New Drug Approvals

Home » Posts tagged 'CIPLA'

Tag Archives: CIPLA

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 2,672,461 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,434 other followers

Follow New Drug Approvals on WordPress.com

Archives

Categories

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,434 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 year tenure till date Dec 2017, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 50 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 19 lakh plus views on New Drug Approvals Blog in 216 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Cipla to invest in South Africa’s first biosimilars production facility


Cipla to invest in South Africa’s first biosimilars production facility
Indian-based pharmaceutical and biotechnology company Cipla will invest more than R1.3bn ($19.34m) in the first advanced biotech manufacturing facility in South Africa for the production of biosimilars.

Indian-based pharmaceutical and biotechnology company Cipla will invest more than R1.3bn ($19.34m) in the first advanced biotech manufacturing facility in South Africa for the production of biosimilars.

The investment will be carried out by South African subsidiary Cipla BioTec…………………cont

read at

http://www.pharmaceutical-technology.com/news/newscipla-invest-south-africas-first-biosimilars-production-facility-4945516?WT.mc_id=DN_News

Cipla Managing director and global CEO Subhanu Saxena

 

Dr Y.K. Hamied,

Department of Trade and Industries Special Economic Zone of Dube Tradeport, DURBAN, SOUTHAFRICA

 

///Cipla, South Africa, biosimilars,  production facility, Dube Tradeport, Cipla BioTec Pvt Ltd, Durban, SOUTHAFRICA

WO 2016027077, Cipla Ltd, New patent, Dabigatran


(WO2016027077) PROCESSES FOR THE PREPARATION OF DABIGATRAN ETEXILATE AND INTERMEDIATES THEREOF

WO 2016027077, Cipla Ltd, New patent, Dabigatran

CIPLA LIMITED [IN/IN]; Cipla House Peninsula Business Park Ganpatrao Kadam Marg Lower Parel Mumbai 400 013 (IN).

RAO, Dharmaraj Ramachandra; (IN).
MALHOTRA, Geena; (IN).
PULLELA, Venkata Srinivas; (IN).
ACHARYA, Vinod Parameshwaran; (IN).
SINARE, Sudam Nanabhau; (IN)

Dabigatran etexilate (a compound of Formula I) is the international commonly accepted nonproprietary name for ethyl 3-{[(2-{[(4-{(hexyloxy)carbonyl]carbamimidoyl}phenyl)amino]methyl}-1 -methyl-1 H- benzimidazol-5-yl)carbonyl](pyridin-2-yl)amino}propanoate,

(I)

Dabigatran etexilate is the pro-drug of the active substance, dabigatran. The mesylate salt (1 : 1 ) of dabigatran etexilate is known to be therapeutically useful as an oral anticoagulant from the class of the direct thrombin inhibitors and is commercially marketed as oral hard capsules as Pradaxa™ in Australia, Europe and in the United States; as Pradax™ in Canada and as Prazaxa™ in Japan. Additionally, it is also marketed in Europe under the same trade mark for the primary prevention of venous thromboembolic events in adult patients who have undergone elective total hip replacement surgery or total knee replacement surgery.

Dabigatran etexilate was first described in U.S. Patent No. 6,087,380, according to which the synthesis of dabigatran etexilate was carried out in three synthetic steps as depicted in Scheme 1.

Scheme 1

1. HCL , EtOH

2. (NH4)2C03, EtOH

Dabigatran etexilate

II. HCI

The process involves the condensation between ethyl 3-{[3-amino-4-(methylamino)benzoyl] (pyridin-2-yl)amino}propanoate (compound VI) and N-(4-cyanophenyl)glycine (compound VIII) in the presence of Ν,Ν’-carbonyldiimidazole (CDI) in tetrahydrofuran (THF) to give the hydrochloride salt of ethyl 3-{[(2-{[(4-cyanophenyl)amino]methyl}-1-methyl-1 H-benzimidazol-5-yl)carbonyl](pyridin-2-yl)amino} propanoate (compound IV), which is subsequently reacted with ethanolic hydrochloric acid, ethanol and ammonium carbonate to give the hydrochloride salt of ethyl 3-{[(2-[{(4-carbamimidoylphenyl)amino]methyl}-1-methyl-1 H-benzimidazol-5-yl)carbonyl](pyridin-2-yl)amino} propanoate (compound II). Finally, the reaction between compound II and n-hexyl chloroformate (compound IX), in the presence of potassium carbonate, in a mixture of THF and water, affords dabigatran etexilate of Formula (I) after work- up and chromatographic purification. However, no information is given about the purity of the isolated dabigatran etexilate (I) product. Further, the process is not viable industrially as it requires chromatographic purification in several of its steps, thus making it very difficult and costly to implement on an industrial scale.

In order to simplify the process for obtaining dabigatran etexilate described in U.S. Patent No. 6,087,380, several alternative processes have been developed and reported in the art.

EP2118090B discloses a process for the preparation of the intermediate compound of Formula (II) by crystallization from a salt with p-toluenesulfonic acid. The amidine salt (ll-pTsOH) is obtained from a compound of formula (IV), which is also isolated in the form of a hydrobromide salt, (IV-HBr).

EP2262771A discloses a process for the preparation of the intermediate compound of Formula (IV), which is obtained in the form of a salt with oxalic acid. This document indicates that the oxalate intermediate of the compound (IV) crystallizes easily and is a good synthesis intermediate to obtain the amidine hydrochloride salt (ll-HCI) with high purity on an industrial scale. The compound (IV) in oxalate salt form is transformed in dabigatran following the process disclosed in WO 98/37075.

WO 2006/000353 describes an alternative process for the synthesis of dabigatran etexilate as depicted in Scheme 2.

Dabigatran etexilate

The process involves condensation between ethyl 3-{[3-amino-4-(methylamino)benzoyl](pyridin-2-yl)amino}propanoate (compound VI) and 2-[4-(1 ,2,4-oxadiazol-5-on-3-yl)phenylamino]acetic acid (compound Villa) in the presence of a coupling agent such as CDI, propanephosphonic anhydride (PPA), or pivaloyl chloride, to give ethyl 3-{[(2-{[(4-{1 ,2,4-oxadiazol-5-on-3-yl}phenyl)amino]methyl}-1 -methyl-1 H-benzimidazol-5-yl)carbonyl](pyridin-2-yl)amino}propanoate (compound IVa), which is subsequently hydrogenated in the presence of a palladium catalyst to give ethyl 3-{[(2-{[(4-carbamimidoylphenyl)amino]methyl}-1-methyl-1 H-benzimidazol-5-yl)carbonyl](pyridin-2-yl)amino} propanoate (compound II). The compound II is acylated with n-hexyl chloroformate (compound I) to give dabigatran etexilate. Finally, dabigatran etexilate is converted into its mesylate salt. Although the patent describes the HPLC purities of intermediate compounds II, IVa, Villa and VI, no information is given concerning the purity of the isolated dabigatran etexilate or the mesylate salt thereof.

WO 2010/045900 discloses a process to prepare the intermediate amidine hydrochloride compound (ll-HCI) from the oxalate salt of the compound (IV) by reacting with hydrogen chloride in ethanol, followed by reaction with ammonium carbonate to avoid chromatography which is not feasible on an industrial scale.

WO 2014/012880 discloses a process to prepare an intermediate of dabigatran etexilate (compound IV) by reacting carboxylic acid (compound VIII) with diamaine (compound VI) in the presence of the coupling agent CDI, followed by reaction with 6 equivalents of acetic acid at 130°C to obtain compound IV in acetate salt form, having a purity of 94%. The isolated solid is further recrystallized from ethanol to obtain a purity of 99%. The purified (compound IV. acetate) is reacted with hydrogen chloride in the presence of an alcohol, and then with ammonia in an aqueous medium to form the amidine hydrochloride salt (compound ll-HCI) in the presence of water.

The synthesis of intermediate compound II has been reported in the patent literature and known methods require either chromatographic purification or a lengthy purification procedure, such as converting the compound into the HCI salt followed by recrystallization, to obtain 97% pure intermediate compound II. In previously reported methods, the product yield is undesirably less than 50 %.

Similarly, the intermediate compound IV prepared by CDI mediated coupling with glycine derivatives followed by acetic acid mediated cyclization according to known methods results in the formation of highly impure products, which require purification by either column chromatography or by converting the crude reaction mixture to suitable salts. Previously reported methods afford low product yields and purity, which mean that such processes are not suitable for the commercial scale production of dabigatran.

In view of the foregoing, it is of great interest to continue investigating and develop other alternative simplified processes for the large scale industrial production of the active pharmaceutical ingredient dabigatran etexilate or salts thereof, which avoid complicated and costly purification steps in the synthesis of intermediates, while maintaining a high quality of synthesis intermediates and improving the yields of each step of reaction.

SCHEME 3

SCHEME4

Examples:

Example 1. Preparation of DAB Glycin-CDI complex of Formula (VII)

71.02 g (0.438 mol) of CDI was dissolved in 700 ml dichloromethane under nitrogen atmosphere. Added 66.89 g (0.379 mol) of 2-(4-cyanophenylamino)acetic acid of Formula (VIII), under stirring at 20-25°C and stirred for 90-100 minutes. Solid was isolated by filtration under nitrogen atmosphere and washed with 100 ml dichloromethane to yield DAB Glycin-CDI complex.

Example 2. Preparation of ethyl 3-(2-((4-cyanophenylamino)methyl)- l-methyl-N- (pyridin-2-yl)-IH-benzo[d]- imidazole-5-carboxamido) propanoate of Formula (IV)

DAB Glycin-CDI Complex obtained in Example 1 was stirred in 650 ml toluene. Added 100 g (0.292 mol) of ethyl 3-(3-amino-4-(methyl amino)-N-(pyridin-2-yl)benzamido)propanoate of Formula (VI) to the reaction mass and stirred for 3 hours at -45-50°C. The reaction mass was further refluxed for 3 hours. The reaction mass was cooled to 75-80°C, added 50 ml ethanol, further cooled to 20-25°C and stirred for 6 hours. The solid was isolated by filtration and washed with 100 ml toluene.

The wet cake was stirred in 500 ml water at 20-25°C for about 1 hour. The solid was isolated by filtration, washed with 100 ml water and dried in vacuum below 60 °C.

Yield: 120 g

Efficiency: 85%

Example 3. Preparation of ethyl 3-(2-((4-carbamimidoylphenylamino)methyl)-l-methyl-N-(pyridin-2-yl)-IH-benzo[d]imidazole-5-carboxamido) propanoate of Formula (II)

100 g (0.207 mol) of ethyl 3-(2-((4-cyanophenylamino)methyl)- l-methyl-N- (pyridin-2-yl)-IH-benzo[d]- imidazole-5-carboxamido) propanoate of Formula (IV) was added to 1000 ml EtOH.HCI (32-35%w/w) at 5-10°C under nitrogen atmosphere and stirred for 24 hours at 15-20°C. The solvent was distilled off in vacuum below 40°C. Added 500 ml ethanol and cooled to 0-5°C. The pH of the reaction mass was adjusted to 9.5-10.0 by addition of 400 ml EtOH.NH3 (10-13%w/w). The temperature of the reaction mass was raised to 20-25°C and stirred for 12 hours. The reaction mass was filtered and the clear filtrate was partially distilled to the half volume below 40°C. The temperature of the reaction mass was raised to 55-60°C. Added 600 ml ethyl acetate at reflux. The reaction mass was cooled to 20-25°C and stirred further for 5 hours. The solid was isolated by filtration and washed with 100 ml-ethyl acetate. The solid was dried in vacuum below 45 °C.

