New Drug Approvals

Home » Posts tagged 'Antineoplastic' (Page 4)

Tag Archives: Antineoplastic

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,804,848 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Fosdesdenosine sipalabenamide


Fosdesdenosine sipalabenamide

CAS 2348493-39-8

MF C26H29N6O7P, MW=568.5 g/mol

benzyl N-(P-ambo-3′-deoxy-OP-phenyl-5′-adenylyl)-Lalaninate

benzyl (2S)-2-[[[(2S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxyoxolan-2-yl]methoxy-phenoxyphosphoryl]amino]propanoate

3′-Deoxyadenosine 5′-O-phenyl-(benzoxy-L-alaninyl)-phosphatenucleoside analogue, antineoplastic, NUC 7738, Y7BFN2M72F

Fosdesdenosine sipalabenamide is an investigational new drug that is being evaluated for the treatment of advanced solid tumors and lymphoma.[1] This compound is a phosphoramidate derivative of cordycepin (3′-deoxyadenosine), an adenosine analog originally isolated from the fungus Cordyceps.[2][3] As a nucleoside analog with potential antineoplastic properties, Fosdesdenosine sipalabenamide is designed to inhibit RNA synthesis and act as an RNA inhibitor.[1] The drug is being developed by NuCana Plc.[1]

Fosdesdenosine Sipalabenamide is a phosphoramidate derivative of the monophosphate form of cordycepin (3′-deoxyadenosine; 3′-dA), an adenosine derivative first isolated from Cordyceps sinensis, with potential antineoplastic, antioxidant, and anti-inflammatory activities. Upon administration and cellular uptake of fosdesdenosine sipalabenamide by passive diffusion, cordycepin monophosphate (3′-dAMP) is converted into its active anti-cancer metabolite 3′-deoxyadenosine triphosphate (3′-dATP). 3′-dATP functions as a ribonucleoside analogue and competes with ATP during transcription. Therefore, this agent causes RNA synthesis inhibition, inhibits cellular proliferation, and induces apoptosis. Also, 3′-dAMP activates AMP-activated protein kinase (AMPK) and reduces mammalian target of rapamycin (mTOR) signaling. This prevents the hyperphosphorylation of the translation repressor protein 4E-BP1. This results in the induction of tumor cell apoptosis and a decrease in tumor cell proliferation. mTOR, a serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family, plays an important role in the PI3K/AKT/mTOR signaling pathway that regulates cell growth and proliferation, and its expression or activity is frequently dysregulated in human cancers. Compared to cordycepin alone, the addition of the phosphoramidate moiety may overcome cancer resistance and allow for greater cytotoxicity as fosdesdenosine sipalabenamide does not require a nucleoside transporter for cellular uptake, is independent of enzymatic activation by adenosine kinase (AK) and is not susceptible to enzymatic degradation by adenosine deaminase (ADA). Altogether, this may help overcome cancer resistance to cordycepin.

SYN

Synthesis and Characterization of NUC-7738, an Aryloxy Phosphoramidate of 3′-Deoxyadenosine, as a Potential Anticancer Agent

Publication Name: Journal of Medicinal Chemistry

Publication Date: 2022-11-23

PMCID: PMC9743095

PMID: 36417756

DOI: 10.1021/acs.jmedchem.2c01348

Rp)- and (Sp)-3′-Deoxyadenosine 5′-O-phenyl-(benzoxy-l-alaninyl)-phosphate (7a)

Prepared according to general procedure C using 3′-deoxyadenosine (1) (0.05 g, 0.20 mmol) in anhydrous THF (4 mL), N-methyl imidazole (0.080 μL, 1.0 mmol), and phenyl(benzyloxy-l-alaninyl) phosphorochloridate (4a) (0.021 g, 0.6 mmol) in THF (2.4 mL) Purification by Biotage Isolera One (cartridge SNAP 25 g, 25 mL/min, CH3OH/CH2Cl2 1–8% 10 CV, 8% 5 CV) and preparative TLC (1000 μM, eluent system CH3OH/CH2Cl2 5/95) afforded the title compound 7a as a white solid (0.032 g, 28%). 31P NMR (202 MHz, CD3OD) δP 3.91, 3.73. 1H NMR (500 MHz, CDCl3) δH 8.26 (s, 0.5H, H-8), 8.24 (s, 0.5H, H-8), 8.22 (s, 0.5H, H-2), 8.21 (s, 0.5H, H-2), 7.34–7.25 (m, 7H, Ar), 7.21–7.13 (m, 3H, Ar), 6.01 (d, J = 1.5 Hz, 0.5H, H-1′), 6.00 (d, J = 1.5 Hz, 0.5H, H-1′), 5.15–5.04 (m, 2H, CH2Ph), 4.73–4.63 (m, 2H, H-2′, H-4′), 4.43–4.35 (m, 1H, H-5′), 4.27–4.20 (m, 1H, H-5′), 4.03–3.91 (m, 1H, CHCH3), 2.35–2.28 (m, 1H, H-3′), 2.09–2.02 (m, 1H, H-3′), 1.32 (d, J = 7.4 Hz, 1.5 H, CHCH3), 1.28 (d, J = 7.4 Hz, 1.5 H, CHCH3). 13C NMR (125 MHz, CD3OD) δC 174.84 (d, 3JC-P = 4.5 Hz, C=O), 174.63 (d, 3JC-P = 4.5 Hz, C═O), 157.32 (C-6), 157.31 (C-6), 153.86 (C-2), 153.84 (C-2), 152.13 (C-4), 152.07 (C-4), 150.20 (C-Ar), 150.18 (C-Ar), 140.47 (C-8), 137.26 (C-Ar), 137.19 (C-Ar), 130.76 (CH-Ar), 130.74 (CH-Ar), 129.57 (CH-Ar), 129.32 (CH-Ar), 129.31 (CH-Ar), 129.29 (CH-Ar), 129.26 (CH-Ar), 126.16 (CH-Ar), 126.14 (CH-Ar), 121.46 (d, 3JC-P = 4.7 Hz, CH-Ar), 121.38 (d, 3JC-P = 4.7 Hz, CH-Ar) 120.54 (C-5), 120.53 (C-5), 93.24 (C-1′), 93.18 (C-1′), 80.43 (d, 3JC-P = 3.6 Hz, C-4′), 80.36 (d, 3JC-P = 3.6 Hz, C-4′), 76.62 (C-2′), 68.62 (d, 2JC-P = 5.3 Hz, C-5′), 68.30 (d, 2JC-P = 5.3 Hz, C-5′), 67.95 (CH2Ph), 67.92 (CH2Ph), 51.74 (CHCH3), 51.60 (CHCH3), 34.91 (C-3′), 34.70 (C-3′), 20.45 (d, 3JC-P = 7.0 Hz, CHCH3), 20.28 (d, 3JC-P = 7.0 Hz, CHCH3). Reversed-phase HPLC eluting with H2O/CH3CN from 100/10 to 0/100 in 30 min, F = 1 mL/min, λ = 254 nm, tR 13.56 and 13.75 min. C26H29N6O7P required m/z 568.2 [M]. MS (ES+) found m/z 569.2 [M + H]+, 591.2 [M + Na]+, 1159.4 [2M+Na]+.

The two diastereoisomers 7a-Rp and 7a-Sp were separated via Biotage Isolera One (cartridge SNAP-Ultra C18 12 g, F: 12 mL/min, isocratic eluent system: H2O/CH3OH 45/55 in 30 min, 150 mg sample) to obtain:

7a-Rp as Fast Eluting Isomer (76 mg)

31P NMR (202 MHz, CD3OD) δP 3.91. 1H NMR (500 MHz, CDCl3) δH 8.26 (s, 1H, H-8), 8.22 (s, 1H, H-2), 7.37–7.25 (m, 7H, Ar), 7.22–7.12 (m, 3H, Ar), 6.01 (d, J = 1.5 Hz, 1H, H-1′), 5.12 (AB q, JAB = 12.0 Hz, 2H, CH2Ph), 4.74–4.70 (m, 1H, H-2′), 4.69–4.62 (m, 1H, H-4′), 4.44–4.38 (m, 1H, H-5′), 4.28–4.21 (m, 1H, H-5′), 3.99–3.90 (m, 1H, CHCH3), 2.35–2.27 (m, 1H, H-3′), 2.09–2.02 (m, 1H, H-3′), 1.29 (d, J = 7.0 Hz, 3H, CHCH3). HPLC reversed-phase HPLC eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, F = 1 mL/min, λ = 254 nm, showed one peak with tR 13.56 min.

7a-Sp as Slow-Eluting Isomer (61 mg)

31P NMR (202 MHz, CD3OD) δP 3.73. 1H NMR (500 MHz, CDCl3) δH 8.24 (s, 1H, H-8), 8.22 (s, 1H, H-2), 7.36–7.26 (m, 7H, Ar), 7.22–7.13 (m, 3H, Ar), 6.01 (d, J = 1.5 Hz, 1H, H-1′), 5.08 (AB q, JAB = 12.0 Hz, 2H, CH2Ph), 4.70–4.67 (m, 1H, H-2′), 4.66–4.60 (m, 1H, H-4′), 4.41–4.35 (m, 1H, H-5′), 4.26–4.19 (m, 1H, H-5′), 4.02–3.94 (m, 1H, CHCH3), 2.36–2.27 (m, 1H, H-3′), 2.08–2.01 (m, 1H, H-3′), 1.34–1.30 (m, 3H, CHCH3). HPLC reversed-phase HPLC eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, F = 1 mL/min, λ = 254 nm, tR 13.75 min.

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

……

Clinical data
Other namesNUC-7738
Identifiers
IUPAC name
CAS Number2348493-39-8
PubChem CID166177279
DrugBankDB19148
UNIIY7BFN2M72F
ChEMBLChEMBL5277528
Chemical and physical data
FormulaC26H29N6O7P
Molar mass568.527 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  “Fosdesdenosine sipalabenamide”PatSnap.
  2.  “Fosdesdenosine Sipalabenamide”PubChem. U.S. National Library of Medicine.
  3.  Serpi M, Ferrari V, McGuigan C, Ghazaly E, Pepper C (December 2022). “Synthesis and Characterization of NUC-7738, an Aryloxy Phosphoramidate of 3′-Deoxyadenosine, as a Potential Anticancer Agent”Journal of Medicinal Chemistry65 (23): 15789–15804. doi:10.1021/acs.jmedchem.2c01348PMC 9743095PMID 36417756.

….///////Fosdesdenosine sipalabenamide, antineoplastic, NUC 7738, Y7BFN2M72F

Flezurafenib


Flezurafenib

CAS 2760321-00-2

MF C26H21FN4O3 MW456.5 g/mol, P26TTM6U27

5-({(3S)-3-[4-(4-fluorophenyl)-1H-imidazol-2-yl]-3,4-dihydro-2H-1-benzopyran-6-yl}oxy)-3,4-dihydro-1,8-naphthyridin-2(1H)-one

5-[[(3S)-3-[5-(4-fluorophenyl)-1H-imidazol-2-yl]-3,4-dihydro-2H-chromen-6-yl]oxy]-3,4-dihydro-1H-1,8-naphthyridin-2-one
rapidly accelerated fibrosarcoma (Raf) kinase inhibitor,
antineoplastic

Flezurafenib is an investigational new drug designed as a rapidly accelerated fibrosarcoma (RAF) kinase inhibitor which is being evaluated for the treatment of cancer. Developed by Jazz Pharmaceuticals, this novel therapeutic agent is currently being explored for its efficacy against solid tumors and hematological malignancies harboring oncogenic mutations that activate the RAS-RAF-MAPK signaling pathway.[1][2] As of January 2025, flezurafenib has reached Phase 1 clinical trials, where it is being evaluated for the treatment of advanced cancers and advanced malignant solid neoplasms.[1]

PAT

WO2022023450]

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022023450&_cid=P11-MGN3DV-58095-1

[0402] Example 3. Chiral Synthesis of Compounds A-l and A-2

[0403] A. Synthesis of P2

[0404] Step 1: To a solution of 2,5-dihydroxybenzaldehyde (200 g, 1448 mmol) and pyridinium p-toluenesulfonate (18.2 g, 72.4 mmol) in DCM (3.75 L) was added 3,4-dihydro-2H-pyran (165 mL, 1810 mmol) dropwise over 10 minutes and the reaction temperature warmed to 30 °C. The reaction was stirred for 2 hours and checked by UPLC-MS which indicated the reaction was 92% complete (~5% starting material and ~3% later running unknown). The reaction was stopped. The reaction was washed with water (1.5 L) and the DCM solution was passed through a 750g silica pad and followed through by DCM (2.5 L). The DCM solution was reduced in-vacuo and the crude product was then slowly diluted with Pet. Ether to ~1L total volume, stirred and cooled to -10° C to afford a thick yellow slurry. The product was filtered and washed with Pet. Ether (2 x 150 mL) and pulled dry for 3 hours to afford 2-hydroxy-5-tetrahydropyran-2-yloxy-benzaldehyde (265g, 1192 mmol, 82% yield) as a bright yellow solid. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 10.35 (s, 1H), 10.23 (s, 1H), 7.32 – 7.19 (m, 2H), 6.94 (d, J = 8.9 Hz, 1H), 5.36 (t, J = 3.3 Hz, 1H), 3.77 (ddd, J = 11.2, 8.8, 3.6 Hz, 1H), 3.59 – 3.49 (m, 1H), 1.94 – 1.45 (m, 6H). UPLC-MS (ES+, Short acidic): 1.64 min, m/z 223.0 [M+H]+ (100%).

[0405] Step 2: 2-hydroxy-5-tetrahydropyran-2-yloxy-benzaldehyde (107 g, 481 mmol) was dissolved in diglyme (750 mL) and K2CO3 (133 g, 963 mmol) was added on one portion with stirring to afford a bright yellow suspension. The reaction was then heated to 140°C and tert-butyl acrylate (155 mL, 1059 mmol) in DMF (75 mL) was added over 10 minutes starting at ~110°C and up to 130°C. Maintained this temperature for a further 1 hour. UPLC-MS indicated that the

reaction had progressed 75%. After a further hour this showed clean conversion to 85% product and little or no side-products. After another 3 hours UPLC-MS showed 88% product (previous reactions had showed that further heating did not afford more conversion). The dark brown reaction was cooled to room temperature overnight and filtered to remove inorganics. The reaction was suspended in EtOAc (2.5 L) and water (2.5 L) and the phases separated. The aqueous was re-extracted with EtOAc (2.5 L) and the combined organics were washed with brine (2 x 1.5 L) and the organics were reduced in-vacuo. The crude product was then purified on silica (2Kg) loading in a minimum volume of DCM. A gradient of EtOAc in Pet. Ether (10 – 25%) was run and clean product fractions combined and reduced in-vacuo to afford tert-butyl 6-tetrahydropyran-2-yloxy-2H-chromene-3-carboxylate (93.5 g, 281 mmol, 58% yield) as a yellow solid. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 7.37 (q, J = 1.2 Hz, 1H), 7.05 (d, J = 2.9 Hz, 1H), 6.94 (dd, J = 8.8, 2.9 Hz, 1H), 6.79 (dd, J = 8.7, 0.7 Hz, 1H), 5.35 (t, J = 3.3 Hz, 1H), 4.82 (d, J = 1.4 Hz, 2H), 3.77 (ddt, J = 13.3, 8.3, 4.2 Hz, 1H), 3.59 – 3.48 (m, 1H), 1.93 – 1.49 (m, 6H), 1.49 (s, 9H). UPLC-MS (ES+, Short acidic): 2.18 min, m/z ([M+H]+) not detected (100%).

[0406] Step 3: tert-butyl 6-tetrahydropyran-2-yloxy-2H-chromene-3-carboxylate (215 g, 647 mmol) was suspended in MeOH (1.6 L) at room temperature (did not dissolve immediately) and pyridinium p-toluenesulfonate (16.3 g, 64.7 mmol) added. The reaction was warmed to 40°C with a hot water bath and checked by UPLC-MS for progress after 1 hour which indicated the reaction was complete and was a clear orange solution. The reaction was reduced in-vacuo and the crude product dissolved in DCM (2 L) and washed with water (1 L). The organic layer was dried (MgSC>4), filtered and reduced in-vacuo to afford the crude product as a yellow solid. This was suspended in Pet. Ether and stirred in an ice bath before filtering, to afford a bright yellow solid. This was dried under high vac at 50°C for 2 hours to afford tert-butyl 6-hydroxy-2H-chromene-3-carboxylate (144.4 g, 582 mmol, 90% yield). ¾ NMR (400 MHz, DMSO-d6) d/ppm: 9.17 (s, 1H), 7.33 (s, 1H), 6.76 – 6.64 (m, 3H), 4.77 (d, J = 1.4 Hz, 2H), 1.49 (s, 9H). UPLC-MS (ES+, Short acidic): 1.71 min, m/z 247.2 [M-H]- (100%).

[0407] Step 4: tert-Butyl 6-hydroxy-2H-chromene-3-carboxylate (84. g, 338.34mmol) was dissolved in DCM (500mL) and trifluoroacetic acid (177.72mL, 2320.9mmol) added at room temperature and the reaction stirred to give a brown solution. Initially gas evolution was noted and the reaction was stirred over several days at room temperature. DCM and TFA were removed in-vacuo and finally azeotroped with 200ml of toluene before slurrying with diethyl ether and filtering to give the crude product 6-hydroxy-2H-chromene-3-carboxylic acid (53.15g, 276.58mmol, 81.745% yield) as a cream solid. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 12.77 (s, 1H), 9.14 (s, 1H), 7.37 (t, J = 1.4 Hz, 1H), 6.72 (dd, J = 2.4, 0.9 Hz, 1H), 6.70 – 6.64 (m, 2H), 4.78 (d, J = 1.4 Hz, 2H).

[0408] Step 5: (R)-Phanephos and [RuCl2(p-cym)]2 (1.2: 1 eq., 6.6 mg, 3.0 mg respectively) were weighed into a 50 mL glass lined Parr vessel followed by the substrate (1.845 g, 9.6 mmol). Methanol (16 mL, 0.6 M substrate concentration) was added to the vessel followed by triethylamine (135 μL, 0.96 mmol, 0.1 eq.). A PTFE stirrer bar was added and the thermocouple was covered with PTFE tape. The vessel was sealed and purged with nitrogen 5 times (at ~2 bar) and 5 times with stirring (~500 rpm). The vessel was then purged with hydrogen 5 times (at -10 bar) and 5 times with stirring (~500 rpm). The vessel was then pressurised to 5 bar hydrogen pressure and heated to 40 °C (with 1500 rpm stirring speed). The pressure was kept constant but with venting and refilling to 5 bar after sampling. After 21.5 hours, the vessel was allowed to cool. After 22.5 hours, the vessel was vented and purged with nitrogen. Each -0.1 mL sample was diluted to -1 mL with MeOH for SFC analysis. Work-up procedure: MeOH removed by concentrating under vacuum, followed by addition of EtOAc (10 mL) and 1 M HC1 (10 mL). The layers were mixed before separating. The EtOAc layer was washed with a further portion of 1 M HC1 (4 mL) before removing the aqueous layer to leave the EtOAc organic phase. The aqueous layer was then washed with a further portion of EtOAc (4 mL) and the organic layers were combined. EtOAc was then removed under vacuum to leave behind the product as a greyish solid (See Table 29). P2 is the first eluting product with a retention time of 5.8 min and PI is the second eluting product with a retention time of 6.1 min using the SFC method as described in Example 1.

[0409] B. Synthesis of 5-fluoro-3,4-dihydro-l,8-naphthyridin-2(lH)-one

0410] Step 1: 2-Amino-4-fluoropyridine (400 g, 3568 mmol) was charged into a 10 L fixed reactor vessel and then taken up in DCM (4 L) as a slurry under nitrogen atmosphere. To this was added DMAP (43.6 g, 357 mmol) and cooled to 10°C. Di-tert-butyldicarbonate (934 g, 4282 mmol) was added, as a solution in DCM (1 L), over the space of 1.5 hours. The reaction was stirred at room temperature for 2 hours after which time the complete consumption of the starting material was evident by NMR. To the reaction was added N,N-dimethylethylenediamine (390 mL, 3568 mmol) and the reaction warmed to 40°C overnight (converting any di-BOC material back to the mono-BOC desired product). Allowed to cool to room temperature and then diluted with further DCM (2 L) and washed with water (2 L). Extracted with further DCM (2 L), washed with water

(1 L), brine (1.2 L) and dried (MgSO4) before filtering. The solvents were removed in-vacuo and the resultant product was slurried in DCM/Pet. Ether (1:1) (500 mL). Filtered, washed with further Pet. Ether and pulled dry to afford tert- butyl N-(4-fluoro-2-pyridyl)carbamate (505 g, 2380 mmol, 67% yield) as a cream solid product. A second crop of material was isolated from the mother liquors after passing through a short pad of silica followed by trituration with DCM/Pet. Ether (1:1) (-200 mL) to afford tert-butyl N-(4-fluoro-2-pyridyl)carbamate (46.7 g, 220 mmol, 6% yield). ¾ NMR (400 MHz, DMSO-d6) d/ppm: 10.13 (d, J = 1.7 Hz, 1H), 8.26 (dd, J = 9.4, 5.7 Hz, 1H), 7.60 (dd, J = 12.3, 2.4 Hz, 1H), 6.94 (ddd, J = 8.2, 5.7, 2.4 Hz, 1H), 1.47 (s, 9H). UPLC-MS (ES+, Short acidic): 1.64 min, m/z 213.1 [M+H]+ (98%).

[0411] Step 2: tert-butyl-N-(4-fluoro-2-pyridyl)carbamate (126 g, 594 mmol) and TMEDA (223 mL, 1484 mmol) were taken up in dry THF (1.7 L) and then cooled to -78°C under nitrogen atmosphere. To this solution was added n-butyllithium solution (2.5M solution in hexanes) (285 mL, 713 mmol) and then allowed to stir for a further 10 minutes. sec-Butyllithium solution (1.2M in cyclohexane) (509 mL, 713 mmol) was added keeping the reaction temperature below -70°C whilst stirred for 1 hour. After this time, Iodine (226 g, 891 mmol) in THF (300 mL) was added slowly and dropwise over 30 minutes to keep the temp below -65°C. Stirred at -70°C for another 10 minutes and then quenched by the addition of sat. aq. NH4CI solution (400 mL) and then a solution of sodium thiosulphate (134 g, 848 mmol) dissolved in water (600 mL). This addition raised the temperature to — 25°C. The reaction was warmed to room temperature then transferred to the 5L separator and extracted with EtOAc (2 x 1.5 L) and then washed with brine (500 mL), dried (MgSCL) and then evaporated in vacuo to afford crude material (~200g). This was taken up in hot DCM (500 mL) (slurry added to the silica pad) and then passed through a 2Kg silica pad. Washed through with DCM (10 x 1 L fractions) and then the product was eluted from the column with EtOAc in Pet. Ether (10% to 100%), (1 L at each 10% increase, with 1 L fractions). This gave 2 mixed fractions and clean product containing fractions, which were combined and evaporated in vacuo to afford tert-butyl N-(4-fluoro-3-iodo-2-pyridyl)carbamate (113.4 g, 335.4 mmol, 57% yield) as a white solid. Clean by UPLC-MS and NMR. The mixed fractions were combined with previous crude material to afford 190g in total of a cream solid that was composed of -50% of the desired product. This was re-columned as above to afford a combined second crop from all 4 batches as a cream solid tert-butyl N-(4-fluoro-3-iodo-2-pyridyl) carbamate (107.5 g, 318 mmol, 54% yield). ¾ NMR (400 MHz, DMSO-d6) d/ppm: 9.47 (s, 1H), 8.33 (dd, J = 8.7, 5.5 Hz, 1H), 7.19 (dd, J = 7.3, 5.5 Hz, 1H), 1.46 (s, 9H). UPLC-MS (ES+, Short acidic): 1.60 mm, m/z 339.1 [M+H]+ (100%).

[0412] Step 3: tert-butyl N-(4-fluoro-3-iodo-2-pyridyl)carbamate (300 g, 887 mmol), 3,3-dimethoxyprop- 1 -ene (137 mL, 1153 mmol) and DIPEA (325 mL, 1863 mmol) were suspended in DMF (2 L) and water (440 mL) to give a yellow slurry. This was degassed for 20 minutes at 30°C. To this mixture was then added Palladium (II) acetate (19.92 g, 89 mmol) in one portion and degassed again for a further 15mins. The reaction was slowly and carefully heated to 100°C. Gas evolution at around 85°C (large volumes of off gassing, presumably due to the loss of Boc group as CO2 and isobutylene). The reaction became darker once off gassing finished and full solubility achieved. The reaction was then heated at 100°C for 3 hours and checked by UPLC-MS (70% desired product, 18% un-cyclised intermediate and 7% des-iodo BOC). The reaction was heated for a further 2 hours and this showed 81% desired product, 12% un-cyclised intermediate and 8% des-iodo BOC. After 7 hours the reaction showed 89% desired product, 4% un-cyclised

intermediate and 7% des-iodo BOC. The reaction was heated overnight. The reaction solution was cooled and filtered through celite and evaporated in-vacuo to a thick dark orange slurry which was then suspended in water (1 L) and acidified to pH~l-2 with aq. HC1 (4N) solution. This was then basified to pH~9 with sat. aq. Na2CO3 solution. Extracted with DCM (2 x 2L) and washed with brine and dried (MgS04). EtOAc (2 L) was added to the solution and then the organics were passed through a 500g silica plug. This was then followed by DCM/EtOAc (1 : 1) (2 L) and finally EtOAc (2 L) (the final wash through contained only baseline). The product containing fractions were combined and reduced in-vacuo to give an orange slurry and then suspended in hot diethyl ether (300 mL), cooled back to ~10°C in an ice bath with stirring before being filtered and washed with 150 mL of ice cold diethyl ether. Pulled dry to afford 5-fluoro-3,4-dihydro-lH-l,8-naphthyridin- 2-one (58.4 g, 351.5 mmol, 39.6 % yield) as a cream fluffy solid. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 10.69 (s, 1H), 8.29 – 7.90 (m, 1H), 6.92 (dd, J = 8.8, 5.7 Hz, 1H), 2.88 (dd, J= 8.3, 7.1 Hz, 2H), 2.57 – 2.47 (m, 2H). UPLC-MS (ES+, Short acidic): 1.04 mm, m/z 167.0 [M+H]+ (100%).

[0413] C. Synthesis of Compounds A-l and A-2

[0414] Step 1: Potassium carbonate (832mg, 6.02mmol) was added to a stirred solution of 5- fluoro-3,4-dihydro-lH-l,8-naphthyridin-2-one (250mg, 1.5mmol), P2 (see step A, 292mg, 1.5mmol; 85% ee) and DMSO (2mL) at room temperature. The reaction was degassed and flushed with nitrogen 3 times before being stirred under a nitrogen atmosphere for 18 hours at 100°C. The reaction mixture was cooled to room temperature and diluted with water (20mL) and the resulting mixture extracted with EtOAc (20mL). A solution of citric acid (1156.3mg, 6.02mmol) in water (lOmL) was then added to the aqueous layer resulting in a solid precipitate which was filtered and dried in vacuo to give (S)- or (R)-6-[(7-oxo-6, 8-dihydro- 5H-1 ,8-naphthyridin-4-yl)oxy]chromane-3 -carboxylic acid (345mg, 1.01 mmol, 67% yield) as a white solid. UPLC-MS (ES+, Short acidic): 1.29 mm, m/z 341.1 [M+H]+. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 12.71 (lH, br s), 10.47 (1H, s), 7.95 (1H, d, J = 6.0Hz), 6.97 (1H, d, J = 2.4Hz), 6.89 (1H, dd, J = 8.4Hz, 2.4Hz), 6.83 (1H, d, J = 8.4Hz), 6.24 (1H, d, J = 6.0Hz), 4.33 (1H, dd, J = 11.2Hz, 3.2Hz), 4.15 (1H, dd, J = 11.2Hz, 7.2Hz), 3.05-2.89 (5H, m), 2.53 (2H, t, J = 7.6Hz).

[0415] Step 2: Propylphosphonic anhydride (0.91mL, 1.52mmol) was added to a stirred solution of (S)-6-[(7-oxo-6,8-dihydro-5H-l,8-naphthyridin-4-yl)oxy]chromane-3-carboxylic acid (345mg, 1.01 mmol), 2-amino- l-(4-fluorophenyl)ethanone hydrochloride (288mg, 1.52mmol), N,N-diisopropylethylamine (0.88mL, 5.07mmol) andDCM (lOmL) at room temperature. After stirring for 2 hours the reaction was complete by LCMS. Water (50mL) and DCM (50mL) were added and the organic layer separated and washed with sat. aq. Na2CO3 (50mL). The organic layer was dried over sodium sulfate and solvent removed in vacuo. The residue was purified by column chromatography using an eluent of 0-5% MeOH in DCM to give (S)- or (R)-N-[2-(4-fluorophenyl)-2-oxo-ethyl]-6-[(7-oxo-6,8-dihydro-5H-l,8-naphthyridin-4-yl)oxy]chromane-3-carboxamide (300mg, 0.63mmol, 62% yield) as a yellow solid. UPLC-MS (ES+, Short acidic): 1.52 mm, m/z 476.4 [M+H]+. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 10.47 (1H, s), 8.60-8.54 (1H, m), 8.08 (1H, dd, J = 8.8Hz, 5.6Hz), 7.95 (1H, d, J = 5.6Hz), 7.41-7.37 (2H, m), 7.01-6.97 (1H, m), 6.90 (1H, dd, J = 8.8Hz, 3.2Hz), 6.86 (1H, d, J = 8.8Hz), 6.25 (1H, d, J = 5.6Hz), 4.65 (2H, d, J = 6.0Hz), 4.42-4.35 (1H, m), 3.96 (1H, t, J = 9.6Hz), 3.03-2.87 (5H, m), 2.55-2.52 (2H, m), 1 exchangeable proton not seen.

[0416] Step 3: (S)- or (R)-N-[2-(4-fluorophenyl)-2-oxo-ethyl]-6-[(7-oxo-6, 8-dihydro- 5H-1, 8-naphthyridin-4-yl)oxy]chromane-3 -carboxamide (300mg, 0.63mmol), ammonium acetate

(1216mg, 15.77mmol) and acetic acid (5mL) were combined in a sealable vial, the vial sealed and the reaction stirred and heated to 130°C for 18 hours after which time the reaction was complete by LCMS. The reaction was cooled to room temperature and AcOH removed in vacuo. DCM (50mL) was added to the residue and sat. aq. Na2CO3 (50mL) added. The organic layer was separated and washed with brine, dried over sodium sulfate and solvent removed in vacuo. The residue was purified by column chromatography using an eluent of 0-10% MeOH in DCM to give (R)- or (S)-5 – [3 – [4-(4-fluorophenyl)- 1 H-imidazol-2-y 1] chroman-6-yl] oxy-3 ,4-dihydro- 1 H- 1 , 8-naphthyridin-2-one (141mg, 0.31mmol, 49% yield) as a yellow solid.

[0417] Chiral LCMS of the product, together with chiral LCMS’s of Compounds A-l and A-2 showed that this product is predominantly Compounds A-l (Fig. 7), with a similar ee to that of the starting acid (85% ee), however accurate analysis cannot be done due to overlap of the peaks. UPLC-MS (ES+, Short acidic): 1.36 mm, m/z 457.2 [M+H]+. Ή NMR (400 MHz, DMSO-d6) d/ppm: 12.31 (0.2H, s), 12.10 (0.8H, s), 10.47 (1H, s), 7.96 (1H, d, J = 6.0Hz), 7.80-7.75 (1.8H, m), 7.69-7.65 (0.2H, m), 7.59-7.78 (0.8H, m), 7.29-7.23 (0.4H, m), 7.19-7.13 (1.8H, m), 7.03-7.00 (1H, m), 6.92 (1H, dd, J = 8.8Hz, 2.8Hz), 6.89 (1H, d, J = 8.8Hz), 6.27 (1H, d, J = 6.0Hz), 4.55-4.48 (1H, m), 4.16-4.09 (1H, m), 3.44-3.36 (1H, m), 3.30-3.21 (1H, m), 3.16-3.09 (1H, m), 2.94 (2H, t, J = 7.2Hz), 2.54 (2H, t, J = 7.2Hz).

[0439] A. Synthesis of P2

[0440] Step 1: 2,5-Dihydroxybenzaldehyde (13.6 kg, 98.18 mol) was dried using 2 x azeotropic concentrations with 2 x 125-130 kg of THF at up to 35 °C, concentrating under vacuum to 27-41 kg each time. The THF was then removed using 4 x azeotropic concentrations with 4 x 179-187 kg of DCM at up to 35 °C, concentrating under vacuum to 27-41 kg each time. The concentrate was diluted with DCM (284 kg) and pyridine p-toluenesulfonate (PPTS; 1.25 kg, 4.97 mol) was added. 3,4-dihydro-2H-pyran (10.4 kg, 123.63 mol) was added slowly at between 25-35 °C and the reaction was stirred at 30 °C for 90 minutes. The mixture was added to a solution of Na2CO3 (7.1 kg) in water (138 kg) at -15 °C and allowed to warm to 25 °C and then stirred for 6 h. The mixture was filtered through Celite® (33 kg), washing with DCM (92.5 kg). The filtrate was allowed to stand for 1 h and then the organic phase was separated and concentrated to 27-41 kg.

The DCM was then removed using 3 x azeotropic concentrations with 3 x 105 kg n-heptane at up to 35 °C, concentrating under vacuum to 27-41 kg each time. The concentrate was diluted with n- heptane (210 kg) and the heated to 30-40 °C and stirred for 6 h. The solution was then cooled to – 5 to -15 °C over 4 h, stirred for 9 h and filtered, washing the filter cake with n-heptane (39.5 kg).

The wet cake was dried at 30-40 °C for 24 h in vacuo to give 2-hydroxy-5-(oxan-2- yloxy)benzaldehyde (9.38 kg, 40.6%). Additional product (8.00 kg, 34.3%) was recovered by dissolving solid attached to the walls of the reaction vessel with 42 kg DCM and concentrating the resultant solution in vacuo to give a further 8.00 kg (34.3% yield ) of product to give a total yield of 74.9% (17.38 kg). LCMS (ES-): 15.18 mm, m/z 221.12 [M-H]-.

[0441] Step 2: To a stirring solution of 2-hydroxy-5-(oxan-2-yloxy)benzaldehyde (16.95 kg, 76.27 mol) in diglyme (113.4 kg) was added K2CO3 (21.4 kg, 154.83 mol) and the mixture was heated to between 80-90 °C. Tert-butyl prop-2-enoate (20.0 kg, 156.04 mol) was added, and the mixture was heated to between 120-130 °C and stirred for 18 hr. The mixture was cooled and

filtered, and the filter cake washed with EtOAc (80.0 kg). The filtrate was diluted with EtOAc (238.0 kg) and water (338.0 kg) and stirred for 1 hr at 20-30 °C, then stood for 2 hr. The mixture was filtered through Celite® (40.0 kg), and the filter cake washed with EtOAc (84.0 kg). The filtrate was left to stand for 2 hr and the aqueous layer was extracted with EtOAc (312.0 kg), stirring for 1 hr at 0-30 °C and standing for 2 hr. The organic layers were combined and washed with 2 x 345 kg water, stirring at between 20-30 °C for 1 hr and standing for 2 hr for each wash. The combined organics were then concentrated to 182.4 kg maintaining the temperature below 50 °C under vacuum. This gave the product tert-butyl 6-(oxan-2-yloxy)-2H-chromene-3-carboxylate as a 9.3% solution in diglyme/EtOAc (66.9% yield) and was used in the next stage without further isolation. LCMS (ES-): 20.26 mm, m/z 247.12 [M-THP]-.

[0442] Step 3: Tert-butyl 6-(oxan-2-yloxy)-2H-chromene-3-carboxylate (16.9 kg, 50.84 mol) as a 181.8 kg solution in diglyme/EtOAc was concentrated to 68 kg under vacuum at 50 °C. TFA (110.3 kg, 1002.46 mol) was added and the reaction was warmed to 40 °C under nitrogen flow and then stirred for 8 hrs. The mixture was then diluted with DCM (222.0 kg) and cooled to between -5 and -15 °C, and then stirred for 7 hrs. The solid was filtered and the filter cake washed with DCM (67.0 kg). The wet cake was dried for 24 hr under vacuum at between 30-40 °C to give 6-hydroxy-2H-chromene-3-carboxylic acid (8.75 kg, 78.5% yield). LCMS (ES-): 0.85 min, m/z 191.11 [M-H]-.

[0443] Step 4: To a stirring solution of 6-hydroxy-2H-chromene-3-carboxylic acid (7.19 kg, 37.4 mol) in N2-degassed EtOH (60 kg) was added (R)-Phanephos (131 g, 0.227 mol), [RuCl2(p-cym)]2 (70 g, 0.114 mol), and Et3N (5.6 kg, 55.3 mol). The reaction atmosphere was replaced with 3 x N2 and then 3 x H2, adjusting the H2 pressure to between 0.5-0.6 MPa, and then stirred for 18 hrs at 40 °C. The atmosphere was then replaced with 3 x N2 and then 3 x H2, adjusting the H2 pressure to between 0.5-0.6 MPa again and the mixture was stirred for a further 18 hrs.

[0444] The mixture was concentrated in vacuo to ca. 30 kg at no more than 40 °C. The reaction was diluted with MTBE (53 kg) and cooled to between 15-25 °C. 5% Na2CO3 (80 kg) was added dropwise, and the mixture was stirred for 2 hrs and stood for 2 hrs at between 15-25 °C. The aqueous layer was collected and 5% Na2CO3 (48 kg) was added to the organic layer, then stirred for 2 hrs at 15-25 °C and filtered through Celite® (10.0 kg). The wet cake was washed with water (20 kg) and the combined aqueous filtrate and aqueous layer were diluted with IP Ac (129.0 kg). The pH of the mixture was adjusted to 1-3 with dropwise addition of 6 N HC1 (29 kg) at 15-25 °C and stirred for 2 hrs. The mixture was filtered through Celite® (10 kg), washing the filter cake with IP Ac (34 kg) and the filtrate was left to stand for 2 hrs at 15-25 °C. The aqueous layer was then extracted with IP Ac (34 kg) and the combined organic layers were concentrated to ca. 35 kg under vacuum at no more than 40 °C. Me-cyclohexane (21 kg) was added dropwise at 15-25 °C and concentrated to ca. 35 kg under vacuum at no more than 40 °C. Further Me-cyclohexane (20 kg) was added dropwise at 15-25 °C and stirred for 3 hrs. The mixture was then stirred at 40-50 °C for 4 hrs and cooled to 15-25 °C over 3 hrs and then stirred for a further 2 hrs.

[0445] The mixture was then filtered, washing the filter cake with 16.4 kg of IPAc/Me-cyclohexane (1/4, v/v). The wet cake was dried for 24 hrs at 35-45 °C under vacuum to give (3R)-6-hydroxy-3,4-dihydro-2H-l-benzopyran-3-carboxylic acid (5.2 kg, 68.6% yield, chiral purity 95.5%). Further product was isolated by rinsing solid from the reaction vessel wall with EtOH (42 kg) and concentrating to dryness. The resulting solid was suspended in IP Ac (875mL) and Me-cyclohexane (2625mL) and stirred for 5 h at 40 °C and then cooled to 20 °C over 2 h and stirred for 16 h and filtered. The filter cake was then split into 2 equal batches and each batch suspended in IP Ac (912mL) and Me-cyclohexane (2737mL). The resulting mixtures were stirred at 45 °C for 18 h and then filtered and the filter cake dried at 45 °C to give (3R)-6-hydroxy-3,4-dihydro-2H-l-benzopyran-3 -carboxylic acid (1.27 kg, 17% yield, chiral purity 96.2%). LCMS (ES-): 1.74 min, m/z 193.03 [M-H]-.

[0446] Chiral resolution to improve chiral purity:

[0447] (3R)-6-Hydroxy-3,4-dihydro-2H-l-benzopyran-3-carboxylicacid (P2; 5.94 kg, 30.59 mol) (chiral purity =95.5%) was dissolved in IP Ac (138.2 kg) and stirred for 2 hrs at 20-30 °C. The solution obtained was filtered through Celite® (12 kg), washing through with IP Ac (25 kg). In a separate vessel, (S)-(+)-2-phenylglycinol (4.4 kg, 32.07 mol) was dissolved in IP Ac (56 kg), stirring for 1 hr at 40-50 °C. The filtrate was added to this solution over 4 hrs at 40-50 °C, and stirred for 1 hr. The mixture was then stirred for 1 hr at 15-25 °C, and concentrated to ca. 120 kg under vacuum at no more than 40 °C. The concentrate was stirred for 3 hrs at 15-25 °C and filtered, washing through with IP Ac (12 kg) (chiral purity = 96.2%).

[0448] The wet cake was redissolved in EtOH (29 kg), heated to 40-50 °C and diluted with IP Ac (64 kg). 30 g of dry product was added and stirred for 30 min at 15-25 °C. The mixture was concentrated to ca. 42 kg under vacuum at no more than 40 °C, and rediluted with IP Ac (64 kg). This step was repeated two additional times, then stirred at 40-50 °C for 8 hrs. The mixture was filtered, washing through with IP Ac (13 kg) (chiral purity = 97.7%). This recrystallisation process was repeated two further times, for a total of 3 recrystallisation rounds to give material with 98.9% chiral purity.

[0449] The wet cake (10.7 kg) was then dissolved in IN HC1 (45.4 kg) and stirred for 1 hr at 20-30 °C. The mixture was filtered through Celite® (11.5 kg), washing through with IP Ac (28 kg). The aqueous layer was extracted with IP Ac (28.8 kg) and the combined organic layers were washed with water (30 kg), then concentrated to ca. 24 kg at 40 °C under vacuum. Me-cyclohexane (19 kg) was added at 20 °C and the mixture was concentrated to ca. 24 kg at 40 °C under vacuum. This step was repeated twice more. The concentrate was diluted with Me-cyclohexane (29 kg) and stirred for 1 hr at 15-25 °C. The mixture was filtered, and the wet cake was rinsed with Me-Cyclohexane (59 kg). The wet cake was dried under vacuum at 35-45 °C for 16 hrs to give (3R)-6-hydroxy-3,4-dihydro-2H-l-benzopyran-3-carboxylic acid (3.02 kg, 50.2% yield).

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=US350349340&_cid=P11-MGN37Z-55206-1

PAT

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesJZP-815
Identifiers
IUPAC name
CAS Number2760321-00-2
PubChem CID162772363
IUPHAR/BPS13233
UNIIP26TTM6U27
KEGGD13132
Chemical and physical data
FormulaC26H21FN4O3
Molar mass456.477 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  “JZP-815”PatSnap.
  2.  Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AA (February 2024). “The role of CRAF in cancer progression: from molecular mechanisms to precision therapies”. Nature Reviews. Cancer24 (2): 105–122. doi:10.1038/s41568-023-00650-xPMID 38195917.

///////////flezurafenib, JZP-815, JZP 815, P26TTM6U27, ANTINEOPLASTIC, CANCER

Ezobresib


Ezobresib

CAS 1800340-40-2

MF C30H33N5O2 MW 495.6 g/mol

2-{3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-[(S)-(oxan-4-yl)(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl}propan-2-ol
bromodomain and extra-terminal motif (BET) inhibitor,
antineoplastic, BMS-986158, BMS 986158, Bristol Myers Squibb, antineoplastic, UNII-X8BW0MQ5PI

2-[3-(3,5-dimethyltriazol-4-yl)-5-[(S)-oxan-4-yl(phenyl)methyl]pyrido[3,2-b]indol-7-yl]propan-2-ol

Ezobresib is an investigational new drug that has been evaluated for the treatment of cancer. It inhibits Bromodomain and Extra-Terminal domain (BET) proteins, with potential antineoplastic activity.[1] Developed by Bristol Myers Squibb, this therapeutic agent has been studied for its efficacy in treating various cancers, including solid tumors and hematological malignancies.[2] Despite showing promise in early-phase clinical trials, recent developments suggest that Bristol Myers Squibb has decided to discontinue further development of ezobresib.[3]

BMS-986158 is under investigation in clinical trial NCT02419417 (Study of BMS-986158 in Subjects With Select Advanced Cancers).

Ezobresib is an inhibitor of the Bromodomain (BRD) and Extra-Terminal domain (BET) family of proteins, with potential antineoplastic activity. Upon administration, ezobresib binds to the acetyl-lysine binding site in the BRD of BET proteins, thereby preventing the interaction between BET proteins and acetylated histones. This disrupts chromatin remodeling and prevents the expression of certain growth-promoting genes, resulting in an inhibition of tumor cell growth. BET proteins (BRD2, BRD3, BRD4 and BRDT) are transcriptional regulators that bind to acetylated lysines on the tails of histones H3 and H4, and regulate chromatin structure and function; they play an important role in the modulation of gene expression during development and cellular growth

SYN

US10112941,

https://patentscope.wipo.int/search/en/detail.jsf?docId=US206490064&_cid=P21-MGLNPO-16484-1

Examples 54 & 55

2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

Step 1: 2-Chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-amine

      To a 100 mL round bottom flask containing 5-bromo-2-chloropyridin-3-amine (2.90 g, 14.0 mmol), 1,4-dimethyl-5-(tributylstannyl)-1H-1,2,3-triazole (2.70 g, 6.99 mmol) [Seefeld, M. A. et al. PCT Int. Appl., 2008, WO2008098104] and Pd(PPh 3(0.61 g, 0.52 mmol) in DMF (20 mL) was added cuprous iodide (0.20 g, 1.05 mmol) and Et 3N (1.9 mL, 14.0 mmol). The reaction mixture was purged with N for 3 min and then heated at 100° C. for 1 h. After cooling to room temperature, the mixture was diluted with 10% LiCl solution and extracted with EtOAc (2×). The combined organics were washed with sat. NaCl, dried over MgSO 4, filtered and concentrated. CH 2Cl was added, and the resulting precipitate was collected by filtration. The mother liquor was concentrated and purified using ISCO silica gel chromatography (40 g column, gradient from 0% to 100% EtOAc/CH 2Cl 2). The resulting solid was combined with the precipitate and triturated with cold EtOAc to give the title compound (740 mg, 47%) as a light tan solid. LCMS (M+H)=224.1; HPLC RT=1.03 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 2: Methyl 3-((2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-yl)amino)benzoate

      Following a procedure analogous to that described in Step 2 of Example 1, 2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-amine (740 mg, 3.31 mmol) was converted to the title compound (644 mg, 54%). 1H NMR (400 MHz, CDCl 3) δ 7.94 (t, J=1.9 Hz, 1H), 7.88 (d, J=2.1 Hz, 1H), 7.83 (dt, J=7.8, 1.3 Hz, 1H), 7.49 (t, J=7.9 Hz, 1H), 7.40 (d, J=2.1 Hz, 1H), 7.36 (ddd, J=8.0, 2.3, 0.9 Hz, 1H), 6.38 (s, 1H), 3.99 (s, 3H), 3.93 (s, 3H), 2.34 (s, 3H); LCMS (M+H)=358.2; HPLC RT=2.34 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 3: Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate

      Following a procedure analogous to that described in Step 3 of Example 1, methyl 3-((2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-yl)amino)benzoate (2.82 g, 7.88 mmol) was converted to the title compound (1.58 g, 62%). 1H NMR (500 MHz, DMSO-d 6) δ 11.93 (s, 1H), 8.62 (d, J=1.8 Hz, 1H), 8.36 (dd, J=8.2, 0.6 Hz, 1H), 8.29-8.22 (m, 1H), 8.16 (d, J=1.8 Hz, 1H), 7.91 (dd, J=8.2, 1.4 Hz, 1H), 4.02 (s, 3H), 3.94 (s, 3H), 2.31 (s, 3H); LCMS (M+H)=322.3; HPLC RT=1.98 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Alternate synthesis of Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate

      A mixture of methyl 3-bromo-5H-pyrido[3,2-b]indole-7-carboxylate (Step 2 of Example 40, 3.000 g, 9.83 mmol), 1,4-dimethyl-5-(tributylstannyl)-1H-1,2,3-triazole (4.18 g, 10.82 mmol), copper (I) iodide (0.281 g, 1.475 mmol), Pd(Ph 3P) (0.738 g, 0.639 mmol) and triethylamine (2.74 mL, 19.66 mmol) in DMF (25 mL) was purged under a nitrogen stream and then heated in a heating block at 95° C. for 2 hours. After cooling to room temperature the reaction mixture was diluted with water and extracted into ethyl acetate. Washed with water, NH 4OH, brine and concentrated. The residue was triturated with 100 mL CHCl 3, filtered off the solid and rinsed with CHCl to give. 1.6 g of product. The filtrate was loaded unto the ISCO column (330 g column, A: DCM; B: 10% MeOH/DCM, 0 to 100% gradient) and chromatographed to give an additional 0.7 g. of methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (2.30 g total, 7.16 mmol, 72.8% yield).

Step 4: Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate

      Following a procedure analogous to that described in Step 4 of Example 1, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (80 mg, 0.25 mmol) was converted to the title compound (65 mg, 53%) after purification by prep HPLC (Column: Phen Luna C18, 30×100 mm, 5 μm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% TFA; Mobile Phase B: 95:5 acetonitrile:water with 0.1% TFA; Gradient: 10-100% B over 14 min, then a 2-min hold at 100% B; Flow: 40 mL/min). 1H NMR (400 MHz, CDCl 3) δ 8.51 (d, J=1.8 Hz, 1H), 8.50 (s, 1H), 8.47 (d, J=8.1 Hz, 1H), 8.10 (dd, J=8.1, 1.1 Hz, 1H), 7.63 (d, J=1.8 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.40-7.30 (m, 3H), 5.62 (d, J=10.6 Hz, 1H), 4.11-4.03 (m, 4H), 3.92-3.83 (m, 4H), 3.56 (td, J=11.9, 1.8 Hz, 1H), 3.35 (td, J=11.9, 1.9 Hz, 1H), 3.18-3.05 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.0 Hz, 1H), 1.71-1.58 (m, 1H), 1.50-1.37 (m, 1H), 1.09 (d, J=12.8 Hz, 1H); LCMS (M+H)=496.3; HPLC RT=2.93 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 5: 2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      Following a procedure analogous to that described in Step 5 of Example 1, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate (65 mg, 0.13 mmol) was converted to racemic 2-[3-(dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol, which was separated by chiral prep SFC (Column: Chiralpak IB 25×2 cm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 50 mL/min); to give Enantiomer A (24 mg, 36%) and Enantiomer B (26 mg, 38%). Enantiomer A: 1H NMR (500 MHz, CDCl 3) δ 8.44 (d, J=1.8 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 7.98 (s, 1H), 7.56 (d, J=1.7 Hz, 1H), 7.47-7.41 (m, 3H), 7.37-7.32 (m, 2H), 7.31-7.28 (m, 1H), 5.59 (d, J=10.5 Hz, 1H), 4.06 (dd, J=11.8, 2.8 Hz, 1H), 3.90-3.84 (m, 4H), 3.55 (td, J=11.9, 2.0 Hz, 1H), 3.35 (td, J=11.9, 2.0 Hz, 1H), 3.15-3.04 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.6 Hz, 1H), 1.92 (s, 1H), 1.75 (s, 6H), 1.69-1.58 (m, 1H), 1.47-1.38 (m, 1H), 1.12 (d, J=13.4 Hz, 1H); LCMS (M+H)=496.4; HPLC RT=2.46 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min). SFC RT=5.50 min (Column: Chiralpak IB 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 2 mL/min); SFC RT=1.06 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min); [α] D 20=−117.23 (c=0.08, CHCl 3). Enantiomer B: 1H NMR (500 MHz, CDCl 3) δ 8.44 (d, J=1.8 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 7.98 (s, 1H), 7.56 (d, J=1.7 Hz, 1H), 7.47-7.41 (m, 3H), 7.37-7.32 (m, 2H), 7.31-7.28 (m, 1H), 5.59 (d, J=10.5 Hz, 1H), 4.06 (dd, J=11.8, 2.8 Hz, 1H), 3.90-3.84 (m, 4H), 3.55 (td, J=11.9, 2.0 Hz, 1H), 3.35 (td, J=11.9, 2.0 Hz, 1H), 3.15-3.04 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.6 Hz, 1H), 1.92 (s, 1H), 1.75 (s, 6H), 1.69-1.58 (m, 1H), 1.47-1.38 (m, 1H), 1.12 (d, J=13.4 Hz, 1H); LCMS (M+H)=496.4; HPLC RT=2.46 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min). SFC RT=8.30 min (Column: Chiralpak IB 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 2 mL/min); SFC RT=2.83 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min); [α] D 20=+88.78 (c=0.10, CHCl 3).

Alternate Synthesis of Examples 54

2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      

Step 1: 2-Chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-amine

      To a 100 mL round bottom flask containing 5-bromo-2-chloropyridin-3-amine (2.90 g, 14.0 mmol), 1,4-dimethyl-5-(tributylstannyl)-1H-1,2,3-triazole (2.70 g, 6.99 mmol) [Seefeld, M. A. et al. PCT Int. Appl., 2008, WO2008098104] and Pd(PPh 3(0.61 g, 0.52 mmol) in DMF (20 mL) was added cuprous iodide (0.20 g, 1.05 mmol) and Et 3N (1.9 mL, 14.0 mmol). The reaction mixture was purged with N for 3 min and then heated at 100° C. for 1 h. After cooling to room temperature, the mixture was diluted with 10% LiCl solution and extracted with EtOAc (2×). The combined organics were washed with sat. NaCl, dried over MgSO 4, filtered and concentrated. CH 2Cl was added, and the resulting precipitate was collected by filtration. The mother liquor was concentrated and purified using ISCO silica gel chromatography (40 g column, gradient from 0% to 100% EtOAc/CH 2Cl 2). The resulting solid was combined with the precipitate and triturated with cold EtOAc to give the title compound (740 mg, 47%) as a light tan solid. LCMS (M+H)=224.1; HPLC RT=1.03 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 2: Methyl 3-((2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-yl)amino)benzoate

      Following a procedure analogous to that described in Step 2 of Example 1, 2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-amine (740 mg, 3.31 mmol) was converted to the title compound (644 mg, 54%). 1H NMR (400 MHz, CDCl 3) δ 7.94 (t, J=1.9 Hz, 1H), 7.88 (d, J=2.1 Hz, 1H), 7.83 (dt, J=7.8, 1.3 Hz, 1H), 7.49 (t, J=7.9 Hz, 1H), 7.40 (d, J=2.1 Hz, 1H), 7.36 (ddd, J=8.0, 2.3, 0.9 Hz, 1H), 6.38 (s, 1H), 3.99 (s, 3H), 3.93 (s, 3H), 2.34 (s, 3H); LCMS (M+H)=358.2; HPLC RT=2.34 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 3: Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate

      Following a procedure analogous to that described in Step 3 of Example 1, methyl 3-((2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-yl)amino)benzoate (2.82 g, 7.88 mmol) was converted to the title compound (1.58 g, 62%). 1H NMR (500 MHz, DMSO-d 6) δ 11.93 (s, 1H), 8.62 (d, J=1.8 Hz, 1H), 8.36 (dd, J=8.2, 0.6 Hz, 1H), 8.29-8.22 (m, 1H), 8.16 (d, J=1.8 Hz, 1H), 7.91 (dd, J=8.2, 1.4 Hz, 1H), 4.02 (s, 3H), 3.94 (s, 3H), 2.31 (s, 3H); LCMS (M+H)=322.3; HPLC RT=1.98 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Alternate synthesis of Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate

      A mixture of methyl 3-bromo-5H-pyrido[3,2-b]indole-7-carboxylate (Step 2 of Example 40, 3.000 g, 9.83 mmol), 1,4-dimethyl-5-(tributylstannyl)-1H-1,2,3-triazole (4.18 g, 10.82 mmol), copper (I) iodide (0.281 g, 1.475 mmol), Pd(Ph 3P) (0.738 g, 0.639 mmol) and triethylamine (2.74 mL, 19.66 mmol) in DMF (25 mL) was purged under a nitrogen stream and then heated in a heating block at 95° C. for 2 hours. After cooling to room temperature the reaction mixture was diluted with water and extracted into ethyl acetate. Washed with water, NH 4OH, brine and concentrated. The residue was triturated with 100 mL CHCl 3, filtered off the solid and rinsed with CHCl to give. 1.6 g of product. The filtrate was loaded unto the ISCO column (330 g column, A: DCM; B: 10% MeOH/DCM, 0 to 100% gradient) and chromatographed to give an additional 0.7 g. of methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (2.30 g total, 7.16 mmol, 72.8% yield).

Step 4: Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate

      Following a procedure analogous to that described in Step 4 of Example 1, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (80 mg, 0.25 mmol) was converted to the title compound (65 mg, 53%) after purification by prep HPLC (Column: Phen Luna C18, 30×100 mm, 5 μm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% TFA; Mobile Phase B: 95:5 acetonitrile:water with 0.1% TFA; Gradient: 10-100% B over 14 min, then a 2-min hold at 100% B; Flow: 40 mL/min). 1H NMR (400 MHz, CDCl 3) δ 8.51 (d, J=1.8 Hz, 1H), 8.50 (s, 1H), 8.47 (d, J=8.1 Hz, 1H), 8.10 (dd, J=8.1, 1.1 Hz, 1H), 7.63 (d, J=1.8 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.40-7.30 (m, 3H), 5.62 (d, J=10.6 Hz, 1H), 4.11-4.03 (m, 4H), 3.92-3.83 (m, 4H), 3.56 (td, J=11.9, 1.8 Hz, 1H), 3.35 (td, J=11.9, 1.9 Hz, 1H), 3.18-3.05 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.0 Hz, 1H), 1.71-1.58 (m, 1H), 1.50-1.37 (m, 1H), 1.09 (d, J=12.8 Hz, 1H); LCMS (M+H)=496.3; HPLC RT=2.93 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 5: 2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      Following a procedure analogous to that described in Step 5 of Example 1, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate (65 mg, 0.13 mmol) was converted to racemic 2-[3-(dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol, which was separated by chiral prep SFC (Column: Chiralpak IB 25×2 cm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 50 mL/min); to give Enantiomer A (24 mg, 36%) and Enantiomer B (26 mg, 38%). Enantiomer A: 1H NMR (500 MHz, CDCl 3) δ 8.44 (d, J=1.8 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 7.98 (s, 1H), 7.56 (d, J=1.7 Hz, 1H), 7.47-7.41 (m, 3H), 7.37-7.32 (m, 2H), 7.31-7.28 (m, 1H), 5.59 (d, J=10.5 Hz, 1H), 4.06 (dd, J=11.8, 2.8 Hz, 1H), 3.90-3.84 (m, 4H), 3.55 (td, J=11.9, 2.0 Hz, 1H), 3.35 (td, J=11.9, 2.0 Hz, 1H), 3.15-3.04 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.6 Hz, 1H), 1.92 (s, 1H), 1.75 (s, 6H), 1.69-1.58 (m, 1H), 1.47-1.38 (m, 1H), 1.12 (d, J=13.4 Hz, 1H); LCMS (M+H)=496.4; HPLC RT=2.46 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min). SFC RT=5.50 min (Column: Chiralpak IB 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 2 mL/min); SFC RT=1.06 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min); [α] D 20=−117.23 (c=0.08, CHCl 3). Enantiomer B: 1H NMR (500 MHz, CDCl 3) δ 8.44 (d, J=1.8 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 7.98 (s, 1H), 7.56 (d, J=1.7 Hz, 1H), 7.47-7.41 (m, 3H), 7.37-7.32 (m, 2H), 7.31-7.28 (m, 1H), 5.59 (d, J=10.5 Hz, 1H), 4.06 (dd, J=11.8, 2.8 Hz, 1H), 3.90-3.84 (m, 4H), 3.55 (td, J=11.9, 2.0 Hz, 1H), 3.35 (td, J=11.9, 2.0 Hz, 1H), 3.15-3.04 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.6 Hz, 1H), 1.92 (s, 1H), 1.75 (s, 6H), 1.69-1.58 (m, 1H), 1.47-1.38 (m, 1H), 1.12 (d, J=13.4 Hz, 1H); LCMS (M+H)=496.4; HPLC RT=2.46 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min). SFC RT=8.30 min (Column: Chiralpak IB 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 2 mL/min); SFC RT=2.83 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min); [α] D 20=+88.78 (c=0.10, CHCl 3).

Alternate Synthesis of Examples 54

2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      
 (MOL) (CDX)

Step 1: (S)-methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate

      The enantiomers of phenyl(tetrahydro-2H-pyran-4-yl)methanol (2.0 g, 10.4 mmol) [Orjales, A. et al. J. Med. Chem. 2003, 46, 5512-5532], were separated on preparative SFC. (Column: Chiralpak AD 5×25 cm, 5 μm; Mobile Phase: 74/26 CO 2/MeOH; Flow: 270 mL/min; Temperature 30° C.). The separated peaks were concentrated and dried under vacuum to give white solids. Enantiomer A: (S)-phenyl(tetrahydro-2H-pyran-4-yl)methanol: (0.91 g, 45.5%) SFC RT=2.32 min (Column: Chiralpac AD 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 3 mL/min); Temperature 40° C. Enantiomer B: (R)-phenyl(tetrahydro-2H-pyran-4-yl)methanol. (0.92 g, 46%) SFC RT=3.09 min (Column: Chiralpac AD 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 3 mL/min); Temperature 40° C.
      Following a procedure analogous to that described in Step 4 of Example 1 except using toluene (120 mL) as the solvent, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (4 g, 12.45 mmol) and (R)-phenyl(tetrahydro-2H-pyran-4-yl)methanol (Enantiomer B above, 5.86 g, 30.5 mmol) was converted to the title compound (5.0 g, 81%). HPLC RT=2.91 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 2. (S)-2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      A 500 mL round bottom flask containing (S)-methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate (5.0 g, 10.09 mmol) in THF (150 mL) was cooled in an ice/MeOH bath. MeMgBr, (3M in Et 2O, 17.0 mL, 51.0 mmol) was added slowly over 4 min. The resulting solution was stirred for 2 h and then quenched carefully with sat. NH 4Cl. The reaction mixture was diluted with 10% LiCl solution extracted with EtOAc. The organic layer was dried over MgSO 4, filtered and concentrated. The crude material was purified using ISCO silica gel chromatography (120 g column, gradient from 0% to 6% MeOH/CH 2Cl 2). The product was collected and concentrated then dissolved in hot MeOH (35 mL). To the mixture was added 15 mL water and the mixture was cooled to room temperature. The resulting white precipitate was collected by filtration with 2:1 MeOH/water rinse then dried under vacuum to give the title compound (3.2 g, 62%). 1H NMR (500 MHz, CDCl 3) δ 8.40 (d, J=1.8 Hz, 1H), 8.33 (d, J=8.2 Hz, 1H), 7.93 (s, 1H), 7.53 (d, J=1.8 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.42 (dd, J=8.2, 1.4 Hz, 1H), 7.37-7.31 (m, 2H), 7.30-7.28 (m, 1H), 5.56 (d, J=10.5 Hz, 1H), 4.06 (d, J=8.9 Hz, 1H), 3.89-3.83 (m, 1H), 3.55 (td, J=11.9, 2.1 Hz, 1H), 3.35 (td, J=11.9, 2.1 Hz, 1H), 3.10 (q, J=10.8 Hz, 1H), 2.39 (s, 3H), 2.23 (s, 3H), 2.03 (d, J=14.2 Hz, 1H), 1.89 (s, 1H), 1.74 (s, 6H), 1.68-1.59 (m, 1H), 1.46-1.36 (m, 1H), 1.12 (d, J=12.2 Hz, 1H); LCMS (M+H)=496.3; HPLC RT=2.44 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min); SFC RT=2.01 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 60/40 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min). SFC RT=1.06 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min).

Step 1: (S)-methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate

      The enantiomers of phenyl(tetrahydro-2H-pyran-4-yl)methanol (2.0 g, 10.4 mmol) [Orjales, A. et al. J. Med. Chem. 2003, 46, 5512-5532], were separated on preparative SFC. (Column: Chiralpak AD 5×25 cm, 5 μm; Mobile Phase: 74/26 CO 2/MeOH; Flow: 270 mL/min; Temperature 30° C.). The separated peaks were concentrated and dried under vacuum to give white solids. Enantiomer A: (S)-phenyl(tetrahydro-2H-pyran-4-yl)methanol: (0.91 g, 45.5%) SFC RT=2.32 min (Column: Chiralpac AD 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 3 mL/min); Temperature 40° C. Enantiomer B: (R)-phenyl(tetrahydro-2H-pyran-4-yl)methanol. (0.92 g, 46%) SFC RT=3.09 min (Column: Chiralpac AD 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 3 mL/min); Temperature 40° C.
      Following a procedure analogous to that described in Step 4 of Example 1 except using toluene (120 mL) as the solvent, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (4 g, 12.45 mmol) and (R)-phenyl(tetrahydro-2H-pyran-4-yl)methanol (Enantiomer B above, 5.86 g, 30.5 mmol) was converted to the title compound (5.0 g, 81%). HPLC RT=2.91 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 2. (S)-2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      A 500 mL round bottom flask containing (S)-methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate (5.0 g, 10.09 mmol) in THF (150 mL) was cooled in an ice/MeOH bath. MeMgBr, (3M in Et 2O, 17.0 mL, 51.0 mmol) was added slowly over 4 min. The resulting solution was stirred for 2 h and then quenched carefully with sat. NH 4Cl. The reaction mixture was diluted with 10% LiCl solution extracted with EtOAc. The organic layer was dried over MgSO 4, filtered and concentrated. The crude material was purified using ISCO silica gel chromatography (120 g column, gradient from 0% to 6% MeOH/CH 2Cl 2). The product was collected and concentrated then dissolved in hot MeOH (35 mL). To the mixture was added 15 mL water and the mixture was cooled to room temperature. The resulting white precipitate was collected by filtration with 2:1 MeOH/water rinse then dried under vacuum to give the title compound (3.2 g, 62%). 1H NMR (500 MHz, CDCl 3) δ 8.40 (d, J=1.8 Hz, 1H), 8.33 (d, J=8.2 Hz, 1H), 7.93 (s, 1H), 7.53 (d, J=1.8 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.42 (dd, J=8.2, 1.4 Hz, 1H), 7.37-7.31 (m, 2H), 7.30-7.28 (m, 1H), 5.56 (d, J=10.5 Hz, 1H), 4.06 (d, J=8.9 Hz, 1H), 3.89-3.83 (m, 1H), 3.55 (td, J=11.9, 2.1 Hz, 1H), 3.35 (td, J=11.9, 2.1 Hz, 1H), 3.10 (q, J=10.8 Hz, 1H), 2.39 (s, 3H), 2.23 (s, 3H), 2.03 (d, J=14.2 Hz, 1H), 1.89 (s, 1H), 1.74 (s, 6H), 1.68-1.59 (m, 1H), 1.46-1.36 (m, 1H), 1.12 (d, J=12.2 Hz, 1H); LCMS (M+H)=496.3; HPLC RT=2.44 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min); SFC RT=2.01 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 60/40 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min). SFC RT=1.06 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min).

PATENT

CN-108558871

WO-2015100282

LIT

PAT

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesBMS-986158
Identifiers
IUPAC name
CAS Number1800340-40-2
PubChem CID118196485
DrugBankDB15435
ChemSpider58828664
UNIIX8BW0MQ5PI
KEGGD12710
ChEMBLChEMBL4297458
Chemical and physical data
FormulaC30H33N5O2
Molar mass495.627 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  Ma Z, Zhang C, Bolinger AA, Zhou J (October 2024). “An updated patent review of BRD4 degraders”Expert Opinion on Therapeutic Patents34 (10): 929–951. doi:10.1080/13543776.2024.2400166PMC 11427152PMID 39219068.
  2.  “Clinical Trials Using Ezobresib”National Cancer Institute.
  3.  Brown A. “Bristol backs out of BET inhibition”ApexOnco.

////////////Ezobresib, antineoplastic, BMS-986158, BMS 986158, Bristol Myers Squibb, antineoplastic, UNII-X8BW0MQ5PI

Epsametostat


Epsametostat

CAS 2202678-06-4

MF C31H36F3N7O3 MW611.7 g/mol

N-[(4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl]-6-methyl-1-(6-methylpyridazin-3-yl)-5-{(1R)-1-[4-(2,2,2-trifluoroethyl)piperazin-1-yl]ethyl}indolizine-7-carboxamide

N-[(4-methoxy-6-methyl-2-oxo-1H-pyridin-3-yl)methyl]-6-methyl-1-(6-methylpyridazin-3-yl)-5-[(1R)-1-[4-(2,2,2-trifluoroethyl)piperazin-1-yl]ethyl]indolizine-7-carboxamide
histone N-methyltransferase inhibitor, antineoplastic, Shanghai Haihe Pharmaceutical, HH 2853, (R)-HH2853

Epsametostat is an investigational new drug that is being evaluated for the treatment of peripheral T-cell lymphoma. It is a EZH1/EZH2 inhibitor developed by Shanghai Haihe Pharmaceutical Research & Development Co., Ltd.[1][2][3]

PAT

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018045971&_cid=P22-MGK809-27208-1

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

References

  1.  An R, Li YQ, Lin YL, Xu F, Li MM, Liu Z (February 2023). “EZH1/2 as targets for cancer therapy”. Cancer Gene Therapy30 (2): 221–235. doi:10.1038/s41417-022-00555-1PMID 36369341.
  2.  Wei L, Mei D, Hu S, Du S (August 2024). “Dual-target EZH2 inhibitor: latest advances in medicinal chemistry”Future Medicinal Chemistry16 (15): 1561–1582. doi:10.1080/17568919.2024.2380243PMC 11370917PMID 39082677.
  3.  “Epsametostat”PatSnap.
Clinical data
Other namesHH2853
Identifiers
IUPAC name
CAS Number2202678-06-4
PubChem CID134340937
ChemSpider115010245
UNIIP8U5JF6NBY
Chemical and physical data
FormulaC31H36F3N7O3
Molar mass611.670 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

//////////Epsametostat, histone N-methyltransferase inhibitor, antineoplastic, Shanghai Haihe Pharmaceutical, HH 2853, (R)-HH2853

Enzomenib


Enzomenib

CAS 2412555-70-3

MF C33H43FN6O3 MW 590.7 g/mol

5-fluoro-2-[4-[7-[(1S,3S,4R)-5-methylidene-2-azabicyclo[2.2.2]octane-3-carbonyl]-2,7-diazaspiro[3.5]nonan-2-yl]pyrimidin-5-yl]oxy-N,N-di(propan-2-yl)benzamide

5-fluoro-2-[(4-{7-[(1S,3S,4R)-5-methylidene-2-azabicyclo[2.2.2]octane-3-carbonyl]-2,7-
diazaspiro[3.5]nonan-2-yl}pyrimidin-5-yl)oxy]-N,Ndi(propan-2-yl)benzamide
menin-MLL (mixed-lineage leukemia) protein, interaction inhibitor, antineoplastic, DSP-5336, Fast Track,  Orphan Drug designations

Enzomenib is an investigational new drug that is being evaluated for the treatment of acute leukemia.[1] It is a small molecule inhibitor that targets the interaction between menin and mixed-lineage leukemia (MLL) proteins.[2] Enzomenib particularly in patients with KMT2A (MLL) rearrangements or NPM1 mutations.[3]

The U.S. Food and Drug Administration (FDA) has granted both Fast Track and Orphan Drug designations to Enzomenib.[4]

Enzomenib is an orally bioavailable, small molecule inhibitor of menin, with potential antineoplastic activity. Upon oral administration, enzomenib targets and binds to the nuclear protein menin, thereby preventing the interaction between the two proteins menin and menin-mixed lineage leukemia (MLL; myeloid/lymphoid leukemia; KMT2A) and the formation of the menin-MLL complex. This reduces the expression of downstream target genes and results in an inhibition of the proliferation of MLL-rearranged leukemic cells. The menin-MLL complex plays a key role in the survival, growth, transformation and proliferation of certain kinds of leukemia cells.

PAT

US10815241, Example 6

https://patentscope.wipo.int/search/en/detail.jsf?docId=US295244745&_cid=P21-MGISYZ-31333-1

Example 3 to 19

      The following compounds of Examples 3 to 19 were prepared according to a similar method to Example 1 by using each corresponding starting compound.
      

PAT

Optically active azabicyclo derivatives

Publication Number: JP-7614262-B2

Priority Date: 2018-08-27

Grant Date: 2025-01-15

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

References

  1.  “Enzomenib – Sumitomo Pharma”AdisInsight. Springer Nature Switzerland AG.
  2.  Dempke WC, Desole M, Chiusolo P, Sica S, Schmidt-Hieber M (September 2023). “Targeting the undruggable: menin inhibitors ante portas”Journal of Cancer Research and Clinical Oncology149 (11): 9451–9459. doi:10.1007/s00432-023-04752-9PMC 11798168PMID 37103568.
  3.  “Sumitomo Pharma Presents New Clinical Data on DSP-5336 at the European Hematology Association 2024 Congress”Sumitomo Pharma Co., Ltd. 14 June 2024.
  4.  Flaherty C (15 July 2024). “FDA Grants Fast Track Designation to DSP-5336 in KMT2A/NMP1+ AML”OncLive.
Clinical data
Other namesDSP-5336
Identifiers
IUPAC name
CAS Number2412555-70-3
PubChem CID146430058
DrugBankDB18514
ChemSpider129534736
UNIIVW83Y2JLZ5
ChEMBLChEMBL5314915
Chemical and physical data
FormulaC33H43FN6O3
Molar mass590.744 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

//////////enzomenib, Interaction inhibitor, antineoplastic, DSP 5336, Fast Track,  Orphan Drug designations

Dapolsertib


Dapolsertib

CAS 1616359-00-2

MF C15H18Br2N4O MW 446.14 g/mol

5,6-dibromo-4-nitro-2-piperidin-4-yl-1-propan-2-ylbenzimidazole

5,6-dibromo-4-nitro-2-(piperidin-4-yl)-1-(propan-2-yl)-1H-1,3-benzimidazole
serine/ threonine kinase inhibitor, antineoplastic

Ryvu Therapeutics SA, MEN1703, SEL24-B489

  • SEL24-B489
  • SEL-24 free base
  • 9M7X64VTLI
  • SEL-24

Dapolsertib is an investigational new drug that is being evaluated for the treatment of cancer. It is dual inhibitor of PIM family of serine/threonine protein kinases and mutant forms of FMS-related tyrosine kinase 3 (FLT3) that is being developed by Ryvu Therapeutics SA.[1]

Dapolsertib is an orally available inhibitor of PIM family serine/threonine protein kinases and mutant forms of FMS-related tyrosine kinase 3 (FLT3; STK1) with potential antineoplastic activity. Upon oral administration, dapolsertib binds to and inhibits the kinase activities of PIM-1, -2 and -3, and mutant forms of FLT3, which may result in the interruption of the G1/S phase cell cycle transition, an inhibition of cell proliferation, and an induction of apoptosis in tumor cells that overexpress PIMs or express mutant forms of FLT3. FLT3, a tyrosine kinase receptor that is overexpressed or mutated in various cancers, plays a role in signaling pathways that regulate hematopoietic progenitor cell proliferation, and in leukemic cell proliferation and survival. PIM kinases, downstream effectors of many cytokine and growth factor signaling pathways, including the FLT3 signaling pathway, play key roles in cell cycle progression and apoptosis inhibition and may be overexpressed in various malignancies.

  • MEN1703 (SEL24) in Participants With Acute Myeloid LeukemiaCTID: NCT03008187Phase: Phase 1/Phase 2Status: CompletedDate: 2025-04-29
  • MEN1703 (SEL24) to Treat Relapsed or Refractory Aggressive B-cell Non-Hodgkin Lymphoma (JASPIS-01)CTID: NCT06534437Phase: Phase 2Status: RecruitingDate: 2025-04-11

PAT

WO2014096388

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014096388&_cid=P12-MG5YKY-59978-1

3.9. Compounds of Example 26:

3.9. Compounds of Example 26:

5,6-dibromo-4-nitro-2-(piperidin-4-yl)-1-(propan-2-yl)-1H-1,3-benzodiazole (Example 26A):

4,5-dibromo-1-N-(propan-2-yl)benzene-1,2-diamine (2,8g, 9,lmmol) and

isonipeconic acid (1,17g, 9,lmmol) were taken up in phosphoric acid (17,82g, 0,18mol). The resulting mixture was stirred at 180°C for 3,5 hours. The mixture was allowed to cool to RT and diluted with water to 200ml. The solution was basified to pH 14.0 using solid NaOH. The resulting precipitate was then filtered off and washed repeatedly with MeOH. The filtrate was concentrated in-vacuo. The product was purified on Al2O3 (basic) using DCM/MeOH/NH3 sat. in MEOH (25: 15: 1). The obtained product (8,7mmol, 3,9g) was dissolved in cone. H2SO4 (30ml). Next KNO3 (8,7mmol, 0,89g) was added in one portion at 0° C. The resulting mixture was stirred at 0°C for 3h and at RT overnight. Then the mixture was poured onto ice. The product was filtered and washed with water.The product was purified on on Al2O3 (basic) using DCM/MeOH/NH3 sat. in MEOH (25: 15: 1) to afford 5,6-dibromo-4- nitro-2-(piperidin-4-yl)-1-(propan-2-yl)-1H-1,3-benzodiazole (1,9g). 1H NMR (600 MHz, DMSO) δ 8.74 (bs, 1H), 8.48 (s, 1H), 8.35 (bs, 1H), 4.94 (hept, J = 6.8 Hz, 1H), 3.52 – 3.46 (m, 1H), 3.42 – 3.37 (m, 2H), 3.08 (bs, 2H), 2.07 – 1.96 (m, 4H), 1.60 (d, J = 6.9 Hz, 6H). m/z 446,8; rt 2,7min.

5,6-dibromo-4-nitro-2-(piperidin-4-yl)-1-(propan-2-yl)-1H-1,3-benzodiazole (Example 26A):

4,5-dibromo-1-N-(propan-2-yl)benzene-1,2-diamine (2,8g, 9,lmmol) and

isonipeconic acid (1,17g, 9,lmmol) were taken up in phosphoric acid (17,82g, 0,18mol). The resulting mixture was stirred at 180°C for 3,5 hours. The mixture was allowed to cool to RT and diluted with water to 200ml. The solution was basified to pH 14.0 using solid NaOH. The resulting precipitate was then filtered off and washed repeatedly with MeOH. The filtrate was concentrated in-vacuo. The product was purified on Al2O3 (basic) using DCM/MeOH/NH3 sat. in MEOH (25: 15: 1). The obtained product (8,7mmol, 3,9g) was dissolved in cone. H2SO4 (30ml). Next KNO3 (8,7mmol, 0,89g) was added in one portion at 0° C. The resulting mixture was stirred at 0°C for 3h and at RT overnight. Then the mixture was poured onto ice. The product was filtered and washed with water.The product was purified on on Al2O3 (basic) using DCM/MeOH/NH3 sat. in MEOH (25: 15: 1) to afford 5,6-dibromo-4- nitro-2-(piperidin-4-yl)-1-(propan-2-yl)-1H-1,3-benzodiazole (1,9g). 1H NMR (600 MHz, DMSO) δ 8.74 (bs, 1H), 8.48 (s, 1H), 8.35 (bs, 1H), 4.94 (hept, J = 6.8 Hz, 1H), 3.52 – 3.46 (m, 1H), 3.42 – 3.37 (m, 2H), 3.08 (bs, 2H), 2.07 – 1.96 (m, 4H), 1.60 (d, J = 6.9 Hz, 6H). m/z 446,8; rt 2,7min.

PAT

Novel benzimidazole derivatives as kinase inhibitors

Publication Number: WO-2014096388-A2

Priority Date: 2012-12-21

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesMEN1703, SEL24-B489
Identifiers
IUPAC name
CAS Number1616359-00-2
PubChem CID76286825
IUPHAR/BPS13204
ChemSpider81367232
UNII9M7X64VTLI
ChEMBLChEMBL4467168
Chemical and physical data
FormulaC15H18Br2N4O2
Molar mass446.143 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  Wu M, Li C, Zhu X (December 2018). “FLT3 inhibitors in acute myeloid leukemia”Journal of Hematology & Oncology11 (1) 133. doi:10.1186/s13045-018-0675-4PMC 6280371PMID 30514344.

//////////Dapolsertib, antineoplastic, MEN1703, SEL24-B489, MEN 1703, SEL24 B489, Ryvu Therapeutics SA

Crelosidenib


Crelosidenib

CAS 2230263-60-0

7-{[(1S)-1-(4-{(1S)-1-[4-(prop-2-enoyl)piperazin-1-yl]-2-cyclopropylethyl}phenyl)ethyl]amino}-1-ethyl-1,4-dihydro-2Hpyrimido[4,5-d][1,3]oxazin-2-one
isocitrate dehydrogenase 1 (IDH1) inhibitor, antineoplastic

MF C28H36N6O3 MW 504.6 g/mol

  • LY3410738
  • 7-[[(1S)-1-[4-[(1S)-2-cyclopropyl-1-(4-prop-2-enoylpiperazin-1-yl)ethyl]phenyl]ethyl]amino]-1-ethyl-4H-pyrimido[4,5-d][1,3]oxazin-2-one
  • 7-(((1S)-1-(4-((1S)-2-cyclopropyl-1-(4-prop-2-enoylpiperazin-1-yl)ethyl)phenyl)ethyl)amino)-1-ethyl-4H-pyrimido(4,5-d)(1,3)oxazin-2-one

Crelosidenib is an investigational new drug that is being evaluated for the treatment of cancer. It acts as a selective inhibitor of isocitrate dehydrogenase 1 (IDH1), an enzyme that plays a crucial role in cellular metabolism and is frequently mutated in various cancers, including cholangiocarcinoma.[1][2]

Crelosidenib is an orally available inhibitor of mutant form of the isocitrate dehydrogenase type 1 (IDH1; IDH-1; IDH1 [NADP+] soluble), including the substitution mutation at arginine (R) in position 132, IDH1(R132), with potential antineoplastic activity. Upon oral administration, crelosidenib specifically and covalently binds to and modifies a single cysteine (Cys269) in the allosteric binding pocket of mutant forms of IDH1, thereby inactivating IDH1. This inhibits the formation of the oncometabolite 2-hydroxyglutarate (2HG) from alpha-ketoglutarate (a-KG). This depletes 2-HG levels, prevents 2HG-mediated signaling and leads to both an induction of cellular differentiation and an inhibition of cellular proliferation in tumor cells expressing mutant forms of IDH1. In addition, crelosidenib has the ability to cross the blood-brain barrier (BBB). IDH1 mutations, including IDH1(R132) mutations, are highly expressed in certain malignancies, including gliomas; they initiate and drive cancer growth by both blocking cell differentiation and catalyzing the formation of 2HG.

Syn

example 2 [US11001596B2]

https://patentscope.wipo.int/search/en/detail.jsf?docId=US289829390&_cid=P12-MG4UBU-88518-1

PAT

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesLY3410738
Identifiers
IUPAC name
CAS Number2230263-60-0
PubChem CID135125140
IUPHAR/BPS12340
ChemSpider115009279
UNIIA4DU555RMD
KEGGD12708
Chemical and physical data
FormulaC28H36N6O3
Molar mass504.635 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  Zarei M, Hue JJ, Hajihassani O, Graor HJ, Katayama ES, Loftus AW, et al. (February 2022). “Clinical development of IDH1 inhibitors for cancer therapy”. Cancer Treatment Reviews103 102334. doi:10.1016/j.ctrv.2021.102334PMID 34974243.
  2.  Demir T, Moloney C, Mahalingam D (July 2024). “Emerging targeted therapies and strategies to overcome resistance in biliary tract cancers”. Critical Reviews in Oncology/Hematology199 104388. doi:10.1016/j.critrevonc.2024.104388PMID 38754771.

.///////////Crelosidenib, Antineoplastic, cholangiocarcinoma, LY3410738, LY 3410738

Camibirstat


Camibirstat

CAS 2671128-05-3

N-{(2S)-1-[(4-{6-[(2R,6S)-2,6-dimethylmorpholin-4-yl]pyridin-2-yl}-1,3-thiazol-2-yl)amino]-3-methoxy-1-oxopropan-2-yl}-1-(methanesulfonyl)-1H-pyrrole-3-carboxamide
ATPase inhibitor, antineoplastic

MW C24H30N6O6S2 MF 562.7 g/mol

  • 1H-Pyrrole-3-carboxamide, N-((1S)-2-((4-(6-((2R,6S)-2,6-dimethyl-4-morpholinyl)-2-pyridinyl)-2-thiazolyl)amino)-1-(methoxymethyl)-2-oxoethyl)-1-(methylsulfonyl)-
  • N-[(2S)-1-[[4-[6-[(2S,6R)-2,6-dimethylmorpholin-4-yl]pyridin-2-yl]-1,3-thiazol-2-yl]amino]-3-methoxy-1-oxopropan-2-yl]-1-methylsulfonylpyrrole-3-carboxamide
  • FHD 286

Camibirstat is an investigational new drug that is being evaluated for the treatment of cancer. It is a small molecule that acts as a selective inhibitor of SMARCA2 and SMARCA4, which are key components of the SWI/SNF chromatin remodeling complex.[1]

It is being developed by Foghorn Therapeutics.[2]

Camibirstat is an orally bioavailable, allosteric, small molecule inhibitor of transcription activator BRG1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4; SMARCA4) and BRM (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 2; SMARCA2), with potential antineoplastic activity. Upon oral administration, camibirstat targets, binds to, and inhibits the activity of BRG1 and/or BRM, the primary ATPase components and mutually exclusive subunits of the BRG1/BRM-associated factor (BAF) complexes. This may lead to the inhibition of the SWI/SNF chromatin remodeling complex, disrupt chromatin remodeling and gene expression, and result in the downregulation of oncogenic pathways and the inhibition of tumor cell proliferation. BAF is an important regulator of transcriptional programs and gene expression. Mutations in BAF or its transcription factor partners are found in certain diseases including cancers.

PAT

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=US331910582&_cid=P11-MG1TKU-39131-1

Example 1. Preparation of N—((S)-1-((4-(6-(cis-2,6-dimethylmorpholino)pyridin-2-yl)thiazol-2-yl)amino)-3-methoxy-1-oxopropan-2-yl)-1-(methylsulfonyl)-1H-pyrrole-3-carboxamide

      N—((S)-1-((4-(6-(cis-2,6-dimethylmorpholino)pyridin-2-yl)thiazol-2-yl)amino)-3-methoxy-1-oxopropan-2-yl)-1-(methylsulfonyl)-1H-pyrrole-3-carboxamide was synthesized as shown in Scheme 1 below.

Step 7: Preparation of N—((S)-1-((4-(6-(cis-2,6-dimethylmorpholino)pyridin-2-yl)thiazol-2-yl)amino)-3-methoxy-1-oxopropan-2-O-1-(methylsulfonyl)-1H-pyrrole-3-carboxamide

   To a solution of 1-methylsulfonylpyrrole-3-carboxylic acid (Intermediate K) (2.43 g, 12.9 mmol), EDCI (2.69 g, 14.0 mmol), HOBt (1.89 g, 14.0 mmol), and DIPEA (10.2 mL, 58.4 mmol) in dichloromethane (50 mL) was added Intermediate J (5.00 g, 11.7 mmol). After stirring at room temperature for 4 h, the reaction mixture was concentrated under reduced pressure. The residue was diluted with water and extracted three times with ethyl acetate. The combined organic layers were washed three times with saturated aqueous NH 4Cl, once with brine, dried over Na 2SO 4, filtered, and concentrated under reduced pressure to give a residue. The residue was purified by silica gel column chromatography (petroleum ether:ethyl acetate=1:1 to 1:2). The residue was triturated with methyl tert-butyl ether. After 0.5 h, the suspension was filtered, the filter cake was washed with methyl tert-butyl ether, and dried in vacuo. The solid was dissolved in dimethyl sulfoxide (12 mL) and added dropwise to water (800 mL). The suspension was filtered to give wet filter cake. The filter cake was suspended in water and stirred at room temperature. After 1 hour, the solid was collected by filtration, washed three times with water and dried in vacuo to give N—((S)-1-((4-(6-(cis-2,6-dimethylmorpholino)pyridin-2-yl)thiazol-2-yl)amino)-3-methoxy-1-oxopropan-2-yl)-1-(methylsulfonyl)-1H-pyrrole-3-carboxamide (3.9 g, 6.93 mmol, 59.3% yield) as a white solid.
      LCMS (ESI) m/z: [M+H] +=563.1.
       1H NMR (400 MHz, DMSO-d6) δ 12.49 (br s, 1H), 8.51 (d, J=7.2 Hz, 1H), 7.98-7.97 (m, 1H), 7.78 (s, 1H), 7.67-7.57 (m, 1H), 7.29-7.27 (m, 1H), 7.26 (d, J=7.2 Hz, 1H), 6.88-6.74 (m, 2H), 4.94-4.91 (m, 1H), 4.25 (d, J=11.6 Hz, 2H), 3.77-3.67 (m, 2H), 3.63-3.62 (m, 2H), 3.57 (s, 3H), 3.31 (s, 3H), 2.44-2.38 (m, 2H), 1.18 (d, J=6.0 Hz, 6H).

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesFHD286
Identifiers
IUPAC name
CAS Number2671128-05-3
PubChem CID156818030
ChemSpider115010237
UNIIQHA5XLA4SA
ChEMBLChEMBL5095181
Chemical and physical data
FormulaC24H30N6O6S2
Molar mass562.66 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  Yu L, Wu D (July 2024). “SMARCA2 and SMARCA4 Participate in DNA Damage Repair”Frontiers in Bioscience (Landmark Edition)29 (7): 262. doi:10.31083/j.fbl2907262PMID 39082357.
  2.  “Camibirstat”PatSnap.

/////////////Camibirstat, ATPase inhibitor, antineoplastic, Foghorn Therapeutics, FHD 286

Brimarafenib


Brimarafenib

CAS 1643326-82-2

MF C24H17F3N4O4 MW482.4 g/mol

N-{(1S,1aS,6bS)-5-[(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-4-yl)oxy]-1a,6b-dihydro-1H-cyclopropa[b]benzofuran-1-yl}-N′-(2,4,5-trifluorophenyl)urea
rapidly accelerated fibrosarcoma (Raf) kinase inhibitor,

  • 1-((1S,1aS,6bS)-5-((7-oxo-6,8-dihydro-5H-1,8-naphthyridin-4-yl)oxy)-1a,6b-dihydro-1H-cyclopropa(b)(1)benzofuran-1-yl)-3-(2,4,5-trifluorophenyl)urea
  • 1-[(1S,1aS,6bS)-5-[(7-oxo-6,8-dihydro-5H-1,8-naphthyridin-4-yl)oxy]-1a,6b-dihydro-1H-cyclopropa[b][1]benzofuran-1-yl]-3-(2,4,5-trifluorophenyl)urea

Antineoplastic, MapKure, LLC, SpringWorks Therapeutics, BeiGene, BGB-3245, BGB 3245, GXS33OY2CB

Brimarafenib is an investigational new drug that is being evaluated for the treatment of cancer. It targets the proto-oncogene BRAF with activating mutations BRAF mutations (such as V600E), non-V600 BRAF mutations, and RAF fusions.[1][2]

It is being developed by MapKure, LLC, a joint venture between SpringWorks Therapeutics and BeiGene.[1]

Brimarafenib is an orally available inhibitor of both monomer and dimer forms of activating mutations of the serine/threonine-protein kinase BRAF (B-raf) protein, including V600 BRAF mutations, non-V600 BRAF mutations, and RAF fusions, with potential antineoplastic activity. Upon administration, brimarafenib targets and binds to both monomeric and dimeric forms of activating BRAF mutations and fusions. This may result in the inhibition of BRAF-mediated signaling and inhibit proliferation in tumor cells expressing BRAF mutations and fusions. BRAF belongs to the RAF family of serine/threonine protein kinases and plays a role in regulating the mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) signaling pathway, which is often dysregulated in human cancers and plays a key role in tumor cell proliferation and survival. BRAF mutations and fusions have been identified in a number of solid tumors and are drivers of cancer growth.

PAT

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014206343&_cid=P22-MG0802-32937-1

PAT

Fused tricyclic urea compounds as raf kinase and/or raf kinase dimer inhibitors

Publication Number: WO-2014206343-A1

Priority Date: 2013-06-28

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesBGB-3245
Identifiers
IUPAC name
CAS Number1643326-82-2
PubChem CID117807031
IUPHAR/BPS13203
ChemSpider129144353
UNIIGXS33OY2CB
Chemical and physical data
FormulaC24H17F3N4O4
Molar mass482.419 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  “Brimarafenib”.
  2.  Tellenbach FL, Seiler LL, Johnson M, Rehrauer H, Schukla P, Martinez-Gomez J, et al. “Combination of the Novel Raf Dimer Inhibitor Brimarafenib with the Mek Inhibitor Mirdametinib is Effective Against Nras Mutant Melanoma”SSRN: 4934723. doi:10.2139/ssrn.4934723.

///////Brimarafenib, Antineoplastic, MapKure, LLC, SpringWorks Therapeutics, BeiGene, BGB-3245, BGB 3245, GXS33OY2CB

Ateganosine


Ateganosine

CAS 789-61-7

MF C10H13N5O3S MW 283.31 g/mol

2′-deoxy-6-thioguanosine
nucleoside analogue, antineoplastic

  • 6-THIO-2′-DEOXYGUANOSINE
  • 2′-Deoxythioguanosine
  • TGdR
  • Thioguanine deoxyriboside
  • KR0RFB46DF
  • NSC-71261

Ateganosine is a telomerase inhibitor[1] and apoptosis inducer currently under investigation for the treatment of various cancers, including non-small cell lung cancer (NSCLC).[2]

Beta-Thioguanine Deoxyriboside is a thiopurine nucleoside derivative with antineoplastic activity. After conversion to the triphosphate, beta-thioguanine deoxyriboside is incorporated into DNA, resulting in inhibition of DNA replication. This agent is cytotoxic against leukemia cell lines and has demonstrated some activity against leukemia cells in vivo. Beta-thioguanine deoxyriboside demonstrates antineoplastic activity against 6-thioguanine-resistant tumor cells. (NCI04)

  • THIO Sequenced With Cemiplimab in Advanced NSCLCCTID: NCT05208944Phase: Phase 2Status: RecruitingDate: 2025-05-31
  • A Phase III Study With THIO + Cemiplimab vs Chemotherapy as 3rd Line Treatment in Advanced/Metastatic NSCLCCTID: NCT06908304Phase: Phase 3Status: Not yet recruitingDate: 2025-04-08

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

References

  1.  Eglenen-Polat B, Kowash RR, Huang HC, Siteni S, Zhu M, Chen K, et al. (January 2024). “A telomere-targeting drug depletes cancer initiating cells and promotes anti-tumor immunity in small cell lung cancer”Nature Communications15 (1) 672. Bibcode:2024NatCo..15..672Edoi:10.1038/s41467-024-44861-8PMC 10803750PMID 38253555.
  2.  “Ateganosine”PatSnap.
Clinical data
Other names2′-Deoxythioguanosine
Identifiers
IUPAC name
CAS Number789-61-7
PubChem CID3000603
DrugBankDB18117
ChemSpider2272164
UNIIKR0RFB46DF
KEGGD13071
ChEMBLChEMBL3250476
CompTox Dashboard (EPA)DTXSID4021345 
Chemical and physical data
FormulaC10H13N5O3S
Molar mass283.31 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

////////Ateganosine, nucleoside analogue, antineoplastic, 6-THIO-2′-DEOXYGUANOSINE, 2′-Deoxythioguanosine, TGdR, Thioguanine deoxyriboside, KR0RFB46DF, fast track designation, NSC-71261, NSC 71261