New Drug Approvals

Home » Posts tagged 'WILL WATSON'

Tag Archives: WILL WATSON

Advertisements
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 2,594,900 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,399 other followers

Follow New Drug Approvals on WordPress.com

Categories

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,399 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 year tenure till date Dec 2017, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 50 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 19 lakh plus views on New Drug Approvals Blog in 216 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

Verified Services

View Full Profile →

Categories

Flag Counter
Advertisements

Hyderabad. India to Host Industrial Organic Chemistry Workshops in February 2018


 

Dr Will Watson, an expert in Chemical Development and related fields, from Scientific Update will be visiting India in February to deliver two important workshops for Industrial Process Chemists:

Chemical Development and Scale Up in the Fine Chemical and Pharmaceutical Industries, February 5th – 7th 2018, Hyderabad, India

Practical Crystallisation & Polymorphism, February 8th & 9th 2018, Hyderabad, India

Discounts are available for groups – please contact sciup@scientificupdate.com for more information.

Advertisements

At Scientific Update Organic Process Research and Development Conference, NCL, PUNE, INDIA, 5 TH DEC 2014


WP_000231

I am seated left with DR PAUL MURRAY, DR JOHN KNIGHT, DR WILL WATSON, At Scientific Update Organic Process Research and Dev Conference, NCL, PUNE ,INDIA, 5 TH DEC 2014

WP_000228

DR WILL AND DR JOHN IN A DISCUSSION

WP_000235

A SLIDE

PROCESS CHEMISTRY CONFERENCES SCHEDULE

EVENT

Organic Process Research & Development - India

Title:
Organic Process Research & Development – India
Subtitle:
The 32nd International Conference and Exhibition
When:
04.12.2014 – 05.12.2014
Where:
National Chemical Laboratory – Pune
Brochure:
View Brochure

http://scientificupdate.co.uk/conferences/conferences-and-workshops/details/224-organic-process-research-and-development-conference-india.html

WP_000230

poster by DR PRAVIN KENDREKAR

PUNE CITY

NCL

MUMBAI PUNE EXPRESSWAY

PUNE FC

 

Volkswagen India Plant and offices in Pune

From top: Fergusson College, Mahatma Gandhi Road(left), Shaniwarwada (right), the HSBC Global Technology India Headquarters, and the National War Memorial Southern Command

From top: Fergusson College, Mahatma Gandhi Road (left), Shaniwarwada (right), the HSBC Global Technology India Headquarters, and the National War Memorial Southern Command

Welcome Scientific update to Pune, India 2-3 and 4-5 Dec 2014 for celebrating Process chemistry


WEBSITE http://www.scientificupdate.co.uk/

SCIENTIFIC UPDATE HAS A REPUTATION FOR ITS HIGH QUALITY EVENTS, BOTH FOR THE SCIENTIFIC CONTENT AND ALSO FOR THE EFFICIENCY OF ITS ORGANISATION. KEEP YOUR SKILLS UP TO DATE AND INVEST IN YOUR CONTINUING PERSONAL PROFESSIONAL DEVELOPMENT.

http://makeinindia.com/

TRAINING COURSE   2-3 DEC 2014

Process Development for Low Cost Manufacturing

When:02.12.2014 – 03.12.2014

Tutors:

Where: National Chemical Laboratory – Pune, India

Brochure:View Brochure

Register http://scientificupdate.co.uk/training/scheduled-training-courses.html

 

DESCRIPTION

Chemical process research and development is recognised as a key function during the commercialisation of a new product particularly in the generic and contract manufacturing arms of the chemical, agrochemical and pharmaceutical industries.

The synthesis and individual processes must be economic, safe and must generate product that meets the necessary quality requirements.

This 2-day course presented by highly experienced process chemists will concentrate on the development and optimisation of efficient processes to target molecules with an emphasis on raw material cost, solvent choice, yield improvement, process efficiency and work up, and waste minimisation.

Process robustness testing and reaction optimisation via stastical methods will also be covered.

A discussion of patent issues and areas where engineering and technology can help reduce operating costs.

The use of engineering and technology solutions to reduce costs will be discussed and throughout the course the emphasis will be on minimising costs and maximising returns.

 

 

Conference 4-5 DEC 2014

TITLE . Organic Process Research & Development – India

Subtitle:The 32nd International Conference and Exhibition

When:04.12.2014 – 05.12.2014

Where:National Chemical Laboratory – Pune, India

Brochure:View Brochure

Register..http://scientificupdate.co.uk/conferences/conferences-and-workshops.html

Organic Process Research & Development - India

for

  • Process Research & Development Chemists
  • Chemical Engineers in Industry
  • Heads of Departments & Team Leaders

Benefits

  • Invest in yourself: keeping up to date on current developments and future trends could mean greater job security.
  • Learn from a wide range of industrial case studies given by hand-picked industrial speakers.
  • Take home relevant ideas and information that are directly applicable to your own work with the full proceedings and a CD of the talks.
  • Save time. Our intensive, commercial-free programme means less time away from work.
  • Meet and network with the key people in the industry in a relaxed and informal atmosphere.

Do you want to improve efficiency and innovation in your synthetic route design, development and optimisation?

The efficient conversion of a chemical process into a process for manufacture on tonnage scale has always been of importance in the chemical and pharmaceutical industries. However, in the current economic and regulatory climate, it has become increasingly vital and challenging to do so efficiently. Indeed, it has never been so important to keep up to date with the latest developments in this dynamic field.

At this Organic Process Research & Development Conference, you will hear detailed presentations and case studies from top international chemists. The hand-picked programme of speakers has been put together specifically for an industrial audience. They will discuss the latest issues relating to synthetic route design, development and optimisation in the pharmaceutical, fine chemical and allied fields.  Unlike other conferences, practically all our speakers are experts from industry, which means the ideas and information you take home will be directly applicable to your own work.

The smaller numbers at our conferences create a more intimate atmosphere. You will enjoy plenty of opportunities to meet and network with speakers and fellow attendees during the reception, sit-down lunches and extended coffee breaks in a relaxed and informal environment. Together, you can explore the different strategies and tactics evolving to meet today’s challenges.

This is held in Pune, close proximity to Mumbai city, very convenient to stay and travel to either in Pune or Mumbai. I feel this should be an opportunity to be grabbed before the conference is full and having no room

Hurry up rush

References

https://newdrugapprovals.org/scientificupdate-uk-on-a-roll/

http://scientificupdate.co.uk/conferences/conferences-and-workshops.html

http://en.wikipedia.org/wiki/Pune

PROFILES

Will Watson

Will Watson

Dr Will Watson gained his PhD in Organic Chemistry from the University of Leeds in 1980. He joined the BP Research Centre at Sunbury-on-Thames and spent five and a half years working as a research chemist on a variety of topics including catalytic dewaxing, residue upgrading, synthesis of novel oxygenates for use as gasoline supplements, surfactants for use as gasoline detergent additives and non-linear optical compounds.

In 1986 he joined Lancaster Synthesis and during the next 7 years he was responsible for laboratory scale production and process research and development to support Lancaster’s catalogue, semi-bulk and custom synthesis businesses.

In 1993 he was appointed to the position of Technical Director, responsible for all Production (Laboratory and Pilot Plant scale), Process Research and Development, Engineering and Quality Control. He helped set up and run the Lancaster Laboratories near Chennai, India and had technical responsibility for the former PCR laboratories at Gainesville, Florida.

He joined Scientific Update as Technical Director in May 2000. He has revised and rewritten the ‘Chemical Development and Scale Up in the Fine Chemical & Pharmaceutical Industries’ course and gives this course regularly around the world. He has been instrumental in setting up and developing new courses such as ‘Interfacing Chemistry with Patents’ and ‘Making and Using Fluoroorganic Molecules’.

He is also involved in an advisory capacity in setting up conferences and in the running of the events. He is active in the consultancy side of the business and sits on the Scientific Advisory Boards of various companies.

………………………………………………………………………………………………….

John Knight

John Knight

Dr John Knight gained a first class honours degree in chemistry at the University of Southampton, UK. John remained at Southampton to study for his PhD in synthetic methodology utilizing radical cyclisation and dipolar cyloaddition chemistry.

After gaining his PhD, John moved to Columbia University, New York, USA where he worked as a NATO Postdoctoral Fellow with Professor Gilbert Stork. John returned to the UK in 1987 joining Glaxo Group Research (now GSK) as a medicinal chemist, where he remained for 4 years before moving to the process research and development department at Glaxo, where he remained for a further 3½ years.

During his time at Glaxo, John worked on a number of projects and gained considerable plant experience (pilot and manufacturing). In 1994 John moved to Oxford Asymmetry (later changing its name to Evotec and most recently to Aptuit) when it had just 25 staff. John’s major role when first at Oxford Asymmetry was to work with a consultant project manager to design, build and commission a small pilot plant, whilst in parallel developing the chemistry PRD effort at Oxford Asymmetry.

The plant was fully operational within 18 months, operating to a 24h/7d shift pattern. John continued to run the pilot plant for a further 3 years, during which time he had considerable input into the design of a second plant, which was completed and commissioned in 2000. After an 18-month period at a small pharmaceutical company, John returned to Oxford in 2000 (by now called Evotec) to head the PRD department. John remained in this position for 6.5 years, during which time he assisted in its expansion, established a team to perform polymorph and salt screening studies and established and maintained high standards of development expertise across the department.

John has managed the chemical development and transfer of numerous NCE’s into the plant for clients and been involved in process validations. He joined Scientific Update in January 2008 as Scientific Director.

Pune images

From top: Fergusson College, Mahatma Gandhi Road (left), Shaniwarwada (right), the HSBC Global Technology India Headquarters, and the National War Memorial Southern Command
From top:1 Fergusson College, 2 Mahatma Gandhi RoadShaniwarwada 3 the HSBC Global Technology India Headquarters, and the 4National War Memorial Southern Command

 

NCL PUNE

The National Chemical Laboratory is located in the state of Maharashtra in India. Maharashtra state is the largest contributor to India’s GDP. The National Chemical Laboratory is located in Pune city, and is the cultural capital of Maharashtra. Pune city is second only to Mumbai (the business capital of India) in size and industrial strength. Pune points of interest include: The tourist places in Pune include: Lal Deval Synagogue, Bund Garden, Osho Ashram, Shindyanchi Chhatri and Pataleshwar Cave Temple.

http://makeinindia.com/

MAKE IN INDIA

http://makeinindia.com/

http://makeinindia.com/sector/pharmaceuticals/

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

 

 

 

KEYWORDS

JOHN KNIGHT, WILL WATSON,  SCIENTIFIC UPDATE, PROCESS, COURSE, CONFERENCE, INDIA, PUNE, PROCESS DEVELOPMENT, LOW COST,  MANUFACTURING, SCALEUP

GSK 2263167 a S1P1 receptor agonist


Abstract Image

gsk 2262167

CAS,  1165924-28-6 FREE FORM

1165923-54-5 NA SALT

1458576-13-0  MONOHYDRATE

Glaxo Group Ltd,

 

C25 H26 N4 O4

 

3-[6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1H)-isoquinolinyl]propanoate

2(1H)​-​ Isoquinolinepropanoi​c acid, 6-​[5-​[3-​cyano-​4-​(1-​methylethoxy)​phenyl]​-​1,​2,​4-​oxadiazol-​3-​ yl]​-​3,​4-​dihydro-​5-​methyl-

3-[6-(5-{3-Cyano-4-[(1 -methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl- 3,4-dihydro-2(1H)-isoquinolinyl]propanoic acid

 

Sphingosine 1 -phosphate (S1 P) is a bioactive lipid mediator formed by the phosphorylation of sphingosine by sphingosine kinases and is found in high levels in the blood. It is produced and secreted by a number of cell types, including those of hematopoietic origin such as platelets and mast cells (Okamoto et al 1998 J Biol Chem 273(42):27104; Sanchez and HIa 2004, J Cell Biochem 92:913). It has a wide range of biological actions, including regulation of cell proliferation, differentiation, motility, vascularisation, and activation of inflammatory cells and platelets (Pyne and Pyne 2000, Biochem J. 349: 385). Five subtypes of S1 P responsive receptor have been described, S1 P1 (Edg-1 ), S1 P2 (Edg-5), S1 P3 (Edg-3), S1 P4 (Edg-6), and S1 P5 (Edg-8), forming part of the G-protein coupled endothelial differentiation gene family of receptors (Chun et al 2002 Pharmacological Reviews 54:265, Sanchez and HIa 2004 J Cellular Biochemistry, 92:913). These 5 receptors show differential mRNA expression, with S1 P1-3 being widely expressed, S1 P4 expressed on lymphoid and hematopoietic tissues and S1 P5 primarily in brain and to a lower degree in spleen. They signal via different subsets of G proteins to promote a variety of biological responses (Kluk and HIa 2002 Biochem et Biophysica Acta 1582:72, Sanchez and HIa 2004, J Cellular Biochem 92:913).

Proposed roles for the S1 P1 receptor include lymphocyte trafficking, cytokine induction/suppression and effects on endothelial cells (Rosen and Goetzl 2005 Nat Rev Immunol. 5:560). Agonists of the S1 P1 receptor have been used in a number of autoimmune and transplantation animal models, including Experimental Autoimmune Encephalomelitis (EAE) models of MS, to reduce the severity of the induced disease (Brinkman et al 2003 JBC 277:21453; Fujino et al 2003 J Pharmacol Exp Ther 305:70; Webb et al 2004 J Neuroimmunol 153:108; Rausch et al 2004 J Magn Reson Imaging 20:16). This activity is reported to be mediated by the effect of S1 P1 agonists on lymphocyte circulation through the lymph system. Treatment with S1 P1 agonists results in the sequestration of lymphocytes within secondary lymphoid organs such as the lymph nodes, inducing a reversible peripheral lymphopoenia in animal models (Chiba et al 1998, J Immunology 160:5037, Forrest et al 2004 J Pharmacol Exp Ther 309:758; Sanna et al 2004 JBC 279:13839). Published data on agonists suggests that compound treatment induces loss of the S1 P1 receptor from the cell surface via internalisation (Graler and Goetzl 2004 FASEB J 18:551 ; Matloubian et al 2004 Nature 427:355; Jo et al 2005 Chem Biol 12:703) and it is this reduction of S1 P1 receptor on immune cells which contributes to the reduction of movement of T cells from the lymph nodes back into the blood stream.

S1 P1 gene deletion causes embryonic lethality. Experiments to examine the role of the S1 P1 receptor in lymphocyte migration and trafficking have included the adoptive transfer of labelled S1 P1 deficient T cells into irradiated wild type mice. These cells showed a reduced egress from secondary lymphoid organs (Matloubian et al 2004 Nature 427:355).

S1 P1 has also been ascribed a role in endothelial cell junction modulation (Allende et al 2003 102:3665, Blood Singelton et al 2005 FASEB J 19:1646). With respect to this endothelial action, S1 P1 agonists have been reported to have an effect on isolated lymph nodes which may be contributing to a role in modulating immune disorders. S1 P1 agonists caused a closing of the endothelial stromal ‘gates’ of lymphatic sinuses which drain the lymph nodes and prevent lymphocyte egress (Wei wt al 2005, Nat. Immunology 6:1228).

The immunosuppressive compound FTY720 (JP1 1080026-A) has been shown to reduce circulating lymphocytes in animals and man, have disease modulating activity in animal models of immune disorders and reduce remission rates in relapsing remitting Multiple Sclerosis (Brinkman et al 2002 JBC 277:21453, Mandala et al 2002 Science 296:346, Fujino et al 2003 J Pharmacology and Experimental Therapeutics 305:45658, Brinkman et al 2004 American J Transplantation 4:1019, Webb et al

2004 J Neuroimmunology 153:108, Morris et al 2005 EurJ Immunol 35:3570, Chiba

2005 Pharmacology and Therapeutics 108:308, Kahan et al 2003, Transplantation 76:1079, Kappos et al 2006 New Eng J Medicine 335:1124). This compound is a prodrug that is phosphorylated in vivo by sphingosine kinases to give a molecule that has agonist activity at the S1 P1 , S1 P3, S1 P4 and S1 P5 receptors. Clinical studies have demonstrated that treatment with FTY720 results in bradycardia in the first 24 hours of treatment (Kappos et al 2006 New Eng J Medicine 335:1124). The bradycardia is thought to be due to agonism at the S1 P3 receptor, based on a number of cell based and animal experiments. These include the use of S1 P3 knock- out animals which, unlike wild type mice, do not demonstrate bradycardia following FTY720 administration and the use of S1 P1 selective compounds (Hale et al 2004 Bioorganic & Medicinal Chemistry Letters 14:3501 , Sanna et al 2004 JBC 279:13839, Koyrakh et al 2005 American J Transplantation 5:529).

Hence, there is a need for S1 P1 receptor agonist compounds with selectivity over S1 P3 which might be expected to show a reduced tendency to induce bradycardia.

The following patent applications describe oxadiazole derivatives as S1 P1 agonists: WO03/105771 , WO05/058848, WO06/047195, WO06/100633, WO06/115188, WO06/131336, WO07/024922 and WO07/1 16866.

The following patent applications describe tetrahydroisoquinolinyl-oxadiazole derivatives as S1 P receptor agonists: WO06/064757, WO06/001463, WO04/1 13330.

 

Figure CN103251950AC00031

Figure CN103251950AC00041

Figure CN103251950AC00051

 

………………………

paper

 

Abstract Image

Organic Process Research & Development (2013), 17(10), 1239-1246.

Chemical Development, GlaxoSmithKline Research and Development Ltd., Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
Org. Process Res. Dev.201317 (10), pp 1239–1246
DOI: 10.1021/op400162p

A fit for purpose approach has been adopted in order to develop a robust, scalable route to the S1P1 receptor agonist, GSK2263167. The key steps include a Robinson ring annulation followed by a Saegusa oxidation, providing rapid access to an advanced phenol intermediate. Despite the use of stoichiometric palladium acetate for the Saegusa oxidation, near complete recovery of the palladium has been demonstrated. The remaining steps have been optimised including the removal of all chromatography. An alternative to the Saegusa oxidation is described as well as the development of a flow process to facilitate further scale-up of the amidoxime preparation using hydroxylamine at elevated temperature.

http://pubs.acs.org/doi/abs/10.1021/op400162p?tokenDomain=campaign&tokenAccess=noteworthy&forwardService=showFullText&journalCode=oprdfk

AND

http://pubs.acs.org/doi/suppl/10.1021/op400162p/suppl_file/op400162p_si_001.pdf

………………………….

Will watson

http://www.allfordrugs.com/scientific-update/

WILL WATSON in  ACS noteworthy chemistry wrote

http://www.acs.org/content/acs/en/noteworthy-chemistry/2014-archive/june-23.html

Researchers make a profit from a pilot plant reaction. R. H. Harris and co-workers at GlaxoSmithKline Research and Development (Stevenage, UK) developed a “fit-for-purpose” method for scaling up the synthesis of a sphingosine 1-phosphate receptor agonist. They shortened the route to the 5-hydroxytetrahydroisoquinoline intermediate from eight to two steps by carrying out a Robinson annulation on N-Boc-4-piperidone followed by aromatization of the cyclohexane ring. (Boc is tert-butoxycarbonyl.)

The authors found, however, that only a Saegusa oxidation that uses stoichiometric quantities of Pd(OAc)2 catalyst gives good conversion in the aromatization. Optimizing the workup by adding HCO2K at the end of the reaction to reduce the Pd(II) and precipitate the palladium as Pd(0) made it possible to recover 10.3 kg of the 10.5kg of palladium used in the pilot plant.

The price of palladium doubled during the campaign, so GlaxoSmithKline sold the palladium back to supplier Johnson Matthey at a profit of UK£62,500. Subsequently, the authors developed a more economical CuBr2-mediated aromatization reaction. (Org. Process Res. Dev. 2013, 17, 1239–1246Will Watson)

………………………

ACS Medicinal Chemistry Letters (2011), 2(6), 444-449.

paper

Abstract Image

 

Gilenya (fingolimod, FTY720) was recently approved by the U.S. FDA for the treatment of patients with remitting relapsing multiple sclerosis (RRMS). It is a potent agonist of four of the five sphingosine 1-phosphate (S1P) G-protein-coupled receptors (S1P1 and S1P3−5). It has been postulated that fingolimod’s efficacy is due to S1P1 agonism, while its cardiovascular side effects (transient bradycardia and hypertension) are due to S1P3 agonism. We have discovered a series of selective S1P1 agonists, which includes 3-[6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1H)-isoquinolinyl]propanoate, 20, a potent, S1P3-sparing, orally active S1P1 agonist. Compound20 is as efficacious as fingolimod in a collagen-induced arthritis model and shows excellent pharmacokinetic properties preclinically. Importantly, the selectivity of 20 against S1P3 is responsible for an absence of cardiovascular signal in telemetered rats, even at high dose levels.

http://pubs.acs.org/doi/abs/10.1021/ml2000214

Discovery of a Selective S1P1 Receptor Agonist Efficacious at Low Oral Dose and Devoid of Effects on Heart Rate

Immuno Inflammation Center of Excellence for Drug Discovery and Platform Technology and Science,GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
ACS Med. Chem. Lett.20112 (6), pp 444–449
DOI: 10.1021/ml2000214


Journal of Medicinal Chemistry (2011), 54(19), 6724-6733

 http://pubs.acs.org/doi/abs/10.1021/jm200609t

Discovery of a Brain-Penetrant S1P3-Sparing Direct Agonist of the S1P1 and S1P5 Receptors Efficacious at Low Oral Dose

Immuno Inflammation Center of Excellence for Drug Discovery, Platform Technology and Science, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
Neurology Center of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, United Kingdom
J. Med. Chem., 2011, 54 (19), pp 6724–6733
DOI: 10.1021/jm200609t
Publication Date (Web): August 15, 2011
Copyright © 2011 American Chemical Society
Telephone: + 44 1438 764319. Fax: + 44 1438 768302. E-mail: emmanuel.h.demont@gsk.com.

Abstract

Abstract Image

Introduction


2-Amino-2-(4-octylphenethyl)propane-1,3-diol 1 (Fingolimod, FTY720, Figure 1)(1) has been recently marketed in the United States for the treatment of patients with remitting relapsing multiple sclerosis (RRMS). Administration of 1 leads to the sequestration of lymphocytes in secondary lymphoid organs and consequently to a reduction of lymphocyte count in the peripheral blood. 1 is phosphorylated in vivo by sphingosine kinase-2(2, 3) to form FTY720-P 2, a potent agonist of four of the five G-protein-coupled receptors (S1P1, S1P3–5) associated with the lysolipid sphingosine 1-phosphate (S1P) 3. Agonism of the S1P1 receptor by S1P is required to induce egress of T cells from lymphoid organs and 2 acts as a functional antagonist by internalizing the receptor.(4, 5) The cardiovascular side effects observed in treated patients (bradycardia and hypertension) have been linked to partial agonism of the S1P3 receptor,(6, 7) although more recent findings from human studies indicate that S1P1 may mediate the transient effects on heart rate.(8) Owing to its lipophilic nature, 1 is able to cross the blood-brain barrier (BBB)(9) where 2 interacts with S1P receptors present on astrocytes (S1P1) and on oligodendrocytes (S1P5). Recent publications suggest this may play a role in fingolimod’s efficacy in the treatment of patients with RRMS.(10, 11)
Excellent (>1000 fold) selectivity over S1P3 can be achieved with agonists such as AMG 369(15)6 or PF-991(16)7, but these molecules, as our own S1P3-sparing agonist 8(17) (Table 1), are zwitterions and are therefore likely to have poor CNS penetration. (18) Typically, in our hands, 8 proved to be a P-gp substrate (with an efflux ratio in a human MDR1 transfected MDCK type 2 cell line of 0.5 and 6.0 in the presence and absence of a P-gp inhibitor, respectively). Interestingly, 8 shows no activity at S1P2 and S1P4, and is a partial agonist of the S1P5 receptor with similar potency to that at S1P1.(19)
Table 1. Activity of 2 and 8 at S1P1-5 Receptors

pEC50 (maximum activation %)
human receptor (assay)a 2b 8
S1P1 (β-arrestin) 7.7 (99), n = 44 8.25 (94), n = 13
S1P2 (yeast) <4.5, n = 5 <4.48 (01), n = 6
S1P3 (GTPγS) 8.3 (62), n = 38 <4.5 (35), n = 6
S1P4 (aequorin) 6.7 (48), n = 2 <4.38 (03), n = 4
S1P5 (aequorin) 7.2 (62), n = 2 6.79 (77), n = 6
a

See the Supporting Information for details.

b

For comparative published values, see ref 35.

……………

WO 2009080724

http://www.google.com/patents/WO2009080724A1?cl=en

Example 11

2-[(1 -Methylethyl)oxy]-5-[3-(5-methyl-1 ,2,3,4-tetrahydro-6-isoquinolinyl)-1 ,2,4- oxadiazol-5-yl]benzonitrile trifluoroacetic acid salt

 

Trifluoroacetic acid (3ml) was added to an ice cooled solution of 1 ,1-dimethylethyl 6- (5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1 ,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro- 2(1 H)-isoquinolinecarboxylate (Preparation 22; 486mg, 1.02mmol) in dichloromethane (3ml). The reaction mixture was stirred at O0C for 30 minutes. The solvent was evaporated and the residue co-evaporated from toluene (x2). Trituration of the residue with diethyl ether gave the title compound as a colourless solid which was filtered off and dried (485mg). 1H NMR (400 MHz, CDCI3) δ: 1.48 (6H, d), 2.54 (3H, s), 3.09 (2H, m), 3.5 (2H, obscured by residual solvent), 4.36 (2H, s), 4.80 (1 H, m), 7.08-7.15 (2H, m), 7.85 (1 H, d), 8.33 (1 H, d), 8.42 (1 H, s), 10.20 (2H, br s). MS m/z 375 [MH]+.

 

Example 13 3-[6-(5-{3-Cyano-4-[(1 -methylethyl)oxy]phenyl}-1 ,2,4-oxadiazol-3-yl)-5-methyl- 3,4-dihydro-2(1H)-isoquinolinyl]propanoic acid sodium salt

 

2M sodium hydroxide (2ml) was added to a solution of ethyl 3-[6-(5-{3-cyano-4-[(1- methylethyl)oxy]phenyl}-1 ,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1 H)- isoquinolinyl]propanoate (Preparation 24; 80mg, 0.17mmol) in ethanol (2ml) at 6O0C. The reaction mixture was stirred at 6O0C for 2 hours, cooled to room temperature and diluted with water (2ml). The solid was filtered off, washed with a small amount of water and dried to give the title compound as a colourless solid (55mg). 1H NMR (400 MHz, deDMSO) δ: 1.39 (6H, d), 2.08 (2H, t), 2.44 (3H, s), 2.59-2.78 (6H, m), 3.56 (2H, s), 4.98 (1 H, m), 7.09 (1 H, d), 7.55 (1 H, d), 7.65 (1 H, d), 8.40 (1 H, dd), 8.50 (1 H, s). MS m/z 447 [MH]+.

 

……….

SEE

CN 103251950

http://www.google.com/patents/CN103251950A?cl=en

 

……..

WO 2010146105

http://www.google.com/patents/WO2010146105A1?cl=en

Preparation 12

6-(5-{3-chloro-4-[(1-methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl- 1,2,3,4-tetrahydroisoquinoline hydrochloride

 

CIH

To a solution of 1 ,1-dimethylethyl 6-(5-{3-chloro-4-[(1-methylethyl)oxy]phenyl}-1 ,2,4- oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1 H)-isoquinolinecarboxylate (1.85g, 3.8 mmol, WO 2009080724) in 1 ,4-dioxane (10ml) at room temperature under nitrogen was added slowly hydrogen chloride in 1 ,4-dioxane (4N, 30ml, 120 mmol) and the resulting mixture was stirred at room temperature for 3.5h. Removal of the solvent and co-evaporation of the residue with diethyl ether gave 6-(5-{3-chloro-4-[(1- methylethyl)oxy]phenyl}-1 ,2,4-oxadiazol-3-yl)-5-methyl-1 ,2,3,4-tetrahydroisoquinoline hydrochloride (1.65g, 103%) as a white solid. LCMS (Method HpH): Retention time 1.43min, MH+ = 384

Preparation 25

2-[(1 -Methylethyl)oxy]-5-[3-(5-methyl-1 ,2,3,4-tetrahydro-6-isoquinolinyl)-1 ,2,4- oxadiazol-5-yl]benzonitrile hydrochloride

To a solution of 1 ,1-dimethylethyl 6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1 ,2,4- oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1 H)-isoquinolinecarboxylate (Preparation 24) (3.4g, 7.2 mmol) in 1 ,4-dioxane (20ml) at room temperature under nitrogen was added a hydrogen chloride in 1 ,4-dioxane (4M, 17.9ml, 72 mmol) and the resulting mixture was stirred at this temperature for 5.5h, stored in a freezer overnight and then concentrated. The residue was co-evaporated with diethyl ether to give 2-[(1- methylethyl)oxy]-5-[3-(5-methyl-1 ,2,3,4-tetrahydro-6-isoquinolinyl)-1 ,2,4-oxadiazol-5- yl]benzonitrile hydrochloride (2.88g, 98%) as a white solid. LCMS (Method HpH): Retention time 1.21 min, MH+ = 375

 

Preparation 25: alternative procedure

2-[(1 -Methylethyl)oxy]-5-[3-(5-methyl-1 ,2,3,4-tetrahydro-6-isoquinolinyl)-1 ,2,4- oxadiazol-5-yl]benzonitrile trifluoroacetate

 

Trifluoroacetic acid (15ml) was added to an ice cooled solution of 1 ,1-dimethylethyl 6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1 ,2,4-oxadiazol-3-yl)-5-methyl-3,4- dihydro-2(1 H)-isoquinolinecarboxylate (Preparation 24) (2.9g, 6.1 mmol) in DCM (20ml). The reaction mixture was stirred at 00C for 1 h and the solvent evaporated. The residue was co-evaporated with toluene (x2) and triturated with diethyl ether. The solid was isolated by filtration and washed with diethyl ether to give 2-[(1- methylethyl)oxy]-5-[3-(5-methyl-1 ,2,3,4-tetrahydro-6-isoquinolinyl)-1 ,2,4-oxadiazol-5- yl]benzonitrile trifluoroacetate (2.7g, 90%) as a colourless solid. LCMS (Method formate): Retention time 0.90min, MH+ = 375

1 H NMR (D6-DMSO): δH 9.16(2H, bs), 8.51 ,(1 H, d), 8.40(1 H, dd), 7.78(1 H, d), 7.57(1 H, d), 7.29(1 H, d), 4.98(1 H, m), 4.38(2H, s), 3.49(2H, partially obscured by water), 2.99(2H, t), 2.47(3H, s), 1.39(6H, d).

Preparation 25: alternative procedure

2-[(1 -methylethyl)oxy]-5-[3-(5-methyl-1 ,2,3,4-tetrahydro-6-isoquinolinyl)-1 ,2,4- oxadiazol-5-yl]benzonitrile hydrochloride

 

1 ,1-Dimethylethyl 6-(5-{3-cyano-4-[(1-methylethyl)oxy]phenyl}-1 ,2,4-oxadiazol-3-yl)- 5-methyl-3,4-dihydro-2(1 H)-isoquinolinecarboxylate (Preparation 24) (50.Og, 1 10 mmol) in DCM (150ml) was added drop-wise to hydrogen chloride in 1 ,4-dioxane (4M, 263ml, 1 100 mmol) and the mixture was stirred for 2h at room temperature, giving a pale yellow suspension. The mixture was diluted with diethyl ether (500ml), stirred for 20min. Then solid was isolated by filtration, washed with diethyl ether (3x 100ml) and dried in vacuo at 55°C overnight to give 2-[(1-methylethyl)oxy]-5-[3-(5- methyl-1 ,2,3,4-tetrahydro-6-isoquinolinyl)-1 ,2,4-oxadiazol-5-yl]benzonitrile hydrochloride (39.8g, 92%) as white solid.

LCMS (Method HpH): Retention time 1.22min, MH+ = 375

1 H NMR (D6-DMSO) includes: δH 9.49(2H, bs), 8.51 (1 H, d), 8.40(1 H, dd), 7.77(1 H, d), 7.56(1 H, d), 7.29(1 H, d), 4.98(1 H, m), 4.35(2H, m), 3.44-3.36(2H, largely obscured by water), 3.00(2H, t), 2.47(3H, s), 1.39(6H, d).

 

Preparation 27

3-[6-(5-{3-Cyano-4-[(1 -methylethyl)oxy]phenyl}-1,2,4-oxadiazol-3-yl)-5-methyl- 3,4-dihydro-2(1H)-isoquinolinyl]propanoic acid sodium salt

 

Sodium hydroxide (2M, 1 ml) was added to a stirred solution of ethyl 3-[6-(5-{3-cyano- 4-[(1-methylethyl)oxy]phenyl}-1 !2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro-2(1 H)- isoquinolinyl]propanoate (Preparation 26) (200mg, 0.42 mmol) in ethanol (1 ml). The reaction mixture was stirred at 500C for 1 h then cooled and the ethanol evaporated. The residue was diluted with water (2ml) and stirred for 15min. The precipitate was isolated by filtration, washed with water and dried under vacuum to give 3-[6-(5-{3- cyano-4-[(1-methylethyl)oxy]phenyl}-1 ,2,4-oxadiazol-3-yl)-5-methyl-3,4-dihydro- 2(1 H)-isoquinolinyl]propanoic acid sodium salt (150mg, 76%) as a colourless solid. LCMS (Method formate): Retention time 0.92min, MH+ = 447

……….

SEE

Xenobiotica (2012), 42(7), 671-686

………
  • Martini, S.; Peters, H.; Böhler, T.; Budde, K.Current Perspectives on FTY720 Expert Opin. Invest. Drugs 2007, 16, 505518

  • 2.

    Billich, A.; Bornancin, F.; Dévay, P.; Mechtcheriakova, D.; Urtz, N.; Baumruker, T.Phosphorylation of the Immunomodulatory Drug FTY720 by Sphingosine Kinases J. Biol. Chem. 2003, 278, 4740847415

  • 3.

    Albert, R.; Hinterding, K.; Brinkmann, V.; Guerini, D.; Müller-Hartwieg, C.; Knecht, H.; Simeon, C.; Streiff, M.; Wagner, T.; Welzenbach, K.; Zécri, F.; Zollinger, M.; Cooke, N.; Francotte, E.Novel Immunomodulator FTY720 Is Phosphorylated in Rats and Humans to Form a Single Stereoisomer. Identification, Chemical Proof, and Biological Characterisation of the Biologically Active Species and Its Enantiomer J. Med. Chem. 2005, 48, 53735377

  • 4.

    Matloubian, M.; Lo, C. G.; Cinamon, G.; Lesneski, M. J.; Xu, Y.; Brinkmann, V.; Allende, M. L.; Proia, R. L.; Cyster, J. G.Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1 Nature 2004, 427, 355360

  • 5.

    Wei, S. H.; Rosen, H.; Matheu, M. P.; Sanna, M. G.; Wang, S.-K.; Jo, E.; Wong, C.-H.; Parker, I.; Cahalan, M. D.Sphingosine 1-Phosphate Type 1 receptor Agonism Inhibits Transendothelial Migration of Medullary T Cells to Lymphatic Sinuses Nat. Immunol. 2005, 6, 12281235

  • 6.

    Forrest, M.; Sun, S.-Y.; Hajdu, R.; Bergstrom, J.; Card, D.; Doherty, G.; Hale, J.; Keohane, C.; Meyers, C.; Milligan, J.; Mills, S.; Nomura, N.; Rosen, H.; Rosenbach, M.; Shei, G.-J.; Singer, I. I.; Tian, M.; West, S.; White, V.; Xie, J.; Proia, R. L.; Mandala, S.Immune Cell Regulation and Cardiovascular Effects of Sphingosine 1-Phosphate Receptor Agonists in Rodents Are Mediated via Distinct Receptor Subtypes J. Pharmacol. Exp. Ther. 2004, 309, 758768

  • 7.

    Sanna, M. G.; Liao, J.; Jo, E.; Alfonso, C.; Ahn, M.-Y.; Peterson, M. S.; Webb, B.; Lefebvre, S.; Chun, J.; Gray, N.; Rosen, H.Sphingosine 1-Phosphate (S1P) Receptor Subtypes S1P1 and S1P3, Respectively, Regulate Lymphocyte Recirculation and Heart Rate J. Biol. Chem. 2004, 279, 1383913848

  • 8.

    Gergely, P.; Wallström, E.; Nuesslein-Hildesheim, B.; Bruns, C.; Zécri, F.; Cooke, N.; Traebert, M.; Tuntland, T.; Rosenberg, M.; Saltzman, M.Phase I study with selective S1P1/S1P5 receptor modulator BAF312 indicates that S1P1 rather than S1P3 mediates transient heart rate reduction in humans Mult. Scler. 2009, 15, S31S150

  • 9.

    Meno-Tetang, G. M. L.; Li, H.; Mis, S.; Pyszczynski, N.; Heining, P.; Lowe, P.; Jusko, W. J.Physiologically based pharmacokinetic modeling of FTY720 (2-amino-2[2-(-4-octylphenyl)ethyl]propane-1,3-diol hydrochloride) in rats after oral and intravenous doses Drug Metab. Dispos. 2006, 34, 14801487

  • 10.

    Brinkmann, V.FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system Br. J. Pharmacol. 2009, 158, 11731182

  • 11.

    Noguchi, K.; Chun, J.Roles for lysophospholipid S1P receptors in multiple sclerosis Crit. Rev. Biochem. Mol. Biol. 2011, 46, 210

2010146105A1 Jun 17, 2010 Dec 23, 2010 Glaxo Group Limited S1p1 agonists comprising a bicyclic n-containing ring
US8222245 Dec 19, 2008 Jul 17, 2012 Glaxo Group Limited Oxadiazole derivatives active on sphingosine-1-phosphate (S1P)
US8263620 Dec 19, 2008 Sep 11, 2012 Glaxo Group Limited Oxadiazole derivatives active on sphingosine-1-phosphate (SIP)
US8329730 Apr 29, 2009 Dec 11, 2012 Glaxo Group Limited Compounds
ANTHONY MELVIN CRASTO

THANKS AND REGARD’S
DR ANTHONY MELVIN CRASTO Ph.D

amcrasto@gmail.com

MOBILE-+91 9323115463
GLENMARK SCIENTIST ,  INDIA
web link
http://anthonycrasto.jimdo.com/

Congratulations! Your presentation titled “Anthony Crasto Glenmark scientist, helping millions with websites” has just crossed MILLION views.
アンソニー     安东尼   Энтони    안토니     أنتوني
join my process development group on google
you can post articles and will be administered by me on the google group which is very popular across the world
LinkedIn group
 
blogs are
 
shark

========================

 

 

%d bloggers like this: