The mixture was agitated at room temperature for 2.5 h. To the mixture was added iPAc (4.6 L) and organic layer was separated, washed with 5% aqueous NaHCO(2.3 L) followed by a mixture of 15% aqueous citric acid (3.2 L) and saturated aqueous NaCl (1.2 L). The resulting organic layer was finally washed with 5% aqueous NaHCO(2.3 L). The organic solution was concentrated below 50° C. and dissolved in methanol (2.3 L). The solution was slowly added to a mixture of water (6 L) and methanol (600 mL) with ˜2 g of seed crystal. And the resulting suspension was stirred overnight at room temperature. Crystals were filtered, rinsed with water/methanol (4 L, 10:1), and dried under nitrogen flow at room temperature to provide 15 (576 g, 97% yield) as trihydrate.
    • [0164]
      1H NMR (500 MHz, CDCl3): δ 10.15 (br s, 1H), 8.91 (br s, 1H), 8.21 (d, J=6.0 Hz, 1H), 8.16 (dd, J=5.3, 1.5 Hz, 1H), 8.01 (br s, 1H), 7.39-7.33 (m, 2H), 7.31-7.25 (m, 1H), 7.22-7.20 (m, 2H), 7.17 (dd, J=7.4, 1.6 Hz, 1H), 6.88 (dd, J=7.4, 5.3 Hz, 1H), 4.94 (dq, J=9.3, 7.6 Hz, 1H), 4.45-4.37 (m, 1H), 3.94-3.87 (m, 1H), 3.72 (d, J=17.2 Hz, 1H), 3.63-3.56 (m, 2H), 3.38-3.26 (m, 1H), 3.24 (d, J=17.3 Hz, 1H), 3.13 (d, J=16.5 Hz, 1H), 2.78 (q, J=12.5 Hz, 1H), 2.62-2.56 (m, 1H), 1.11 (d, J=6.5 Hz, 3H); 13C NMR (126 MHz, CD3CN): δ 181.42, 170.63, 166.73, 166.63, 156.90, 148.55, 148.08, 141.74, 135.77, 132.08, 131.09, 130.08, 129.66, 129.56, 128.78, 128.07, 126.25 (q, J=280.1 Hz), 119.41, 60.14, 53.07, 52.00, 46.41 (q, J=33.3 Hz), 45.18, 42.80, 41.72, 27.79, 13.46; HRMS m/z: calcd for C29H26F3N5O550.2061 (M+H). found 550.2059.

Alternative Procedure for 15

    • [0165]
      Figure US20160130273A1-20160512-C00047
    • [0166]
      To a suspension of 13 (10 g, 98 wt %, 23.2 mmol) in MTBE (70 mL) was added 0.6 N HCl (42 mL). The organic layer was separated and extracted with another 0.6 N HCl (8 mL). The combined aqueous solution was washed with MTBE (10 mL×3). To the resulting aqueous solution was added acetonitrile (35 mL) and 14 (6.66 g, 99 wt %). To the resulting suspension was neutralized with 29% NaOH solution to pH 6. HOPO (0.26 g) was added followed by EDC hydrochloride (5.34 g). The mixture was stirred at room temperature for 6-12 h until the conversion was complete (>99%). Ethanol (30 ml) was added and the mixture was heated to 35° C. The resulting solution was added over 2 h to another three neck flask containing ethanol (10 mL), water (30 mL) and 15 seeds (0.4 g). Simultaneously, water (70 mL) was also added to the mixture. The suspension was then cooled to 5° C. over 30 min and filtered. The cake was washed with a mixture of ethanol/water (1:3, 40 mL). The cake was dried in a vacuum oven at 40° C. to give 15 trihydrate (13.7 g, 95%) as crystals.

Example 2 N-Methoxy-N-methyl-2-(2,3,6-trifluorophenyl)acetamide (17)

    • [0167]
      Figure US20160130273A1-20160512-C00048
    • [0168]
      To a solution of DMF (58.1 mL, 750 mmol) in iPAc (951 mL) was added POCl(55.9 mL, 600 mmol) under ice-cooling. After aged for 1 h under ice-bath, acid 16 (95 g, 500 mmol) was added under ice-cooling. The solution was stirred under ice-cooling for 30 min. The solution was added over 30 min into a solution of K2CO(254 g, 1.835 mol) and NHMe(OMe)HCl (73.2 g, 750 mmol) in water (951 mL) below 8° C. After aged for 30 min below 8° C., the organic layer was separated, washed with water (500 mL) twice and sat. NaCl aq (100 mL) once, and concentrated in vacuo to afford 17 as an oil (117.9 g, 97.7 wt %, 99% yield). 1H NMR (CDCl3, 400 MHz); δ 7.05 (m, 1H), 6.82 (m, 1H), 3.86 (s, 2H), 3.76 (s, 3H), 3.22 (s, 3H); 19F NMR (CDCl3, 376.6 MHz); δ −120.4 (dd, J=15.1, 2.7 Hz), −137.9 (dd, J=20.8, 2.7 Hz), −143.5 (dd, J=20.8, 15.1 Hz); 13C NMR (CDCl3, 100 MHz); δ 169.4, 156.9 (ddd, J=244, 6.2, 2.7 Hz), 149.3 (ddd, J=249, 14.4, 8.4 Hz), 147.1 (ddd, J=244, 13.1, 3.5 Hz), 115.5 (ddd, J=19.4, 9.9, 1.5 Hz), 133.4 (dd, J=22.3, 16.4 Hz), 110.2 (ddd, J=24.8, 6.7, 4.1 Hz), 32.4 (broad), 26.6 (m); HRMS m/z calcd for C10H10F3NO234.0736 (M+H). found 234.0746.

1-(2,3,6-Trifluorophenyl)propan-2-one (18)

    • [0169]
      Figure US20160130273A1-20160512-C00049
    • [0170]
      A mixture of CeCl(438 g, 1779 mmol) and THF (12 L) was heated at 40° C. for about 2 h then cooled to 5° C. Methylmagensium chloride in THF (3 M, 3.4 L) was charged at 5-9° C. and then it was warmed up to 16° C. and held for 1 h. The suspension was re-cooled to −10 to −15° C. A solution of 17 (1.19 kg) in THF (2.4 L) was charged into the suspension over 15 min. After confirmation of completion of the reaction, the reaction mixture was transferred to a cold solution of hydrochloric acid (2 N, 8.4 L) and MTBE (5 L) in 5-10° C. The aqueous phase was separated and the organic layer was washed with aqueous 5% K2CO(6 L) and then 10% aqueous NaCl (5 L). The organic layer was dried over Na2SO4, concentrated to give crude 18 (917 g, >99 wt %) in 95% yield. The crude 18 was used in the next step without further purification. Analytically pure 18 was obtained by silica gel column.
    • [0171]
      1H NMR (CDCl3, 400 MHz); δ 7.07 (m, 1H), 6.84 (m, 1H), 3.82 (s, 2H), 2.28 (s, 3H); 19F NMR (CDCl3, 376.6 MHz); δ −120.3 (dd, J=15.3, 2.5 Hz), −137.8 (dd, J=21.2, 2.5 Hz), −143.0 (dd, J=20.2, 15.3 Hz); 13C NMR (CDCl3, 100 MHz); δ 202.2, 156.5 (ddd, J=244, 6.3, 2.9 Hz), 148.9 (ddd, J=249, 14.4, 8.6 Hz), 147.0 (ddd, J=244, 13.1, 3.5 Hz), 115.7 (ddd, J=19.4, 10.5, 1.2 Hz), 112.8 (dd, J=22.7, 17.0 Hz), 110.3 (ddd, J=24.8, 6.7, 4.1 Hz), 37.2 (d, J=1.2 Hz), 29.3.

Isopropyl 2-((tert-butoxycarbonyl)amino)-5-oxo-4-(2,3,6-trifluorophenyl)hexanoate (19)

    • [0172]
      Figure US20160130273A1-20160512-C00050
    • [0173]
      To a solution of 18 (195 g, 1.03 mol) in MTBE (1.8 L) was added zinc bromide (67 g, 0.30 mol) followed by 2 (390 g, 1.2 mol). tert-BuOLi (290 g, 3.6 mol) was then added in several portions while maintaining the reaction temperature below 40° C. The resulting mixture was stirred at 35° C. for 24 h and quenched into a mixture of 2 N HCl (5.6 L) and heptane (5 L) at 0° C. The organic layer was separated and washed with 5% aqueous NaHCO(5 L) twice. The resulting organic solution was concentrated under vacuum. The residue was dissolved in heptane (2 L) and the solution was concentrated again under vacuum. The resulting oil was dissolved in DMSO (2.5 L) and the solution was used in the next step without further purification. HPLC analysis indicated that the solution contained the desired product 19 (290 g, 67% yield) as the major component along with 5% of starting material 18. The analytically pure product 19 as one pair of diastereomers was isolated by chromatography on silica gel with ethyl acetate and heptane mixture as an eluant. HRMS: m/z calcd for C20H26F3NO418.1836 (M+H). found 418.1849.

tert-Butyl((5S,6R)-6-methyl-2-oxo-5-(2,3,6-trifluorophenyl)piperidin-3-yl)carbamate (20)

    • [0174]
      Figure US20160130273A1-20160512-C00051
    • [0175]
      To a 0.5 L cylindrical Sixfors reactor with an overhead stirring, a temperature control, a pH probe and a base addition line, was added sodiumtetraborate decahydrate (3.12 g) and DI water (163 mL). After all solids were dissolved, isopropylamine (9.63 g) was added. The pH of the buffer was adjusted to pH 10.5 using 6 N HCl. The buffer was cooled to room temperature. Then, pyridoxal-5-phosphate (0.33 g) and SEQ ID NO: 1 (8.15 g) were added and slowly dissolved at room temperature.
    • [0176]
      Crude keto ester 19 (23.6 g, 69 wt %, 16.3 g assay, 39 mmol) was dissolved in DMSO (163 mL) and the solution was added to the reactor over 5-10 min. Then the reaction was heated to 55° C. The pH was adjusted to 10.5 according to a handheld pH meter and controlled overnight with an automated pH controller using 8 M aqueous isopropylamine. The reaction was aged for 27.5 hours.
    • [0177]
      After confirmation of >95A % conversion by HPLC, the reaction was extracted by first adding a mixture of iPA: iPAc (3:4, 350 mL) and stirring for 20 min. The phases were separated and the aqueous layer was back extracted with a mixture of iPA: iPAc (2:8, 350 mL). The phases were separated. The organic layers were combined and washed with DI water (90 mL). The HPLC based assay yield in the organic layer was 20 (9.86 g, 70.5% assay yield) with >60:1 dr at the positions C5 and C6.

tert-Butyl((3S,5S,6R)-6-methyl-2-oxo-5-(2,3,6-trifluorophenyl)piperidin-3-yl)carbamate (21)

    • [0178]
      Figure US20160130273A1-20160512-C00052
    • [0179]
      A solution of crude cis and trans mixture 20 in a mixture of iPAc and iPA (1.83 wt %, 9.9 kg; 181 g assay as a mixture) was concentrated in vacuo and dissolved in 2-Me-THF (3.6 L). To the solution was added tert-BuOK (66.6 g, 0.594 mol) at room temperature. The suspension was stirred at room temperature for 2 h. The mixture was poured into water (3.5 L) and the organic layer was separated, washed with 15 wt % of aqueous NaCl (3.5 L), dried over Na2SO4, and concentrated to dryness. The residue was suspended with iPAc (275 mL) and heptane (900 mL) at 60° C. The suspension was slowly cooled down to 1° C. The solid was filtered and rinsed with iPAc and heptane (1:3), dried to afford 21 (166 g, 93 wt %; 85%) as crystals. Mp 176-179° C.; 1H NMR (CDCl3, 500 MHz): δ 7.06 (m, 1H), 6.84 (m, 1H), 5.83 (broad s, 1H), 5.58 (broad s, 1H), 4.22 (m, 1H), 3.88-3.79 (m, 2H), 2.77 (m, 1H), 2.25 (m, 1H), 1.46 (s, 9H), 1.08 (d, J=6.4 Hz, 3H); 19F NMR (CDCl3, 376 MHz): δ −117 (d, J=14 Hz), −135 (d, J=20 Hz), −142 (dd, J=20, 14 Hz); 13C NMR (CDCl3, 100 MHz): δ 171.1, 156.6 (ddd, J=245, 6.4, 2.8 Hz), 155.8, 149.3 (ddd, J=248, 14.4, 8.8 Hz), 147.4 (ddd, J=245, 14.2, 3.8 Hz), 118.0 (dd, J=19.3, 14.5 Hz), 115.9 (dd, J=19.2, 10.4 Hz), 111.0 (ddd, J=26.4, 6.0, 4.3 Hz), 79.8, 51.4, 49.5, 34.1, 29.3, 28.3, 18.0; HRMS: m/z calcd for C17H21F3N2O381.1396 (M+Na). found 381.1410.

tert-Butyl((5S,6R)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl)carbamate (22)

    • [0180]
      Figure US20160130273A1-20160512-C00053
    • [0181]
      To a solution of 21 (10 g, 87% purity, 24.3 mmol) in THF (70 ml) was added tert-BuOLi (2.5 g, 31.2 mmol) at 5° C. in one portion. The solution was cooled to between 0 and 5° C. and trifluoroethyl trifluoromethanesulfonate (10.0 g, 43 mmol) was added in one portion. DMPU (7 mL) was added slowly over 15 min while maintaining the the reaction temperature below 5° C. After the mixture was stirred at 0° C. for 3 h, additional tert-BuOLi (0.9 g, 11.2 mmol) was added. The mixture was aged for an additional 90 min. The mixture was quenched with 0.2 N HCl (70 ml), followed by addition of heptane (80 ml). The organic layer was separated and aqueous layer extracted with heptane (30 ml). The combined organic layers were washed with 15% aqueous citric acid (50 mL) and 5% aqueous NaHCO3(50 mL). The solution was concentrated under vacuum at 40° C. and the resulting oil was dissolved in iPAc (30 mL). The solution was used directly in the next step without further purification. The HPLC analysis indicated that the solution contained 22 (9.8 g, 92% as cis and trans mixture in a ratio of 6.5 to 1) along with 4% of starting material 21 and 8% of a N,N′-alkylated compound. Analytically pure 22 (cis isomer) was isolated by chromatography on silica gel with ethyl acetate and heptane as an eluant. 1H NMR (CDCl3, 500 MHz): δ 7.15 (m, 1H), 6.85 (m, 1H), 5.45 (broad, s, 1H), 4.90 (m, H), 4.20 (m, 1H), 3.92 (m, 2H), 3.28 (m, 1H), 2.70 (m, 2H), 1.48 (s, 9H), 1.20 (d, J=5.9 Hz, 3H); 13C NMR (CDCl3, 100 MHz): δ 170.2, 156.9 (ddd, J=245, 6.3, 2.7 Hz), 156.0, 149.6 (ddd, J=251, 14.8, 8.8 Hz), 147.6 (ddd, J=246, 13.9, 3.6 Hz), 124.5 (q, J=281 Hz), 117.6 (dd, J=19.2, 3.7 Hz), 116.4 (dd, J=19.1, 10.4 Hz), 111.4 (ddd, J=25.8, 6.4, 4.1 Hz), 56.6, 52.8, 45.3 (q, J=34.2 Hz), 35.2, 28.7, 28.3 (br t, J=4 Hz), 14.6; HRMS: m/z calcd for C19H22F6N2O(M+H): 441.1607. found 441.1617.

(3S,5S,6R)-6-Methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-aminium (S)-2-acetamido-3-phenylpropanoate (23)

    • [0182]
      Figure US20160130273A1-20160512-C00054
    • [0183]
      iPAc solution of 22 (529 g assayed, 1.2 mol), obtained from previous step, was diluted to 6 L with iPAc, p-toluenesulfonic acid monohydride (343 g, 1.8 mol) was added and the solution was heated to 55° C. After 4 h, the reaction completed (>99% conversion). Aqueous K2CO(530 g in 3 L of water) was charged into the solution after cooled to 15-25° C. The aqueous layer was separated and was back-extracted with iPAc (2 L). The iPAc solutions were combined and the total volume was adjusted to 10 L by adding iPAc. The solution was heated to 50-60° C. About 20 g of N-acetyl L-phenylalanine was added and the solution was agitated for 15 min or until solids precipitated out. The remaining N-acetyl L-phenylalanine (total 250 g, 1.2 mol) was charged slowly and 2-hydroxy-5-nitrobenzaldehyde (2 g) was charged. The suspension was agitated for 12 h at 20° C. and then cooled to 0° C. for 3 h. The suspension was filtrated, washed with iPAc three times and dried to give 23 (583 g, 89% yield) as crystals. Mp 188-190° C.; 1H NMR (DMSO-d6, 400 MHz): δ 7.96 (d, J=8.0 Hz, 1H), 7.48 (m, 1H), 7.15-7.25 (m, 6H), 4.65 (ddd, J=19.4, 15.3, 9.6 Hz, 1H), 4.33 (ddd, J=8.7, 8.4, 4.9 Hz, 1H), 3.70-3.87 (m, 3H), 3.57 (dd, J=11.5, 6.6 Hz, 1H), 3.04 (dd, J=13.7, 4.9 Hz, 1H), 2.82 (dd, J=13.7, 8.9 Hz, 1H), 2.59 (m, 1H), 2.24 (m, 1H), 2.95 (s, 3H), 1.10 (d, J=6.4 Hz, 1H); 19F NMR (DMSO-d6, 376 MHz): δ −69 (s), −118 (d, J=15 Hz), −137 (d, J=21 Hz), −142 (dd, J=21, 15 Hz); 13C NMR (DMSO-d6, 100 MHz): δ 173.6, 171.1, 168.7, 156.3 (ddd, J=243.5, 7.0, 3.1 Hz), 148.7 (ddd, J=249, 14.4, 9.1 Hz), 146.8 (ddd, J=245, 13.7, 3.1 Hz), 138.5, 129.2, 128.0, 126.1, 124.9 (q, J=280.9 Hz), 117.4.0 (dd, J=19.3, 13.8 Hz), 116.7 (dd, J=19.3, 10.6 Hz), 111.8 (ddd, J=26.0, 6.7, 3.6 Hz), 56.6, 54.3, 51.2, 44.3 (q, J=32.5 Hz), 37.2, 34.8, 26.9 (br t, J=4 Hz), 22.5, 14.1.

(3S,5S,6R)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-aminium 2,2-diphenylacetate (25)

    • [0184]
      Figure US20160130273A1-20160512-C00055
    • [0185]
      To a mixture of crude material containing (5S,6R)-3-amino-6-methyl-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-2-one (24, 2.00 g, 5.88 mmol), prepared according to the same method as the previous example, and 3,5-dichloro-2-hydroxybenzaldehyde (0.011 g, 0.059 mmol) in isopropyl acetate (15.0 ml) at 55-60° C. under nitrogen was slowly added a solution of diphenylacetic acid (1.26 g, 5.88 mmol) in THF (10.0 ml) over 2 h. Upon completion of acid addition, a thick salt suspension was agitated at 55-60° C. for another 18 h and then was allowed to cool to ambient temperature. The salt was filtered and washed with isopropyl acetate. After drying at 60° C. in a vacuum oven with nitrogen purge for 8 hours, 25 (2.97 g, 91.4%) was obtained as crystals. 1H NMR (500 MHz, DMSO-d6): δ 7.48 (qd, J=9.4, 4.9 Hz, 1H), 7.32 (d, J=7.7 Hz, 4H), 7.25-7.26 (m, 4H), 7.19-7.17 (m, 3H), 6.79 (br, 3H), 4.95 (s, 1H), 4.67 (dq, J=15.3, 9.7 Hz, 1H), 3.81-3.79 (m, 3H), 3.62 (dd, J=11.6, 6.5 Hz, 1H), 2.66-2.62 (m, 1H), 2.25 (dd, J=12.9, 6.4 Hz, 1H), 1.11 (d, J=6.5 Hz, 3H); 13C NMR (100 MHz, DMSO-d6): δ 174.4, 171.8, 156.9 (ddd, J=244, 7.0, 2.5 Hz), 149.1 (ddd, J=249, 14.4, 8.5 Hz), 147.2 (ddd, J=246, 13.9, 3.2 Hz), 141.4, 129.0, 128.5, 126.7, 125.5 (q, J=281 Hz), 118.0 (dd, J=19.8, 13.8 Hz), 117.1 (dd, J=19.2, 10.6 Hz), 112.3 (ddd, J=26.1, 6.7, 3.3 Hz), 58.5, 57.1, 51.7, 44.8 (q, J=32.7 Hz), 35.3, 27.5 (br t, J=4.6 Hz), 14.5.

(3S,5S,6R)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-aminium 1H-indole-2-carboxylate (26)

    • [0186]
      Figure US20160130273A1-20160512-C00056
    • [0187]
      To a mixture of crude material containing 24 (2.00 g, 5.88 mmol) and 3,5-dichloro-2-hydroxybenzaldehyde (0.011 g, 0.059 mmol) in isopropyl acetate (15.0 ml) at 55-60° C. under nitrogen was slowly added a solution of 1H-indole-2-carboxylic acid (0.96 g, 5.88 mmol) in THF (10.0 ml) over 2 hours. Upon completion of acid addition, a thick salt suspension was agitated at 55-60° C. for another 18 h and then was allowed to cool to ambient temperature. The salt was filtered and washed with isopropyl acetate. After drying at 60° C. in a vacuum oven with nitrogen purge for 8 h, 26 (2.33 g, 79.0%) was isolated as crystals. 1H NMR (500 MHz, DMSO): δ 11.40 (s, 1H), 7.56 (d, J=8.0 Hz, 1H), 7.45 (br, 3H), 7.47 (ddd, J=14.8, 10.1, 8.3 Hz, 1H), 7.41-7.40 (m, 1H), 7.16-7.14 (m, 2H), 6.98-6.97 (m, 1H), 6.87 (s, 1H), 4.69 (dq, J=15.3, 9.6 Hz, 1H), 3.84-3.81 (m, 4H), 2.76-2.71 (m, 1H), 2.34 (dd, J=12.7, 6.3 Hz, 1H), 1.13 (d, J=6.5 Hz, 3H); 13C NMR (100 MHz, DMSO-d6): δ 170.9, 164.8, 156.8 (ddd, J=244, 7.0, 2.5 Hz), 149.1 (ddd, J=249, 14.4, 8.5 Hz), 147.2 (ddd, J=246, 13.9, 3.2 Hz), 137.0, 133.5, 127.8, 125.4 (q, J=282 Hz), 123.3, 121.8, 119.7, 117.8 (dd, J=19.8, 13.8 Hz), 117.2 (dd, J=19.2, 10.6 Hz), 112.7, 112.3 (ddd, J=26.1, 6.7, 3.3 Hz), 105.1, 57.1, 51.3, 44.8 (q, J=32.7 Hz), 35.2, 26.9, 14.5.

N-((3S,5S,6R)-6-Methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl)-2′-oxo-1′,2′,5,7-tetrahydrospiro[cyclopenta[b]pyridine-6,3′-pyrrolo[2,3-b]pyridine]-3-carboxamide monohydrate (28)

    • [0188]
      Figure US20160130273A1-20160512-C00057
    • [0189]
      To a suspension of 23 (5.0 g, 9.1 mmol) in isopropyl acetate (50 mL) was added 5% aqueous K3PO(50 mL). The mixture was stirred for 5 min. The organic layer was separated and washed with aqueous K3PO(50 mL). Solvent removed under vacuum and resulting oil (27) was dissolved in acetonitrile (20 mL). To another flask was added 14 (2.57 g), acetonitrile (40 mL), water (20 mL) and NaOH solution (10N, 0.9 mL). The solution of 27 in acetonitrile was charged to the mixture followed by HOBT monohydrate (1.5 g) and EDC hydrochloride (2.6 g). The mixture was agitated at room temperature for 4 h and HPLC analysis indicated a complete conversion. The reaction mixture was stirred with isopropyl acetate (60 mL) and the aqueous layer was removed. The organic layer was washed with 5% aqueous NaHCO(40 mL) followed by a mixture of 15% aqueous citric acid (40 mL) and saturated aqueous NaCl (10 mL). The resulting organic layer was finally washed with 5% aqueous NaHCO(40 mL). The solvent was removed under vacuum and the residue was dissolved in methanol (20 mL). The methanol solution was slowly charged into a mixture of water (50 mL) and methanol (5 mL) over 30 min with good agitation, followed by addition of water (50 mL) over 30 min. The suspension was stirred over night at room temperature. The mixture was filtered and crystals were dried in a vacuum oven for 5 h at 50° C. to give 28 (5.4 g, 95%) as monohydrate. 1H NMR (500 MHz, CD3OD): δ 8.88 (t, J=1.2 Hz, 1H), 8.15 (t, J=1.2 Hz, 1H), 8.09 (dd, J=5.3, 1.5 Hz, 1H), 7.36 (dd, J=7.4, 1.5 Hz, 1H), 7.28 (qd, J=9.3, 4.7 Hz, 1H), 7.01 (tdd, J=9.7, 3.6, 1.9 Hz, 1H), 6.96 (dd, J=7.4, 5.3 Hz, 1H), 4.80 (dq, J=15.2, 9.2 Hz, 1H), 4.56 (dd, J=11.7, 6.8 Hz, 1H), 4.03 (ddd, J=13.6, 4.2, 2.6 Hz, 1H), 3.97-3.90 (m, 1H), 3.68 (dq, J=15.3, 8.8 Hz, 1H), 3.59 (t, J=16.2 Hz, 2H), 3.35 (d, J=4.4 Hz, 1H), 3.32 (d, J=3.5 Hz, 1H), 3.21 (qt, J=12.7, 3.1 Hz, 1H), 2.38-2.32 (m, 1H), 1.34 (d, J=6.5 Hz, 3H); 13C NMR (126 MHz, CD3OD): δ 182.79, 171.48, 168.03, 166.71, 159.37 (ddd, J=244.1, 6.5, 2.1 Hz), 157.43, 150.88 (ddd, J=249.4, 14.4, 8.7 Hz), 148.96 (ddd, J=243.8, 13.7, 3.1 Hz), 148.67, 148.15, 136.84, 133.43, 131.63, 130.83, 130.48, 126.41 (q, J=280.0 Hz), 119.85, 118.89 (dd, J=19.0, 13.5 Hz), 117.77 (dd, J=19.8, 10.8 Hz), 112.80 (ddd, J=26.5, 6.5, 4.2 Hz), 58.86, 53.67, 52.87, 46.56 (q, J=33.3 Hz), 45.18, 42.06, 36.95, 27.76 (t, J=4.8 Hz), 14.11.

Example 3 3-Hydroxy-3-(2,3,6-trifluorophenyl)butan-2-one (30)

    • [0190]
      Figure US20160130273A1-20160512-C00058
    • [0191]
      To a solution of 1,2,4-trifluorobenzene (29, 49.00 g, 371 mmol) and diisopropylamine (4.23 mL, 29.7 mmol) in THF (750 mL) at −70° C. was slowly added 2.5 M of n-BuLi (156.0 ml, 390 mmol) to maintain temperature between −45 to −40° C. The batch was agitated for 30 min. To another flask, a solution of 2,3-butadione (37.7 mL, 427 mmol) in THF (150 mL) was prepared and cooled to −70° C. The previously prepared lithium trifluorobenzene solution was transferred to the second flask between −70 to −45° C. The reaction was agitated for 1 hour at −55 to −45 and then quenched by adding AcOH (25.7 mL, 445 mmol) and then water (150 mL). After warmed to room temperature, the aqueous layer was separated. The aqueous solution was extracted with MTBE (200 mL×1) and the combined organic layers were washed with brine (100 mL×1). The organic layer was concentrated at 25-35° C. The residue was flashed with heptane (100 mL×1) and concentrated to dryness and give 30 (87.94 g, 90.2 wt %, 98% yield, and >99% HPLC purity) as an oil. 1H NMR (CDCl3, 400 MHz): δ 7.16 (m, 1H), 6.86 (m, 1H), 6.88 (s, 1H), 4.59 (s, 1H), 2.22 (s, 3H), 1.84 (dd, J=4.0, 2.8 Hz, 3H); 19F NMR (CDCl3, 376.6 MHz): δ −114.6 (dd, J=14.5, 1.4 Hz), −133.6 (d, J=19.9 Hz), −141.3 (dd, J=19.9, 14.5 Hz); 13C NMR (CDCl3, 100 MHz): δ 207.4, 156.4 (ddd, J=247, 6.2, 2.9 Hz), 149.4 (ddd, J=253, 15.0, 9.0 Hz), 147.5 (ddd, J=245, 14.4, 3.3 Hz), 119.4 (dd, J=17.3, 11.7 Hz), 117.0 (ddd, J=19.3, 11.1, 1.4 Hz), 116.6 (ddd, J=26.6, 6.5, 4.1 Hz), 77.9, 25.0 (dd, J=6.5, 4.9 Hz), 23.3.

3-(2,3,6-Trifluorophenyl)but-3-en-2-one (31)

    • [0192]
      Figure US20160130273A1-20160512-C00059
    • [0193]
      The hydroxy ketone 30 (7.69 g, 35.2 mmol) and 95% H2SO(26.2 mL, 492.8 mmol) were pumped at 2.3 and 9.2 mL/min respectively into the flow reactor. The temperature on mixing was controlled at 22-25° C. by placing the reactor in a water bath (21° C.). The effluent was quenched into a a mixture of cold water (106 g) and heptane/IPAc (1:1, 92 mL) in a jacketed reactor cooled at 0° C.; the internal temperature of the quench solution was ˜7° C. during the reaction. The layers in the quench reactor were separated and the organic layer was washed with 10% NaH2PO4/Na2HPO(1:1, 50 mL). The pH of the final wash was 5-6. Solka flock (3.85 g, 50 wt %) was added to the organic solution. The resulting slurry was concentrated and solvent-switched to heptanes at 25-30° C. The mixture was filtered, rinsed with heptanes (50 mL×1). The combined filtrates were concentrated under vacuum to give 31 as an light yellow oil (6.86 g, 90 wt %, 87% yield), which solidified in a freezer. 1H NMR (CDCl3, 400 MHz): δ 7.13 (m, 1H), 6.86 (m, 1H), 6.60 (s, 1H), 6.15 (s, 1H), 2.46 (s, 3H); 19F NMR (CDCl3, 376.6 MHz): δ −117.7 (dd, J=15.0, 1.4 Hz), −135.4 (dd, J=21.4, 1.4 Hz), −42.7 (dd, J=21.4, 15.0 Hz); 13C NMR (CDCl3, 100 MHz): δ 196.3, 155.3 (ddd, J=245, 5.1, 2.9 Hz), 147.9 (ddd, J=250, 14.5, 7.8 Hz), 147.0 (ddd, J=245, 13.4, 3.7 Hz), 137.5 (d, J=1.3 Hz), 131.7, 116.6 (ddd, J=19.9, 9.7, 1.2 Hz), 116.2 (dd, J=22.6, 16.5 Hz), 110.6 (ddd, J=24.8, 6.5, 4.1 Hz), 25.8.

Alternative Synthesis of 3-(2,3,6-trifluorophenyl)but-3-en-2-one (31)

    • [0194]
      Figure US20160130273A1-20160512-C00060
    • [0195]
      A solution of 18 (3.5 g, 18.6 mmol), acetic acid (0.34 ml, 5.58 mmol), piperidine (0.37 ml, 3.72 mmol), formaldehyde (6.0 g, 37% aqueous solution) in MeCN (20 mL) was heated over weekend. The conversion was about 60%. Reaction was heated to 70° C. overnight. The mixture was concentrated and extracted with MTBE and HCl (0.5N). The organic layer was washed with aqueous K2CO(0.5N) and water, in turns. The organic layer was concentrated. The product was isolated by chromatography column (hexane and EtOAc), yielding 31 (2.29 g, 61.5%).

Isopropyl 2-((diphenylmethylene)amino)-5-oxo-4-(2,3,6-trifluorophenyl)hexanoate (32)

    • [0196]
      Figure US20160130273A1-20160512-C00061
    • [0197]
      Diphenylidene isopropyl glycinate (2.0 g, 7.0 mmol) and 31 (1.4 g, 7.0 mmole) were dissolved in THF (10 ml). The solution was cooled to −10° C. tert-BuOLi (0.56 g, 7.0 mmole) was charged into the solution in several portions. The reaction was warmed up to room temperature slowly and stirred overnight. After quenched by addition of aqueous NH4Cl, the solvents were removed by distillation under vacuum. The residue was subjected to silica chromatography column eluted by hexane and EtOAc yielding 32 (3.0 g, 89%) as an oil, which was directly used in the next step.

Isopropyl 2-((tert-butoxycarbonyl)amino)-5-oxo-4-(2,3,6-trifluorophenyl)hexanoate (19)

    • [0198]
      Figure US20160130273A1-20160512-C00062
    • [0199]
      Compound 32 (100 mg, 0.21 mmol) was dissolved in THF (2 ml) and the solution was cooled to −10° C. Hydrochloric acid (2N, 1 ml) was added and stirred until all starting material disappeared by TLC. The pH of the reaction was adjusted (pH.>10) by addition of aqueous K2CO3. Boc2O (68 mg, 0.31 mmole) was added into the mixture and stirred overnight. The reaction was completed checked by TLC and the product was identical to the one prepared from the iodo coupling route.

Isopropyl 2-((tert-butoxycarbonyl)amino)-5-oxo-4-(2,3,6-trifluorophenyl)hexanoate (19)

    • [0200]
      Figure US20160130273A1-20160512-C00063
    • [0201]
      To a 100 mL round bottom was charged 2-methyl THF (43.7 mL) and diisopropyl amine (4.92 mL, 34.2 mmol) and the solution was cooled to −70° C. n-BuLi (13.08 mL, 32.7 mmol) was charged dropwise during which the temperature was controlled below −45° C. The mixture was stirred at −45° C. for 0.5 h. N-Boc-glycine ester (3.58 g) was added dropwise keeping temperature between −45 to −40° C. and aged at the same temperature for 1 h.
    • [0202]
      The solution of 31 (2.91 g, 14.5 mmol) in 2-methyl THF (2.9 mL) was then added dropwise in the same manner at −45 to −40° C. After a 0.5-1 h age, LC analysis showed nearly complete reaction. The reaction was quenched by addition of HOAc (3.83 mL) and the mixture was warmed to −10° C. and water (11.6 mL, 4 vol) was charged at <20° C. The phase was separated, and the organic layer was washed with 16% NaCl aqueous solution (11.6 mL). Assay desired product 19 as a mixture of diastereomers in the organic solution was 5.40 g (89% yield). The organic layer was concentrated to give crude product 19, which was directly used in the next step reaction. For characterization purposes, a small sample was purified by flash chromatography (silica gel, EtOAc/hexanes=1:10) to give two diastereomers 19A and 19B. 19A as a colorless oil, 1H NMR (CD3CN, 400 MHz) δ: 7.29 (m, 1H), 7.02 (m, 1H), 5.58 (d, J=6.1 Hz, 1H), 4.91 (m, 1H), 4.19-4.05 (m, 2H), 2.79 (m, 1H), 2.05 (s, 3H), 1.84 (m, 1H), 1.41 (s, 9H), 1.23 (d, J=6.7 Hz, 3H), 1.22 (d, J=6.7 Hz, 3H); 13C NMR (CD3CN, 100 MHz) δ: 204.7, 172.4, 158.6 (ddd, J=244, 6, 3 Hz), 156.3, 149.8 (ddd, J=248, 15, 9 Hz), 148.5 (ddd, J=242, 14, 3 Hz), 118.3 (dd, J=21, 16 Hz), 117.7 (ddd, J=19, 10, 2 Hz), 112.6 (ddd, J=26, 7, 4 Hz), 80.2, 70.0, 53.5, 46.0, 32.0, 28.5, 22.0, 21.9. 19B as colorless crystals, MP 91.5-92.0° C., 1H NMR (CD3CN, 400 MHz) δ: 7.31 (m, 1H), 7.03 (m, 1H), 5.61 (d, J=8.2 Hz, 1H), 4.95 (m, 1H), 4.19 (dd, J=10.2, 5.1 Hz, 1H), 3.72 (m, 1H), 2.45-2.29 (m, 2H), 2.09 (s, 3H), 1.41 (s, 9H), 1.21 (d, J=6.3 Hz, 3H), 1.20 (d, J=6.3 Hz, 3H); 13C NMR (CD3CN, 100 MHz) δ: 205.0, 172.8, 157.9 (ddd, J=244, 7, 3 Hz), 156.5, 150.3 (ddd, J=248, 149, 9 Hz), 148.5 (ddd, J=242, 13, 4 Hz), 117.9 (dd, J=19, 10 Hz), 115.9 (dd, J=21, 15 Hz), 111.5 (ddd, J=25, 8, 4 Hz), 80.1, 69.9, 52.9, 46.5, 31.1, 28.5, 22.0, 21.9.

Example 4 N-Methoxy-N-methyl-2-(o-tolyl)acetamide (34)

    • [0203]
      Figure US20160130273A1-20160512-C00064
    • [0204]
      To a solution of NHMe(OMe).HCl (203 g, 2.1 mol) in THF (1 L), H2O (400 mL) and TEA (263 g, 2.2 mol) was added 33 (200 g, 1.3 mol) and CDI (243 g, 1.5 mol) at 0-10° C. The reaction mixture was stirred at 0-10° C. for 5 h. After HPLC showed that the reaction was complete, the mixture was filtered through celite and the filtrate was partitioned with water and EtOAc. The organic solution was dried over Na2SOand concentrated. The crude residual was further purified by flash chromatography on silica gel (5-10% EtOAc/PE) to give 34 (200 g, 78% yield). 1H NMR (CDCl3, 400 MHz): δ 7.17-7.13 (m, 4H), 3.75 (m, 2H), 3.66 (d, 3H), 3.11 (s, 3H), 2.20 (s, 3H), 1.63-1.55 (m, 1H); MS (ESI) m/e [M+H]+: 194.1.

1-(o-Tolyl)propan-2-one (35)

    • [0205]
      Figure US20160130273A1-20160512-C00065
    • [0206]
      A solution of CeCl(114.4 g, 0.45 mol) in THF (4 L) was degassed for 1 h and heated to 45-50° C. for 5 h. When the solution was cooled to −10˜−5° C., MeMgCl (193.2 g, 2.6 mol) in THF was added and the mixture was stirred for 1 h at −10˜−5° C. After amide 34 (256 g, 1.3 mol) was charged into the reaction mixture at −10˜−5° C., the mixture was stirred for 5 h at 10-20° C. After the reaction was complete monitored by LCMS, the mixture was quenched by 1M HCl, and then partitioned with water and EtOAc. The organic phase was dried over Na2SOand concentrated. The crude residual was further purified by flash chromatography on silica gel (2-10% EtOAc/PE) to give 35 (157 g, 80% yield). 1H NMR (CDCl3, 400 MHz): δ 7.1-6.91 (d, 4H), 3.55 (s, 3H), 2.25 (s, 3H), 2.05 (s, 3H); MS (ESI) m/e [M+H]+: 149.05.

Isopropyl 2-((tert-butoxycarbonyl)amino)-5-oxo-4-(o-tolyl)hexanoate (36)

  • [0207]
    Figure US20160130273A1-20160512-C00066
  • [0208]
    To a solution of 2 (181.2 g, 0.557 mol) in THF (1 L) was added TEA (84.6 g, 0.836 mol) in portions at 15-20° C. The mixture was stirred for 30 h. After the reaction was complete, the solution was concentrated to give crude 7. To a solution of 35 (82.5 g, 0.557 mol) and Cs2CO(91 g, 0.279 mol) in DMSO (1 L) was added slowly crude 7 in DMSO (500 mL) over 30 min at 15-20° C. The mixture was stirred for 1 h. After the reaction was complete, the mixture was partitioned with water and MTBE (5 L), and extracted with MTBE twice. The combined organic layer was dried over Na2SOand concentrated. The crude residual was further purified by flash chromatography on silica gel (5-10% EtOAc/PE) to give 36 (138 g, 65% yield). 1H NMR (DMSO-d6, 400 MHz): δ 7.14-7.09 (m, 3H), 7.10-6.91 (d, 1H), 4.93-4.89 (m, 1H), 4.05-3.98 (s, 3H), 2.39-2.37 (d, 3H), 1.98-1.92 (d, 3H), 1.20-1.19 (m, 9H), 1.18-1.15 (m, 6H); MS (ESI) m/e [M+H]+: 364.2
      • (S)-1′-(tert-Butyl)-2′-oxo-1′,2′,5,7-tetrahydrospiro[cyclopenta[b]pyridine-6,3′-pyrrolo[2,3-b]pyridine]-3-carboxylic acid (59)

     

    • [0249]
      Figure US20160130273A1-20160512-C00088
    • [0250]
      A mixture of 58 (5.0 g, 14.5 mmol), K2CO(5.01 g, 36.2 mmol), Pd(OAc)2(33 mg, 0.145 mmol), 1,3-bis(dicyclohexylphosphino)propane (DCPP, 127 mg, 0.290 mmol) and water (0.522 mL, 29.0 mmol) in NMP (32 mL) was heated at 120° C. under 30 psi of CO for 24 h. After cooling to room temperature, the resulting slurry was diluted with water (100 mL). The pH was slowly adjusted to 3-4 with 2 N HCl. The slurry was aged at room temperature for 1 h, filtered, rinsed with water (40 to 50 mL), dried under oven at 60° C. to give 59 (4.64 g, 95%) as a solid. 1H NMR (DMSO-d6, 500 MHz): δ 8.90 (s, 1H), 8.19 (d, J=5.2 Hz, 1H), 7.54 (d, J=7.3 Hz, 1H,), 6.99 (dd, J=7.3, 5.2 Hz, 1H), 3.33 (m, 4H), 1.72 (s, 9H); 13C NMR (DMSO-d6, 125 MHz): δ 180.16, 167.44, 166.97, 158.07, 149.76, 146.61, 135.39, 133.09, 130.36, 128.81, 125.48, 118.44, 58.19, 51.12, 44.56, 41.24, 28.91.

(S)-2′-Oxo-1′,2′,5,7-tetrahydrospiro[cyclopenta[b]pyridine-6,3′-pyrrolo[2,3-b]pyridine]-3-carboxylic acid (14)

  • [0251]
    Figure US20160130273A1-20160512-C00089
  • [0252]
    To 59 (4 g, 97% wt) was charged 37% HCl (40 to 44 mL). The slurry was heated at 94° C. for up to 48 h, cooled down to room temperature. The solvent was partially removed by reducing pressure to about total 2 vol (˜4 mL water remained). The residue was diluted with water (20 mL) followed by adjusting pH to 2.6 with NaOH (3.5 N, 4.5 mL). The thick slurry was aged for 1 to 2 h, filtered, rinsed with water (2×8 mL), followed by water/acetone (1:1, 8 mL). The wet cake was dried to give compound 14 (3.1 g, 98% wt, 94%) as crystals. 1H NMR (DMSO-d6, 500 MHz): δ 13.31 (br, 1H), 11.14 (s, 1H), 8.91 (s, 1H), 8.11 (m, 2H), 7.49 (dd, J=7.3, 1.3 Hz, 1H), 6.93 (dd, J=7.3, 5.3 Hz, 1H), 3.36 (m, 4H); 13C NMR (DMSO-d6, 125 MHz): δ 181.06, 167.36, 166.95, 156.80, 149.79, 147.32, 135.37, 133.19, 130.73, 128.88, 125.50, 118.46, 51.78, 44.12, 40.70.
PATENT
 
WO 2013169348
 

2′-oxo-l\2 5,7-tetrahydrospiro[cyclopenta[¾]pyridine-6,3′-pyrrolo[2,3-¾]pyridine]-3-carboxamide monohydrate (28)

To a suspension of 23 (5.0 g, 9.1 mmol) in isopropyl acetate (50 mL) was added 5% aqueous K3PO4 (50 mL). The mixture was stirred for 5 min. The organic layer was separated and washed with aqueous K3PO4 (50 mL). Solvent removed under vacuum and resulting oil (27) was dissolved in acetonitrile (20 mL). To another flask was added 14 (2.57 g), acetonitrile (40 mL), water (20 mL) and NaOH solution (10N, 0.9 mL). The solution of 27 in acetonitrile was

charged to the mixture followed by HOBT monohydrate (1.5 g) and EDC hydrochloride (2.6 g). The mixture was agitated at room temperature for 4 h and HPLC analysis indicated a complete conversion. The reaction mixture was stirred with isopropyl acetate (60 mL) and the aqueous layer was removed. The organic layer was washed with 5% aquoues NaHC03 (40 mL) followed by a mixture of 15% aqueous citric acid (40 mL) and saturated aqueous NaCl (10 mL). The resulting organic layer was finally washed with 5% aquous NaHC03 (40 mL). The solvent was removed under vacuum and the residue was dissolved in methanol (20 mL). The methanol solution was slowly charged into a mixture of water (50 mL) and methanol (5 mL) over 30 min with good agitation, followed by addition of water (50 mL) over 30 min. The suspension was stirred over night at room temperature. The mixture was filtered and crystals were dried in a vacuum oven for 5 h at 50 °C to give 28 (5.4 g, 95%) as monohydrate. Ή NMR (500 MHz, CD3OD): δ 8.88 (t, J= 1.2 Hz, 1 H), 8.15 (t, J = 1.2 Hz, 1 H), 8.09 (dd, J= 5.3, 1.5 Hz, 1 H), 7.36 (dd, J= 7.4, 1.5 Hz, 1 H), 7.28 (qd, J= 9.3, 4.7 Hz, 1 H), 7.01 (tdd, J= 9.7, 3.6, 1.9 Hz, 1 H), 6.96 (dd, J= 7.4, 5.3 Hz, 1 H), 4.80 (dq, J= 15.2, 9.2 Hz, 1 H), 4.56 (dd, J= 11.7, 6.8 Hz, 1 H), 4.03 (ddd, J= 13.6, 4.2, 2.6 Hz, 1 H), 3.97-3.90 (m, 1 H), 3.68 (dq, J= 15.3, 8.8 Hz, 1 H), 3.59 (t, J= 16.2 Hz, 2 H), 3.35 (d, J= 4.4 Hz, 1 H), 3.32 (d, J= 3.5 Hz, 1 H), 3.21 (qt, J= 12.7, 3.1 Hz, 1 H), 2.38-2.32 (m, 1 H), 1.34 (d, J= 6.5 Hz, 3 H); 13C NMR (126 MHz, CD3OD): δ 182.79, 171.48, 168.03, 166.71, 159.37 (ddd, J= 244.1, 6.5, 2.1 Hz), 157.43, 150.88 (ddd, J = 249.4, 14.4, 8.7 Hz), 148.96 (ddd, J= 243.8, 13.7, 3.1 Hz), 148.67, 148.15, 136.84, 133.43, 131.63, 130.83, 130.48, 126.41 (q, J = 280.0 Hz), 119.85, 118.89 (dd, J= 19.0, 13.5 Hz), 117.77 (dd, J= 19.8, 10.8 Hz), 112.80 (ddd, J= 26.5, 6.5, 4.2 Hz), 58.86, 53.67, 52.87, 46.56 (q, J = 33.3 Hz), 45.18, 42.06, 36.95, 27.76 (t, J= 4.8 Hz), 14.11.

PATENT
 
 

This invention relates to a process for making piperidinone carboxamide indane and azainane derivatives, which are CGRP receptor antagonists useful for the treatment of migraine. This class of compounds is described in U.S. Patent Application Nos. 13/293,166 filed November 10, 2011, 13/293,177 filed November 10, 2011 and 13/293,186 filed November 10, 2011, and PCT International Application Nos. PCT/US11/60081 filed November 10, 2011 and PCT/US 11/60083 filed November 10, 2011.

CGRP (Calcitonin Gene -Related Peptide) is a naturally occurring 37-amino acid peptide that is generated by tissue-specific alternate processing of calcitonin messenger RNA and is widely distributed in the central and peripheral nervous system. CGRP is localized

predominantly in sensory afferent and central neurons and mediates several biological actions, including vasodilation. CGRP is expressed in alpha- and beta-forms that vary by one and three amino acids in the rat and human, respectively. CGRP-alpha and CGRP -beta display similar biological properties. When released from the cell, CGRP initiates its biological responses by binding to specific cell surface receptors that are predominantly coupled to the activation of adenylyl cyclase. CGRP receptors have been identified and pharmacologically evaluated in several tissues and cells, including those of brain, cardiovascular, endothelial, and smooth muscle origin.

Based on pharmacological properties, these receptors are divided into at least two subtypes, denoted CGRPi and CGRP2- Human a-CGRP-(8-37), a fragment of CGRP that lacks seven N-terminal amino acid residues, is a selective antagonist of CGRPi, whereas the linear analogue of CGRP, diacetoamido methyl cysteine CGRP ([Cys(ACM)2,7]CGRP), is a selective agonist of CGRP2- CGRP is a potent neuromodulator that has been implicated in the pathology of cerebrovascular disorders such as migraine and cluster headache. In clinical studies, elevated levels of CGRP in the jugular vein were found to occur during migraine attacks (Goadsby et al, Ann. Neurol, 1990, 28, 183-187), salivary levels of CGRP are elevated in migraine subjects between attacks (Bellamy et al., Headache, 2006, 46, 24-33), and CGRP itself has been shown to trigger migrainous headache (Lassen et al., Cephalalgia, 2002, 22, 54-61). In clinical trials, the CGRP antagonist BIBN4096BS has been shown to be effective in treating acute attacks of migraine (Olesen et al, New Engl. J. Med., 2004, 350, 1104-1110) and was able to prevent headache induced by CGRP infusion in a control group (Petersen et al., Clin. Pharmacol. Ther., 2005, 77, 202-213).

CGRP -mediated activation of the trigeminovascular system may play a key role in migraine pathogenesis. Additionally, CGRP activates receptors on the smooth muscle of intracranial vessels, leading to increased vasodilation, which is thought to contribute to headache pain during migraine attacks (Lance, Headache Pathogenesis: Monoamines, Neuropeptides, Purines and Nitric Oxide, Lippincott-Raven Publishers, 1997, 3-9). The middle meningeal artery, the principle artery in the dura mater, is innervated by sensory fibers from the trigeminal ganglion which contain several neuropeptides, including CGRP. Trigeminal ganglion stimulation in the cat resulted in increased levels of CGRP, and in humans, activation of the trigeminal system caused facial flushing and increased levels of CGRP in the external jugular vein (Goadsby et al., Ann. Neurol., 1988, 23, 193-196). Electrical stimulation of the dura mater in rats increased the diameter of the middle meningeal artery, an effect that was blocked by prior administration of CGRP(8-37), a peptide CGRP antagonist (Williamson et al., Cephalalgia, 1997, 17, 525-531). Trigeminal ganglion stimulation increased facial blood flow in the rat, which was inhibited by CGRP(8-37) (Escott et al, Brain Res. 1995, 669, 93-99). Electrical stimulation of the trigeminal ganglion in marmoset produced an increase in facial blood flow that could be blocked by the non-peptide CGRP antagonist BIBN4096BS (Doods et al, Br. J.

Pharmacol., 2000, 129, 420-423). Thus the vascular effects of CGRP may be attenuated, prevented or reversed by a CGRP antagonist.

CGRP -mediated vasodilation of rat middle meningeal artery was shown to sensitize neurons of the trigeminal nucleus caudalis (Williamson et al., The CGRP Family:

Calcitonin Gene -Related Peptide (CGRP), Amylin, and Adrenomedullin, Landes Bioscience, 2000, 245-247). Similarly, distention of dural blood vessels during migraine headache may sensitize trigeminal neurons. Some of the associated symptoms of migraine, including extracranial pain and facial allodynia, may be the result of sensitized trigeminal neurons (Burstein et al, Ann. Neurol. 2000, 47, 614-624). A CGRP antagonist may be beneficial in attenuating, preventing or reversing the effects of neuronal sensitization.

The ability of the compounds to act as CGRP antagonists makes them useful pharmacological agents for disorders that involve CGRP in humans and animals, but particularly in humans. Such disorders include migraine and cluster headache (Doods, Curr Opin Inves Drugs, 2001, 2 (9), 1261-1268; Edvinsson et al, Cephalalgia, 1994, 14, 320-327); chronic tension type headache (Ashina et al, Neurology, 2000, 14, 1335-1340); pain (Yu et al, Eur. J. Pharm., 1998, 347, 275-282); chronic pain (Hulsebosch et al, Pain, 2000, 86, 163-175);

neurogenic inflammation and inflammatory pain (Holzer, Neurosci., 1988, 24, 739-768; Delay- Goyet et al, Acta Physiol. Scanda. 1992, 146, 537-538; Salmon et al, Nature Neurosci., 2001, 4(4), 357-358); eye pain (May et al. Cephalalgia, 2002, 22, 195-196), tooth pain (Awawdeh et al, Int. Endocrin. J., 2002, 35, 30-36), non-insulin dependent diabetes mellitus (Molina et al, Diabetes, 1990, 39, 260-265); vascular disorders; inflammation (Zhang et al, Pain, 2001, 89, 265), arthritis, bronchial hyperreactivity, asthma, (Foster et al, Ann. NY Acad. Sci., 1992, 657, 397-404; Schini et al, Am. J. Physiol, 1994, 267, H2483-H2490; Zheng et al, J. Virol, 1993, 67, 5786-5791); shock, sepsis (Beer et al, Crit. Care Med., 2002, 30 (8), 1794-1798); opiate withdrawal syndrome (Salmon et al, Nature Neurosci., 2001, 4(4), 357-358); morphine tolerance (Menard et al, J. Neurosci., 1996, 16 (7), 2342-2351); hot flashes in men and women (Chen et al, Lancet, 1993, 342, 49; Spetz et al, J. Urology, 2001, 166, 1720-1723); allergic dermatitis (Wallengren, Contact Dermatitis, 2000, 43 (3), 137-143); psoriasis; encephalitis, brain trauma, ischaemia, stroke, epilepsy, and neurodegenerative diseases (Rohrenbeck et al, Neurobiol. of Disease 1999, 6, 15-34); skin diseases (Geppetti and Holzer, Eds., Neurogenic Inflammation, 1996, CRC Press, Boca Raton, FL), neurogenic cutaneous redness, skin rosaceousness and erythema; tinnitus (Herzog et al, J. Membrane Biology, 2002, 189(3), 225); inflammatory bowel disease, irritable bowel syndrome, (Hoffman et al. Scandinavian Journal of Gastroenterology, 2002, 37(4) 414-422) and cystitis. Of particular importance is the acute or prophylactic treatment of headache, including migraine and cluster headache.

The present invention describes a novel process for making piperidinone carboxamide indane and azainane derivatives, which are CGRP receptor antagonists, having less steps and improved yields as compared to previous synthetic methods for making these compounds.

Another embodiment of the invention encompasses crystalline monohydrate free base of the compound having the structure

Figure imgf000011_0002

and having the following chemical name: (S)-N-((3S,5S,6R)-6-mQthyl-2-oxo-l -(2,2,2- trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl)-2′-oxo- ,2′,5,7- tetrahydrospiro [cyclopenta[b]pyridine-6,3 ‘-pyrrolo [2,3 -b]pyridine] -3 -carboxamide monohydrate

EXAMPLE 2 acetamide (17)

K2C03, water

Figure imgf000055_0002

To a solution of DMF (58.1 mL, 750 mmol) in iPAc (951 mL) was added POCl3 (55.9 mL, 600 mmol) under ice-cooling. After aged for 1 h under ice-bath, acid 16 (95 g, 500 mmol) was added under ice-cooling. The solution was stirred under ice-cooling for 30 min. The solution was added over 30 min into a solution of K2CO3 (254 g, 1.835 mol) and

NHMe(OMe)HCl (73.2 g, 750 mmol) in water (951 mL) below 8 °C. After aged for 30 min below 8 °C, the organic layer was separated, washed with water (500 mL) twice and sat. NaCl aq (100 mL) once, and concentrated in vacuo to afford 17 as an oil (117.9 g, 97.7 wt%, 99% yield). ‘H NMR (CDCI3, 400 MHz); δ 7.05 (m, 1H), 6.82 (m, 1H), 3.86 (s, 2H), 3.76 (s, 3H), 3.22 (s,

3H); 19F NMR (CDCI3, 376.6 MHz); δ -120.4 (dd, J= 15.1, 2.7 Hz), -137.9 (dd, J= 20.8, 2.7 Hz), -143.5 (dd, J= 20.8, 15.1 Hz); 13C NMR (CDC13, 100 MHz); δ 169.4, 156.9 (ddd, J= 244, 6.2, 2.7 Hz), 149.3 (ddd, J= 249, 14.4, 8.4 Hz), 147.1 (ddd, J= 244, 13.1, 3.5 Hz), 115.5 (ddd, J = 19.4, 9.9, 1.5 Hz), 133.4 (dd, J= 22.3, 16.4 Hz), 110.2 (ddd, J= 24.8, 6.7, 4.1 Hz), 32.4 (broad), 26.6 (m); HRMS m/z calcd for C10H10F3NO2 234.0736 (M+H); found 234.0746 l-(2,3,6-Trifluorophenyl)propan-2-one (18)

Figure imgf000056_0001

A mixture of CeCl3 (438 g, 1779 mmol) and THF (12 L) was heated at 40 °C for about 2 h then cooled to 5 °C. Methylmagensium chloride in THF (3 M, 3.4 L) was charged at 5- 9 °C and then it was warmed up to 16 °C and held for 1 h. The suspension was re-cooled to -10 to -15 °C. A solution of 17 (1.19 kg) in THF (2.4 L) was charged into the suspension over 15 min. After confirmation of completion of the reaction, the reaction mixture was transferred to a cold solution of hydrochloric acid (2 N, 8.4 L) and MTBE (5 L) in 5-10°C. The aqueous phase was separated and the organic layer was washed with aqueous 5%> K2CO3 (6 L) and then 10%> aqueous NaCl (5 L). The organic layer was dried over Na2S04, concentrated to give crude 18 (917g, >99wt%>) in 95% yield. The crude 18 was used in the next step without further purification. Analytically pure 18 was obtained by silica gel column.

!H NMR (CDCI3, 400 MHz); δ 7.07 (m, 1H), 6.84 (m, 1H), 3.82 (s, 2H), 2.28 (s, 3H); 19F NMR (CDCI3, 376.6 MHz); δ -120.3 (dd, J= 15.3, 2.5 Hz), -137.8 (dd, J= 21.2, 2.5 Hz), -143.0 (dd, J = 20.2, 15.3 Hz); 13C NMR (CDCI3, 100 MHz); δ 202.2, 156.5 (ddd, J= 244, 6.3, 2.9 Hz), 148.9 (ddd, J= 249, 14.4, 8.6 Hz), 147.0 (ddd, J = 244, 13.1, 3.5 Hz), 115.7 (ddd, J = 19.4, 10.5, 1.2 Hz), 112.8 (dd, J= 22.7, 17.0 Hz), 110.3 (ddd, J = 24.8, 6.7, 4.1 Hz), 37.2 (d, J=1.2 Hz), 29.3. Isopropyl 2-((tert-butoxycarbonyl)amino)-5-oxo-4-(2,3,6-trifluorophenyl)hexanoate (19)

Figure imgf000057_0001

To a solution of 18 (195 g, 1.03 mol) in MTBE (1.8 L) was added zinc bromide (67 g, 0.30 mol) followed by 2 (390 g, 1.2 mol). tert-BuOLi (290 g, 3.6 mol) was then added in several portions while maintaining the reaction temperature below 40 °C. The resulting mixture was stirred at 35 °C for 24 h and quenched into a mixture of 2 N HC1 (5.6 L) and heptane (5 L) at 0 °C. The organic layer was separated and washed with 5% aqueous NaHC03 (5 L) twice. The resulting organic solution was concentrated under vacuum. The residue was dissolved in heptane (2 L) and the solution was concentrated again under vacuum. The resulting oil was dissolved in DMSO (2.5 L) and the solution was used in the next step without further purification. HPLC analysis indicated that the solution contained the desired product 19 (290 g, 67% yield) as the major component along with 5% of starting material 18. The analytically pure product 19 as one pair of diastereomers was isolated by chromatography on silica gel with ethyl acetate and heptane mixture as an eluant. HRMS: m/z calcd for C2oH26F3N05 418.1836 (M+H); found 418.1849. tert- Butyl ((55,,6i?)-6-methyl-2-oxo-5-(2,3,6-trifluorophenyl)piperidin-3-yl)carbamate (20)

Figure imgf000057_0002

To a 0.5 L cylindrical Sixfors reactor with an overhead stirring, a temperature control, a pH probe and a base addition line, was added sodiumtetraborate decahydrate (3.12 g) and DI water (163 mL). After all solids were dissolved, isopropylamine (9.63 g) was added. The pH of the buffer was adjusted to pH 10.5 using 6 N HC1. The buffer was cooled to room temperature. Then, pyridoxal-5 -phosphate (0.33 g) and SEQ ID NO: 1 (8.15 g) were added and slowly dissolved at room temperature. Crude keto ester 19 (23.6 g, 69 wt%, 16.3 g assay, 39 mmol) was dissolved in DMSO (163 mL) and the solution was added to the reactor over 5-10 min. Then the reaction was heated to 55 °C. The pH was adjusted to 10.5 according to a handheld pH meter and controlled overnight with an automated pH controller using 8 M aqueous isopropylamine. The reaction was aged for 27.5 hours.

After confirmation of >95A% conversion by HPLC, the reaction was extracted by first adding a mixture of iPA: iPAc (3:4, 350 mL) and stirring for 20 min. The phases were separated and the aqueous layer was back extracted with a mixture of iPA: iPAc (2:8, 350 mL). The phases were separated. The organic layers were combined and washed with DI water (90 mL). The HPLC based assay yield in the organic layer was 20 (9.86 g, 70.5 % assay yield) with >60:1 dr at the positions C5 and C6. tert- utyl ((35′,55′,6i?)-6-methyl-2-oxo-5-(2,3,6-trifiuorophenyl)piperidin-3-yl)carbamate (21)

Figure imgf000058_0001

A solution of crude cis and trans mixture 20 in a mixture of iPAc and iPA (1.83 wt%, 9.9 kg; 181 g assay as a mixture) was concentrated in vacuo and dissolved in 2-Me-THF (3.6 L). To the solution was added tert-BuOK (66.6 g, 0.594 mol) at room temperature. The suspension was stirred at room temperature for 2 h. The mixture was poured into water (3.5 L) and the organic layer was separated, washed with 15 wt% of aqueous NaCl (3.5 L), dried over Na2S04, and concentrated to dryness. The residue was suspended with iPAc (275 mL) and heptane (900 mL) at 60 °C. The suspension was slowly cooled down to 1 °C. The solid was filtered and rinsed with iPAc and heptane (1 :3), dried to afford 21 (166 g, 93 wt%; 85 %) as crystals. Mp 176-179 °C; 1H NMR (CDC13, 500 MHz): δ 7.06 (m, 1H), 6.84 (m, 1H), 5.83 (broad s, 1H), 5.58 (broad s, 1H), 4.22 (m, 1H), 3.88-3.79 (m, 2H), 2.77 (m, 1H), 2.25 (m, 1H), 1.46 (s, 9H), 1.08 (d, J= 6.4 Hz, 3H); 19F NMR (CDCI3, 376 MHz): δ -117 (d, J= 14 Hz), -135 (d, J= 20 Hz), -142 (dd, J= 20, 14 Hz); 13C NMR (CDC13, 100 MHz): δ 171.1, 156.6 (ddd, J = 245, 6.4, 2.8 Hz), 155.8, 149.3 (ddd, J= 248, 14.4, 8.8 Hz), 147.4 (ddd, J= 245, 14.2, 3.8 Hz), 118.0 (dd, J= 19.3, 14.5 Hz), 115.9 (dd, J= 19.2, 10.4 Hz), 111.0 (ddd, J = 26.4, 6.0, 4.3 Hz), 79.8, 51.4, 49.5, 34.1, 29.3, 28.3, 18.0; HRMS: m/z calcd for Ci7H2iF3N203 381.1396 (M+ Na); found 381.1410. tert-Butyl ((55′,6i?)-6-methyl-2-oxo-l-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3- yl)carbamate (22)

Figure imgf000059_0001

To a solution of 21 (10 g, 87% purity, 24.3 mmol) in THF (70 ml) was added tert- BuOLi (2.5 g, 31.2 mmol) at 5 °C in one portion. The solution was cooled to between 0 and 5 °C and trifluoroethyl trifluoromethanesulfonate (10.0 g, 43 mmol) was added in one portion. DMPU (7 mL) was added slowly over 15 min while maintaining the the reaction temperature below 5 °C. After the mixture was stirred at 0 °C for 3 h, additional tert-BuOLi (0.9 g, 11.2 mmol) was added. The mixture was aged for an additional 90 min. The mixture was quenched with 0.2 N HC1 (70 ml), followed by addition of heptane (80 ml). The organic layer was separated and aqueous layer extracted with heptane (30 ml). The combined organic layers were washed with 15%) aquoeus citric acid (50 mL) and 5% aqueous NaHC03 (50 mL). The solution was concentrated under vacuum at 40 °C and the resulting oil was dissolved in iPAc (30 mL). The solution was used directly in the next step without further purification. The HPLC analysis indicated that the solution contained 22 (9.8 g, 92% as cis and trans mixture in a ratio of 6.5 to 1) along with 4% of starting material 21 and 8% of a N,N’-alkylated compound. Analytically pure 22 (cis isomer) was isolated by chromatography on silica gel with ethyl acetate and heptane as an eluant. 1H NMR (CDC13, 500 MHz): δ 7.15 (m, 1H), 6.85 (m, 1H), 5.45 (broad, s, 1H), 4.90 (m, H), 4.20 (m, 1H), 3.92 (m, 2H), 3.28 (m, 1H), 2.70 (m, 2H), 1.48 (s, 9H), 1.20 (d, J= 5.9 Hz, 3H); 13C NMR (CDC13, 100 MHz): δ 170.2, 156.9 (ddd, J= 245, 6.3,2.7 Hz), 156.0, 149.6 (ddd, J= 251, 14.8, 8.8 Hz), 147.6 (ddd, J= 246, 13.9,3.6 Hz), 124.5 (q, J= 281 Hz), 117.6 (dd, J = 19.2, 3.7 Hz), 116.4 (dd, J= 19.1, 10.4 Hz), 111.4 (ddd, J= 25.8, 6.4,4.1Hz), 56.6, 52.8, 45.3 (q, J= 34.2 Hz), 35.2, 28.7, 28.3 (br t, J= 4 Hz), 14.6; HRMS: m/z calcd for Ci9H22F6N203 (M+H): 441.1607; found 441.1617. (35′,55′,6i?)-6-Methyl-2-oxo-l-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperi (S)-2-acetamido-3 -phenylpropanoate (23)

Figure imgf000060_0001

iPAc solution of 22 (529 g assayed, 1.2 mol), obtained from previous step, was diluted to 6 L with iPAc, /?-toluenesulfonic acid monohydride (343 g, 1.8 mol) was added and the solution was heated to 55 °C. After 4 h, the reaction completed (>99% conversion). Aqueous K2CO3 (530 g in 3 L of water) was charged into the solution after cooled to 15-25 °C. The aqueous layer was separated and was back-extracted with iPAc (2 L). The iPAc solutions were combined and the total volume was adjudted to 10 L by adding iPAc. The solution was heated to 50-60 °C. About 20 g of N-acetyl L-phenylalanine was added and the solution was agitated for 15 min or until solids precipitated out. The remaining N-acetyl L-phenylalanine (total 250 g, 1.2 mol) was charged slowly and 2-hydroxy-5-nitrobenzaldehyde (2 g) was charged. The suspension was agitated for 12 h at 20 °C and then cooled to 0 °C for 3 h. The suspension was filtrated, washed with iPAc three times and dried to give 23 (583g, 89% yield) as crystals. Mp 188 – 190 °C; 1H NMR (DMSO-de, 400 MHz): δ 7.96 (d, J= 8.0 Hz, 1H) , 7.48 (m, 1H), 7.15-7.25 (m, 6H), 4.65 (ddd, J= 19.4, 15.3, 9.6 Hz, 1H), 4.33 (ddd, J= 8.7, 8.4, 4.9 Hz, 1H), 3.70-3.87 (m, 3H), 3.57 (dd, J= 11.5, 6.6 Hz, 1H), 3.04 (dd, J= 13.7, 4.9 Hz, 1H), 2.82 (dd, J= 13.7, 8.9 Hz,lH), 2.59 (m, 1H), 2.24 (m, 1H), 2.95 (s, 3H), 1.10 (d, J= 6.4 Hz, 1H); 19F NMR (DMSO-d6, 376 MHz): δ -69 (s) , -118 (d, J= 15 Hz), -137 (d, J = 21 Hz), -142 (dd, J= 21, 15 Hz); 13C NMR (DMSO-d6, 100 MHz): δ 173.6, 171,. l, 168.7, 156.3 (ddd, J= 243.5, 7.0, 3.1 Hz), 148.7 (ddd, J= 249, 14.4, 9.1 Hz), 146.8 (ddd, J = 245, 13.7, 3.1 Hz), 138.5, 129.2, 128.0, 126.1, 124.9 (q, J= 280.9 Hz), 117.4.0 (dd, J= 19.3, 13.8 Hz), 116.7 (dd, J= 19.3, 10.6 Hz), 111.8 (ddd, J= 26.0, 6.7, 3.6 Hz), 56.6, 54.3, 51,2, 44.3 (q, J= 32.5 Hz), 37.2, 34.8, 26.9 (br t, J= 4 Hz), 22.5, 14.1.

(35′,55′,6i?)-6-methyl-2-oxo-l-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3- aminium 2,2-diphenylacetate (25)

Figure imgf000061_0001

To a mixture of crude material containing (55′,6i?)-3-amino-6-methyl-l -(2,2,2- trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-2-one (24, 2.00 g, 5.88 mmol), prepared according to the same method as the previous example, and 3,5-dichloro-2-hydroxybenzaldehyde (0.011 g, 0.059 mmol) in isopropyl acetate (15.0 ml) at 55-60 °C under nitrogen was slowly added a solution of diphenylacetic acid (1.26 g, 5.88 mmol) in THF (10.0 ml) over 2 h. Upon completion of acid addition, a thick salt suspension was agitated at 55-60 °C for another 18 h and then was allowed to cool to ambient temperature. The salt was filtered and washed with isopropyl acetate. After drying at 60 °C in a vacuum oven with nitrogen purge for 8 hours, 25 (2.97 g, 91.4%) was obtained as crystals. 1H NMR (500 MHz, DMSO-d6): δ 7.48 (qd, J= 9.4, 4.9 Hz, 1 H), 7.32 (d, J= 7.7 Hz, 4 H), 7.25-7.26 (m, 4 H), 7.19-7.17 (m, 3 H), 6.79 (br, 3H), 4.95 (s, 1 H), 4.67 (dq, J= 15.3, 9.7 Hz, 1 H), 3.81-3.79 (m, 3 H), 3.62 (dd, J= 11.6, 6.5 Hz, 1 H), 2.66-2.62 (m, 1 H), 2.25 (dd, J= 12.9, 6.4 Hz, 1 H), 1.11 (d, J= 6.5 Hz, 3 H); 13C NMR (100 MHz, DMSO-de): δ 174.4, 171.8, 156.9 (ddd, J= 244, 7.0, 2.5 Hz), 149.1 (ddd, J= 249, 14.4, 8.5 Hz), 147.2 (ddd, J= 246, 13.9, 3.2 Hz), 141.4, 129.0, 128.5, 126.7, 125.5 (q, J= 281 Hz), 118.0 (dd, J= 19.8, 13.8 Hz), 117.1 (dd, J= 19.2, 10.6 Hz), 112.3 (ddd, J= 26.1, 6.7, 3.3 Hz), 58.5, 57.1, 51.7, 44.8 (q, J= 32.7 Hz), 35.3, 27.5 (br t, J= 4.6 Hz), 14.5.

(35′,55′,6i?)-6-methyl-2-oxo-l-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-amM lH-indole-2-carboxylate (26)

Figure imgf000061_0002

To a mixture of crude material containing 24 (2.00 g, 5.88 mmol) and 3,5-dichloro-2- hydroxybenzaldehyde (0.011 g, 0.059 mmol) in isopropyl acetate (15.0 ml) at 55-60 °C under nitrogen was slowly added a solution of lH-indole-2-carboxylic acid (0.96 g, 5.88 mmol) in THF (10.0 ml) over 2 hours. Upon completion of acid addition, a thick salt suspension was agitated at 55-60 °C for another 18 h and then was allowed to cool to ambient temperature. The salt was filtered and washed with isopropyl acetate. After drying at 60 °C in a vacuum oven with nitrogen purge for 8 h, 26 (2.33 g, 79.0%) was isolated as crystals. 1H NMR (500 MHz, DMSO): δ 11.40 (s, 1 H), 7.56 (d, J= 8.0 Hz, 1 H), 7.45 (br, 3 H), 7.47 (ddd, J= 14.8, 10.1, 8.3 Hz, 1 H), 7.41- 7.40 (m, 1 H), 7.16-7.14 (m, 2 H), 6.98-6.97 (m, 1 H), 6.87 (s, 1 H), 4.69 (dq, J= 15.3, 9.6 Hz, 1 H), 3.84-3.81 (m, 4 H), 2.76-2.71 (m, 1 H), 2.34 (dd, J= 12.7, 6.3 Hz, 1 H), 1.13 (d, J= 6.5 Hz, 3 H); 13C NMR (100 MHz, DMSO-d6): δ 170.9, 164.8, 156.8 (ddd, J= 244, 7.0, 2.5 Hz), 149.1 (ddd, J= 249, 14.4, 8.5 Hz), 147.2 (ddd, J = 246, 13.9, 3.2 Hz), 137.0, 133.5, 127.8, 125.4 (q, J = 282 Hz), 123.3, 121.8, 119.7, 117.8 (dd, J= 19.8, 13.8 Hz), 117.2 (dd, J= 19.2, 10.6 Hz), 112.7, 112.3 (ddd, J= 26.1, 6.7, 3.3 Hz), 105.1, 57.1, 51.3, 44.8 (q, J= 32.7 Hz), 35.2, 26.9, 14.5.

Figure imgf000062_0001

2′-oxo-l\2 5,7-tetrahydrospiro[cyclopenta[¾]pyridine-6,3′-pyrrolo[2,3-¾]pyridine]-3- carboxamide monohydrate (28)

Figure imgf000062_0002

To a suspension of 23 (5.0 g, 9.1 mmol) in isopropyl acetate (50 mL) was added 5% aqueous K3PO4 (50 mL). The mixture was stirred for 5 min. The organic layer was separated and washed with aqueous K3PO4 (50 mL). Solvent removed under vacuum and resulting oil (27) was dissolved in acetonitrile (20 mL). To another flask was added 14 (2.57 g), acetonitrile (40 mL), water (20 mL) and NaOH solution (10N, 0.9 mL). The solution of 27 in acetonitrile was charged to the mixture followed by HOBT monohydrate (1.5 g) and EDC hydrochloride (2.6 g). The mixture was agitated at room temperature for 4 h and HPLC analysis indicated a complete conversion. The reaction mixture was stirred with isopropyl acetate (60 mL) and the aqueous layer was removed. The organic layer was washed with 5% aquoues NaHC03 (40 mL) followed by a mixture of 15% aqueous citric acid (40 mL) and saturated aqueous NaCl (10 mL). The resulting organic layer was finally washed with 5% aquous NaHC03 (40 mL). The solvent was removed under vacuum and the residue was dissolved in methanol (20 mL). The methanol solution was slowly charged into a mixture of water (50 mL) and methanol (5 mL) over 30 min with good agitation, followed by addition of water (50 mL) over 30 min. The suspension was stirred over night at room temperature. The mixture was filtered and crystals were dried in a vacuum oven for 5 h at 50 °C to give 28 (5.4 g, 95%) as monohydrate. Ή NMR (500 MHz, CD3OD): δ 8.88 (t, J= 1.2 Hz, 1 H), 8.15 (t, J = 1.2 Hz, 1 H), 8.09 (dd, J= 5.3, 1.5 Hz, 1 H), 7.36 (dd, J= 7.4, 1.5 Hz, 1 H), 7.28 (qd, J= 9.3, 4.7 Hz, 1 H), 7.01 (tdd, J= 9.7, 3.6, 1.9 Hz, 1 H), 6.96 (dd, J= 7.4, 5.3 Hz, 1 H), 4.80 (dq, J= 15.2, 9.2 Hz, 1 H), 4.56 (dd, J= 11.7, 6.8 Hz, 1 H), 4.03 (ddd, J= 13.6, 4.2, 2.6 Hz, 1 H), 3.97-3.90 (m, 1 H), 3.68 (dq, J= 15.3, 8.8 Hz, 1 H), 3.59 (t, J= 16.2 Hz, 2 H), 3.35 (d, J= 4.4 Hz, 1 H), 3.32 (d, J= 3.5 Hz, 1 H), 3.21 (qt, J= 12.7, 3.1 Hz, 1 H), 2.38-2.32 (m, 1 H), 1.34 (d, J= 6.5 Hz, 3 H); 13C NMR (126 MHz, CD3OD): δ 182.79, 171.48, 168.03, 166.71, 159.37 (ddd, J= 244.1, 6.5, 2.1 Hz), 157.43, 150.88 (ddd, J = 249.4, 14.4, 8.7 Hz), 148.96 (ddd, J= 243.8, 13.7, 3.1 Hz), 148.67, 148.15, 136.84, 133.43, 131.63, 130.83, 130.48, 126.41 (q, J = 280.0 Hz), 119.85, 118.89 (dd, J= 19.0, 13.5 Hz), 117.77 (dd, J= 19.8, 10.8 Hz), 112.80 (ddd, J= 26.5, 6.5, 4.2 Hz), 58.86, 53.67, 52.87, 46.56 (q, J = 33.3 Hz), 45.18, 42.06, 36.95, 27.76 (t, J= 4.8 Hz), 14.11.

EXAMPLE 3

3-Hydroxy-3-(2,3,6-trifluorophenyl)butan-2-one (30)

Figure imgf000063_0001

To a solution of 1,2,4-trifluorobenzene (29, 49.00 g, 371 mmol) and diisopropylamine (4.23 mL, 29.7 mmol) in THF (750 mL) at -70 °C was slowly added 2.5 M of ft-BuLi (156.0 ml, 390 mmol) to maintain temperature between -45 to -40 °C. The batch was agitated for 30 min. To another flask, a solution of 2,3-butadione (37.7 mL, 427 mmol) in THF (150 mL) was prepared and cooled to -70 °C. The previously prepared lithium trifluorobenzene solution was transferred to the second flask between -70 to -45 °C. The reaction was agitated for 1 hour at -55 to -45 and then quenched by adding AcOH (25.7 mL, 445 mmol) and then water (150 mL). After warmed to room temperature, the aqueous layer was seperated. The aqueous solution was extracted with MTBE (200 mL x 1) and the combined organic layers were washed with brine (100 mL x 1). The organic layer was concentrated at 25-35 °C. The residue was flashed with heptane (100 mL x 1) and concentrated to dryness and give 30 (87.94 g, 90.2 wt%, 98% yield, and >99% HPLC purity) as an oil. H NMR (CDCI3, 400 MHz): δ 7.16 (m, 1H), 6.86 (m, 1H), 6.88 (s, 1H), 4.59 (s, 1H), 2.22 (s, 3H), 1.84 (dd, J= 4.0, 2.8 Hz, 3H); 19F NMR (CDCI3, 376.6 MHz): δ -114.6 (dd, J= 14.5, 1.4 Hz), -133.6 (d, J= 19.9 Hz), -141.3 (dd, J =

19.9, 14.5 Hz); 13C NMR (CDCI3, 100 MHz): δ 207.4, 156.4 (ddd, J= 247, 6.2, 2.9 Hz), 149.4 (ddd, J= 253, 15.0, 9.0 Hz), 147.5 (ddd, J= 245, 14.4, 3.3 Hz), 119.4 (dd, J=17.3, 11.7 Hz), 117.0 (ddd, J=19.3, 11.1, 1.4 Hz), 116.6 (ddd, J= 26.6, 6.5, 4.1 Hz), 77.9, 25.0 (dd, J= 6.5, 4.9 Hz), 23.3. -(2,3,6-Trifluorophenyl)but-3-en-2-one (31)

Figure imgf000064_0001

The hydroxy ketone 30 (7.69 g, 35.2 mmol) and 95% H2S04 (26.2 mL, 492.8 mmol) were pumped at 2.3 and 9.2 mL/min respectively into the flow reactor. The temperature on mixing was controlled at 22-25 °C by placing the reactor in a water bath (21 °C). The effluent was quenched into a a mixture of cold water ( 106 g) and heptane/IP Ac ( 1 : 1 , 92 mL) in a j acketed reactor cooled at 0 °C; the internal temperature of the quench solution was ~ 7 °C during the reaction. The layers in the quench reactor were separated and the organic layer was washed with 10% NaH2P04/Na2HP04 (1 :1, 50 mL). The pH of the final wash was 5-6. Solka flock (3.85 g, 50 wt%>) was added to the organic solution. The resulting slurry was concentrated and solvent- switched to heptanes at 25-30 °C. The mixture was filtered, rinsed with heptanes (50 mL x 1). The combined filtrates were concentrated under vacuum to give 31 as an light yellow oil (6.86 g, 90 wt%, 87% yield), which solidified in a freezer. *H NMR (CDC13, 400 MHz): δ 7.13 (m, 1H), 6.86 (m, 1H), 6.60 (s, 1H), 6.15 (s, 1H), 2.46 (s, 3H); 19F NMR (CDC13, 376.6 MHz): δ -117.7 (dd, J= 15.0, 1.4 Hz), -135.4 (dd, J= 21.4, 1.4 Hz), -42.7 (dd, J= 21.4, 15.0 Hz); 13C NMR (CDCls, 100 MHz): δ 196.3, 155.3 (ddd, J= 245, 5.1, 2.9 Hz), 147.9 (ddd, J= 250, 14.5, 7.8 Hz), 147.0 (ddd, J = 245, 13.4, 3.7 Hz), 137.5 (d, J=1.3 Hz), 131.7, 116.6 (ddd, J= 19.9, 9.7, 1.2 Hz), 116.2 (dd, J= 22.6, 16.5 Hz), 110.6 (ddd, J= 24.8, 6.5, 4.1 Hz), 25.8.

Alternative synthesis of 3-(2,3,6-trifluorophenyl)but-3-en-2-one (31)

Figure imgf000065_0001

A solution of 18 (3.5 g, 18.6 mmol), acetic acid (0.34 ml, 5.58 mmol), piperidine (0.37 ml, 3.72 mmol), formaldehyde (6.0 g, 37%> aqueous solution) in MeCN (20 mL) was heated over weekend. The conversion was about 60%. Reaction was heated to 70 °C overnight. The mixtrure was concentrated and extracted with MTBE and HC1 (0.5N). The organic layer was washed with aqueous K2CO3 (0.5N) and water, in turns. The organic layer was concentrated. The product was isolated by chromatography column (hexane and EtOAc), yielding 31 (2.29 g, 61.5%).

Isopropyl 2-((diphenylmethylene)amino)-5-oxo-4-(2,3,6-trifluorophenyl)hexanoate (32)

Figure imgf000065_0002

Diphenylidene isopropyl glycinate (2.0 g, 7.0 mmol) and 31 (1.4 g, 7.0 mmole) were dissolved in THF (10 ml). The solution was cooled to -10 °C. tert- uOLi (0.56 g, 7.0 mmole) was charged into the solution in several portions. The reaction was warmed up to room temperature slowly and stirred overnight. After quenched by addition of aqueous NH4CI, the solvents were removed by distillation under vacuum. The residue was subjected to silica chromatography column eluted by hexane and EtOAc yielding 32 (3.0 g, 89 %) as an oil, which was directly used in the next step.

Isopropyl 2-((tert-butoxycarbonyl)amino)-5-oxo-4-(2,3,6-trifluorophenyl)hexanoate (19)

Figure imgf000066_0001

Compound 32 (100 mg, 0.21 mmol) was dissolved in THF (2 ml) and the solution was cooled to -10 °C. Hydrochloric acid (2N, 1 ml) was added and stirred until all starting material disappeared by TLC. The pH of the reaction was adjusted (pH.>10) by addition of aqueous K2CO3. Boc20 (68 mg, 0.31 mmole) was added into the mixture and stirred overnight. The reaction was completed checked by TLC and the product was identical to the one prepared from the iodo coupling route.

Isopropyl 2-((tert-butoxycarbonyl)amino)-5-oxo-4-(2,3,6-trifluorophenyl)hexanoate (19)

Figure imgf000066_0002

To a 100 mL round bottom was charged 2-methyl THF (43.7 mL) and diisopropyl amine (4.92 mL, 34.2 mmol) and the solution was cooled to -70 °C. n-BuLi (13.08 mL, 32.7 mmol) was charged dropwise during which the temperature was controlled below -45 °C. The mixture was stirred at -45 °C for 0.5 h. N-Boc-glycine ester (3.58 g) was added dropwise keeping temperature between -45 to -40 °C and aged at the same temperature for 1 h.

The solution of 31 (2.91 g, 14.5 mmol) in 2-methyl THF (2.9 mL) was then added dropwise in the same manner at -45 to -40 °C. After a 0.5-1 h age, LC analysis showed nearly complete reaction. The reaction was quenched by addition of HO Ac (3.83 mL) and the mixture was warmed to -10 °C and water (1 1.6 mL, 4 vol) was charged at < 20 °C. The phase was separated, and the organic layer was washed with 16% NaCl aqueous solution (11.6 mL). Assay desired product 19 as a mixture of diastereomers in the organic solution was 5.40 g (89% yield). The organic layer was concentrated to give crude product 19, which was directly used in the next step reaction. For characterization purposes, a small sample was purified by flash chromatography (silica gel, EtOAc/hexanes = 1 : 10) to give two diastereomers 19A and 19B. 19A as a colorless oil, 1H NMR (CD3CN, 400 MHz) δ: 7.29 (m, 1 H), 7.02 (m, 1 H), 5.58 (d, J = 6.1 Hz, 1 H), 4.91 (m, 1 H), 4.19-4.05 (m, 2 H), 2.79 (m, 1 H), 2.05 (s, 3 H), 1.84 (m, 1 H), 1.41 (s, 9 H), 1.23 (d, J = 6.7 Hz, 3 H), 1.22 (d, J = 6.7 Hz, 3 H); 13C NMR (CD3CN, 100 MHz) δ: 204.7, 172.4, 158.6 (ddd, J = 244, 6, 3 Hz), 156.3, 149.8 (ddd, J = 248, 15, 9 Hz), 148.5 (ddd, J = 242, 14, 3 Hz), 118.3 (dd, J = 21, 16 Hz), 117.7 (ddd, J = 19, 10, 2 Hz), 112.6 (ddd, J = 26, 7, 4 Hz), 80.2, 70.0, 53.5, 46.0, 32.0, 28.5, 22.0, 21.9. 19B as colorless crystals, MP 91.5-92.0 °C, 1H NMR (CD3CN, 400 MHz) δ: 7.31 (m, 1 H), 7.03 (m, 1 H), 5.61 (d, J = 8.2 Hz, 1 H), 4.95 (m, 1 H), 4.19 (dd, J = 10.2, 5.1 Hz, 1 H), 3.72 (m, 1 H), 2.45-2.29 (m, 2 H), 2.09 (s, 3 H), 1.41 (s, 9 H), 1.21 (d, J = 6.3 Hz, 3 H), 1.20 (d, J = 6.3 Hz, 3 H); 13C NMR (CD3CN, 100 MHz) δ: 205.0, 172.8, 157.9 (ddd, J= 244, 7, 3 Hz), 156.5, 150.3 (ddd, J= 248, 149, 9 Hz), 148.5 (ddd, J = 242, 13, 4 Hz), 117.9 (dd, J = 19, 10 Hz), 115.9 (dd, J = 21, 15 Hz), 111.5 (ddd, J = 25, 8, 4 Hz), 80.1, 69.9, 52.9, 46.5, 31.1, 28.5, 22.0, 21.9.

 

PATENT

https://encrypted.google.com/patents/US20120122911

[0000]

Figure US20120122911A1-20120517-C00039

(3S,5S,6R)-3-Amino-6-methyl-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-2-one hydrochlorideStep A: (5S,6R & 5R,6S)-6-Methyl-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-2-one

Essentially following the procedures described in Intermediate 14, but using 2,3,6-trifluorophenylboronic acid in place of 2,3,5-trifluorophenylboronic acid, the title compound was obtained. MS: m/z=326.0 (M+1).

Step B: (3S,5S,6R & 3R,5R,6S)-3-Azido-6-methyl-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-2-one

To a stirred solution of lithium bis(trimethylsilyl)amide (1.0 M in THF, 4.80 mL, 4.80 mmol) in THF (20 mL) at −78° C. was added a cold (−78° C.) solution of (5S,6R & 5R,6S)-6-methyl-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-2-one (1.30 g, 4.00 mmol) in THF (10 mL) dropwise, keeping the internal temperature of the reaction mixture below −65° C. The resulting mixture was stirred at −78° C. for 30 min, then a cold (−78° C.) solution of 2,4,6-triisopropylbenzenesulfonyl azide (Harmon et al. (1973) J. Org. Chem. 38, 11-16) (1.61 g, 5.20 mmol) in THF (10 mL) was added dropwise, keeping the internal temperature of the reaction mixture below −65° C. The reaction mixture was stirred at −78° C. for 30 min, then AcOH (1.05 mL, 18.4 mmol) was added. The resulting mixture was allowed to warm slowly to ambient temperature and was poured into saturated aqueous sodium bicarbonate (50 mL) and the mixture was extracted with EtOAc (2×75 mL). The combined organic layers were washed with brine, then dried over sodium sulfate, filtered, and concentrated to dryness in vacuo. The crude product was purified by silica gel chromatography, eluting with a gradient of hexanes:EtOAc—100:0 to 20:80, to give the diastereomeric azide products (3R,5S,6R & 3S,5R,6S)-3-azido-6-methyl-1-(2,2,2-trifluoroethyl)-5-(2,3,5-trifluorophenyl)piperidin-2-one, which eluted second, and the title compound, which eluted first. MS: m/z=367.1 (M+1).

Step C: tent-Butyl [(3S,5S,6R)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]carbamate

To a solution of (3S,5S,6R & 3R,5R,6S)-3-azido-6-methyl-1-(2,2,2-trifluoroethyl)-5-(2,3,5-trifluorophenyl)piperidin-2-one (280 mg, 0.764 mmol) and di-tert-butyl dicarbonate (217 mg, 0.994 mmol) in EtOH (5 mL) was added 10% palladium on carbon (25 mg, 0.024 mmol) and the resulting mixture was stirred vigorously under an atmosphere of hydrogen (ca. 1 atm) for 1 h. The reaction mixture was filtered through a pad of Celite®, washing with EtOH, and the filtrate was concentrated in vacuo to give a crude solid. The crude product was purified by silica gel chromatography, eluting with a gradient of hexanes:EtOAc—100:0 to 30:70, to give the racemic title compound. Separation of the enantiomers was achieved by SFC on a ChiralTech IC column, eluting with CO2:MeOH:CH3CN—90:6.6:3.3, to give tert-butyl [(3R,5R,6S)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]carbamate as the first major peak, and tert-butyl [(3S,5S,6R)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]carbamate, the title compound, as the second major peak. MS: m/z=463.2 (M+Na).

Step D: (3S,5S,6R)-3-Amino-6-methyl-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-2-one hydrochloride

A solution of tert-butyl [(3S,5S,6R)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]carbamate (122 mg, 0.277 mmol) in EtOAc (10 mL) was saturated with HCl (g) and aged for 30 min. The resulting mixture was concentrated in vacuo to give the title compound. MS: m/z=341.1 (M+1); 1H NMR (500 MHz, CD3OD) δ 7.33 (qd, 1H, J=9.3, 4.9 Hz), 7.05 (tdd, 1H, J=9.8, 3.7, 2.2 Hz), 4.78 (dq, 1H, J=15.4, 9.3 Hz), 4.22 (dd, 1H, J=12.2, 6.6 Hz), 4.06 (ddd, 1H, J=13.3, 4.5, 2.7 Hz), 3.97 (m, 1H), 3.73 (dq, 1H, J=15.4, 8.8 Hz), 2.91 (qt, 1H, J=12.7, 3.1 Hz), 2.36 (ddd, 1H, J=12.7, 6.4, 2.0 Hz), 1.22 (d, 3H, J=6.6 Hz).

Example 4

Figure US20120122911A1-20120517-C00047

(6S)—N-[(3S,5S,6R)-6-Methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2′-oxo-1′,2′,5,7-tetrahydrospiro[cyclopenta[b]pyridine-6,3′-pyrrolo[2,3-b]pyridine]-3-carboxamide dihydrochloride

To a stirred mixture of (6S)-2′-oxo-1′,2′,5,7-tetrahydrospiro[cyclopenta[b]pyridine-6,3′-pyrrolo[2,3-b]pyridine]-3-carboxylic acid (described in Intermediate 1) (264 mg, 0.939 mmol), (3S,5S,6R)-3-amino-6-methyl-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-2-one hydrochloride (described in Intermediate 15) (295 mg, 0.782 mmol), HOBT (144 mg, 0.939 mmol), and EDC (180 mg, 0.939 mmol) in DMF (8 mL) was added N,N-diisopropylethylamine (0.34 mL, 1.96 mmol), and the resulting mixture was stirred at ambient temperature for 3 h. The reaction mixture was then poured into saturated aqueous sodium bicarbonate (30 mL) and extracted with EtOAc (2×40 mL). The combined organic layers were washed with brine, dried over sodium sulfate, and concentrated in vacuo. The residue was purified by silica gel chromatography, eluting with a gradient of CH2Cl2:MeOH:NH4OH—100:0:0 to 90:10:0.1, to give the product, which was treated with HCl in EtOAc at 0° C. to afford the title compound. HRMS: m/z=604.1783 (M+1), calculated m/z=604.1778 for C29H24F6N5O31H NMR (500 MHz, CD3OD) δ 9.09 (s, 1H), 8.69 (s, 1H), 8.18 (dd, 1H, J=5.9, 1.5 Hz), 7.89 (dd, 1H, J=7.3, 1.5 Hz), 7.30 (m, 1H), 7.23 (dd, 1H, J=7.3, 5.9 Hz), 7.03 (m, 1H), 4.78 (m, 1H), 4.61 (dd, 1H, J=11.5, 6.6 Hz), 4.05 (dd, 1H, J=13.8, 2.8 Hz), 3.96 (m, 1H), 3.84 (d, 1H, J=18.6 Hz), 3.76 (d, 1H, J=18.6 Hz), 3.73 (d, 1H, J=17.3 Hz), 3.72 (m, 1H), 3.61 (d, 1H, J=17.3 Hz), 3.22 (m, 1H), 2.38 (m, 1H), 1.34 (d, 3H, J=6.6 Hz).

 

Publication numberPriority datePublication dateAssigneeTitle
US9487523B22012-03-142016-11-08Merck Sharp & Dohme Corp.Process for making CGRP receptor antagonists
Family To Family Citations
CA2865941A12012-03-142013-09-19Merck Sharp & Dohme Corp.Bis-quarternary cinchona alkaloid salts as asymmetric phase transfer catalysts
CN105037210A *2015-05-272015-11-11江苏大学Alpha,beta-dehydrogenated-alpha-amino acid synthesis method
GB201519194D02015-10-302015-12-16Heptares Therapeutics LtdCGRP receptor antagonists
GB201519195D02015-10-302015-12-16Heptares Therapeutics LtdCGRP Receptor Antagonists
GB201519196D02015-10-302015-12-16Heptares Therapeutics LtdCGRP Receptor Antagonists
PATENT 
Cited Patent Filing date Publication date Applicant Title
US7390798 * Feb 9, 2005 Jun 24, 2008 Merck & Co., Inc. Carboxamide spirolactam CGRP receptor antagonists
US20090054408 * Sep 6, 2005 Feb 26, 2009 Bell Ian M Monocyclic anilide spirolactam cgrp receptor antagonists
US20100160334 * Mar 5, 2010 Jun 24, 2010 Bell Ian M Tricyclic anilide spirolactam cgrp receptor antagonists
US20100179166 * Jun 2, 2008 Jul 15, 2010 Ian Bell Carboxamide heterocyclic cgrp receptor antagonists
US20120122899 * Nov 10, 2011 May 17, 2012 Merck Sharp & Dohme Corp. Piperidinone carboxamide azaindane cgrp receptor antagonists
US20120122900 * Nov 10, 2011 May 17, 2012 Merck Sharp & Dohme Corp. Piperidinone carboxamide azaindane cgrp receptor antagonists
US20120122911 * Nov 10, 2011 May 17, 2012 Merck Sharp & Dohme Corp. Piperidinone carboxamide azaindane cgrp receptor antagonists
Reference
1 * See also references of EP2849568A4
Citing Patent Filing date Publication date Applicant Title
CN105037210A * May 27, 2015 Nov 11, 2015 江苏大学 Alpha,beta-dehydrogenated-alpha-amino acid synthesis method
US9688660 Oct 28, 2016 Jun 27, 2017 Heptares Therapeutics Limited CGRP receptor antagonists
US9802935 Oct 28, 2016 Oct 31, 2017 Heptares Therapeutics Limited CGRP receptor antagonists
US9808457 Oct 28, 2016 Nov 7, 2017 Heptares Therapeutics Limited CGRP receptor antagonists
 
Patent ID

 

Patent Title

 

Submitted Date

 

Granted Date

 

US2016346214 TABLET FORMULATION FOR CGRP ACTIVE COMPOUNDS
2015-01-30
 
US9850246 Process for Making CGRP Receptor Antagonists
2015-09-15
2016-05-12
US9499545 PIPERIDINONE CARBOXAMIDE AZAINDANE CGRP RECEPTOR ANTAGONISTS
2014-09-12
2015-01-01
US9487523 PROCESS FOR MAKING CGRP RECEPTOR ANTAGONISTS
2013-09-19
2015-02-05
US9174989 Process for making CGRP receptor antagonists
2013-03-12
2015-11-03
 
Patent ID

 

Patent Title

 

Submitted Date

 

Granted Date

 

US8481556 Piperidinone carboxamide azaindane CGRP receptor antagonists
2011-11-10
2013-07-09
US8754096 Piperidinone carboxamide azaindane CGRP receptor antagonists
2011-11-10
2014-06-17
US8912210 Piperidinone carboxamide azaindane CGRP receptor antagonists
2011-11-10
2014-12-16
US2017027925 PIPERIDINONE CARBOXAMIDE AZAINDANE CGRP RECEPTOR ANTAGONISTS
2016-10-14
 
US2016346198 NOVEL DISINTEGRATION SYSTEMS FOR PHARMACEUTICAL DOSAGE FORMS
2015-02-04
 

////////////////Atogepant, атогепант أتوجيبانت 阿托吉泮 , PHASE 3, MERCK, ALLERGAN, 

CC1C(CC(C(=O)N1CC(F)(F)F)NC(=O)C2=CC3=C(CC4(C3)C5=C(NC4=O)N=CC=C5)N=C2)C6=C(C=CC(=C6F)F)F

wdt-2

NEW DRUG APPROVALS

ONE TIME

$10.00

VORAPAXAR SULPHATE


ChemSpider 2D Image | Vorapaxar | C29H33FN2O4

Vorapaxar.png

VORAPAXAR

Thrombosis, Antiplatelet Therapy, PAR1 Antagonists , MERCK ..ORIGINATOR

Ethyl N-[(3R,3aS,4S,4aR,7R,8aR,9aR)-4-[(E)-2-[5-(3-fluorophenyl)-2-pyridyl]vinyl]-3-methyl-1-oxo-3a,4,4a,5,6,7,8,8a,9,9a-decahydro-3H-benzo[f]isobenzofuran-7-yl]carbamate

Carbamic acid, [(1R,3aR,4aR,6R,8aR,9S,9aS)-9-[(1E)-2-[5-(3-fluorophenyl)-2- pyridinyl]ethenyl]dodecahydro-1-methyl-3-oxonaphtho[2,3-c]furan-6-yl]-, ethyl ester
Carbamic acid, N-[(1R,3aR,4aR,6R,8aR,9S,9aS)-9-[(E)-2-[5-(3-fluorophenyl)-2-pyridinyl]ethenyl]dodecahydro-1-methyl-3-oxonaphtho[2,3-c]furan-6-yl]-, ethyl ester
Ethyl [(1R,3aR,4aR,6R,8aR,9S,9aS)-9-{(E)-2-[5-(3-fluorophenyl)-2-pyridinyl]vinyl}-1-methyl-3-oxododecahydronaphtho[2,3-c]furan-6-yl]carbamate

Ethyl ((1R,3aR,4aR,6R,8aR,9S,9aS)-9-((1E)-2-(5-(3-fluorophenyl)pyridin-2-yl)ethenyl)- 1-methyl-3-oxododecahydronaphtho(2,3-c)furan-6-yl)carbamate

Carbamic acid, ((1R,3aR,4aR,6R,8aR,9S,9aS)-9-((1E)-2-(5-(3-fluorophenyl)-2- pyridinyl)ethenyl)dodecahydro-1-methyl-3-oxonaphtho(2,3-c)furan-6-yl)-, ethyl ester

618385-01-6 CAS NO FREE FORM

CAS Number: 705260-08-8 SULPHATE

Has antiplatelet activity.

Also known as: SCH-530348, MK-5348
Molecular Formula: C29H33FN2O4
 Molecular Weight: 492.581723
ZCE93644N2
  • UNII-ZCE93644N2
  • Zontivity

Registered – 2015 MERCK Thrombosis

Vorapaxar (formerly SCH 530348) is a thrombin receptor (protease-activated receptor, PAR-1) antagonist based on the natural product himbacine. Discovered by Schering-Plough and currently being developed by Merck & Co., it is an experimental pharmaceutical treatment for acute coronary syndrome chest pain caused by coronary artery disease.[1]

In January 2011, clinical trials being conducted by Merck were halted for patients with stroke and mild heart conditions.[2] In a randomized double-blinded trial comparing vorapaxar with placebo in addition to standard therapy in 12,944 patients who had acute coronary syndromes, there was no significant reduction in a composite end point of death from cardiovascular causes, myocardial infarction, stroke, recurrent ischemia with rehospitalization, or urgent coronary revascularization. However, there was increased risk of major bleeding.[3]

A trial published in February 2012, found no change in all cause mortality while decreasing the risk of cardiac death and increasing the risk of major bleeding.[4]

SCH-530348 is a protease-activated thrombin receptor (PAR-1) antagonist developed by Schering-Plough and waiting for approval in U.S. for the oral secondary prevention of cardiovascular events in patients with a history of heart attack and no history of stroke or transient ischemic attack. The drug candidate is being investigated to determine its potential to provide clinical benefit without the liability of increased bleeding; a tendency associated with drugs that block thromboxane or ADP pathways. In April 2006, SCH-530348 was granted fast track designation in the U.S. for the secondary prevention of cardiovascular morbidity and mortality outcomes in at-risk patients.

Vorapaxar was recommended for FDA approval on January 15, 2014.[5]

Vorapaxar is a protease-activated thrombin receptor (PAR-1) antagonist developed by Schering-Plough (now, Merck & Co.) and approved in the U.S. in 2014 for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. However, in 2018 Aralez discontinued U.S. commercial operations. In 2015, the product was approved in the E.U. for the reduction of atherothrombotic events in adult patients with a history of myocardial infarction. In April 2006, vorapaxar was granted fast track designation in the U.S. for the secondary prevention of cardiovascular morbidity and mortality outcomes in at-risk patients. In 2016, Aralez Pharmaceuticals acquired the U.S. and Canadian rights to the product pursuant to an asset purchase agreement entered into between this company and Merck & Co.

Merck & Co (following its acquisition of Schering-Plough) has developed and launched vorapaxar (Zontivity; SCH-530348; MK-5348), an oral antagonist of the thrombin receptor (protease-activated receptor-1; PAR1); the product is marketed in the US by Aralez Pharmaceuticals

WO-03089428, published in October 2003, claims naphtho[2,3-c]furan-3-one derivatives as thrombin receptor antagonists. WO-03033501 and WO-0196330, published in April 2003 and December 2001, respectively, claim himbacine analogs as thrombin receptor antagonists. WO-9926943 published in June 1999 claims tricyclic compounds as thrombin receptor antagonists

VORAPAXAR

17 JAN 2014
FDA advisory panel votes to approve Merck & Co’s vorapaxar REF 6

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/204886Orig1s000ChemR.pdf

Zontivity (vorapaxar) tablets NDA 204886

VORAPAXAR SULPHATE

2D chemical structure of 705260-08-8

CAS Number: 705260-08-8 SULPHATE

Molecular Formula: C29H33FN2O4.H2O4S

Molecular Weight: 590.7

Chemical Name: Ethyl [(1R,3aR,4aR,6R,8aR,9S,9aS)-9-[(1E)-2-[5-(3-fluorophenyl)pyridin-2- yl]ethenyl]-1-methyl-3-oxododecahydronaphtho[2,3-c]furan-6-yl]carbamate sulfate

Synonyms: Carbamic acid, [(1R,3aR,4aR,6R,8aR,9S,9aS)-9-[(1E)-2-[5-(3-fluorophenyl)-2- pyridinyl]ethenyl]dodecahydro-1-methyl-3-oxonaphtho[2,3-c]furan-6-yl]-,ethyl ester,sulfate; SCH-530348

Vorapaxar Sulfate (SCH 530348) a thrombin receptor (PAR-1) antagonist for the prevention and treatment of atherothrombosis.

POLYMORPH

U.S.Pat. No. 7,304,078 discloses Vorapaxar base. U.S.Pat. No. 7,235,567 discloses Polymorph I and II of vorapaxar sulphate

CN 106478608 provides a crystalline polymorph A 

EMA

http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002814/WC500183331.pdf

Atherosclerosis and ischemic cardiovascular (CV) diseases like coronary artery disease (CAD) are progressive systemic disorders in which clinical events are precipitated by episodes of vascular thrombosis. Patients with an established history of atherothrombotic or athero-ischemic disease are at particular risk of future cardiac or cerebral events, and vascular death. Anti-thrombotic therapy options in patients with stable atherosclerosis are not well-established. Long-term therapies to effectively modulate the key components responsible for atherothrombosis in secondary prevention of ischemic CV disease are therefore required. Vorapaxar is a first – in – class selective antagonist of the protease-activated receptor 1 (PAR-1), the primary thrombin receptor on human platelets, which mediates the downstream effects of this critical coagulation factor in hemostasis and thrombosis. Thrombin-induced platelet activation has been implicated in a variety of cardiovascular disorders including thrombosis, atherosclerosis, and restenosis following percutaneous coronary intervention (PCI). As an antagonist of PAR-1, vorapaxar blocks thrombin-mediated platelet aggregation and thereby has the potential to reduce the risk of atherothrombotic complications of coronary disease. The applicant has investigated whether a new class of antiplatelet agents, PAR-1 antagonists, can further decrease the risk of cardiovascular events in a population of established atherothrombosis when added to standard of care, in secondary prevention of ischemic diseases. The following therapeutic indication has been submitted for vorapaxar: Vorapaxar is indicated for the reduction of atherothrombotic events in patients with a history of MI. Vorapaxar has been shown to reduce the rate of a combined endpoint of cardiovascular death, MI, stroke, and urgent coronary revascularization. Vorapaxar will be contraindicated in patients with a history of stroke or TIA. The indication sought in the current application is supported by the efficacy results of the TRA 2P-TIMI, which is considered the pivotal trial for this indication. During the procedure, the applicant requested the possibility of extending the indication initially sought for, to extend it to the population of PAD patients. This request was discussed at the CHMP and not accepted by the Committee.

Introduction The finished product is presented as immediate release film-coated tablets containing 2.5 mg of vorapaxar sulfate as active substance per tablet, corresponding to 2.08 mg vorapaxar. Other ingredients are: lactose monohydrate, microcrystalline cellulose (E460), croscarmellose sodium (E468), povidone (E1201) , magnesium stearate (E572), hypromellose (E464), titanium dioxide (E171), triacetin (glycerol triacetate) (E1518), iron oxide yellow (E172), as described in section 6.1 of the SmPC. The product is available in Aluminium–Aluminium blisters (Alu-Alu) as described in section 6.5 of the SmPC.

General information The chemical name of the active substance vorapaxar sulfate is ethyl[(1R,3aR,4aR,6R,8aR,9S,9aS)- -9-{(1E)-2-[5-(3-fluorophenyl)pyridin-2-yl]ethen-1-yl}-1-methyl-3-oxododecahydronaphtho[2,3-c] furan-6-yl]carbamate sulfate, corresponding to the molecular formula C29H33FN2O4 • H2SO4 and has a relative molecular mass 590.7. It has the following structure:

str1

The structure of the active substance has been confirmed by mass spectrometry, infrared spectroscopy, 1H- and 13C-NMR spectroscopy and X-ray crystallography, all of which support the chemical structure elemental analysis. It appears as a white to off-white, slightly hygroscopic, crystalline powder. It is freely soluble in methanol and slightly soluble in ethanol and acetone but insoluble to practically insoluble in aqueous solutions at pH above 3.0. The highest solubility in aqueous solution can be achieved at pH 1.0 or in simulated gastric fluids at pH 1.4. The dissociation constant of vorapaxar sulfate was determined to be pKa = 4.7 and its partition coefficient LogP was determined to be 5.1. Vorapaxar sulfate contains seven chiral centers and a trans double bond. The seven chiral centres are defined by the manufacturing process of one of the intermediates in the vorapaxar synthesis and potential enantiomers are controlled by appropriate specifications. The cis-isomer of the double bond is controlled by a highly stereo-specific process reaction resulting in non-detectable levels of cis-isomer impurity. The cis-isomer impurity is controlled in one of the intermediates as an unspecified impurity. A single crystalline stable anhydrous form has been observed.

GENERAL INTRODUCTION

SIMILAR NATURAL PRODUCT

+ HIMBACINE

(+)-Himbacine ~98% (GC), powder, muscarinic receptor antagonist

Himbacine is an alkaloid muscarinic receptor antagonist displaying more potent activity associated with M2 and M2 subtypes over M1 or M3. Observations show himbacine bound tightly to various chimeric receptors in COS-7 cells as well as possessed the ability to bind to cardiac muscarinic receptors allosterically. Recent studies have produced series of thrombin receptor (PAR1) antagonists derived from himbacine Himbacine is an inhibitor of mAChR M2 and mAChR M4.

Technical Information
Physical State: Solid
Derived from: Australian pine Galbulimima baccata
Solubility: Soluble in ethanol (50 mg/ml), methanol, and dichloromethane. Insoluble in water.
Storage: Store at -20° C
Melting Point: 132-134 °C
Boiling Point: 469.65 °C at 760 mmHg
Density: 1.08 g/cm3
Refractive Index: n20D 1.57
Optical Activity: α20/D +51.4º, c = 1.01 in chloroform
Application: An alkaloid muscarinic receptor antagonist
CAS Number: 6879-74-9
 
Molecular Weight: 345.5
Molecular Formula: C22H35NO2

General scheme:

Figure imgf000016_0001

PATENT

WO 2006076415

WO 2006076452

WO 2003089428

US 6063847

CN 107540564

WO 2008005344

CN 106749138

PATENT

CN 105348241 prepn

Example 1:

[0027] The steel shed amide (300mg, 7. 93mmol) and 15 blood THF was added to 100 blood Ξ jar. The starting material II (2.OOg, 5. 89mmol) was dissolved in 15mL of THF dropwise via pressure-equalizing dropping funnel to the reaction system, the process temperature will produce a large number of bubbles -2 ~ 0 ° C, in the process, Lan mix of about 0.1 until no bubbles generate. THF solution containing 13 Blood Ship (0.75 Yap, 2. 95mmol) is transferred to a pressure-equalizing dropping funnel. It was slowly added dropwise to the reaction system. After the completion of dropwise continue to embrace mix ratio. After the treatment, at 0 ° C under 0.8 blood, Imol / L 1 fat slowly dropped into the embrace mixed reaction system, after adding the right amount of water, acetic acid extraction. The combined organic phase with Imol / L of 0H (17mLX3) washing the organic phase coating. Tu brine, dried over anhydrous sulfate steel, 25 ° C under reduced pressure to spin dry to give 1. 75g light yellow oil, yield 91%.

[0028] After the content was determined using the external standard method, first prepared by a qualified reference determine its content, W this as a standard substance, measuring the external standard method to get the content of 99%.

[0029] Zan NMR: (400MHz, CD3CN):… 5 46 of r, 1H), 4 70 (td, 1H), 4 03 based 2H), 3 69-3 57 (m, 2 Η).. , 3. 45-3. 32 (based, IH), 2. 77 (br, IH), 2. 61-2. 51 (m, IH), 2. 49-2. 39 (m, 1 field, 2 30 of r IH), 2 .12-1. 92 (m, IH), 1. 87 (dt, IH), 1. 81-1. 72 (m, IH), 1. 61-1. 50 ( …. m, IH), 1 48 (d, 3H), 1 23-1 09 (m, 7H), 1. 05-0 90 (m, 2H);

[0030] MS (ES +) m / z: 326. 24 [M + + field.

[Cited 00] Example 2:

[003 cited the steel shed amide (312mg, 8. 25mmol) and 16 blood THF was added to the lOOmL Ξ jar. The starting material II (2.OOg, 5. 89mmol) was dissolved in 15mL of THF dropwise via pressure-equalizing dropping funnel to the reaction system, the process temperature will produce a large number of bubbles -2 ~ -5 ° C, in the process and takes about 45min mix until no bubbles generate. The 13 ships of blood containing 60g, 2. 36mmol) in THF solution was transferred to a pressure-equalizing dropping funnel. It was slowly added dropwise to the reaction system. After the completion of dropwise continue to embrace mix ratio. After the treatment, at 0 ° C under 0.8 blood, Imol / L 1 fat slowly dropped into the embrace mixed reaction system, after adding the right amount of water, acetic acid extraction. The combined organic phase with llmol / L of 0H (17mLX3) washing the organic phase coating. Tu brine, dried over anhydrous sulfate steel, 25 ° C under reduced pressure to spin dry to give 1. 65g light yellow oil.

[0033] Determination of Reference Example 1 in an amount of 98.7%.

[0034] MS (ES +) m / z: 326. 24 [M + + field.

[003 cited Example 3:

[0036] 50 single jar of blood, condenser. Intermediate inb (l.〇〇g, 3. 07mmol) was dissolved in 10ml of dichloromethane burn during and after the blood was added to a 50-port flask, make dioxide of 32g, 3.68mmol), the reaction of reflux. After completion of the reaction by TLC, cooled to 20 ~ 25 ° C after suction filtration, the filter cake rinsed with methylene burning (the X3 3 blood), at 30 ° CW and the filtrate was concentrated to dryness. To the residue was added 5 blood acetic acid, at 20 ~ 25 ° C after mixing 0. embrace of suction, the resulting cake was vacuum dried at 30 ° C 10 ~ 12h. Give 0. 87g of white solid.

[0037] Electric NMR: (400MHz, CD3CN):. 9 74 oriented 1H), 5 40 of r, 1H), 4 77-4.66 (m, 1H), 4 09-3 98 (m, 2H…. ), 3. 49-3. 37 (m, IH), 2. 75-2. 64 (m, 2H), 2. 55-2. 48 (m, IH), 1. 95-1. 87 (m , 2H), 1. 89-1 .77 (m, 2H), 1. 61-1. 49 (m, IH), 1. 32-1. 13 (m, 9H), 1. 08-0. 82 (m, 2H);

[0038] MS (ES +) m / z: 324. 33 [M + + field.

PATENT

CN 106478608 crystal

https://patents.google.com/patent/CN106478608A/en

The present invention provides a crystalline polymorph A one kind of the compound of formula I:

Figure CN106478608AD00051

In another embodiment, the present invention provides a method of preparing a crystalline polymorph of compound A I,

Figure CN106478608AD00052

Which comprising, a) the compound II is dissolved in acetonitrile and stirred to form a mixture; b) heating the mixture to 50 ° C ~ 70 ° C; c) adding sulfuric acid to the heated mixture; d) evaluating the temperature was lowered to 0 ° C ~ 20 ° C, seeded and stirred to precipitate crystals.

Preparation [0042] A crystalline polymorph of the compound of Example 1 I

Figure CN106478608AD00091

Compound II (1. 0g) was dissolved in 5. 0ml of acetonitrile, stirred and heated to 50 ° C ~ 70 ° C was added and this temperature was added 1.2ml 2N H2S04 / acetonitrile solution and then lowering the temperature of the system to 15 ° C ~ 20 ° C, the system was added to the appropriate amount of seed crystals and stirred for 2h, the precipitated solid was filtered and the cake washed twice with 2. 5ml of acetonitrile to give a white solid, the white solid was placed under 40 ° C desolventizing 2 hours and then dried at 80 ° C for vacuo to give a white solid 0. 83 g, 69. 3% yield, HPLC:. 99 94%. A powder X-ray diffraction spectrum shown in Figure 1, a DSC endothermic curve shown in Figure 2, which HPLC profile shown in Fig.

PATENT

CN 201510551080

https://patents.google.com/patent/CN106478608A/en

PATENT

WO 2009093972 synthesis

https://encrypted.google.com/patents/WO2009093972A1?cl=ko&hl=en&output=html_text

Clip

Vorapaxar sulfate (Zontivity)
Merck Sharp & Dohme successfully obtained approval in the EU in 2014 for vorapaxar sulfate, marketed as Zontivity. The drug is a first-in-class thrombin receptor (also referred to as a protease-activated or PAR-1) antagonist which, when used in conjunction with antiplatelet therapy, has been shown to reduce the chance of
myocardial infarction and stroke, particularly in patients with a history of cardiac events.277

Antagonism of PAR-1 allows for thrombin-mediated fibrin deposition while blocking thrombinmediated platelet activation.277 Although a variety of papers and patents describe the synthesis of vorapaxar sulfate (XXXVII),278–282 a combination of two patents describe the largest-scale synthesis reported in the literature, and this is depicted in Scheme 52.

Retrosynthetically, the drug can be divided into olefination partners 306 and 305.283,284 Lactone 305
is further derived from synthons 300 and 299, which are readily prepared from commercially available starting materials. Dienyl acid 300 was constructed in two steps starting from commercial vinyl bromide 307, which first undergoes a Heck reaction with methacrylate (308) followed by saponification of the ester to afford the desired acid 300 in 71% over two steps (Scheme 53).

The synthesis of alcohol 299 begins with tetrahydropyranyl (THP) protection of enantioenriched alcohol 295 to afford butyne 297 (Scheme 52). Lithiation of this system followed by trapping with (benzyloxy)chloroformate and Dowex work-up to remove the protective functionality provided acetyl ester 298. Hydrogenation of the alkyne with Lindlar’s catalyst delivered cis-allylic alcohol 299 in 93% yield. Acid 300 was then esterified with alcohol 299 by way of a 1,3-dicyclohexylcarbodiimide (DCC) coupling and, upon heating in refluxing xylenes, an intramolecular Diels–
Alder reaction occurred. Subsequent subjection to DBU secured the tricyclic system 301 in 38% over three steps as a single enantiomer.
Diastereoselective hydrogenation reduced the olefin with concomitant benzyl removal to give key fragment 302. Next, acidic revelation of the ketone followed by reductive amination with ammonium formate delivered primary amines 303a/303b as a mixture of diastereomers. These amines were then converted to the corresponding carbamates, and resolution by means of recrystallization yielded 50% of 304 as the desired diastereomer. Acid 304
was treated with oxalyl chloride and the resulting acid chloride was reduced to aldehyde 305 in 66% overall yield. Finally, deprotonation of phosphonate ester 306 (whose synthesis is described in Scheme 54) followed by careful addition of 305 and acidic quench delivered vorapaxar sulfate (XXXVII) in excellent yield over the
two-step protocol.

The preparation of vorapaxar phosponate ester 306 (Scheme 54)commenced from commercial sources of 5-(3-fluorophenyl)-2-methylpyridine (310). Removal of the methyl proton with LDA followed by quench with diethyl chlorophosphonate resulted in phosponate ester 306.

277. Frampton, J. E. Drugs 2015, 75, 797.
278. Chackalamannil, S.; Wang, Y.; Greenlee, W. J.; Hu, Z.; Xia, Y.; Ahn, H.; Boykow,G.; Hsieh, Y.; Palamanda, J.; Agans-Fantuzzi, J.; Kurowski, S.; Graziano, M.;Chintala, M. J. Med. Chem. 2008, 51, 3061.
279. Sudhakar, A.; Kwok, D.; Wu, G. G.; Green, M. D. WO Patent 2006076452A2,2006.

280. Wu, G. G.; Sudhakar, A.; Wang, T.; Ji, X.; Chen, F. X.; Poirier, M.; Huang, M.;Sabesan, V.; Kwok, D.; Cui, J.; Yang, X.; Thiruvengadam, T.; Liao, J.; Zavialov, I.;Nguyen, H. N.; Lim, N. K. WO Patent 2006076415A2, 2006.
281. Yong, K. H.; Zavialov, I. A.; Yin, J.; Fu, X.; Thiruvengadam, T. K. US Patent20080004449A1, 2008.
282. Chackalamannil, S.; Clasby, M.; Greenlee, W. J.; Wang, Y.; Xia, Y.; Veltri, E.;Chelliah, M. WO Patent 03089428A1, 2003.
283. Thiruven-Gadam, T. K.; Wang, T.; Liao, J.; Chiu, J. S.; Tsai, D. J. S.; Lee, H.; Wu,W.; Xiaoyong, F. WO Patent 2006076564A1, 2006.
284. Chackalamannil, S.; Asberon, T.;Xia, Y.; Doller, D.; Clasby, M. C.; Czarniecki,M. F. US Patent 6,063,847, 2000.

PRODUCT PATENT

SYNTHESIS

WO2003089428A1

Inventor Samuel ChackalamannilMartin C. ClasbyWilliam J. GreenleeYuguang WangYan XiaEnrico P. VeltriMariappan ChelliahWenxue Wu

Original Assignee Schering Corporation

Priority date 2002-04-16

THE EXACT BELOW COMPD IS 14

Example 2

Step 1 :

Figure imgf000019_0001

Phosphonate 7, described in US 6,063,847, (3.27 g, 8.1 mmol) was dissolved in THF (12 ml) and C(O)Oled to 0 °C, followed by addition of 2.5 M n- BuLi (3.2 ml, 8.1 mmol). The reaction mixture was stirred at 0 °C for 10 min and warmed up to rt. A solution of aldehyde 6, described in US 6,063,847, in THF (12 ml) was added to the reaction mixture. The reaction mixture was stirred for 30 min. Standard aqueous work-up, followed by column chromatography (30-50% EtOAc in hexane) afforded product 8. 1HNMR (CDCI3): δ 0.92-1.38 (m, 31 H), 1.41 (d, J= 6 Hz, 3H), 1.40-1.55 (m, 2H), 1.70-1.80 (m, 2H), 1.81-1.90 (m, 2H), 2.36 (m, 2H), 2.69 (m, 1 H), 3.89 (m, 4H), 4.75 (m, 1 H), 6.28-6.41 (m, 2H), 7.05-7.15 (m, 2H), 8.19 (br s, 1 H). Step 2:

Figure imgf000020_0001

Compound 8 (2.64 g, 4.8 mmol) was dissolved in THF (48 ml). The reaction mixture was C(O)Oled to 0 °C followed by addition of 1 M TBAF (4.8 ml). The reaction mixture was stirred for 5 min followed by standard aqueous work-up. Column chromatography (50% EtOAc/hexane) afforded product 9 (1.9 g, 100%). 1HNMR (CDCI3): δ 1.15-1.55 (m, 6H), 1.41 (d, J= 6 Hz, 3H), 1.70-1.82 (m, 3H), 1.85-1.90 (m, 1 H), 2.36 (m, 2H), 2.69 (m, 1 H), 3.91 (m, 4H), 4.75 (m, 1 H), 6.18- 6.45 (m, 2H), 7.19 (br s, 2H), 8.19 (br s, 1 H). Step 3:

Figure imgf000020_0002

To a solution of compound 9 (250 mg, 0.65 mmol) in pyridine (5 ml) C(O)Oled to 0 °C was added Tf2O (295 μL, 2.1 mmol). The reaction mixture was stirred overnight at rt. Standard aqueous work-up followed by column chromatography afforded product 10 (270 mg, 80%). 1HNMR (CDCI3): δ 1.15-1.55 (m, 6H), 1.41 (d, J= 6 Hz, 3H), 1.70-1.82 (m, 3H), 1.85-1.90 (m, 1 H), 2.36 (m, 2H), 2.69 (m, 1 H), 3.91 (m, 4H), 4.75 (m, 1 H), 6.42-6.68 (m, 2H), 7.25 (m, 1 H), 7.55 (m, 1 H), 8.49 (d, J= 2.8 Hz, 1 H).

Figure imgf000020_0003

Compound 10 (560 mg, 1.1 mmol), 3-fluorophenyl boronic acid (180 mg, 1.3 mmol) and K2CO3 (500 mg, 3.6 mmol) were mixed with toluene (4.4 ml), H2O (1.5 ml) and EtOH (0.7 ml) in a sealed tube. Under an atmosphere of N2, Pd(Ph3P)4 (110 mg, 0.13 mmol) was added. The reaction mixture was heated at 100 °C for 2 h under N2. The reaction mixture was C(O)Oled down to rt, poured to EtOAc (30 ml) and washed with water (2X20 ml). The EtOAc solution was dried with NaHCO3 and concentrated at reduced pressure to give a residue. Preparative TLC separation of the residue (50% EtOAc in hexane) afforded product 11 (445 mg, 89%). 1HNMR (CDCI3): δ 1.15-1.59 (m, 6H), 1.43 (d, J= 6 Hz, 3H), 1.70-1.79 (m, 2H), 1.82 (m, 1H), 1.91 (m, 2H), 2.41 (m, 2H), 2.69 (m, 1 H), 3.91 (m, 4H), 4.75 (m, 1 H), 6.52-6.68 (m, 2H), 7.15 (m, 1 H), 7.22 (m, 2H), 7.35 (m, 1 H), 7.44 (m, 1 H), 7.81 (m, 1 H), 8.77 (d, J= 1.2 Hz, 1 H). Step 5:

Compound 11 (445 mg, 0.96 mmol) was dissolved in a mixture of acetone (10 ml) and 1 N HCI (10 ml). The reaction mixture was heated at 50 °C for 1 h.

Standard aqueous work-up followed by preparative TLC separation (50% EtOAc in hexane) afforded product 12 (356 mg, 89%). 1HNMR (CDCI3): δ 1.21-1.45 (m, 2H), 1.47 (d, J= 5.6 Hz, 3H), 1.58-1.65 (m, 2H), 2.15 (m, 1 H), 2.18-2.28 (m, 2H), 2.35- 2.51 (m, 5H), 2.71 (m, 1 H), 4.79 (m, 1 H), 6.52-6.68 (m, 2H), 7.15 (m, 1 H), 7.22 (m, 2H), 7.35 (m, 1 H), 7.44 (m, 1 H), 7.81 (m, 1 H), 8.77 (d, J= 1.2 Hz, 1 H). Step 6:

Figure imgf000021_0002

Compound 12 (500 mg, 4.2 mmol) was dissolved in EtOH (40 ml) and CH2CI2 (15 ml) NH3 (g) was bubbled into the solution for 5 min. The reaction mixture was C(O)Oled to 0 °C followed by addition of Ti(O/Pr)4 (1.89 ml, 6.3 mmol). After stirring at 0 °C for 1 h, 1 M TiCI (6.3 ml, 6.3 mmol) was added. The reaction mixture was stirred at rt for 45 min and concentrated to dryness under reduced pressure. The residue was dissolved in CH3OH (10 ml) and NaBH3CN (510 mg, 8 mmol) was added. The reaction mixture was stirred overnight at rt. The reaction mixture was poured to 1 N NaOH (100 ml) and extracted with EtOAc (3x 100 ml). The organic layer was combined and dried with NaHC03. Removal of solvent and separation by PTLC (5% 2 M NH3 in CH3OH/ CH2CI2) afforded β-13 (spot 1 , 30 mg, 6%) and α-13 (spot 2, 98 mg, 20%). β-13: 1HNMR (CDCI3): δ 1.50-1.38 (m, 5H), 1.42 (d, J= 6 Hz, 3H), 1.51-1.75 (m, 5H), 1.84 (m, 2H), 2.38 (m, 1 H), 2.45 (m, 1 H), 3.38 (br s, 1 H), 4.78 (m, 1 H), 6.59 (m, 2H), 7.15 (m, 1 H), 7.26 (m, 2H), 7.36 (m, 1 H), 7.42 (m, 1 H), 7.82 (m, 1 H), 8.77 (d, J= 2 Hz, 1 H). α-13:1HNMR (CDCI3): δ 0.95 (m, 2H), 1.02-1.35 (m, 6H), 1.41 (d, J= 6 Hz, 3H), 1.82-1.95 (m, 4H), 2.37 (m; 2H), 2.69 (m, 2H), 4.71 (m, 1 H), 6.71 (m, 2H), 7.11 (m, 1 H), 7.25 (m, 2H), 7.38 (m, 1 H), 7.42 (m, 1 H), 7.80 (m, 1 H), 8.76 (d, J= 1.6 Hz, 1 H). Step 7:

Compound α-13 (300 mg, 0.71 mmol) was dissolved in CH2CI2 (10 ml) followed by addition of Et3N (0.9 ml). The reaction mixture was C(O)Oled to 0 °C and ethyl chloroformate (0.5 ml) was added. The reaction mixture was stirred at rt for 1 h. The reaction mixture was directly separated by preparative TLC (EtOAc/ hexane, 1 :1) to give the title compound (14) VORAPAXAR   (300 mg, 86%). MS m/z 493 (M+1).

HRMS Calcd for C29H34N2O4F (M+1 ): 493.2503, found 493.2509.

PATENT

SYNTHESIS 1

http://www.google.com/patents/WO2006076564A1

VORAPAXAR= COMPD A

Example 6 – Preparation of Compound A

Figure imgf000035_0001

To a three-neck flask equipped with an agitator, thermometer and nitrogen inertion was added 7A (13.0 g), THF (30 mL). The mixture was cooled to below -200C after which lithium diisopropylamide (2M, 20 mL) was slowly added. The reaction mixture was agitated for an additional hour (Solution A). To another flask was added 6 (10.0 g) and THF (75 mL) . The mixture was stirred for about 30 minutes and then slowly transferred into the solution A while maintaining the temperature below 200C. The mixture was stirred at below -200C for an additional hour before quenching the reaction by adding 20 mL of water. The reaction mixture was warmed to 00C and the pH was adjusted to about 7 by addition of 25% HaSO4 (11 mL). The mixture was further warmed to 200C and then diluted with 100 mL of ethyl acetate and 70 mL of water. The two phases that had formed were separated and the aqueous layer was extracted with 50 mL of ethyl acetate. The solvents THF and ethyl acetate were then replaced with ethanol, and the Compound A was precipitated out as a crystalline solid from ethanol with seeding at 35 to 4O0C. After cooling to O0C, the suspension was stirred for an additional hour and then the product was filtered and washed with cold ethanol. The product was dried at 50 – 600C under vacuum to provide an off-white solid. VORAPAXAR

Yield: 12.7 g, (90%). m.p. 104.90C (DSC onset point).

1H NMR (CDCl3) δ 8.88 (d, J = 2.4 Hz, IH), 8.10 (dd, J = 8.2, 2.4 Hz, IH), 7.64 (IH), 7.61 (d, J = 8.8 Hz, IH), 7.55 (m, J = 8.2, 6.2 Hz, IH), 7.51 (d, J = 8.0 Hz, IH), 7.25 (dt, J = 9.0, 2.3 Hz, IH), 7.08 (d, J = 8.0 Hz, IH), 6.68 (dd, J = 15.4, 9.4 Hz, IH), 6.58 (d, J = 9.6 Hz, IH), 4.85 (dd, J = 14.2, 7.2 Hz, IH), 3.95 (dd, J = 14.2, 7.1 Hz, 2H), 3.29 (m, IH), 2.66 (m, J = 12.0, 6.4 Hz, IH), 2.33 (m, 2H), 1.76 (m, 4H), 1.30 (d, J = 5.6 Hz, 3H), 1.19 (m, 4H), 1.14 (t, J = 7.2 Hz, 3H), 0.98 (m, IH), 0.84 (m, IH). MS (EI) m/z: calcd. 492, found 492.

BISULPHATE SALT

Example 7 – Preparation of an Acid Salt (bisulfate) of Compound A:

Compound IA (5 g) was dissolved in about 25 mL of acetonitrile.

The solution was agitated for about 10 minutes and then heated to about 50 0C. About 6 mL of 2M sulfuric acid in acetonitrile was added into the heated reaction mixture. The solid salt of Compound A precipitated out during the addition of sulfuric acid in acetonitrile. After addition of sulfuric acid solution, the reaction mixture was agitated for 1 hour before cooling to room temperature. The precipitated solid was filtered and washed with about 30 mL of acetonitrile. The wet solid was dried under vacuum at room temperature for 1 hour and at 80 0C for about 12 hours to provide about 5 g white solid (yield 85%). m.p. 217.0 0C. 1H NMR (DMSO) 9.04 (s, IH), 8.60 (d, J = 8.1 Hz, IH), 8.10 (d, J = 8.2 Hz, IH), 7.76 (d, J = 10.4, IH), 7.71 (d, J = 7.8 Hz, IH), 7.60 (dd, J = 8.4, 1.8 Hz, IH), 7.34 (dd, 8.4, 1.8 Hz, IH), 7.08 (d, J = 8.0 Hz, IH), 7.02 (m, IH), 6.69 (d, J = 15.8 Hz, IH), 4.82 (m, IH), 3.94 (dd, J = 14.0, 7.0 Hz, 2H), 3.35 (brs, IH), 2.68 (m, IH), 2.38 (m, 2H), 1.80-1.70 (m, 4H), 1.27 (d, J = 5.8 Hz, 3H), 1.21 (m, 2H), 1.13 (t, J = 7.0 Hz, 3H), 0.95 (m, IH, 0.85 (m, IH). MS (EI) m/z calcd. 590, found 492.

INTERMEDIATE 6

Example 5- Preparation of Compound 6

Figure imgf000032_0001

To a three-neck flask equipped with an agitator, thermometer and nitrogen inert were added the crude product solution of Compound 5 (containing about 31 g. of Compound 5 in 300 mL solution) and anhydrous DMF (0.05 mL). After the mixture was agitated for 5 minutes, oxalyl chloride (12.2 mL) was added slowly while maintaining the batch temperature between 15 and 25°C. The reaction mixture was agitated for about an hour after the addition and checked by NMR for completion of reaction. After the reaction was judged complete, the mixture was concentrated under vacuum to 135 mL while maintaining the temperature of the reaction mixture below 300C. The excess oxalyl chloride was removed completely by two cycles of vacuum concentration at below 500C with replenishment of toluene (315 mL) each time, resulting in a final volume of 68 mL. The reaction mixture was then cooled to 15 to 25°C, after which THF (160 mL) and 2,6-lutidine (22 mL) were added. The mixture was agitated for 16 hours at 20 to 25°C under 100 psi hydrogen in the presence of dry 5% Pd/C (9.0 g). After the reaction was judged complete, the reaction mixture was filtered through celite to remove catalyst. More THF was added to rinse the hydrogenator and catalyst, and the reaction mixture was again filtered through celite. Combined filtrates were concentrated under vacuum at below 25°C to 315 mL. MTBE (158 mL) and 10% aqueous solution of phosphoric acid (158 mL) were added for a thorough extraction at 100C to remove 2,6- lutidine. Then phosphoric acid was removed by extracting the organic layer with very dilute aqueous sodium bicarbonate solution (about 2%), which was followed by a washing with dilute brine. The organic solution was concentrated atmospherically to a volume of 90 mL for solvent replacement. IPA (315 mL) was added to the concentrated crude product solution. The remaining residual solvent was purged to <_ 0.5% of THF (by GC) by repeated concentration under vacuum to 68 mL, with replenishment of IPA (315 mL) before each concentration. The concentrated (68 mL) IPA solution was heated to 50°C, to initiate crystallization. To this mixture n-heptane (68 mL) was added very slowly while maintaining the batch temperature at 50°C. The crystallizing mixture was cooled very slowly over 2.5 hours to 25°C. Additional n- heptane (34 mL) was added very slowly into the suspension mixture at 250C. The mixture was further cooled to 200C, and aged at that temperature for about 20 hours. The solid was filtered and washed with a solvent mixture of 25% IPA in n-heptane, and then dried to provide

19.5 g of a beige colored solid of Compound 6. (Yield: 66%) m.p. 169.30C. IH NMR (CD3CN) δ 9.74 (d, J = 3.03 Hz, IH), 5.42 (br, IH), 4.69 (m, IH), 4.03 (q, J = 7.02 Hz, 2H), 3.43 (qt, J = 3.80, 7.84 Hz, IH), 2.67 (m, 2H), 2.50 (dt, J = 3.00, 8.52 Hz, IH), 1.93 (d, J = 12.0 Hz, 2H), 1.82 (dt, J = 3.28, 9.75 Hz, 2H), 1.54 (qd, J = 3.00, 10.5 Hz, IH), 1.27 (d, J = 5.97 Hz, 3H), 1.20 (m, 6H), 1.03 – 0.92 (m, 2H). MS (ESI) m/z (M++1): calcd. 324, found 324.

INTERMEDIATE 7A

Example 4 – Preparation of Compound 7A

+ 1-Pr2NLi + (EtO)2POCI – + LiCI

8
Figure imgf000031_0001

7A

To a 10 L three-necked round bottomed flask equipped with an agitator, thermometer and a nitrogen inlet tube, was added 20Og of

Compound 8 (1.07 mol, from Synergetica, Philadelphia, Pennsylvania). THF (1000 mL) was added to dissolve Compound 8. After the solution was cooled to -80 0C to -50 0C, 2.0 M LDA in hexane/THF(1175 mL, 2.2 eq) was added while maintaining the batch temperature below -50 0C. After about 15 minutes of agitation at -800C to -50 0C, diethyl chlorophosphate (185 mL, 1.2 eq) was added while maintaining the batch temperature below -50 0C. The mixture was agitated at a temperature from -800C to – 50 0C for about 15 minutes and diluted with n-heptane (1000 mL). This mixture was warmed up to about -35 0C and quenched with aqueous ammonium chloride (400 g in 1400 mL water) at a temperature below -10 0C. This mixture was agitated at -150C to -10 0C for about 15 minutes followed by agitation at 150C to 25 0C for about 15 minutes. The aqueous layer was split and extracted with toluene (400 mL). The combined organic layers were extracted with 2N hydrochloric acid (700 mL) twice. The product-containing hydrochloric acid layers were combined and added slowly to a mixture of toluene (1200 mL) and aqueous potassium carbonate (300 g in 800 mL water) at a temperature below 30 0C. The aqueous layer was extracted with toluene (1200 mL). The organic layers were combined and concentrated under vacuum to about 600 ml and filtered to remove inorganic salts. To the filtrate was added n-heptane (1000 ml) at about 55 0C. The mixture was cooled slowly to 40 0C, seeded, and cooled further slowly to -10 0C. The resulting slurry was aged at about -10 0C for 1 h, filtered, washed with n- heptane, and dried under vacuum to give a light brown solid (294 g, 85% yield), m.p. 52 0C (DSC onset point).1H NMR (CDCl3) δ 8.73 (d, J = 1.5 Hz, IH), 7.85 (dd, Ji = 8.0 Hz, J2 = 1.5 Hz, IH), 7.49 (dd, Ji = 8.0 Hz, J2 = 1.3 Hz, IH), 7.42 (m, IH), 7.32 (d, J = 7.8 Hz, IH), 7.24 (m, IH), 7.08 (dt, Ji = 8.3 Hz, J2 = 2.3 Hz, IH), 4.09 (m, 4H), 3.48 (d, J = 22.0 Hz, 2H), 1.27 (t, J = 7.0 Hz, 6H). MS (ESI) for M+H calcd. 324, found 324.

Example 3 – Preparation of Compound 5:

4                                                                                                            5

To a three-necked round bottomed flask equipped with an agitator, thermometer and a nitrogen inlet tube was added a solution of Compound 4 in aqueous ethanol (100 g active in 2870 ml). The solution was concentrated to about 700 ml under reduced pressure at 350C to 40°C to remove ethyl alcohol. The resultant homogeneous mixture was cooled to 200C to 300C and its pH was adjusted to range from 12 to 13 with 250 ml of 25% sodium hydroxide solution while maintaining the temperature at 20-300C. Then 82 ml of ethyl chloroformate was slowly added to the batch over a period of 1 hour while maintaining the batch temperature from 200C to 300C and aged for an additional 30 minutes. After the reaction was judged complete, the batch was acidified to pH 7 to 8 with 10 ml of concentrated hydrochloric acid (37%) and 750 ml of ethyl acetate. The pH of the reaction mixture was further adjusted to pH 2 to 3 with 35% aqueous hydrochloric acid solution. The organic layer was separated and the aqueous layer was extracted again with 750 ml of ethyl acetate. The combined organic layers were washed twice with water (200 ml) . Compound 5 was isolated from the organic layer by crystallization from ethyl acetate and heptane mixture (1: 1 mixture, 1500 ml) at about 700C to 80 0C. The solid was filtered at 500C to 60 °C, washed with heptane and then dried to provide an off-white solid (yield 50%). m.p. 197.7°C. 1HNMR (CD3CN) δ 5.31 (brs, IH), 4.67 (dt, J = 16.1, 5.9 Hz, IH), 4.03 (q, J = 7.1 Hz, 2H), 3.41 (m, IH), 2.55 – 2.70 (m, 2H), 1.87 – 1.92 (m, IH), 1.32 – 1.42 (m, IH), 1.30 (d, J = 5.92 Hz, 3H), 1.30 – 1.25 (m, 6H), 0.98 (qt, J = 15.7, 3.18 Hz, 2H). MS (ESI) M+l m/z calculated 340, found 340.

Example 2 – Preparation of Compound 4;

3                                                                                                4

7.4 kg of ammonium formate was dissolved in 9L of water at 15- 250C, and then cooled to 0-100C. 8.9 kg of Compound 3 was charged at 0-150C followed by an addition of 89L of 2B ethyl alcohol. The batch was cooled to 0-50C 0.9 kg of 10% Palladium on carbon (50% wet) and 9 L of water were charged. The batch was then warmed to 18-280C and agitated for 5 hours, while maintaining the temperature between 18-28 0C. After the reaction was judged complete, 7 IL of water was charged. The batch was filtered and the wet catalyst cake was then washed with 8OL of water. The pH of the filtrate was adjusted to 1-2 with 4N aqueous hydrochloric acid solution. The solution was used in the next process step without further isolation. The yield is typically quantiative. m.p. 216.40C. IH NMR (D2O+1 drop HCl) δ 3.15 (m, IH), 2.76 (m, IH), 2.62 (m, IH), 2.48 (dd,J-5.75Hz, IH), 1.94 (m, 2H), 1.78 (m, 2H), 1.38 (m, 2H), 1.20 (m, 6H), 1.18 (m, IH), 0.98 (q,J=2.99Hz, IH).

Example 1 – Preparation of Compound 3

Figure imgf000028_0001

2B                                                                                                              3

To a reactor equipped with an agitator, thermometer and nitrogen, were added about 10.5 kg of 2B, 68 L of acetone and 68 L of IN aqueous hydrochloric acid solution. The mixture was heated to a temperature between 50 and 600C and agitated for about 1 hour before cooling to room temperature. After the reaction was judged complete, the solution was concentrated under reduced pressure to about 42 L and then cooled to a temperature between 0 and 50C. The cooled mixture was agitated for an additional hour. The product 3 was filtered, washed with cooled water and dried to provide an off-white solid (6.9 kg, yield 76%). m.p. 2510C. Η NMR (DMSO) δ 12.8 (s, IH), 4.72 (m, J = 5.90 Hz, IH), 2.58 (m, 2H), 2.40 (m, J = 6.03 Hz, 2H), 2.21 (dd, J = 19.0, 12.8 Hz, 3H), 2.05 (m, IH), 1.87 (q, J = 8.92 Hz, IH), 1.75 (m, IH), 1.55 (m, IH), 1.35 (q, J = 12.6 Hz, IH), 1.27 (d, J = 5.88 Hz, 3H). MS (ESI) M+l m/z calcd. 267, found 267.

NOTE

Compound 7A may be prepared from Compound 8 by treating Compound 8 with diethylchlorophosphate:

Figure imgf000027_0001

Compound 8 may be obtained by the process described by Kyoku, Kagehira et al in “Preparation of (haloaryl)pyridines,” (API Corporation, Japan). Jpn. Kokai Tokkyo Koho (2004). 13pp. CODEN: JKXXAF JP

2004182713 A2 20040702. Compound 8 is subsequently reacted with a phosphate ester, such as a dialkyl halophosphate, to yield Compound 7A. Diethylchlorophosphate is preferred. The reaction is preferably conducted in the presence of a base, such as a dialkylithium amide, for example diisopropyl lithium amide.

Paper

J Med Chem 2008, 51(11): 3061

http://pubs.acs.org/doi/abs/10.1021/jm800180eAbstract Image

The discovery of an exceptionally potent series of thrombin receptor (PAR-1) antagonists based on the natural product himbacine is described. Optimization of this series has led to the discovery of 4 (SCH 530348), a potent, oral antiplatelet agent that is currently undergoing Phase-III clinical trials for acute coronary syndrome (unstable angina/non-ST segment elevation myocardial infarction) and secondary prevention of cardiovascular events in high-risk patients.

Ethyl [(3aR,4aR,8aR,9aS)-9(S)-[(E)-2-[5-(3-fluorophenyl)-2-
pyridinyl]ethenyl]dodecahydro-1(R)-methyl-3-oxonaphtho[2,3-c]furan-6(R)-yl]carbamate (4).

4 (300 mg, 86%). MS m/z 493 (M+1).

HRMS Calcd for C29H34N2O4F
(M+1): 493.2503, found 493.2509; mp125 °C;

[]D20 6.6 (c 0.5, MeOH).

1HNMR (CDCl3):

http://pubs.acs.org/doi/suppl/10.1021/jm800180e/suppl_file/jm800180e-file002.pdf

0.88-1.18 (m, 5 H), 1.22-1.30 (m, 3 H), 1.43 (d, J = 5.85 Hz, 3 H), 1.88-2.10 (m, 4 H), 2.33-2.42 (m, 2 H),
2.75-2.67 (m, 1 H), 3.52-3.60 (m, 1 H), 4.06-4.14 (m, 2 H), 4.54-4.80 (m, 1 H), 4.71-4.77 (m, 1 H),
6.55-6.63 (m, 2 H), 7.07-7.12 (m, 1 H), 7.26-7.29 (m, 2 H), 7.34 (d, J = 8.05 Hz, 1 H), 7.41-7.46 (m, 1 H), 7.80-7.82 (m, 1 H), 8.76-8.71 (m, 1 H).

PATENT

IN 201621010411

An improved process for preparation of Vorapaxar intermediates and a novel polymorphic form of Vorapaxar

ALEMBIC PHARMACEUTICALS LIMITED

Vorapaxar Sulfate is indicated for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction (MI) or with peripheral arterial disease (PAD). ZONTIVITY has been shown to reduce the rate of a combined endpoint of cardiovascular death, MI, stroke, and urgent coronary revascularization (UCR).

According to present invention Vorapaxar sulfate is synthesized from compound of formula 1.

str1

wherein R1 and R2 are each independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, aryl, alkylaryl, arylalkyl, and heteroaryl groups. Process for the preparation of compound of formula 1 is disclosed in U.S Pat. No. 7,605,275. It disclosed preparation of compound of formula 1 via cyclization of compound 2 in presence of solvent selected from xylene, N-methylpyrrolidinone, Dimethylsulfoxide, diphenyl ether, dimethylacetamide. This cyclization step takes approximately 6-8 hrs.

There is need to develop a process which takes less time for cyclization step to prepare compound of formula 1. Therefore, our scientist works tenaciously to develop process which takes approximately 1-2 hrs for cyclization of compound 1.

str1

5 According to present invention Vorapaxar sulfate is synthesized from intermediate compound of formula-II.

str2

Formula-II Compound of formula-II is critical intermediate in the preparation of Vorapaxar Sulfate.

10 Patent WO2006076415 discloses the process of preparation of above Formula-II in example 7, in which purification/crystallisation step involves treating the reaction mixture having compound of Formula-II with an ethanol/water mixture followed by azeotropic distillation of the mixture. This process yielded formula-II with low yields and with low purities. WO2009055416 (page 9, second paragraph) discloses that use of various solvent systems for

15 formula-II purification such as Methyl-tert-Butyl Ether (MTBE) and various solvent/antisolvent systems, for example, ethylacetate/heptane and toluene/heptane and by using these solvent systems, compound of formula-II are obtained as oil. These oils did not yield a reduced impurity profile in synthesis of the compound of Formula II, nor provide an improvement in the quality of the product compound of Formula II.

20 The inventors surprisingly found that using the process according to the invention provides formula-II with improved yield and high purity. Further, present invention provides a process for the preparation of novel crystalline form of Vorapaxar base. The present invention also relates to novel impurity and process for its preparation.

U.S.Pat. No. 7,304,078 discloses Vorapaxar base. U.S.Pat. No. 7,235,567 discloses Polymorph I and II of vorapaxar sulphate

Example 1- Preparation of compound 1a:

str1

Process A: 5.0 g of compound 2a was suspended in 10.0 ml silicone oil at room temperature. The reaction mixture was then heated to 125°C and stirred for 30 min. Then reaction mass was further heated up to 150°C and stirred for 30 min. After completion of reaction, the reaction mass was cooled to 50-60°C and 25 ml of cyclohexane was added to the reaction mass. The reaction mass was cooled slowly up to room temperature and stirred for 30 min.

15 The precipitated product was filtered off and washed with 5.0 ml Cyclohexane. Wet solid was suspended in mixture of 45.0 ml isopropyl alcohol and 20.0 ml denatured ethanol at 40-45°C and further epimerized with 0.17 ml DBU. The crystallized solid was filtered off with suction, washed with mixture of 1.5 ml Isopropyl alcohol and 0.67 ml denatured ethanol and dried.

20 Process B: 5.0 g of compound 2a was suspended in 10.0 ml paraffin oil at room temperature. The reaction mixture was then heated to 125°C and stirred for 30 min. Then reaction mass was further heated up to 150°C and stirred for 30 min. After completion of reaction, the reaction mass was cooled to 50-60°C and 25 ml of cyclohexane was added to the reaction mass. The reaction mass was cooled slowly up to room temperature and stirred for 30 min.

25 The precipitated product was filtered off and washed with 5.0 ml Cyclohexane. Wet solid was suspended in mixture of 45.0 ml isopropyl alcohol and 20.0 ml denatured ethanol at 40-45°C and further epimerized with 0.17 ml DBU. The crystallized solid was filtered off with suction, washed with mixture of 1.5 ml Isopropyl alcohol and 0.67 ml denatured ethanol and dried. Yield: 4.3 g

Process C: 5.0 g of compound 2a was charged in reaction vessel at room temperature. The solid was then heated to 125°C and stirred for 30 min. Then reaction mass was further heated up to 150°C and stirred for 30 min. After completion of reaction, the reaction mass was cooled to 50-60°C and was added mixture of 45.0 ml isopropyl alcohol and 20.0 ml

5 denatured ethanol at 50-60°C. This was cooled to 40-45°C and further epimerized with 0.17 ml DBU. The crystallized solid was filtered off with suction, washed with mixture of 1.5 ml Isopropyl alcohol and 0.67 ml denatured ethanol and dried. Yield: 4.5 g Example 2: Preparation of Intermediate (Formula-II) of vorapaxar

10 Example 2(a): 50.0g of 1,3,3a,4,4a,5,6,7,8,9a-Decahydro-3-methyl-7-nitro-1-oxo-N,Ndiphenylnaphtho[2,3-c]furan-4-carboxamide compound was suspended in 300.0 ml THF, 15 g 10% Pd/C (50% wet) and 200 ml Process water at room temperature. The reaction mixture was heated to 45°C and drop wise formic acid (35 ml) was added and then stirred for 15 hrs. After completion of reaction, the reaction mass was cooled to 25-30°C and 100 ml THF was

15

added and pH was made acidic with 2M sulfuric acid solution. The reaction mass was filtered and washed with 150 ml THF, 150 ml water. Organic and aqueous layer were separated and aqueous layer was extracted with THF. Organic layers were combined and washed with water. The organic layer was cooled up to 5-10°C, 20 ml of TEA and 13 ml of Ethyl chloro formate were added. The reaction mass was stirred for 30 min. After completion of reaction,

20

reaction mass was washed with 2M sulfuric acid solution and distilled out reaction mass completely under vacuum. Acetonitrile (50 ml) was added to residue and heated up to 40- 45°C. Cooled the reaction mass up to 25-30°C and filtered the solid. Purity: 94-96% Example 2(b): Crystallization with Acetonitrile Acetonitrile (50 ml) was added to above obtained solid and heated to 40-45°C. Cooled the

25 reaction mass slowly up to 25-30°C and then up to 5-10°C. The reaction mass was stirred and the solid was filtered. XRD: Fig-1 Purity: 98-99% Example 2(c): Crystallization with Ethyl acetate To the solid obtained in example-1(a) Ethyl acetate (30 ml) was added. The reaction mass was heated up to 70-75°C and stirred for 10-15 min. The reaction mass was cooled slowly up 30 to 25-30°C and then up to 5-10°C. The reaction mass was stirred for 30 min. The solid was filtered and washed with Ethyl acetate. XRD: Fig-2 Purity: 98-99%

Example 3: Preparation of Amorphous Form of Vorapaxar base Vorapaxar base (10.0 g) was dissolved in 500 ml of 40% Ethyl acetate in Cyclohexane. The solvent was then completely removed under vacuum at 45-50o C to give a solid. Yield: 9.8 g

Example 3 (a): Preparation of crystalline vorapaxar base 5 (2-{[Ethyl (ethylperoxy)phosphory]methyl}-5-(3-fluorophenyl)pyridine) (10 g) was dissolved in THF (30ml) at 25±5°C under Nitrogen. Cool the reaction mass up to -30 to – 50°C. Add drop wise LDA (2.0 M solution in THF). After 1 hr add drop wise (N- [(1R,3aR,4aR,6R,8aR,9S,9aS)-9-formyl dodecahydro-1-methyl-3-oxonaphtho[2,3-c]furan-6- yl]-ethyl ester Carbamic acid) solution (10 g dissolved in 70 ml THF). After completion of 10 reaction mass quench the reaction mass to sulphuric acid solution. Separate the layers and distilled out organic layer under vacuum get foamy residue. (purity 82%) Add MIBK (10 ml) in above residue and stir it at 40-50°C till clear solution. Add drop wise n-Heptane (10 ml) and stir the reaction mass for 30 min. Gradually cool the reaction mass up to 25-30°C. Stir the reaction mass for 24 hrs. Filter the solid and washed it with n-Heptane (5.0 ml). Dry the 15 solid. Yield: 7.0 g. XRD: Fig-3 purity 96%

Example 3(b): Preparation of crystalline vorapaxar base Vorapaxar advance intermediate (2-{[Ethyl (ethylperoxy)phosphory]methyl}-5-(3- fluorophenyl)pyridine) (10 g) was dissolved in THF (30ml) at 25±5°C under Nitrogen. Cool the reaction mass up to -30 to -50°C. Add drop wise LDA (2.0 M solution in THF). After a 1

20 hr add drop wise VORA-Aldehyde (N-[(1R,3aR,4aR,6R,8aR,9S,9aS)-9-formyl dodecahydro1-methyl-3-oxonaphtho[2,3-c]furan-6-yl]-ethyl ester Carbamic acid) solution (10 g dissolved in 70 ml THF). After completion of reaction mass quench the reaction mass to sulphuric acid solution. Separate the layers and distilled out organic layer under vacuum get foamy residue (purity 82%). Add MTBE (10 ml) in above residue and stir it at 40-50°C till clear solution.

25 Add drop wise n-Heptane (30 ml) and stir the reaction mass for 30 min. Gradually cool the reaction mass up to 25-30°C. Stir the reaction mass for 24 hrs. Filter the solid and washed it with n-Heptane (5.0 ml). Dry the solid. Yield: 8.5.0 g. XRD: Fig-4 purity 97%

References

  1.  Samuel Chackalamannil; Wang, Yuguang; Greenlee, William J.; Hu, Zhiyong; Xia, Yan; Ahn, Ho-Sam; Boykow, George; Hsieh, Yunsheng et al. (2008). “Discovery of a Novel, Orally Active Himbacine-Based Thrombin Receptor Antagonist (SCH 530348) with Potent Antiplatelet Activity”. Journal of Medicinal Chemistry 51 (11): 3061–4.doi:10.1021/jm800180ePMID 18447380.
  2.  Merck Blood Thinner Studies Halted in Select PatientsBloomberg News, January 13, 2011
  3.  Tricoci et al. (2012). “Thrombin-Receptor Antagonist Vorapaxar in Acute Coronary Syndromes”New England Journal of Medicine 366 (1): 20–33.doi:10.1056/NEJMoa1109719PMID 22077816.
  4.  Morrow, DA; Braunwald, E; Bonaca, MP; Ameriso, SF; Dalby, AJ; Fish, MP; Fox, KA; Lipka, LJ; Liu, X; Nicolau, JC; Ophuis, AJ; Paolasso, E; Scirica, BM; Spinar, J; Theroux, P; Wiviott, SD; Strony, J; Murphy, SA; TRA 2P–TIMI 50 Steering Committee and, Investigators (Apr 12, 2012). “Vorapaxar in the secondary prevention of atherothrombotic events.”. The New England Journal of Medicine 366 (15): 1404–13. doi:10.1056/NEJMoa1200933.PMID 22443427.
  5.  “Merck Statement on FDA Advisory Committee for Vorapaxar, Merck’s Investigational Antiplatelet Medicine”. Merck. Retrieved 16 January 2014.
  6. http://www.forbes.com/sites/larryhusten/2014/01/15/fda-advisory-panel-votes-in-favor-of-approval-for-mercks-vorapaxar/
  7. SCH-530348 (Vorapaxar) is an investigational candidate for the prevention of arterial thrombosis in patients with acute coronary syndrome and peripheral arterial disease. “Convergent Synthesis of Both Enantiomers of 4-Hydroxypent-2-ynoic Acid Diphenylamide for a Thrombin Receptor Antagonist Sch530348 and Himbacine Analogues.” Alex Zaks et al.:  Adv. Synth. Catal. 2009, 351: 2351-2357 Full text;
  8. Discovery of a novel, orally active himbacine-based thrombin receptor antagonist (SCH 530348) with potent antiplatelet activity
    J Med Chem 2008, 51(11): 3061

PATENTS

  1. WO 2003089428
  2. WO 2006076452
  3. US 6063847
  4. WO 2006076565
  5. WO 2008005344
  6. WO2010/141525
  7. WO2008/5353
  8. US2008/26050
  9. WO2006/76564   mp, nmr
3-21-2012
EXO-SELECTIVE SYNTHESIS OF HIMBACINE ANALOGS
10-14-2011
EXO- AND DIASTEREO- SELECTIVE SYNTHESIS OF HIMBACINE ANALOGS
8-3-2011
Exo- and diastereo-selective syntheses of himbacine analogs
3-18-2011
COMBINATION THERAPIES COMPRISING PAR1 ANTAGONISTS WITH NAR AGONISTS
8-11-2010
Exo-selective synthesis of himbacine analogs
6-4-2010
SYNTHESIS Of DIETHYLPHOSPHONATE
5-12-2010
THROMBIN RECEPTOR ANTAGONISTS
3-31-2010
Synthesis of diethyl{[5-(3-fluorophenyl)-pyridine-2yl]methyl}phosphonate
12-4-2009
Local Delivery of PAR-1 Antagonists to Treat Vascular Complications
12-2-2009
SYNTHESIS OF HIMBACINE ANALOGS
10-21-2009
Exo- and diastereo- selective syntheses of himbacine analogs
6-31-2009
Synthesis of 3-(5-nitrocyclohex-1-enyl) acrylic acid and esters thereof
6-3-2009
Synthesis of himbacine analogs
1-23-2009
METHODS AND COMPOSITIONS FOR TREATING CARDIAC DYSFUNCTIONS
9-26-2008
REDUCTION OF ADVERSE EVENTS AFTER PERCUTANEOUS INTERVENTION BY USE OF A THROMBIN RECEPTOR ANTAGONIST
2-8-2008
IMMEDIATE-RELEASE TABLET FORMULATIONS OF A THROMBIN RECEPTOR ANTAGONIST
1-32-2008
SOLID DOSE FORMULATIONS OF A THROMBIN RECEPTOR ANTAGONIST
12-5-2007
Thrombin receptor antagonists
11-23-2007
THROMBIN RECEPTOR ANTAGONISTS
8-31-2007
THROMBIN RECEPTOR ANTAGONISTS AS PROPHYLAXIS TO COMPLICATIONS FROM CARDIOPULMONARY SURGERY
8-31-2007
CRYSTALLINE POLYMORPH OF A BISULFATE SALT OF A THROMBIN RECEPTOR ANTAGONIST
6-27-2007
Crystalline polymorph of a bisulfate salt of a thrombin receptor antagonist
8-4-2006
Preparation of chiral propargylic alcohol and ester intermediates of himbacine analogs
9-31-2004
Methods of use of thrombin receptor antagonists
US6063847 * Nov 23, 1998 May 16, 2000 Schering Corporation Thrombin receptor antagonists
US6326380 * Apr 7, 2000 Dec 4, 2001 Schering Corporation Thrombin receptor antagonists
US20030216437 * Apr 14, 2003 Nov 20, 2003 Schering Corporation Thrombin receptor antagonists
US20040176418 * Jan 9, 2004 Sep 9, 2004 Schering Corporation Crystalline polymorph of a bisulfate salt of a thrombin receptor antagonist
WO2011128420A1 Apr 14, 2011 Oct 20, 2011 Sanofi Pyridyl-vinyl pyrazoloquinolines as par1 inhibitors

//////////////fast track designation , VORAPAXAR, FDA 2014, EU 2016, Zontivity,  NDA 204886, MERCK, VORAPAXAR SULPHATE

CCOC(=O)NC1CCC2C(C1)CC3C(C2C=CC4=NC=C(C=C4)C5=CC(=CC=C5)F)C(OC3=O)C

Tildrakizumab-asmn


Heavy chain:
QVQLVQSGAEVKKPGASVKVSCKASGYIFITYWMTWVRQAPGQGL
EWMGQIFPASGSADYNEKFEGRVTMTTDTSTSTAYMELRSLRSDD
TAVYYCARGGGGFAYWGQGTLVTVSSASTKGPSVFPLAPSSKSTS
GGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYS
LSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTC
PPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP
EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNG
KEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKN
QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL
YSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
Light chain:
DIQMTQSPSSLSASVGDRVTITCRTSENIYSYLAWYQQKPGKAPK
LLIYNAKTLAEGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQH
HYGIPFTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL
LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

Tildrakizumab-asmn

Immunoglobulin G1, anti-(human interleukin 23) (human-Mus musculus monoclonal heavy chain), disulfide with human-Mus musculus monoclonal light chain, dimer

CAS 1326244-10-3,  BLA 761067

Tildrakizumab (SCH 900222/MK-3222)

ILUMYA; MK-3222; SCH-900222; SUNPG 1622; SUNPG 1622 I; SUNPG 1623 I; SUNPG 1623 II; SUNPG 1623 III; SUNPG 1623 IV; SUNPG1623; Tildrakizumab-asmn

DRUG BANK https://www.drugbank.ca/drugs/DB14004

Company Sun Pharmaceuticals

Approval Status  FDA Approved March 2018 FOR Psoriasis, plaque

Treatments plaque psoriasis

Protein chemical formulaC6426H9918N1698O2000S46

Protein average weight144400.0 DaSequences

>Tildrakizumab Sequence
MLGSRAVMLLLLLPWTAQGRAVPGGSSPAWTQCQQLSQKLCTLAWSAHPLVGHMDLREEG
DEETTNDVPHIQCGDGCDPQGLRDNSQFCLQRIHQGLIFYEKLLGSDIFTGEPSLLPDSP
VGQLHASLLGLSQLLQPEGHHWETQQIPSLSPSQPWQRLLLRFKILRSLQAFVAVAARVF
AHGAATLSP
Tildrakizumab
Monoclonal antibody
Type ?
Source Humanized (from mouse)
Target IL23
Clinical data
Trade names Ilumya
Synonyms Tildrakizumab-asmn
Routes of
administration
Subcutaneous injection
ATC code
  • none
Identifiers
CAS Number
ChemSpider
  • none
KEGG
Chemical and physical data
Formula C6426H9918N1698O2000S46
Molar mass 144.4 kg/mol
  • Originator Schering-Plough
  • Developer Almirall S.A.; Merck & Co; Schering-Plough; Sun Pharmaceutical Industries
  • Class Antipsoriatics; Monoclonal antibodies
  • Mechanism of Action Interleukin 23 inhibitors
  • Orphan Drug StatusNo
  • New Molecular EntityYes

Highest Development Phases

  • Registered Plaque psoriasis
  • Phase II Ankylosing spondylitis; Psoriatic arthritis
  • Discontinued Autoimmune disorders

Most Recent Events

  • 21 Mar 2018 Registered for Plaque psoriasis in USA (SC) – First global approval
  • 16 Feb 2018 Adverse events data from two phase III trials (reSURFACE 1 and 2) in chronic Plaque psoriasis presented at the 76th Annual Meeting of the American Academy of Dermatology (AAD-2018)
  • 16 Feb 2018 Pharmacokinetics data from population PK model in healthy volunteers and patients with psoriasis presented at the 76th Annual Meeting of the American Academy of Dermatology (AAD-2018)

Ilumya (tildrakizumab-asmn) is an interleukin-23 antagonist.

Humanized monoclonal IgG1-kappa antibody against IL-23p19; produced in CHO cells
Immunoglobulin G1, anti-(human interleukin 23) (human-Mus musculus monoclonal heavy chain), disulfide with human-Mus musculus monoclonal light chain, dimer

Ilumya is specifically indicated for the treatment of adults with moderate-to-severe plaque psoriasis who are candidates for systemic therapy or phototherapy.

Ilumya is supplied as a solution for subcutaneous injection. The recommended dose is 100 mg at Weeks 0, 4, and every twelve weeks thereafter.

Image result for tildrakizumab-asmn

Tildrakizumab (Ilumya) is a monoclonal antibody designed for the treatment of immunologically mediated inflammatory disorders.[1] In the United States, it is approved for the treatment of moderate-to-severe plaque psoriasis.[2]

Tildrakizumab was designed to block interleukin-23, a cytokine that plays an important role in managing the immune system and autoimmune disease. Originally developed by Schering-Plough, this drug is now part of Merck‘s clinical program, following that company’s acquisition of Schering-Plough.

Sun Pharmaceutical acquired worldwide rights to tildrakizumab for use in all human indications from Merck in exchange for an upfront payment of U.S. $80 million. Upon product approval, Sun Pharmaceutical will be responsible for regulatory activities, including subsequent submissions, pharmacovigilance, post approval studies, manufacturing and commercialization of the approved product. [3]

Image result for tildrakizumab-asmn

As of March 2014, the drug was in phase III clinical trials for plaque psoriasis. The two trials enrolled nearly 2000 patients. [4][5]

In 2016, tildrakizumab became the first IL-23p19 inhibitor to demonstrate positive results in Phase-3 clinical trials for the treatment of moderate-to-severe plaque psoriasis, further validating the importance of the role of IL-23 in psoriasis. Sun Pharma signed a licensing pact with Spain’s Almirall for marketing tildrakizumab in Europe [6]

In March 2018, it was approved by the Food and Drug Administration for the treatment of moderate-to-severe plaque psoriasis as an injection for subcutaneous use in the United States.[2]

In 2014, Sun Pharma acquired worldwide rights to tildrakizumab from Merck; upon product approval, Sun Pharma is responsible for regulatory activities, including subsequent submissions, pharmacovigilance, post approval studies, manufacturing and commercialization of the product. In 2016, Almirall sublicensed the product for the development and marketing in Europe for the treatment of psoriasis.

See also

  • Ustekinumab, a monoclonal antibody targeting both IL-12 and IL-23 and used to treat plaque psoriasis, launched in the United States under the brand name Stelara
  • Guselkumab, another experimental, IL-23-specific monoclonal antibody. (FDA approved in 2017)
  • Risankizumab, another experimental, IL-23-specific monoclonal antibody. (In Phase 3 clinical trials for plaque psoriasis as of 2017)

References

Mechanism of Action

Tildrakizumab is a humanized IgG1/k monoclonal antibody that selectively binds to the p19 subunit of IL-23 and inhibits its interaction with the IL-23 receptor. IL-23 is a naturally occurring cytokine that is involved in inflammatory and immune responses. Tildrakizumab inhibits the release of proinflammatory cytokines and chemokines.

FDA APPROVAL DATA

BLA 761067

https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2018/761067Orig1s000REPLACEMENT_ltr.pdf

Please refer to your Biologics License Application (BLA) dated and received March 23, 2017 and your amendments, submitted under section 351(a) of the Public Health Service Act for ILUMYA (tildrakizumab-asmn) injection. We also refer to our approval letter dated March 20, 2018 which contained the following error: the Final Report Submission date was incorrectly listed for postmarketing requirement 3357-3. This replacement approval letter incorporates the correction of the error. The effective approval date will remain March 20, 2018, the date of the original approval letter.

LICENSING We have approved your BLA for ILUMYA (tildrakizumab-asmn) effective this date. You are hereby authorized to introduce or deliver for introduction into interstate commerce, ILUMYA under your existing Department of Health and Human Services U.S. License No. 0002. ILUMYA is indicated for the treatment of adults with moderate-to-severe plaque psoriasis who are candidates for systemic therapy or phototherapy.

MANUFACTURING LOCATIONS Under this license, you are approved to manufacture ILUMYA drug substance at . The final formulated drug product will be manufactured, filled, labeled, and packaged at MSD Ireland, Carlow, Ireland. You may label your product with the proprietary name, ILUMYA, and market it in 100 mg/1 mL single-dose prefilled syringe

DATING PERIOD The dating period for ILUMYA drug product shall be 36 months from the date of manufacture when stored at 2-8°C. The date of manufacture shall be defined as the date of final sterile filtration of the formulated drug product. The dating period for your drug substance shall be months from the date of manufacture when stored at We have approved the stability protocols in your license application for the purpose of extending the expiration dating period of your drug substance and drug product under 21 CFR 601.12.

PATENTS

WO 2014109927

PAPER

Antibodies to watch in 2015

Pages 1-8 | Accepted author version posted online: 19 Nov 2014, Published online: 19 Nov 2014

https://www.tandfonline.com/doi/full/10.4161/19420862.2015.988944

Tildrakizumab (SCH 900222/MK-3222) targets the p19 subunit of IL-23. The mAb was developed by Schering-Plough, which was acquired by Merck & Co. in 2009, and it was then licensed by Merck to Sun Pharmaceutical Industries Ltd in September 2014. Clinical development and regulatory activities will be conducted by Merck, but funded by Sun Pharma. As of October 2014, the safety and efficacy of tildrakizumab are being evaluated in 2 Phase 3 studies that are ongoing but not recruiting patients. Both studies include patients with moderate-to-severe chronic plaque psoriasis and subcutaneously administered drug. The 52-week Phase 3 NCT01729754 study has 4 arms (200 mg tildrakizumab; 100 mg tildrakizumab; 50 mg etanercept; and placebo only), and includes an optional long-term safety extension study. The estimated enrollment is 1050, and the estimated primary completion date is October 2019. The 64-week Phase 3 NCT01722331 study is evaluating the effects of either 200 mg or 100 mg tildrakizumab to placebo; it includes an optional long-term safety extension study. The estimated enrollment is 885, and the estimated primary completion date is June 2015.

Image result for tildrakizumab-asmn


NEWS PROVIDED BY

Sun Pharma 

Mar 21, 2018, 09:04 ET

MUMBAI, India and PRINCETON, N.J.March 21, 2018 /PRNewswire/ — Sun Pharmaceutical Industries Ltd. (Reuters: SUN.BO, Bloomberg: SUNP IN, NSE: SUNPHARMA, BSE: 524715, “Sun Pharma” and includes its subsidiaries and/or associate companies) today announced that the U.S. Food and Drug Administration (FDA) has approved ILUMYA™ (tildrakizumab-asmn) for the treatment of adults with moderate-to-severe plaque psoriasis who are candidates for systemic therapy or phototherapy. ILUMYA selectively binds to the p19 subunit of IL-23 and inhibits its interaction with the IL-23 receptor leading to inhibition of the release of pro-inflammatory cytokines and chemokines. ILUMYA is administered at a dose of 100 mg by subcutaneous injection every 12 weeks, after the completion of initial doses at weeks 0 and 4. ILUMYA is contraindicated in patients with a previous serious hypersensitivity reaction to tildrakizumab or to any of the excipients.

“With the approval of ILUMYA and our long-standing commitment in dermatology, we are focused on making a difference for people living with moderate-to-severe plaque psoriasis,” said Abhay Gandhi, President and Chief Executive Officer, North America, Sun Pharma. “We are committed to working with all relevant stakeholders to make ILUMYA available to appropriate people with plaque psoriasis.”

The FDA approval of ILUMYA for the treatment of adults with moderate-to-severe plaque psoriasis was supported by data from the pivotal Phase-3 reSURFACE clinical development program. In the two multicenter, randomized, double-blind, placebo-controlled trials (reSURFACE 1 and reSURFACE 2), 926 adult patients were treated with ILUMYA (N=616) or placebo (N=310). Results from these studies were published in The Lancet in July 2017, with primary endpoints presented at the 25th European Academy of Dermatology and Venereology (EADV) Congress.

Both Phase-3 studies met the primary efficacy endpoints, demonstrating significant clinical improvement with ILUMYA 100 mg compared to placebo when measured by at least 75 percent of skin clearance (Psoriasis Area Sensitivity Index or PASI 75) and Physician’s Global Assessment (PGA) score of “clear” or “minimal” at week 12 after two doses.

Efficacy Primary Endpoint at Week 12 in Adults with Plaque Psoriasis (NRI*)

reSURFACE 1 Study

(NCT01722331)

reSURFACE 2 Study

(NCT01729754)

ILUMYA 100 mg

n=309

Placebo

n=154

ILUMYA 100 mg

n=307

Placebo

n=156

PGA of “clear” (0) or “minimal” (1)†

179 (58%)

11 (7%)

168 (55%)

7 (4%)

PASI 75†

197 (64%)

9 (6%)

188 (61%)

9 (6%)

PASI 90

107 (35%)

4 (3%)

119 (39%)

2 (1%)

PASI 100

43 (14%)

2 (1%)

38 (12%)

0 (0%)

* NRI = Non-Responder Imputation † Co-Primary Endpoints

Of the patients in the reSURFACE 1 study 74 percent (229 patients) achieved 75 percent skin clearance at week 28 after three doses, and 84 percent of patients who continued receiving ILUMYA 100 mg maintained PASI 75 at week 64 compared to 22 percent of patients who were re-randomized to placebo. In addition, 69 percent of the patients receiving ILUMYA 100 mg who had a PGA score of “clear” or “minimal” at week 28 maintained this response at week 64 compared to 14 percent of patients who were re-randomized to placebo.

Full Prescribing Information and Medication Guide for ILUMYA are attached:
PDF: https://mma.prnewswire.com/media/656994/Sun_Pharma_ILUMYA_US_Prescribing_Information.pdf
PDF: https://mma.prnewswire.com/media/656995/Sun_Pharma_ILUMYA_US_Medication_Guide.pdf

IMPORTANT SAFETY INFORMATION (continued)

Cases of angioedema and urticaria occurred in ILUMYA treated subjects in clinical trial. If a serious hypersensitivity reaction occurs, discontinue ILUMYA immediately and initiate appropriate therapy.

ILUMYA may increase the risk of infection. Treatment with ILUMYA should not be initiated in patients with a clinically important active infection until the infection resolves or is adequately treated. Consider the risks and benefits of treatment prior to prescribing ILUMYA in patients with a chronic infection or a history of recurrent infection. Instruct patients receiving ILUMYA to seek medical help if signs or symptoms of clinically important chronic or acute infection occur. If a patient develops a clinically important or serious infection, or is not responding to standard therapy, closely monitor and discontinue ILUMYA until the infection resolves.

Evaluate patients for TB infection prior to initiating treatment with ILUMYA. Initiate treatment of latent TB prior to administering ILUMYA. Monitor patients for signs and symptoms of active TB during and after ILUMYA treatment. Do not administer ILUMYA to patients with active TB infection.

Prior to initiating ILUMYA, consider completion of all age-appropriate immunizations according to current immunization guidelines. Avoid use of live vaccines in patients treated with ILUMYA.

The most common (≥1%) adverse reactions associated with ILUMYA include upper respiratory infections, injection site reactions, and diarrhea.  Adverse reactions that occurred at rates less than 1% but greater than 0.1% in the ILUMYA group and at a higher rate than in the placebo group included dizziness and pain in extremity.

About the Phase-3 reSURFACE Trials
The Phase-3 studies (reSURFACE 1 and reSURFACE 2) were randomized, placebo-controlled, multicenter, three-part studies designed to demonstrate efficacy of ILUMYA in moderate-to-severe plaque psoriasis compared to placebo and comparative drug and to assess safety and tolerability. Part one of the studies randomized patients into three or four treatment arms, including ILUMYA 100 mg, ILUMYA 200 mg, placebo and etanercept (reSURFACE 2 only). After Week 12, patients on placebo were then re-randomized into ILUMYA 100 mg and 200 mg treatment arms to proceed into part two of the studies. Finally, in part three of the reSURFACE 1 study, responders (PASI ≥75) and partial responders (PASI ≥50 and PASI <75) to ILUMYA were re-randomized after Week 28 to continue the same treatment, a different dose of ILUMYA or placebo. Partial and non-responders to etanercept were treated with ILUMYA 200 mg in part three of the reSURFACE 2 study. Patients with guttate, erythrodermic, or pustular psoriasis were excluded.

About Psoriasis
Psoriasis is a chronic immune disease that appears on the skin. It is a non-contagious disorder that speeds the growth cycle of skin cells1 and results in thick scaly areas of skin2. The most common form, affecting about 80 to 90 percent of people living with psoriasis, is called plaque psoriasis3. It appears as red, raised areas of skin covered with flaky white scales, which may be itchy and painful and can crack and bleed2. Many people with plaque psoriasis continue to struggle with the ongoing, persistent nature of this chronic disease.

About Sun Dermatology
Sun Dermatology (the branded dermatology division of a wholly owned subsidiary of Sun Pharma) is committed to expanding its dermatology portfolio to bring healthcare providers and patients around the world more treatment options and ongoing support for conditions like moderate-to-severe plaque psoriasis. Sun Pharma, along with its subsidiaries, is ranked fourth in dermatology prescription volume within the U.S. per IMS and is fifth largest specialty generic pharmaceutical company globally. In addition to ILUMYA, Sun Dermatology is comprised of several branded products indicated for the treatment of acne and actinic keratosis with a focus on other dermatologic conditions.

About Sun Pharma, Merck & Co., Inc., Kenilworth, NJ, USA, Agreement
Sun Pharmaceutical Industries Ltd.’s wholly owned subsidiary licensed worldwide rights to ILUMYA from a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA, in 2014. Funded by a Sun Pharma subsidiary, Merck & Co., Inc., Kenilworth, NJ, USA was responsible for the completion of Phase-3 trials and submission of a Biologics License Application to the United States Food and Drug Administration (FDA), as well as manufacturing finished goods to support Sun Pharma’s initial product launch. Sun Pharma will be responsible for all post-approval regulatory activities, including subsequent submissions, pharmacovigilance, post approval studies, manufacturing and commercialization of the approved product. Sun Pharma will also be responsible for all regulatory, pharmacovigilance, post approval studies, manufacturing and commercialization of approved products for all non-U.S. markets. Merck & Co., Inc., Kenilworth, NJ, USA is eligible to receive milestone payments and royalties on sales of ILUMYA.

About Sun Pharma, Almirall S.A, Europe, Agreement
Sun Pharma and its wholly owned subsidiary and Almirall (Spanish Stock Exchange ticker: ALM) closed on July 2016 a licensing agreement on the development and commercialization of tildrakizumab-asmn for psoriasis in Europe. Under the terms of the licensing agreement, Almirall is able to lead European studies, and participate in larger Global clinical studies for plaque psoriasis indication subject to the terms of the Sun Pharma – Merck & Co., Inc., Kenilworth, NJ, USA agreements, as well as certain cost sharing agreements. Sun Pharma will be eligible to receive development and regulatory milestone payments and, additionally, sales milestone payments and royalties on net sales. Sun Pharma will continue to lead development of tildrakizumab-asmn for other indications, where Almirall will have right of first negotiation for certain indications in Europe. The agreement between Sun Pharma and Almirall remains subject to the exclusive licensing agreement between Sun Pharma and Merck & Co., Inc., Kenilworth, NJ, USA.

About Sun Pharmaceutical Industries Ltd. (CIN – L24230GJ1993PLC019050) 
Sun Pharma is the world’s fifth largest specialty generic pharmaceutical company and India’s top pharmaceutical company. A vertically integrated business, economies of scale and an extremely skilled team enable us to deliver quality products in a timely manner at affordable prices. It provides high-quality, affordable medicines trusted by customers and patients in over 150 countries across the world. Sun Pharma’s global presence is supported by 41 manufacturing facilities spread across 6 continents, R&D centres across the globe and a multi-cultural workforce comprising over 50 nationalities. In India, the company enjoys leadership across 11 different classes of doctors with 30 brands featuring amongst top 300 pharmaceutical brands in India. Its footprint across emerging markets covers over 100 markets and 6 markets in Western Europe. Its Global Consumer Healthcare business is ranked amongst Top 10 across 3 global markets. Its API business footprint is strengthened through 14 world class API manufacturing facilities across the globe. Sun Pharma fosters excellence through innovation supported by strong R&D capabilities comprising about 2,000 scientists and R&D investments of approximately 8% of annual revenues. For further information, please visit www.sunpharma.com & follow us on Twitter @SunPharma_Live.

References
1. National Psoriasis Foundation. Facts about psoriasis. www.psoriasis.org/sites/default/files/for-media/MediaKit.pdf. Accessed on February 22, 2018.
2. National Psoriasis Foundation. About Psoriasis. www.psoriasis.org/about-psoriasis. Accessed on February 22, 2018.
3. Menter A, Gottlieb A, Feldman SR, Van Voorhees AS et al. Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol 2008 May; 58(5):826-50.

////////////////tildrakizumab-asmn, FDA 2018, MERCK, Schering-Plough, MONOCLONAL ANTIBODY, SCH 900222, MK-3222, Psoriasis, plaque,  BLA 761067, SCH-900222, SUNPG 1622, SUNPG 1622 I, SUNPG 1623 I, SUNPG 1623 II, SUNPG 1623 III, SUNPG 1623 IV, SUNPG1623,

FDA approves first cancer treatment for any solid tumor with a specific genetic feature


05/23/2017
The U.S. Food and Drug Administration today granted accelerated approval to a treatment for patients whose cancers have a specific genetic feature (biomarker). This is the first time the agency has approved a cancer treatment based on a common biomarker rather than the location in the body where the tumor originated

May 23, 2017

Release

The U.S. Food and Drug Administration today granted accelerated approval to a treatment for patients whose cancers have a specific genetic feature (biomarker). This is the first time the agency has approved a cancer treatment based on a common biomarker rather than the location in the body where the tumor originated.

Keytruda (pembrolizumab) is indicated for the treatment of adult and pediatric patients with unresectable or metastatic solid tumors that have been identified as having a biomarker referred to as microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR). This indication covers patients with solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options and patients with colorectal cancer that has progressed following treatment with certain chemotherapy drugs.

“This is an important first for the cancer community,” said Richard Pazdur, M.D., acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research and director of the FDA’s Oncology Center of Excellence. “Until now, the FDA has approved cancer treatments based on where in the body the cancer started—for example, lung or breast cancers. We have now approved a drug based on a tumor’s biomarker without regard to the tumor’s original location.”

MSI-H and dMMR tumors contain abnormalities that affect the proper repair of DNA inside the cell. Tumors with these biomarkers are most commonly found in colorectal, endometrial and gastrointestinal cancers, but also less commonly appear in cancers arising in the breast, prostate, bladder, thyroid gland and other places. Approximately 5 percent of patients with metastatic colorectal cancer have MSI-H or dMMR tumors.

Keytruda works by targeting the cellular pathway known as PD-1/PD-L1 (proteins found on the body’s immune cells and some cancer cells). By blocking this pathway, Keytruda may help the body’s immune system fight the cancer cells. The FDA previously approved Keytruda for the treatment of certain patients with metastatic melanoma, metastatic non-small cell lung cancer, recurrent or metastatic head and neck cancer, refractory classical Hodgkin lymphoma, and urothelial carcinoma.

Keytruda was approved for this new indication using the Accelerated Approvalpathway, under which the FDA may approve drugs for serious conditions where there is unmet medical need and a drug is shown to have certain effects that are reasonably likely to predict a clinical benefit to patients. Further study is required to verify and describe anticipated clinical benefits of Keytruda, and the sponsor is currently conducting these studies in additional patients with MSI-H or dMMR tumors.

The safety and efficacy of Keytruda for this indication were studied in patients with MSI-H or dMMR solid tumors enrolled in one of five uncontrolled, single-arm clinical trials. In some trials, patients were required to have MSI-H or dMMR cancers, while in other trials, a subgroup of patients were identified as having MSI-H or dMMR cancers by testing tumor samples after treatment began. A total of 15 cancer types were identified among 149 patients enrolled across these five clinical trials. The most common cancers were colorectal, endometrial and other gastrointestinal cancers. The review of Keytruda for this indication was based on the percentage of patients who experienced complete or partial shrinkage of their tumors (overall response rate) and for how long (durability of response). Of the 149 patients who received Keytruda in the trials, 39.6 percent had a complete or partial response. For 78 percent of those patients, the response lasted for six months or more.

Common side effects of Keytruda include fatigue, itchy skin (pruritus), diarrhea, decreased appetite, rash, fever (pyrexia), cough, difficulty breathing (dyspnea), musculoskeletal pain, constipation and nausea. Keytruda can cause serious conditions known as immune-mediated side effects, including inflammation of healthy organs such as the lungs (pneumonitis), colon (colitis), liver (hepatitis), endocrine glands (endocrinopathies) and kidneys (nephritis). Complications or death related to allogeneic hematopoietic stem cell transplantation after using Keytruda has occurred.

Patients who experience severe or life-threatening infusion-related reactions should stop taking Keytruda. Women who are pregnant or breastfeeding should not take Keytruda because it may cause harm to a developing fetus or newborn baby. The safety and effectiveness of Keytruda in pediatric patients with MSI-H central nervous system cancers have not been established.

The FDA granted this application Priority Review designation, under which the FDA’s goal is to take action on an application within six months where the agency determines that the drug, if approved, would significantly improve the safety or effectiveness of treating, diagnosing or preventing a serious condition.

The FDA granted accelerated approval of Keytruda to Merck & Co.

///////////Keytruda, pembrolizumab, BIO MARKER, MERCK, FDA 2017

FDA approves Odactra for house dust mite allergies


Image result for fda approved
03/01/2017
The U.S. Food and Drug Administration today approved Odactra, the first allergen extract to be administered under the tongue (sublingually) to treat house dust mite (HDM)-induced nasal inflammation (allergic rhinitis), with or without eye inflammation (conjunctivitis), in people 18 through 65 years of age.

March 1, 2017

Release

The U.S. Food and Drug Administration today approved Odactra, the first allergen extract to be administered under the tongue (sublingually) to treat house dust mite (HDM)-induced nasal inflammation (allergic rhinitis), with or without eye inflammation (conjunctivitis), in people 18 through 65 years of age.

“House dust mite allergic disease can negatively impact a person’s quality of life,” said Peter Marks, M.D., Ph.D., director of the FDA’s Center for Biologics Evaluation and Research. “The approval of Odactra provides patients an alternative treatment to allergy shots to help address their symptoms.”

House dust mite allergies are a reaction to tiny bugs that are commonly found in house dust. Dust mites, close relatives of ticks and spiders, are too small to be seen without a microscope. They are found in bedding, upholstered furniture and carpeting. Individuals with house dust mite allergies may experience a cough, runny nose, nasal itching, nasal congestion, sneezing, and itchy and watery eyes.

Odactra exposes patients to house dust mite allergens, gradually training the immune system in order to reduce the frequency and severity of nasal and eye allergy symptoms. It is a once-daily tablet, taken year round, that rapidly dissolves after it is placed under the tongue. The first dose is taken under the supervision of a health care professional with experience in the diagnosis and treatment of allergic diseases. The patient is to be observed for at least 30 minutes for potential adverse reactions. Provided the first dose is well tolerated, patients can then take Odactra at home. It can take about eight to 14 weeks of daily dosing after initiation of Odactra for the patient to begin to experience a noticeable benefit.

The safety and efficacy of Odactra was evaluated in studies conducted in the United States, Canada and Europe, involving approximately 2,500 people. Some participants received Odactra, while others received a placebo pill. Participants reported their symptoms and the need to use symptom-relieving allergy medications. During treatment, participants taking Odactra experienced a 16 to 18 percent reduction in symptoms and the need for additional medications compared to those who received a placebo.

The most commonly reported adverse reactions were nausea, itching in the ears and mouth, and swelling of the lips and tongue. The prescribing information includes a boxed warning that severe allergic reactions, some of which can be life-threatening, can occur. As with other FDA-approved allergen extracts administered sublingually, patients receiving Odactra should be prescribed auto-injectable epinephrine. Odactra also has a Medication Guide for distribution to the patient.

Odactra is manufactured for Merck, Sharp & Dohme Corp., (a subsidiary of Merck and Co., Inc., Whitehouse Station, N.J.) by Catalent Pharma Solutions Limited, United Kingdom.

(sublingually) to treat house dust mite (HDM)-induced nasal inflammation (allergic rhinitis), with or without eye inflammation (conjunctivitis), in people 18 through 65 years of age

/////////////Odactra,  Merck, Sharp & Dohme Corp,  Catalent Pharma Solutions Limited, United Kingdom, FDA 2017, approves,  house dust mite allergies

New TRPV1 Antagonist From Neurogen Corporation


SCHEMBL908261.png

MK ? NGD?

MK 2295; NGD 8243 may be???????

CAS 878811-00-8 FREE FORM

Molecular Formula: C27H31FN6O2
Molecular Weight: 490.572443 g/mol

6-[(3R)-4-[6-(4-fluorophenyl)-2-[(2R)-2-methylpyrrolidin-1-yl]pyrimidin-4-yl]-3-methylpiperazin-1-yl]-5-methylpyridine-3-carboxylic acid

6-{4-[6-(4-Fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinic acid

3-​Pyridinecarboxylic acid, 6-​[(3R)​-​4-​[6-​(4-​fluorophenyl)​-​2-​[(2R)​-​2-​methyl-​1-​pyrrolidinyl]​-​4-​pyrimidinyl]​-​3-​methyl-​1-​piperazinyl]​-​5-​methyl-

Neurogen Corp  INNOVATOR

MESYLATE

CAS 1855897-95-8

6-((R)-4-(6-(4-Fluorophenyl)-2-((R)-2-methylpyrrolidin-1-yl)pyrimidin-4-yl)-3-methylpiperazin-1-yl)-5-methylnicotinic acid methanesulfonic acid salt

white solid. 1H NMR (CD3OD, 400 MHz) δ 1.37 (d, 3H, J= 6.4 Hz), 1.48 (d, 3H, J = 6.7 Hz), 1.84 (m, 1H), 2.09 (m, 1H), 2.17–2.25 (m, 2H), 2.42 (s, 3H), 2.66 (s, 3H), 3.10 (dt, 1H, J = 12.3 and 3.3 Hz), 3.28 (dd, 1H, J = 13.1 and 3.7 Hz), 3.65–3.72 (m, 3H), 3.78 (m, 1H), 3.87 (m, 1H), 4.49 (m, 1H), 4.63 (m, 3H), 4.96 (br m, 1H), 6.61 (s, 1H), 7.32 (m, 2H), 7.82 (m, 2H), 8.05 (m, 1H), 8.69 (d, 1H, J = 1.9 Hz);

13C NMR (CD3OD, 125 MHz) δ 19.4, 24.5, 33.5, 39.6, 41.5, 48.6, 50.0, 50.9, 54.1, 56.9, 94.8, 117.3 (d, J = 22.5 Hz), 122.1, 125.0, 130.1 (d, J = 3.3 Hz), 131.8 (d, J = 8.9 Hz), 142.1, 148.7, 153.1, 153.3, 162.4, 165.4, 166.4, (d, J = 251.3 Hz), 168.8;

19F NMR (CD3OD, 470 MHz) δ −108.6.

Anal. Calcd For C28H35FN6O5S: C, 57.32; H, 6.01; N, 14.32. Found: C, 57.34; H, 6.13; N, 14.29.

 

Activated by a wide range of stimuli such as capsaicin, acid, or heat, the transient receptor potential vanilloid-1 (TRPV1) has been identified as a potential treatment for chronic pain.TRPV1 is a highly characterized member of the TRP cation channel family believed to be involved in a number of important biological roles and plays a role in the transmission of pain.TRPV1 activation inhibits the transition of pain signals from the periphery to the central nervous system (CNS), leading to the possible development of analgesic and anti-inflammatory agents. TRPV1 antagonists have also been evaluated in multiple clinical trials where hyperthermic effects seen preclinically are also observed in humans

 

TRPV1

TRPV1

 

 

 

PATENT

http://www.google.com.na/patents/US20110003813

6-{4-[6-(4-Fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinic acid 1. 1-(5-Bromo-3-methyl-pyridin-2-yl)-3-(R)-methyl-piperazine

  • Heat a solution of 2,5-dibromo-3-methyl-pyridine (Chontech Inc., Waterford, Conn.) (2.0 g, 7.97 mmol), (R)-2-methyl-piperazine (ChemPacific Corp., Baltimore, Md.; 3.2 g, 31.9 mmol) in DMA at 130° C. for 16 h. Partition the reaction mixture between water and EtOAc. Wash the EtOAc layer with water (1×) and brine (1×), dry (Na2SO4) and concentrate under reduced pressure to give 1-(5-bromo-3-methyl-pyridin-2-yl)-3-(R)-methyl-piperazine as a solid.

2. 2,4-dichloro-6-(4-fluorophenyl)pyrimidine

  • Dissolve 4-fluorobromobenzene (8.75 g, 0.05 moles) in anhydrous ether (80 mL) under nitrogen atmosphere and cool to −78° C. Add dropwise 1.6 M n-BuLi (34 mL, 0.055 moles) and stir at −78° C. for 45 min. Dissolve 2,4-dichloropyrimidine (7.45 g, 0.05 moles) in Et2O (100 mL) and add dropwise to the reaction mixture. Warm the reaction mixture to −30° C. and stir at this temperature for 30 min followed by 0° C. for 30 min. Quench the reaction mixture with AcOH (3.15 mL, 0.055 moles) and water (0.5 mL, 0.027 moles) dissolved in THF (5.0 mL). Add dropwise a THF (40 mL) solution of DDQ (11.9 g, 0.053 moles) to the reaction mixture. Bring the reaction mixture to room temperature and stir at room temperature for 30 min. Cool the reaction mixture to 0° C., add 3.0 N aq. NaOH (35 mL) and stir for 30 min. Decant the organic layer from the reaction mixture and wash the brown solid with Et2O (3×100 mL). Combine the organic layers, wash several times with saturated NaCl solution and dry with MgSO4. Filter and evaporate under vacuum to afford a brown colored solid. Purify by flash column chromatography using 5% EtOAc/hexane to afford the title product as a white solid.

3. 4-[4-(5-Bromo-3-methyl-pyridin-2-yl)-2-(R)-methyl-piperazin-1-yl]-2-chloro-6-(4-fluoro-phenyl)-pyrimidine

  • Heat a mixture of 2,4-dichloro-6-(4-fluoro-phenyl)-pyrimidine (6.0 g, 24.7 mmol), 1-(5-bromo-3-methyl-pyridin-2-yl)-3-(R)-methyl-piperazine (7.0 g, 25.9 mmol) and K2CO3 (6.8 g, 49.4 mmol) in DMA at 60° C. for 16 h. Partition the mixture between EtOAc and water, dry (Na2SO4) the organic layer and concentrate under reduced pressure. Purify with flash silica gel column eluting with 15% EtOAc/hexanes. Concentrate under reduced pressure to give the title compound.

4. 4-[4-(5-Bromo-3-methyl-pyridin-2-yl)-2-(R)-methyl-piperazin-1-yl]-6-(4-fluoro-phenyl)-2-(2-(R)-methyl-pyrrolidin-1-yl)-pyrimidine

  • Heat a mixture of 4-[4-(5-bromo-3-methyl-pyridin-2-yl)-2-(R)-methyl-piperazin-1-yl]-2-chloro-6-(4-fluoro-phenyl)-pyrimidine (7.7 g, 16.2 mmol), (R)-2-methylpyrrolidine hydrobromide [prepared essentially as described by Nijhuis et. al. (1989) J. Org. Chem. 54(1):209] (3.5 g, 21.1 mmol) and K2CO3 (5.1 g, 37.3 mmol) in DMA at 110° C. for 16 h. Partition the mixture between EtOAc and water, dry (Na2SO4) the organic layer and concentrate under reduced pressure. Purify with flash silica gel column eluting with 10% EtOAc/hexanes. Concentrate under reduced pressure to give the title compound.
  • 5. 6-{4-[6-(4-Fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinonitrile
  • To a mixture of 4-[4-(5-bromo-3-methyl-pyridin-2-yl)-2-(R)-methyl-piperazin-1-yl]-6-(4-fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidine (700 mg, 1.33 mmol) and Zn(CN)2 (94 mg, 0.799 mmol) in DMF, add Pd(PPh3)4 (77 mg, 0.067 mmol). Purge the reaction mixture for 10 min with dry N2. Heat the stirring reaction mixture overnight at 80° C., cool to room temperature and partition between water and EtOAc. Dry the solution (Na2SO4), concentrate under reduced pressure. Purify the residue by flash column eluting with EtOAc-Hexanes (1:1) to afford the title compound as a white solid.
  • 6. 6-{4-[6-(4-Fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinic acid
  • Heat a solution of 6-{4-[6-(4-fluoro-phenyl)-2-(2-methyl-pyrrolidin-1-yl)-pyrimidin-4-yl]-3-(R)-methyl-piperazin-1-yl}-5-methyl-nicotinonitrile (100 mg, 0.212 mmol) in 12 M HCl for 3 hours at 90° C. Concentrate the mixture under reduced pressure. Add a small amount of water, adjust the pH to 6-7, and collect the resulting white precipitate to afford the title compound as a off-white solid. 1H NMR (300 MHz, DMSO-d6): δ 1.24 (m, 6H, 2×CH3)); 1.61 (m, 1H,); 1.84 (m, 1H); 1.98 (m, 2H); 2.34 (s, 3H, Ar—CH3); 2.91 (m, 1H); 3.08 (m, 1H); 3.26 (m, 2H); 3.56 (m, 2H); 3.74 (m, 1H); 4.21 (m, 1H); 4.35 (m, 1H); 4.74 (m, 1H); 6.57 (s, 1H); 7.26 (m, 2H); 7.91 (d, 1H, J=3 Hz); 8.15 (m, 2H); 8.60 (d, 1H, J=3 Hz).

 

END…………………

MESYLATE NMR

STR1

1H NMR (CD3OD, 400 MHz) δ 1.37 (d, 3H, J= 6.4 Hz), 1.48 (d, 3H, J = 6.7 Hz), 1.84 (m, 1H), 2.09 (m, 1H), 2.17–2.25 (m, 2H), 2.42 (s, 3H), 2.66 (s, 3H), 3.10 (dt, 1H, J = 12.3 and 3.3 Hz), 3.28 (dd, 1H, J = 13.1 and 3.7 Hz), 3.65–3.72 (m, 3H), 3.78 (m, 1H), 3.87 (m, 1H), 4.49 (m, 1H), 4.63 (m, 3H), 4.96 (br m, 1H), 6.61 (s, 1H), 7.32 (m, 2H), 7.82 (m, 2H), 8.05 (m, 1H), 8.69 (d, 1H, J = 1.9 Hz);

 

STR1

13C NMR (CD3OD, 125 MHz) δ 19.4, 24.5, 33.5, 39.6, 41.5, 48.6, 50.0, 50.9, 54.1, 56.9, 94.8, 117.3 (d, J = 22.5 Hz), 122.1, 125.0, 130.1 (d, J = 3.3 Hz), 131.8 (d, J = 8.9 Hz), 142.1, 148.7, 153.1, 153.3, 162.4, 165.4, 166.4, (d, J = 251.3 Hz), 168.8;

STR1

19F NMR (CD3OD, 470 MHz) δ −108.6.

PATENT

http://www.google.ga/patents/WO2006026135

Scheme 1

Figure imgf000040_0001

Scheme 3

Figure imgf000041_0001

Scheme 4

Figure imgf000041_0002

Scheme 5

Figure imgf000041_0003

Scheme 6

Figure imgf000042_0002

Scheme 7

Figure imgf000042_0001

Scheme 8

Figure imgf000043_0001

Scheme 9

Figure imgf000043_0002

Scheme 10

Figure imgf000043_0003
Figure imgf000044_0001

Scheme 14

Figure imgf000045_0001

Scheme 15

Figure imgf000046_0001

Scheme 16

Figure imgf000047_0001

Scheme 17

Figure imgf000048_0001

Scheme 18

Figure imgf000048_0002

Scheme 19

Figure imgf000049_0001

Scheme 20

Figure imgf000049_0002

In

6-{4-[6~(4-Fluoro-phenyl)-2-(2~methyl-pyrrolidin-l-yl)-pyrimidin-4-yl]-3-(R)-met}τyl- piperazin-l-yl}-5-methyl-nicotinic acid

Figure imgf000100_0002

Heat a solution of 6-{4-[6-(4-fluoro-phenyl)-2-(2-methyl-pyrrolidin-l-yl)-pyrimidin-4-yl]- 3-(R)-methyl-piperazin-l-yl}-5-methyl-nicotinonitrile (100 mg, 0.212 mmol) in 12 M HCl for 3 hours at 9O0C. Concentrate the mixture under reduced pressure. Add a small amount of water, adjust the pH to 6-7, and collect the resulting white precipitate to afford the title compound as a off-white solid. 1H NMR (300 MHz, DMSO-d6): δ 1.24 (m, 6H, 2xCH3)); 1.61 (m, 1Η,); 1.84 (m, 1Η); 1.98 (m, 2Η); 2.34 (s, 3H, Ar-CH3); 2.91 (m, 1Η); 3.08 (m, 1Η); 3.26 (m, 2Η); 3.56 (m, 2H); 3.74 (m, IH); 4.21 (m, IH); 4.35 (m, IH); 4.74 (m, IH); 6.57 (s, IH); 7.26 (m, 2H); 7.91 (d, IH, J = 3Hz); 8.15 (m, 2H); 8.60 (d, IH, J = 3Hz).

PAPER

Development of a Multikilogram Scale Synthesis of a TRPV1 Antagonist

Department of Process Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.5b00388
Publication Date (Web): January 13, 2016
Copyright © 2016 American Chemical Society

Abstract

Abstract Image

A highly efficient, regioselective five-step synthesis of the TRPV1 antagonist 1 is described. The coupling of piperazine 7 with dichloropyrimidine 8 proceeded via a regioselective Pd-mediated amination affording product 11 in excellent yield. Conversion of the penultimate product 14 afforded 1 through formation of a magnesium ate complex and trapping with CO2.

http://pubs.acs.org/doi/suppl/10.1021/acs.oprd.5b00388

http://pubs.acs.org/doi/suppl/10.1021/acs.oprd.5b00388/suppl_file/op5b00388_si_001.pdf

 

 

TRPV1

Patent Submitted Granted
Substituted biaryl piperazinyl-pyridine analogues [US7662830] 2006-06-08 2010-02-16
SUBSTITUTED BIARYL PIPERAZINYL-PYRIDINE ANALOGUES [US2011003813] 2011-01-06

 

Blum, C. A.; Brielmann, H.; Chenard, B. L.; Zheng, X. Preparation of substituted biaryl piperazinyl-pyridine analogues as capsaicin modulators. PCT Int. Appl. WO 2006026135 A2 20060309, 2006.

Neurogen Corporation, a Subsidiary of Ligand Pharmaceuticals Inc., 11119 North Torrey Pines Road, Suite 200, La Jolla, CA 92037, U.S.A.

Neurogen and Merck Agreement for Next-Generation Pain Drugs Consummated

Source Press Release
Company NeurogenMerck & Co
Tags Central Nervous System, Research Collaboration
Date January 16, 2004

Branford, CT — January 16, 2004 — Neurogen  Corporation (Nasdaq: NRGN) today announced that it has consummated its previously announced alliance with  Merck & Co ., Inc. (NYSE: MRK) to discover and develop next-generation drugs for the treatment of pain. The deal received clearance from the Federal Trade Commission under the Hart-Scott-Rodino Act and the companies have now commenced the collaboration. The alliance, announced December 1, 2003, enables Merck , through a subsidiary, and Neurogen  to pool drug candidates targeting the  vanilloid  receptor (VR1 ), a key integrator of pain signals in the nervous system, and combine their ongoing VR1  programs to form a global research and development collaboration.

With consummation of the deal, Neurogen  has received $30 million from  Merck , including a $15 million up-front license fee payment and a $15 million equity investment in Neurogen  common stock. Under the agreement,  Merck  has purchased 1,783,252 shares of newly issued  Neurogen  common stock at $8.41 per share, the average market price per share for the 25 trading days preceding regulatory clearance.  Merck ‘s new shareholder position represents approximately 9% of Neurogen ‘s 19,873,464 total shares outstanding.

About Neurogen

Neurogen  Corporation targets new small molecule drugs to improve the lives of patients suffering from disorders with significant unmet medical need.  Neurogen  has generated a portfolio of compelling new drug candidates through its Accelerated Intelligent Drug Discovery (AIDD(TM)) system, its expertise in cellular functional assays, and its depth in medicinal chemistry.  Neurogen conducts its research and development independently and, when advantageous, collaborates with world-class pharmaceutical companies to obtain additional resources and to access complementary expertise.

////////

n1c(nc(cc1c2ccc(cc2)F)N3CCN(C[C@H]3C)c4ncc(cc4C)C(=O)O)N5CCC[C@H]5C