Yield: 72.5 g

Efficiency: 70%

Example 4. Preparation of DAB etexilate of Formula (I)

120 ml acetone, 60 ml water, 16.6 g (0.120 mol) potassium carbonate and 20g (0.040 mol) of ethyl 3-(2-((4-carbamimidoylphenylamino)methyl)-l-methyl-N-(pyridin-2-yl)-IH-benzo[d]imidazole-5-carboxamido) propanoate of Formula (II) were stirred at 20-25°C. A solution of 9.88 g (0.060 mol) of hexyl chloroformate of Formula (IX) in 50 ml acetone was added to the reaction mass at 15-20°C in 1 .5 hours. The reaction mass was further stirred for 2 hours at 15-20°C. The precipitated solid was filtered and washed with 40 ml water.

The wet cake was dissolved in 160 ml acetone at 20-25°C. The insoluble were removed by filtration. Added 160 ml water to the clear filtrate at 20-25°C in 2 hours and the reaction mass was further stirred for 2 hours. The solid was isolated by filtration, washed with mixture of acetone : water (1 : 1), and dried under vacuum below 45°C to obtain dabigatran etexilate.

Yield: 18.85 g

Efficiency: 75%

Purification:

18 g of Dabigatran etaxilate was stirred in mixture of acetone: ethanol: ethyl acetate (1.5:0.5:6 volumes) at 50-55°C and stirred for 20 minutes. The reaction mass was cooled to 20-25°C and further chilled to 15-20 °C for 3 hours. The solid was isolated by filtration, washed with ethyl acetate and dried under vacuum below 45°C to obtain dabigatran etexilate.

Yield: 13.5 g

Efficiency: 75%

Example 5. Preparation of DAB etexilate mesylate

10 g (0.02 mol) of dabigatran etexilate was dissolved in 200 ml acetone under nitrogen atmosphere. The temperature of the reaction mass was raised to 50-55°C and treated with a solution of 1.86 g (0.0193 mol) of methane sulfonic acid in 50 ml acetone. The reaction mixture was stirred for 45 minutes, then cooled to 20-25 °C and further stirred for 45 minutes. The solid was isolated by filtration, washed with acetone and dried under vacuum below 45°C to obtain dabigatran etexilate mesylate.

Yield: 10 g

Efficiency: 86%

Example 6. Preparation of ethyl 3-(2-((4-carbamimidoylphenylamino)methyl)-l-methyl-N-(pyridin-2-yl)-IH-benzo[d]imidazole-5-carboxamido) propanoate of Formula (ll)using N-acetyl cysteine

10 g (0.020 mol) of ethyl 3-(2-((4-cyanophenylamino)methyl)- l-methyl-N- (pyridin-2-yl)-IH-benzo[d]- imidazole-5-carboxamido) propanoate of Formula (IV) was dissolved in 600 ml EtOH.NH3 (15-18%w/w) and stirred at 25°C. Added 3.38 g (0.020 mol) of N-acetyl cysteine to the reaction mass and stirred for 24 hours at 70-75°C under 2.0-2.3 kg of pressure. The ethanol was distilled under vacuum and residue was purified by column.

Yield: 5.5 g

Efficiency: 53%

Example 7. Preparation of DAB Amidine of Formula (II) using N-acetyl cysteine

10 g (0.020 mol) of ethyl 3-(2-((4-cyanophenylamino)methyl)- l-methyl-N- (pyridin-2-yl)-IH-benzo[d]- imidazole-5-carboxamido) propanoate of Formula (IV) with 3.5 g (0.021 mol) of N-acetyl-(S)cysteine were initially charged in 10 ml of ethanol. The reaction mixture was heated to 60-65°C, and saturated with ammonia. After 4 hours, ethanol was distilled under vacuum to obtain titled compound as a solid.

Yield: 7.0 g

Efficiency: 67%

Example 8. Preparation of 2-pyridyl impurity B

Part I: 12.0g (0.016 mol) of dabigatran etexilate was added to the solution of 2.8 g (0.07 mol) sodium hydroxide (in 300 ml water and 150 ml ethanol. The reaction mass was stirred for 5 hours. The solution was concentrated under vacuum and neutralized with aq. solution of citric acid (10%v/v). The solid was separated by filtration and washed with cold water and dried under vacuum to afford the acid as a white crystal.

Yield: 8.50 g

Part 11:10 g ( 0.0166 mol) of DAB-Acid obtained in part I was stirred with 25 ml thionyl chloride under nitrogen The temperature of the reaction mass was raised to 40-45°C and maintained for 1 hour. Thionyl chloride was distilled under vacuum completely The residue was stirred in solution of 100 ml toluene and 10 ml triethyl amine at 5-10°C. Added 3.1 g (0.0329 mol) 2-amino pyridine to the reaction mass at 5-10°C under nitrogen atmosphere. Temperature of the reaction mass was raised to 50-55°C and stirred. Toluene was distilled under vacuum and the residue was dissolved in 150 ml DCM. The organic layer was washed with water, dried on sodium sulfate. The organic layer was distilled under vacuum to obtain t crude 2-Pyridyl impurity which was purified by column chromatography.

Yield: 4.0 g

Example 9. Preparation of ethyl 3-(2-((4-cyanophenylamino)methyl)- l-methyl-N- (pyridin-2-yl)-IH-benzo[d]- imidazole-5-carboxamido) propanoate of Formula (IV)

To a solution of N, N-Carbonyldiimidazole (1.17kg, 7.21 mol) and dichloromethane (1 1.25 L), added 2-(4-cyanophenylamino)acetic acid of Formula (VIII), (1.15Kg,6.52 mol) at 30°C under nitrogen atmosphere. The reaction mixture was stirred for 90-100 min and the resulting solid was filtered under nitrogen atmosphere to obtain form Dab glycine CDI complex of Formula (VII).

Dab glycine CDI complex of Formula (VII) was stirred in toluene (9.0L). Added ethyl 3-(3-amino-4-(methyl amino)-N-(pyridin-2-yl)benzamido)propanoate of Formula (VI) (1.5Kg, 4.38 mol) and maintained the reaction at 45-55°C for 3.0 hrs to form DAB coupling intermediate of Formula (V), which further heated to 90-100°C for 3.0 hrs. The reaction mixture was cooled to 25-30°C and the solid precipitated out was isolated by filtration. The wet cake was stirred in water (9.0L), filtered and dried in vacuum below 60 °C to obtain titled compound.

Yield: 1.80kg

Efficiency: 85 %

Example 10. Preparation of ethyl 3-(2-((4-carbamimidoylphenylamino)methyl)-l-methyl-N-(pyridin-2-yl)-IH-benzo[d]imidazole-5-carboxamido) propanoate of Formula (II)

A mixture of ethyl 3-(2-((4-cyanophenylamino)methyl)-l-methyl-N-(pyridin-2-yl)-IH-benzo[d]-imidazole-5-carboxamido) propanoate of Formula (IV) (1.73 kg,3.58mol) was stirred in ethanol denatured with toluene HCI (32-35 % w/w) (20.76 L) at 15- 20°C for 24 hrs. Reaction mass was distilled out completely and the residue was treated with ethanol denatured with toluene. NH3 (at 10-15% w/w) was added to get the pH 9.0-9.5. The reaction mixture was stirred further for 12.0 hrs. The inorganic was separated by filtration and the filtrate was distilled out and the residue was stirred in ethyl acetate (10 L) . The solid was isolated by filtration and washed with ethyl acetate. The solid was dried in vacuum below 45°C to obtain titled compound.

Yield: 1.70kg

Efficiency: 95 %

Example 11. Preparation of DAB etexilate of Formula (I)

To a solution of ethyl 3-(2-((4-carbamimidoylphenylamino)methyl)-l-methyl-N-(pyridin-2-yl)-IH-benzo[d]imidazole-5-carboxamido) propanoate of Formula (II) (1.61 kg, 3.22mol ), acetone (19.32 L), water( 9.66 L) and potassium carbonate (1.34Kg, 9.69moles ) was added hexyl chloroformate (0.795 kg, 83 moles) slowly at 20-25°C in 2-3 hrs. The reaction mixture was stirred further for 90 min. The solid was filtered and stirred in 7.5 volumes of acetone at 35-40°C. To the clear solution was added dropwise, 7.5 volumes of purified water. The reaction mixture was stirred further for 2 hours at 20-25°C, solid was isolated by filtration and dried at 45°C. The solid was stirred in a mixture of ethanol: ethyl acetate (1 : 10 volume) at 35-40°C to get clear solution, then gradually cooled to 10-15°C and further stirred for 6.0 hours. The solid was isolated by filtration, washed with ethyl acetate and dried under vacuum below 45°C to obtain dabigatran etexilate.

Yield: 1.10 kg

Efficiency: 65%

Example 12. Preparation of DAB etexilate mesylate

Dabigatran etexilate (1.0Kg, 1.59mol) was dissolved in acetone (20.0L) at 50-55°C under nitrogen atmosphere and treated with a solution of methane sulfonic acid (0.15Kg, 1 .56mol) in acetone (1 .5L). The reaction mixture was stirred for 45 minutes, then cooled to 20-25 °C and further stirred for 45 minutes. The solid was isolated by filtration, washed with acetone and dried under vacuum below 45°C to obtain dabigatran etexilate mesylate.

Yield: 1.10kg Efficiency: 95 %

//////////WO-2016027077, WO 2016027077, Cipla Ltd, New patent, Dabigatran

Cipla, New Patent, WO 2016020664, Everolimus


Everolimus.svg

Cipla, New Patent, WO 2016020664, Everolimus

CIPLA LIMITED [IN/IN]; Peninsula Business Park Ganpatrao Kadam Marg Lower Parel Mumbai 400 013 (IN).
KING, Lawrence [GB/GB]; (GB) (MW only)

RAO, Dharmaraj Ramachandra; (IN).
MALHOTRA, Geena; (IN).
PULLELA, Venkata Srinivas; (IN).
ACHARYA, Vinod Parameshwaran; (IN)

WO2016020664,  PROCESS FOR THE SYNTHESIS OF EVEROLIMUS AND INTERMEDIATES THEREOF

Everolimus (RAD-001) is the 40-O- 2-hydroxyethyl)-rapamycin of formula (I),

It is a derivative of sirolimus of formula III),

and works similarly to sirolimus as an inhibitor of mammalian target of rapamycin (mTOR). Everolimus is currently used as an immunosuppressant to prevent rejection of organ transplants and treatment of renal cell cancer and other tumours. It is marketed by Novartis under the tradenames Zortress™ (USA) and Certican™ (Europe and other countries) in transplantation medicine, and Afinitor™ in oncology.

Trisubstituted silyloxyethyltrifluoromethane sulfonates (triflates) of the general formula (IV),

wherein R2, R3 are independently a straight or branched alkyl group, for example C^-Cw alkyl, and/or an aryl group, for example a phenyl group, are important intermediates useful in the synthesis of everolimus.

Everolimus and its process for manufacture using the intermediate 2-(t-butyldimethyl silyl) oxyethyl triflate of formula (IVA),

was first described in US Patent Number 5,665,772. The overall reaction is depicted in Scheme I.

 

Scheme

Everolimus (I)

For the synthesis, firstly sirolimus of formula (III) and 2-(t-butyldimethylsilyl)oxyethyl triflate of formula (IVA) are reacted in the presence of 2,6-Lutidine in toluene at around 60°C to obtain the corresponding 40-O-[2-(t-butyldimethylsilyl)oxy]ethyl rapamycin of formula (I la), which is then deprotected in aqueous hydrochloric acid and converted into crude everolimus [40-O-(2-Hydroxy)ethyl rapamycin] of formula (I).

However, this process results in the formation of impure everolimus, which requires purification by column chromatography. The process results in very poor overall yield and purity and thereby the process is not suitable for the commercial scale production of everolimus.

Moenius et al. (I. Labelled Cpd. Radiopharm. 43, 1 13-120 (2000) have disclosed a process to prepare C-14 labelled everolimus using the diphenyltert-butylsilyloxy-protective group of formula (IV B),

as the alkylation agent. The overall yield reported was 25%.

International patent application, publication number WO 2012/103960 discloses the preparation of everolimus using the alkylating agent 2-((2,3-dimethylbut-2-yl)dimethylsilyloxy)ethyl triflate of formula (IVC),

wherein the overall yield reported is 52.54%. The process involves a derivatization method based on the reaction of the triflate (IV) with a derivatization agent, which preferably is a secondary aromatic amine, typically N-methylaniline.

International patent application, publication number WO 2012/103959 also discloses the preparation of everolimus using the alkylating agent of formula (IVC). The process is based on a reaction of rapamycin with the compound of formula (IVC) in the presence of a base (such as an aliphatic tertiary amine) to form 40-O-2-(t-hexyldimethylsiloxy)ethylrapamycin, which is subsequently deprotected under acidic conditions to obtain everolimus.

European Patent Number 1518517B discloses a process for the preparation of everolimus which employs the triflate compound of formula (IVA), 2-(t-butyldimethyl silyl) oxyethyl triflate. The disclosed process for preparing the compound of formula (IVA) involves a flash chromatography purification step.

The compounds of formula (IV) are key intermediates in the synthesis of everolimus. However, they are highly reactive and also very unstable, and their use often results in decomposition during reaction with sirolimus. This is reflected by the fact that the yields of the reaction with sirolimus are very low and the compounds of formula (IV) are charged in high molar extent. Thus it is desirable to develop a process to stabilize compounds of formula (IV) without loss of reactivity.

 

Example 1 :

Step 1 : Preparation of protected everolimus (TBS-everoismus) of formula (Ma) using metal salt, wherein “Pg” is t-butyldimethylsilyl

t-butyldimethylsilyloxy ethanol, of formula (VA) (2.8g, 0.016mol) was dissolved in dichloromethane (DCM) (3 vol) and to this 2,6-Lutidine (3.50 g, 0.0327 mol) was added and the mixture was cooled to -40°C. Thereafter, trifluoromethane sulfonic anhydride (3.59ml, 0.021 mol) was added drop-wise. The mixture was maintained at -40°C for 30 minutes. Sirolimus (0.5g, 0.00054mol) was taken in another flask and dissolved in DCM (1 ml). To this sirolimus solution, silver acetate (0.018g, 0.000109mol) was added and cooled to -40°C. The earlier cooled triflate solution was transferred in 3 lots to the sirolimus solution maintaining temperature at -40°C. The reaction mixture was stirred at -40°C further for 15min before which it was slowly warmed to 0°C and further to RT. The reaction mixture was then warmed to 40°C and maintained at this temperature for 3 hours. The reaction was monitored by TLC. On completion of reaction, the reaction mixture was diluted with DCM and washed with water and brine. The organic layer was dried over anhydrous sodium sulphate and solvent was removed by vacuum distillation to obtain the title compound, which was directly used in the next step. HPLC product purity: 60%-85%.

Step 2: Preparation of everolimus of formula (I)

Protected everolimus of formula (I la) obtained in step 1 was dissolved in methanol (10 volumes) and chilled to 0-5° C. To this solution was added drop wise, a solution of 1 N HCI. The pH of the reaction was maintained between 1-3. The temperature of the reaction mixture was raised to 25° C and stirred for 1 hour. After completion of reaction, the reaction mixture was diluted with water (15 volumes) and extracted in ethyl acetate (2X20 volumes). The organic layers were combined and washed with brine, dried over sodium sulphate. The organic layer was distilled off under reduced pressure at 30-35° C, to obtain a crude everolimus (0.8 g). The crude everolimus was further purified by preparative HPLC to yield everolimus of purity >99%.

Example 2:

Step 1 : Preparation of TBS-everoiimus of formula (Ma) without using metal salt, wherein “Pg” is t-butyldimethylsilyl

t-butyldimethylsilyloxy ethanol, of formula (VA) (2.8g, 0.016mol) was dissolved in DCM (3 vol) and to this 2,6-Lutidine (3.50 g, 0.0327 mol) was added and the mixture was cooled to -40°C. Thereafter, trifluoromethane sulfonic anhydride (3.59ml, 0.021 mol) was added drop-wise. The mixture was maintained at -40°C for 30 minutes. Sirolimus (0.5g, 0.00054mol) was taken in another flask and dissolved in DCM (1 ml). The solution was cooled to -40°C. The earlier cooled triflate solution was transferred in 3 lots to the sirolimus solution maintaining temperature at -40°C. The reaction mixture was stirred at -40°C further for 15min before which it was slowly warmed to 0°C and further to RT. The reaction mixture was then warmed to 40°C and maintained at this temperature for 3 hours. On completion of reaction, the reaction mixture was diluted with DCM and washed with water and brine. The organic layer was dried over anhydrous sodium sulphate and

solvent was removed by vacuum distillation to obtain the title compound, which was directly used in next step. HPLC purity: 10%-20%.

Step 2: Preparation of everolimus of formula (I)

Protected everolimus of formula (I la) obtained in step 1 was dissolved in methanol (10 volumes) and chilled to 0-5° C. To this solution was added drop wise, a solution of 1 N HCI. The pH of the reaction was maintained between 1-3. The temperature of the reaction mixture was raised to 25° C and stirred for 1 hour. After completion of reaction, the reaction mixture was diluted with water (15 volumes) and extracted in ethyl acetate (2X20 volumes). The organic layers were combined and washed with brine, dried over sodium sulphate. The organic layer was distilled off under reduced pressure at 30-35° C, to obtain a crude everolimus which was further purified by preparative HPLC.

Example 3:

Preparation of crude Everolimus

Step 1 : Preparation of TBS-ethylene glycol of formula (Va)

Ethylene glycol (1.5L, 26.58 mol) and TBDMS-CI (485g, 3.21 mol) were mixed together with stirring and cooled to 0°C. Triethyl amine (679 ml, 4.83 mol) was then added at 0°C in 30-45 minutes. After addition, the reaction was stirred for 12 hours at 25-30°C for the desired conversion. After completion of reaction, the layers were separated and the organic layer (containing TBS-ethylene glycol) was washed with water (1 L.x2) and brine solution (1 L). The organic layer was then subjected to high vacuum distillation to afford 350g of pure product.

Step 2: Preparation of TBS-glycol-Triflate of formula (IVa)

The reaction was carried out under a nitrogen atmosphere. TBS- ethylene glycol prepared as per step 1 (85.10g, 0.48 mol) and 2, 6-Lutidine (84.28ml, 0.72 mol) were stirred in n-heptane (425ml) to give a clear solution which was then cooled to -15 to – 25°C. Trif!uoromethanesulfonic anhydride (Tf20) (99.74 ml, 0.590 mol) was added drop-wise over a period of 45 minutes to the n-heptane

solution (white precipitate starts to form immediately) while maintaining the reaction at -15 to -25°C. The reaction mixture was kept at temperature between -15 to -25°C for 2 hours. The precipitate generated was filtered off. The filtrate was then evaporated up to ~2 volumes with respect to TBS-ethyiene glycol (~200 ml).

Step 3: Preparation of TBS-evero!imus of formula (Ha)

30g of sirolimus (0,0328 mo!) and toluene (150m!) were stirred together and the temperature was slowly raised to 60-65°C. At this temperature, a first portion of TBS-g!yco!-triflate prepared as per step 2 (100ml) and 2,6-Lutidine (1 1.45ml, 0.086 moles) were added and stirred for 40 min. Further, a second portion of TBS- glycol-triflate (50mi) and 2, 6-Lutidine (19.45ml, 0.138 mol) were added and the reaction was stirred for another 40 min. This was followed by a third portion of TBS- glycol-triflate (50m!) and 2, 6-Lutidine (19.45ml, 0.138 mol), after which the reaction was stirred for further 90 minutes. The reaction was monitored through HPLC to check the conversion of Sirolimus to TBS-everolimus after each addition of TBS-glycol-trifiate. After completion of the reaction, the reaction mixture was diluted with n-heptane (150mi), cooled to room temperature and stirred for another 60 minutes. The precipitated solids were filtered off and the filtrate was washed with deionized water (450 ml x4) followed by brine solution (450ml). The filtrate was subsequently distilled off to afford TBS-everolimus (60-65g) with 60-70% conversion from sirolimus.

Step 4: Preparation of everolimus of formula (I)

TBS-everolimus (65g) obtained in step 3 was dissolved in 300 mi methanol and cooled to 0°C. 1 N HCI was then added to the methanol solution (pH adjusted to 2-3) and stirred for 2 h. After completion of reaction, toluene (360m!) and deionized wafer (360mi) were added to the reaction mixture and the aqueous layer was separated. The organic layer was washed with brine solution (360ml). The organic layer was concentrated to obtain crude everolimus (39g) with an assay content of 30-35%, HPLC purity of 60-65%.

The crude everolimus purified by chromatography to achieve purity more than 99 %.

////Cipla, New Patent, WO 2016020664, Everolimus, INDIA

Cipla introduces Serroflo for respiratory treatment in Germany and Sweden


India-based Cipla has introduced Serroflo (salmeterol/fluticasone MDI) in Germany and Sweden to treat patients suffering from asthma.

 

 

 

Serroflo is expected to improve the affordability of fixed combinations in Europe and help manage health costs for respiratory treatment.

Cipla Europe head Frank Pieters said: “With Serroflo, we offer in Germany and Sweden an alternative, which is effective and efficient and therefore brings many advantages into a market, which suffers from limited resources.”

The new product is available under the name Serroflo in Germany, while it is introduced as Salmeterol/Fluticasone Cipla in Sweden.

http://www.pharmaceutical-technology.com/news/newscipla-introduces-serroflo-respiratory-treatment-germany-and-sweden-4360899?WT.mc_id=DN_News

Cipla’s shares have vaulted to a record high after the launch of first of its combination inhalers in Germany and Sweden that marked its entry into Europe. Analysts say the launch will lead to a gradual rerating of the stock of the drug maker which has been underperforming its peers.
Cipla launches combination inhalers in Germany and Sweeden; stocks touch all time high, may trigger rerating

 

India’s Cipla to invest £100 million in the UK


India's Cipla to invest £100 million in the UK

Indian generics major Cipla has unveiled plans to invest £100 million in the UK as it looks to expand its global footprint.

The deal was announced by Chancellor of the Exchequer George Osborne (pictured) who is on a trade mission to India, stating that the investment will fund the launch of a range of drugs in the areas of respiratory, oncology and antiretroviral medicines. He added that the cash will also be used on R&D, clinical trials “and further expansion internationally and in the UK”.

Read more at: http://www.pharmatimes.com/Article/14-07-07/India_s_Cipla_to_invest_%C2%A3100_million_in_the_UK.aspx#ixzz36wQ9kz6k

 

 

Yusuf Hamied – Cipla


Name: Yusuf Hamied

Title: Chairman and Managing Director, Cipla

http://www.fiercebiotech.com/special-reports/yusuf-hamied-cipla

Yusuf Hamied made his name a decade ago when he faced down Big Pharma on patents for HIV/AIDS drugs and Cipla started selling them at a cost of about $1 a day. His disdain for what he considers Big Pharma’s “obscene prices” born out of monopolies is well documented. Hamied has the industry’s rapt attention again with his new attack on cancer meds and his avowal that Cipla will soon take on biologics.

Read more: Yusuf Hamied – Cipla – FierceBiotech http://www.fiercebiotech.com/special-reports/yusuf-hamied-cipla#ixzz2b9oexHpH
Subscribe at FierceBiotech

Yusuf Khwaja Hamied is a leading Indian scientist and chairman of Cipla, a socially conscious generic pharmaceuticals company founded by his father Khwaja Abdul Hamiedin 1935.[2]

Born in VilniusLithuaniaYusuf Hamied was raised in Bombay (now known as Mumbai). His Indian Muslim father and Russophone Jewish mother met in Berlin, where they both were graduate students. He holds a Ph.D. in chemistry from Christ’s College, Cambridge. He still uses his chemistry notebooks from Cambridge when he develops new syntheses of drugs.[3]

He is an alumnus of the Cathedral and John Connon School in Bombay. Affectionately called Yuku by his close friends, Hamied is fond of Western classical music and has been close friends with the world-famous conductor Zubin Mehta since boyhood.

Hamied is best known outside India for defying large Western pharmaceutical companies in order to provide generic AIDS drugs and treatments for other ailments primarily affecting people in poor countries. He was awarded the Padma Bhushan by the Government of India in 2005.

 

 

Hamied has led efforts to eradicate AIDS in the developing world and to give patients life-saving medicines regardless of their ability to pay,[4] and has often been characterized as a modern-day Robin Hood figure[5][6][7][8] as a result.

Former head of Johnson and Johnson Ajit Dangi says plainly “In Africa, Cipla is a temple and Dr. Hamied is God.” [9] To this Hamied has countered “I don’t want to make money off these diseases which cause the whole fabric of society to crumble”. [10]

In September 2011, in a piece about how he was trying to radically lower costs of biotech drugs for cancerdiabetes and othernoncommunicable diseasesThe New York Times wrote of Hamied:

Dr. Yusuf K. Hamied, chairman of the Indian drug giant Cipla Ltd., electrified the global health community a decade ago when he said he could produce cocktails of AIDS medicines for $1 per day — a fraction of the price charged by branded pharmaceutical companies. That price has since fallen to 20 cents per day, and more than six million people in the developing world now receive treatment, up from little more than 2,000 in 2001.[11]

Yusuf Hamied has also been enormously influential in pioneering development of multi-drug combination pills (also known as fixed-dose combinations, or FDCs), notably for HIV/AIDStuberculosis (TB), asthma and other ailments chiefly affecting developing countries, as well as development of pediatric formulations of drugs, especially those benefiting children in poor settings.[12] These innovations have greatly expanded access to medicine and increased drug safety by ensuring proper dosages are taken. He is also highly regarded for his leading role in expanding the production of bulk drugs and “active pharmaceutical ingredients” (APIs, the active chemical components in medicines) in India.[13]

In 2009 the Yusuf Hamied Centre was opened at Christ’s College, Cambridge.[1][14]

Yusuf Hamied has been the subject of in-depth profiles in The New York TimesTime magazine, The GuardianLe MondeThe Economist, the Financial TimesThe Times (London)Corriere della SeraDer SpiegelWired and numerous other leading publications, as well as on television outlets such as ABC News, the BBC, CNN and CBS’ 60 Minutes.

Yusuf Hamied was awarded the ‘Indian Of The Year’ in the category of business by CNN-IBN in 2012.[15]

  1. “Christ’s officially opens Yusuf Hamied Centre”. University of Cambridge News. 2009-04-20. Retrieved 2009-04-20.
  2. Sarah Boseley (2003-02-18). “Yusuf Hamied, generic drugs boss | World news”. London: The Guardian. Retrieved 2010-09-01.
  3. Selling Cheap ‘Generic’ Drugs, India’s Copycats Irk Industry, By DONALD G. McNEIL Jr, Published: December 01, 2000
  4. “Interview of the week: Yusuf Hamied. – United Press International | HighBeam Research – FREE trial”. Highbeam.com. 2001-02-22. Retrieved 2010-09-01.
  5. “[Esplora il significato del termine: Yusuf Hamied, un Robin Hood contro l’ Aids “Così sconfiggerò l’ Aids senza le multinazionali”] Yusuf Hamied, un Robin Hood contro l’ Aids “Così sconfiggerò l’ Aids senza le multinazionali””.
  6. Bobin, Frédéric (2010-07-06). “India fears generic drugs for poor are endangered by proposed EU trade deal”The Guardian(London).
  7. “Dr. Hamied Robin Hood spoof film posters”.
  8. “Robin Hood and the Multinationals”.
  9. Hans Lofgren, The Politics of the Pharmaceutical Industry and Access to Medicine, 2012, p. 55
  10. Hans Lofgren, The Politics of the Pharmaceutical Industry and Access to Medicine, 2012, p. 68
  11. Harris, Gardiner (2011-09-18). “China and India Making Inroads in Biotech Drugs”The New York Times.
  12.  Hans Lofgren, The Politics of the Pharmaceutical Industry and Access to Medicine, 2012, p. 58-59
  13.  Hans Lofgren, The Politics of the Pharmaceutical Industry and Access to Medicine, 2012, p. 63
  14.  “The Hindu News Update Service”. Chennai, India: Hindu.com. 2009-04-22. Retrieved 2010-09-01.
  15.  http://ibnlive.in.com/news/dr-yusuf-hamied-message-on-being-cnnibns-indian-of-the-year-2012-in-the-business-category/310908-3.html.


..

Cipla launches first Biosimilar of Etanercept in India under brand name ‘ETACEPT’


Etanercept

is made from the combination of two naturally occurring soluble human 75-kilodalton TNF receptors linked to an Fc portion of an IgG1. The effect is an artificially engineered dimeric fusion protein.

 Wed, Apr 17 2013

Cipla, the fifth largest pharma company in India with consolidated net sales of Rs.6,800 crore plus, has launched the first biosimilar of Etanercept in India; under the brand name ‘ETACEPT’ for the treatment of rheumatic disorders. Formed through a partnership alliance, ETACEPT is manufactured by a China-based company Shanghai CP Guojian Pharmaceutical Co. Ltd., which will be marketed by Cipla in India.

The introduction of Etacept now signals Cipla’s entry into the Biologic segment offering an option to the patients suffering from rheumatic disorders at a lower cost. Etacept is available as a lyophilized powder to be given by subcutaneous injection. It is available with stockists across the country at Rs.6,150 and the recommended dose for adults is 25mg twice weekly by subcutaneous injection.

READ MORE AT PHARMABIZ

http://www.pharmabiz.com/NewsDetails.aspx?aid=74842&sid=2

Etanercept (trade name Enbrel) is a biopharmaceutical that treats autoimmune diseases by interfering with tumor necrosis factor (TNF; a soluble inflammatory cytokine) by acting as a TNF inhibitor. It has U.S. F.D.A. approval to treat rheumatoid, juvenile rheumatoid andpsoriatic arthritis, plaque psoriasis and ankylosing spondylitis. TNF-alpha is the “master regulator” of the inflammatory (immune) response in many organ systems. Autoimmune diseases are caused by an overactive immune response. Etanercept has the potential to treat these diseases by inhibiting TNF-alpha.

Etanercept is a fusion protein produced by recombinant DNA. It fuses the TNF receptor to the constant end of the IgG1 antibody. First, the developers isolated the DNA sequence that codes the human gene for soluble TNF receptor 2, which is a receptor that binds to tumor necrosis factor-alpha. Second, they isolated the DNA sequence that codes the human gene for the Fc end of immunoglobulin G1 (IgG1). Third, they linked the DNA for TNF receptor 2 to the DNA for IgG1 Fc. Finally, they expressed the linked DNA to produce a protein that links the protein for TNF receptor 2 to the protein for IgG1 Fc.

The prototypic fusion protein was first synthesized and shown to be highly active and unusually stable as a modality for blockade of TNF in vivo in the early 1990s by Bruce A. Beutler, an academic researcher then at the University of Texas Southwestern Medical Center at Dallas, and his colleagues.[2][3][4] These investigators also patented the protein, selling all rights to its use to Immunex, a biotechnology company that was acquired by Amgen in 2002.

It is a large molecule, with a molecular weight of 150 kDa., that binds to TNFα and decreases its role in disorders involving excess inflammation in humans and other animals, including autoimmune diseases such as ankylosing spondylitis, juvenile rheumatoid arthritis, psoriasis, psoriatic arthritis, rheumatoid arthritis, and, potentially, in a variety of other disorders mediated by excess TNFα.

In North America, etanercept is co-marketed by Amgen and Pfizer under the trade name Enbrel in two separate formulations, one in powder form, the other as a pre-mixed liquid. Wyeth is the sole marketer of Enbrel outside North America excluding Japan whereTakeda Pharmaceuticals markets the drug.

Etanercept is an example of a protein-based drug created using the tools of biotechnologyand conceived through an understanding afforded by modern cell biology.

%d bloggers like this: