New Drug Approvals

Home » Posts tagged 'フルオロドパ (18F)'

Tag Archives: フルオロドパ (18F)


Blog Stats

  • 4,302,688 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,821 other subscribers
Follow New Drug Approvals on



Recent Posts

Flag Counter


Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,821 other subscribers


DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries...... , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Personal Links

Verified Services

View Full Profile →



Flag Counter

Fluorodopa F 18, フルオロドパ (18F), флуородопа (18F) , فلورودوبا (18F) , 氟[18F]多巴 ,


ChemSpider 2D Image | Fluorodopa F 18 | C9H1018FNO4

Fluorodopa F 18

2019/10/10, fda 2019,

Mol weight

Diagnostic aid (brain imaging), Radioactive agent, for use in positron emission tomography (PET)

CAS 92812-82-3

フルオロドパ (18F)

L-Tyrosine, 2-fluoro-18F-5-hydroxy- [ACD/Index Name]
флуородопа (18F) [Russian] [INN]
فلورودوبا (18F) [Arabic] [INN]
氟[18F]多巴 [Chinese] [INN]

Fluorodopa, also known as FDOPA, is a fluorinated form of L-DOPA primarily synthesized as its fluorine-18isotopologue for use as a radiotracer in positron emission tomography (PET).[1] Fluorodopa PET scanning is a valid method for assessing the functional state of the nigrostriatal dopaminergic pathway. It is particularly useful for studies requiring repeated measures such as examinations of the course of a disease and the effect of treatment

In October 2019, Fluorodopa was approved in the United States for the visual detection of certain nerve cells in adult patients with suspected Parkinsonian Syndromes (PS).[2][3]

The U.S. Food and Drug Administration (FDA) approved Fluorodopa F 18 based on evidence from one clinical trial of 56 patients with suspected PS.[2] The trial was conducted at one clinical site in the United States.[2]


 Organic & Biomolecular Chemistry (2019), 17(38), 8701-8705

A one-pot two-step synthesis of 6-[18F]fluoro-L-DOPA ([18F]FDOPA) has been developed involving Cu-mediated radiofluorination of a pinacol boronate ester precursor. The method is fully automated, provides [18F]FDOPA in good activity yield (104 ± 16 mCi, 6 ± 1%), excellent radiochemical purity (>99%) and high molar activity (3799 ± 2087 Ci mmol−1), n = 3, and has been validated to produce the radiotracer for human use.

Graphical abstract: One-pot synthesis of high molar activity 6-[18F]fluoro-l-DOPA by Cu-mediated fluorination of a BPin precursor
Radiosynthesis of [ 18F]6F-l-DOPA The synthesis of [ 18F]6F-l-DOPA was fully-automated using a General Electric (GE) TRACERLab FXFN synthesis module (Figure S1) loaded as follows: V1: 500 µL 15mg/mL TBAOTf + 0.2 mg/mL Cs2CO3 in water; V2: 1000 µL acetonitrile; V3: 4 µmol Bpin precursor, 20 µmol Cu2+ , 500 µmol pyridine in 1 mL DMF; V4: 0.2 mL 0.25 M ascorbic acid + 0.6 mL 12.1 N HCl; V6: 3 mL acetonitrile; V7: 10 mL 0.9% saline, USP; V8: 2 mL ethanol, USP; Dilution flask: 100 mL acetonitrile ; F18 separation port: QMA cartridge ; C18 port: Strata cartridge.


KR 2019061368

The present invention relates to an L-dopa precursor compd., a method for producing the same, and a method for producing 18F-labeled L-dopa using the same.  The method of prepg. 18F-labeled L-dopa I using the L-dopa precursor II [A = halogen-(un)substituted alkyl; W, X, Y = independently protecting group] can improve the labeling efficiency of 18F.  After the labeling reaction, sepn. and purifn. steps of the product can be carried out continuously and it can be performed with on-column labeling (a method of labeling through the column).  The final product I, 18 F-labeled L-dopa, can be obtained at a high yield relative to conventional methods.  Further, it has an advantage that it is easy to apply various methods such as bead labeling.


Science (Washington, DC, United States) (2019), 364(6446), 1170-1174.


European Journal of Organic Chemistry (2018), 2018(48), 7058-7065.


WO 2018115353

CN 107311877


  1. ^ Deng WP, Wong KA, Kirk KL (June 2002). “Convenient syntheses of 2-, 5- and 6-fluoro- and 2,6-difluoro-L-DOPA”. Tetrahedron: Asymmetry13 (11): 1135–1140. doi:10.1016/S0957-4166(02)00321-X.
  2. Jump up to:a b c “Drug Trials Snapshots: Fluorodopa F 18”U.S. Food and Drug Administration (FDA). 27 November 2019. Archived from the original on 27 November 2019. Retrieved 27 November 2019. This article incorporates text from this source, which is in the public domain.
  3. ^ “Drug Approval Package: Fluorodopa F18”U.S. Food and Drug Administration (FDA). 20 November 2019. Archived from the original on 27 November 2019. Retrieved 26 November 2019. This article incorporates text from this source, which is in the public domain.
Clinical data
Other names 6-fluoro-L-DOPA, FDOPA
License data
Legal status
Legal status
CAS Number
CompTox Dashboard (EPA)
Chemical and physical data
Formula C9H10FNO4
Molar mass 215.18 g/mol g·mol−1
3D model (JSmol)

//////////////////Fluorodopa F 18, フルオロドパ (18F), FDA 2019, флуородопа (18F) فلورودوبا (18F) 氟[18F]多巴 , radio labelled


%d bloggers like this: