New Drug Approvals

Home » Posts tagged 'Orphan Drug Designation'

Tag Archives: Orphan Drug Designation

Advertisements
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 1,981,850 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,186 other followers

Follow New Drug Approvals on WordPress.com

Categories

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 2,186 other followers

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK PHARMACEUTICALS LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 year tenure till date Dec 2017, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 50 Lakh plus views on dozen plus blogs, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 19 lakh plus views on New Drug Approvals Blog in 216 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc

Personal Links

Verified Services

View Full Profile →

Categories

Flag Counter
Advertisements

ELECLAZINE, элеклазин , إيليكلازين , 依来克秦 , REVISITED


Eleclazine.pngChemSpider 2D Image | eleclazine | C21H16F3N3O3

ELECLAZINE

GS-6615

Molecular Formula: C21H16F3N3O3
Molecular Weight: 415.372 g/mol

1443211-72-0

4-(pyrimidin-2-ylmethyl)-7-[4-(trifluoromethoxy)phenyl]-2,3-dihydro-1,4-benzoxazepin-5-one

4-(pyrimidin-2-ylmethyl)-7-[4-(trifluoromethoxy)phenyl]-2,3,4,5- tetrahydro-1,4- benzoxazepin-5-one

7-(4-(Trifluoromethoxy)phenyl)-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one

1,4-Benzoxazepin-5(2H)-one, 3,4-dihydro-4-(2-pyrimidinylmethyl)-7-[4-(trifluoromethoxy)phenyl]-

Eleclazine; UNII-PUY08529FK; 1443211-72-0; GS-6615; PUY08529FK; 4-(pyrimidin-2-ylmethyl)-7-(4-(trifluoromethoxy)phenyl)-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-on

элеклазин [Russian] [INN]
إيليكلازين [Arabic] [INN]
依来克秦 [Chinese] [INN]
  • Phase III Long QT syndrome
INGREDIENT UNII CAS
Eleclazine Hydrochloride 4R1JP3Q4HI 1448754-43-5

Eleclazine has been used in trials studying the treatment of LQT2 Syndrome, Long QT Syndrome, Ischemic Heart Disease, Ventricular Arrhythmia, and Long QT Syndrome Type 3, among others.

In 2015, orphan drug designation was assigned to the product by the FDA for the treatment of congenital long QT syndrome.

  • Originator Gilead Sciences
  • Class Antiarrhythmics; Ischaemic heart disorder therapies; Pyrimidines; Small molecules; Vasodilators
  • Mechanism of Action Sodium channel antagonists

Highest Development Phases

  • Phase III  Long QT syndrome
  • Phase II/III Hypertrophic cardiomyopathy
  • Phase II Ventricular arrhythmias
  • No development reported Ischaemic heart disorders

Most Recent Events

  • 15 Nov 2017 Gilead Sciences presents safety and adverse events data from a phase III trial in Long QT syndrome type 3 at the 90th Annual Scientific Sessions of the American Heart Association (AHA-2017)
  • 11 Nov 2017 Efficacy data from the phase II TEMPO trial in Ventricular arrthymmia presented at the 90th Annual Scientific Sessions of the American Heart Association
  • 17 Feb 2017 Gilead Sciences terminates a phase II/III trial in Hypertrophic cardiomyopathy in Australia, France, Germany, Israel, Italy, Netherlands, USA and United Kingdom (NCT02291237)
  • Gilead Sciences was developing eleclazine (GS-6615), a late sodium current inhibitor, for the potential oral (tablet) treatment of hypertrophic cardiomyopathy and arrhythmias including long QT-3 (LQT3) syndrome.

Image result

Image result for Long QT syndrome

Image result for Long QT syndrome

Image result for Long QT syndrome

Image result for Long QT syndrome

Image result for Long QT syndrome

Long QT syndrome

The late sodium current (INaL) is a component of the fast Na+ current of cardiac myocytes and neurons. Late sodium current in cardiac cells is small compared with the fast component, but it may make a large contribution to sodium loading during each cardiac cycle. Impaired sodium channel function contributes to pathologic increase of the late sodium current, sodium overload, and sodium-induced calcium overload by way of the sodium-calcium exchanger. Calcium overload causes impaired diastolic relaxation, which increases diastolic wall tension, increases myocardial oxygen demand, reduces myocardial blood flow and oxygen supply, microvascular perfusion, and worsens ischemia and angina. Many common neurological and cardiac conditions are associated with abnormal (INaL) augmentation, which contributes to the pathogenesis of both electrical and contractile dysfunction in mammals. Inhibiting the late sodium current can lead to reductions in elevated intracellular calcium levels, which, in turn, may lead to reduced tension in the heart wall and reduced oxygen requirements for the heart muscle. Inhibition of cardiac late sodium current is a strategy used to suppress arrhythmias and sodium -dependent calcium overload associated with myocardial i schemia and heart failures. Thus, compounds that selectively inhibit the iate sodium current (INaL) in mammals may be useful in treating such disease states.

Eleclazine (4-(pyrimidin-2-ylmethyl)-7-(4-(trifluoromethoxy)pheny l)-3,4-dihydrobenzo[b]oxepin-5(2H)-one]; CAS # 144321 1-72-0) is an inhibitor of the late sodium current, Eleclazine is being investigated for the treatment of cardiomyopathy, specifically hypertrophic cardiomyopathy, as well as additional cardiovascular indications, including angina, heart failure, atrial fibrillation (AF), ischemic heart disorders, atrial premature beats (APBs), myocardial isch mia, and arrhythmias.

Eleclazine

Eleclazine shows a shortening of the QTc interval (the time interval between the start of the Q-wave and the end of T-wave in the electrical cycle of the heart) in patients with QT-3 (LQT3) sydrome. LQTS is a genetic disorder that prolongs the heart’s QTc interval and can cause life-threatening cardiac arrhythmias. Therefore, eleclazine is also being investigated for treatment of long QT syndrome.

Eleclazine may be metabolized in the liver and may be subject to extensive cytochrome P450-mediated oxidative metabolism. Eleclazine is metabolized predominantly by N-dealkylation, and elimination is principally in the bile and gastrointestinal tract. The primary metabolite of eleclazine is GS-623134

Adverse effects associated with eleclazine may include dizziness, dry mouth, nausea, weakness, ringing in ears, tremors, and the like. Additionally, some metabolites of eleclazine, particularly the metabolite GS 623134, may have undesirable side effects.

PATENT

PRODUCT, WO 2013112932, WO 2013006485

WO 2013006463

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013006463&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

WO 2013006463 , ( US8962610 ) hold protection in the EU states until 2032 and in US until 2033 with US154 extension.

PATENT

WO 2015017661

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015017661

Provided herein is a method for reducing the prolongation of the QT interval in a human patient, said method comprising administering to the patient an effective amount of Compound 1:

Example 1: 4-(pyrimidin-2-ylmethyl)-7-(4-(trifluoromethoxy)phenyl)-3,4- dihydrobenzo[f][1,4]oxazepin-5(2H)-one (Compound 1)

To a solution of Compound 1-A (20 g, 0.083 mol, 1 eq.) and Compound 1-B (25 g, 0.15 mol, 1.8 eq.) in DMF (150 mL), NaOH solution (20 mL, 10 M, 5 eq.) was slowly added at room temperature (slightly exothermic) and stirred at r.t. for 10 min, followed by heating at 95 °C for 2 h. After cooling the reaction mixture, ethyl acetate (200 mL) was added and the organic layer was separated. The organics was washed with water (20 mL), brine, dried over sodium sulphate and concentrated.

The residue was dissolved in 1,4-dioxane (50 mL) and to this 4 N HCl in dioxane (50 mL) and cone. HCl ( 2 mL) was added and stirred at room temperature for 4 h, filtered the precipitate, washed with ethyl acetate and dried. Compound 1-C was obtained (30 g) as a light yellow solid.

To the bromide (15 g, 0.04 mol, 1 eq), boronic acid (12.5 g, 0.06 mol, 1.5 eq) and potassium carbonate (22 g, 0.16 mol, 4 eq) in a round bottom flask, solvent (150 mL, toluene/isopropanol/water : 2/1/1) was added and stirred under nitrogen for 10 min. To the above solution the palladium catalyst (1 g, 0.012 mol, 0.02 eq) was added and heated at 85 °C for 2h. The reaction mixture was diluted with ethyl acetate, separated the organic layer and filtered the organic layer through a plug of celite and silica gel and concentrated. Column purification on silica gel using ethyl acetate/hexane as eluent provided Compound 1 (13 g).

To a solution of Compound 1 (26 g) in 1,4-dioxane (25 mL), 4N HCl/dioxane (25 mL) was added followed by cone. HCl (2 mL) and stirred at room temperature for 4h. Solvent was distilled off, dichlorom ethane was added and distilled off and to the residue, ethyl acetate (150 mL) was added and stirred at room temperature overnight and filtered the precipitate, washed with ethyl acetate, hexane and dried under vacuum. Compound 1-HCl obtained (24.8 g) was a white solid.

1H-NMR (CDCl3) 5 8.72 (d, 2H, J= 5.2 Hz), 8.17 (d, 1H, J= 2.4 Hz), 7.59-7.63 (m, 3H), 7.26 (d, 2H, J= 3.2 Hz), 7.22 (t, 1H, J= 4.8 Hz), 7.10 (d, 1H, J= 8.4 Hz), 5.10 (s, 2H), 4.56 (t, 2H, J = 5.0 Hz), 3.77 (t, 2H, J= 5.0 Hz); MS m/z 416.1 (M+H).

PATENT

WO-2018048977

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018048977&redirectedID=true

Novel deuterated analogs of a substituted oxazepin compounds, particularly eleclazine and their salts, esters, prodrugs and solvates and compositions and combinations comprising them are claimed. Also claim is their use for treating a late sodium current-mediated disorder, such as acute coronary syndrome, angina, congestive heart disease, myocardial infraction, diabetes, ischemic heart disorders, inflammatory diseases and cancers.

EXAMPLE 1- COMPARATIVE

[00297] 4-(pyrimidin-2-ylmethyl)-7-[4-(trifluorome4hoxy)phenyl]-2,3,4,5-tetrahydro-l,4- benzoxazepin-5-one [Eleclazine]

[00299] To a solution of 5-bromo-2-hydroxybenzoate (10 g, 43.28 mmol, 1.00 equiv) in DMA (100 ml.) was added potassium carbonate (9 g, 65, 12 mmol, 1.50 equiv) and 2-chloroacetonitrile (3.4 mL, 1.25 equiv). The resulting suspension was stirred overnight. The solids were filtered out. The filtrate was washed with water. The resulting solution was extracted with ethyl acetate (3 x 50 mL). The organic layers were dried over anhydrous sodium sulfate and concentrated under vacuum to afford 1 1 g (94%) of methyl 5-bromo-2-(cyanomethoxy)benzoate as a white solid, LC-MS: m/z = 270 [M+H]+.

[00300] Step 2: 7-bromo-2,3,4,5-tetrahydro-l,4-benzoxazepin-5-one

[00301] To a solution of 5-bromo-2-(cyanomethoxy)benzoate [Example 1 , Step 1 ] (4 g, 14.81 mmol, 1.00 equiv) in methanol (50 mL) was added saturated aq. NIL (4 mL) and Raney-Ni (2 mL) under a H2 atmosphere. The resulting solution was stirred overnight at room temperature. The catalyst was filtered out. The filtrate was concentrated under vacuum. The residue was purifsed by SiCte chromatography eluted with ethyl acetate/petroleum ether (1 : 1 ) to afford 530 mg (15%) of 7-bromo-2,3,4,5-tetrahydro-l,4-benzoxazepin-5-one as a yellow solid. LC-MS: m/z = 242 [M+H]+.

[00302] Step 3 : 7-bromo-4-(pyrimidin-2-ylmethyl)-2,3,4,5-tetrahydro-l,4-benzoxazepin-5- one

[00303] To a solution of 7-bromo-2,3,4,5-tetrahydro- l ,4-benzoxazepin-5-one [Example 1, Step 2] (530 mg, 2.19 mmol, 1.00 equiv) and 2-(chloromethyl)pyrimidine hydrochloride (650 mg, 3.96 mmol, 1.80 equiv) in DMF (10 mL), was slowly added a NaOH solution (0.55 mL, 10 M, 2.50 equiv), which was stirred at room temperature for 10 min. Then the mixture was stirred at 95°C for 2 h. After cooling the reaction mixture, ethyl acetate (30 mL) was added and the organic layer was separated. The organic layers were washed with water, brine, dried over anhydrous sodium sulfate, and concentrated under vacuum to afford 600 mg (82%) of 7-bromo- 4-(pyrimidin-2-ylmethyl)-2,3,4,5-tetrahydro-l,4-benzoxazepin-5-one as light yellow oil . LC-MS: m/z = 334 [M+H]+.

[00304] Step 4: 4-(pyrimidin-2-ylmethyl)-7-[4-(trifluoromethoxy)phenyl]-2,3,4,5-tetrahydro- 1 ,4-benzoxazepin-5-one

[00305] To a solution of 7-bromo-4-(pyriraidin-2-ylmethyl)-2,3,4,5-tetrahydro-l,4- benzoxaze- pin-5-one [Example 1, Step 3] (277 mg, 0.83 mmol, 1.00 equiv) in Toluene/iPrOH/thO (2: 1 : 1, 4 mL) was added potassium carbonate (459 mg, 3.32 mmol, 4.00 equiv) and [4-(trifluoromethoxy)phenyl]boronic acid (257 mg, 1.25 mmol, 1.50 equiv). The mixture was stirred for 10 min at room temperature. Then Pd(dppf)Ch (12 mg, 0.02 equiv) was added to the solution. The mixture was stirred at 85°C for 2 h. After cooling the reaction mixture, ethyl acetate (30 mL) was added, and the organic layer was separated. The organic layer was washed with water, brine, dried over anhydrous sodium sulfate, and concentrated under vacuum. The crude product was purified by Prep-HPLC with the following conditions: Column, XBridge Prep C18 OBD Column, Sum, 19*150mm; mobile phase, Water (10 mmol/L NH4HCO3) and CH3CN (50,0% CH3CN up to 52.0% in 7 min); Detector, UV 254, 220nra to afford 190 mg (55%) of 4-(pyrimidin-2-ylmethyl)-7-[4-(trifluoromethoxy)phenyl]-2,3,4,5- tetrahydro-1,4- benzoxazepin-5-one as a white solid. LC-MS: m/z = 416 [M+H]+

[00306] 1H NMR (400 MHz, Chloroform-t/) δ 8.75-8.74 (m, 2H), 8.20-8. 19 (m, IH), 7.66- 7,61 (m, 3H), 7,29-7,28 (m, IH), 7.27-7.26 (m, IH), 7.24-7.23 (m, I H), 7.13-7.1 1 (m, IH), 5.12 (s, 2H), 4.60-4.57 (m, 2H), 3.81 -3.78 (m, 2H).

PAPER

Journal of Medicinal Chemistry (2016), 59(19), 9005-9017

Abstract Image

Late sodium current (late INa) is enhanced during ischemia by reactive oxygen species (ROS) modifying the Nav 1.5 channel, resulting in incomplete inactivation. Compound 4 (GS-6615, eleclazine) a novel, potent, and selective inhibitor of late INa, is currently in clinical development for treatment of long QT-3 syndrome (LQT-3), hypertrophic cardiomyopathy (HCM), and ventricular tachycardia–ventricular fibrillation (VT–VF). We will describe structure–activity relationship (SAR) leading to the discovery of 4 that is vastly improved from the first generation late INa inhibitor 1(ranolazine). Compound 4 was 42 times more potent than 1 in reducing ischemic burden in vivo (S–T segment elevation, 15 min left anteriorior descending, LAD, occlusion in rabbits) with EC50values of 190 and 8000 nM, respectively. Compound 4 represents a new class of potent late INainhibitors that will be useful in delineating the role of inhibitors of this current in the treatment of patients.

Discovery of Dihydrobenzoxazepinone (GS-6615) Late Sodium Current Inhibitor (Late INai), a Phase II Agent with Demonstrated Preclinical Anti-Ischemic and Antiarrhythmic Properties

Medicinal Chemistry, Drug Metabolism, §Drug Safety Evaluation, Formulation and Process Development, and Structural Chemistry, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
# Biology, Gilead Sciences Inc., 7601 Dumbarton Circle, Fremont, California 94555, United States
J. Med. Chem.201659 (19), pp 9005
7-(4-(Trifluoromethoxy)phenyl)-3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one 4
Compound 4 HCl obtained (24.8 g) was obtained as a white solid. Anal. HPLC 100% (6.78 min).
 
 1H NMR (CDCl3) δ 8.72 (d, 2H, J = 5.2 Hz), 8.17 (d, 1H, J = 2.4 Hz), 7.59–7.63 (m, 3H), 7.26 (d, 2H, J = 3.2 Hz), 7.22 (t, 1H, J = 4.8 Hz), 7.10 (d, 1H, J = 8.4 Hz), 5.10 (s, 2H), 4.56 (t, 2H, J = 5.0 Hz), 3.77 (t, 2H, J = 5.0 Hz). LCMS m/z 416.1 (M + H).
HRMS-ESI+: [M + H]+ calcd for C21H16F3N3O3, 416.1217; found, 416.1215.
PAPER
Inhibition of late sodium current suppresses calcium-related ventricular arrhythmias by reducing the phosphorylation of CaMK-II and sodium channel expressions
Scientific Reports (2017), 7, (1), 1-11.
PATENT
US 20180064726
PATENTS
Patent ID

Patent Title

Submitted Date

Granted Date

US9126989 COMPOUND AND METHODS FOR TREATING LONG QT SYNDROME
2014-07-31
2015-02-05
US9193694 FUSED HETEROCYCLIC COMPOUNDS AS ION CHANNEL MODULATORS
2013-09-26
2014-05-15
US9125916 METHODS OF TREATING HYPERTROPHIC CARDIOMYOPATHY
2014-07-28
2015-02-05
US2016332976 PROCESSES FOR PREPARING FUSED HETEROCYCLIC ION CHANNEL MODULATORS
2016-05-02
US2015283149 METHODS OF TREATING PATIENTS HAVING IMPLANTABLE CARDIAC DEVICES
2015-03-20
2015-10-08
Patent ID

Patent Title

Submitted Date

Granted Date

US2015045305 COMBINATION THERAPIES USING LATE SODIUM ION CHANNEL BLOCKERS AND POTASSIUM ION CHANNEL BLOCKERS
2013-01-25
2015-02-12
US2016332977 PROCESSES FOR PREPARING FUSED HETEROCYCLIC ION CHANNEL MODULATORS
2016-05-02
US9598435 FUSED HETEROCYCLIC COMPOUNDS AS ION CHANNEL MODULATORS
2015-10-01
2016-04-07
US2015225384 PROCESSES FOR PREPARING FUSED HETEROCYCLIC ION CHANNEL MODULATORS
2015-02-13
2015-08-13
US9273038 SOLID FORMS OF AN ION CHANNEL MODULATOR
2015-02-12
2015-08-13
Patent ID

Patent Title

Submitted Date

Granted Date

US9676760 FUSED HETEROCYCLIC COMPOUNDS AS ION CHANNEL MODULATORS
2016-05-11
US8697863 Fused heterocyclic compounds as ion channel modulators
2013-03-07
2014-04-15
US8586732 Fused heterocyclic compounds as ion channel modulators
2012-06-29
2013-11-19
US2017007617 INTRAVENOUS FORMULATIONS OF A LATE SODIUM CURRENT INHIBITOR
2016-07-06
US2014329755 COMBINATION THERAPY FOR THE TREATMENT OF ARRHYTHMIAS OR HEART FAILURE
2014-04-30
2014-11-06

/////////////////ELECLAZINE, GS-6615, GS 6615, элеклазин إيليكلازين 依来克秦 Phase III,  Long QT syndrome, orphan drug designation, Long QT syndrome

C1COC2=C(C=C(C=C2)C3=CC=C(C=C3)OC(F)(F)F)C(=O)N1CC4=NC=CC=N4

Advertisements

FDA approves new HIV treatment Trogarzo (ibalizumab-uiyk) for patients who have limited treatment options


Image result for ibalizumab-uiykImage result for taiMed Biologics USA Corp

FDA approves new HIV treatment Trogarzo (ibalizumab-uiyk),for patients who have limited treatment options

Today, the U.S. Food and Drug Administration approved Trogarzo (ibalizumab-uiyk), a new type of antiretroviral medication for adult patients living with HIV who have tried multiple HIV medications in the past (heavily treatment-experienced) and whose HIV infections cannot be successfully treated with other currently available therapies (multidrug resistant HIV, or MDR HIV).Trogarzo is administered intravenously once every 14 days by a trained medical professional and used in combination with other antiretroviral medications. Continue reading.

 

 

March 6, 2018

Release

Today, the U.S. Food and Drug Administration approved Trogarzo (ibalizumab-uiyk), a new type of antiretroviral medication for adult patients living with HIV who have tried multiple HIV medications in the past (heavily treatment-experienced) and whose HIV infections cannot be successfully treated with other currently available therapies (multidrug resistant HIV, or MDR HIV).Trogarzo is administered intravenously once every 14 days by a trained medical professional and used in combination with other antiretroviral medications.

“While most patients living with HIV can be successfully treated using a combination of two or more antiretroviral drugs, a small percentage of patients who have taken many HIV drugs in the past have multidrug resistant HIV, limiting their treatment options and putting them at a high risk of HIV-related complications and progression to death,” said Jeff Murray, M.D., deputy director of the Division of Antiviral Products in the FDA’s Center for Drug Evaluation and Research. “Trogarzo is the first drug in a new class of antiretroviral medications that can provide significant benefit to patients who have run out of HIV treatment options. New treatment options may be able to improve their outcomes.”

The safety and efficacy of Trogarzo were evaluated in a clinical trial of 40 heavily treatment-experienced patients with MDR HIV-1 who continued to have high levels of virus (HIV-RNA) in their blood despite being on antiretroviral drugs. Many of the participants had previously been treated with 10 or more antiretroviral drugs. The majority of participants experienced a significant decrease in their HIV-RNA levels one week after Trogarzo was added to their failing antiretroviral regimens. After 24 weeks of Trogarzo plus other antiretroviral drugs, 43 percent of the trial’s participants achieved HIV RNA suppression.

The clinical trial focused on the small patient population with limited treatment options and demonstrated the benefit of Trogarzo in achieving reduction of HIV RNA. The seriousness of the disease, the need to individualize other drugs in the treatment regimen, and safety data from other trials were considered in evaluating the Trogarzo development program.

A total of 292 patients with HIV-1 infection have been exposed to Trogarzo IV infusion. The most common adverse reactions to Trogarzo were diarrhea, dizziness, nausea and rash. Severe side effects included rash and changes in the immune system (immune reconstitution syndrome).
The FDA granted this application Fast TrackPriority Review and Breakthrough Therapy designations. Trogarzo also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The FDA granted approval of Trogarzo to TaiMed Biologics USA Corp.

Theratechnologies Announces FDA Approval of Breakthrough Therapy, Trogarzo™ (ibalizumab-uiyk) Injection, the First HIV-1 Inhibitor and Long-Acting Monoclonal Antibody for Multidrug Resistant HIV-1


NEWS PROVIDED BY

Theratechnologies Inc. 


  •  First HIV treatment approved with a new mechanism of action in more than 10 years
  • Infused every two weeks, only antiretroviral treatment (ART) that does not require daily dosing
  • Trogarzo™ has no drug-drug interactions and no cross-resistance with other ARTs

MONTREALMarch 6, 2018 /PRNewswire/ – Theratechnologies Inc. (Theratechnologies) (TSX: TH) and its partner TaiMed Biologics, Inc. (TaiMed) today announced that the U.S. Food and Drug Administration (FDA) has granted approval of Trogarzo™ (ibalizumab-uiyk) Injection. In combination with other ARTs, Trogarzo™ is indicated for the treatment of human immunodeficiency virus type 1 (HIV-1) infection in heavily treatment-experienced adults with multidrug resistant HIV-1 infection failing their current antiretroviral regimen.1

Trogarzo™ represents a critical new treatment advance as the first HIV therapy with a new mechanism of action approved in 10 years and proven effectiveness in difficult-to-treat patients with limited options. Unlike all other classes of ARTs, Trogarzo™ is a CD4-directed post-attachment HIV-1 inhibitor that binds to CD4+ receptors on host cells and blocks the HIV virus from infecting the cells.1

“Today’s approval of Trogarzo™ by the FDA is great news for people infected with difficult-to-treat multidrug resistant HIV. We look forward to bringing this much-needed therapy to patients in the U.S within six weeks,” said Luc Tanguay, President and Chief Executive Officer, Theratechnologies Inc. “We are grateful to the patients, investigators, as well as the FDA who supported the clinical development of Trogarzo™, and are helping address this critical unmet medical need.”

Trogarzo™ previously received Breakthrough Therapy and Orphan Drug designations as well as Priority Review status from the FDA, underscoring the significance of the treatment for this patient population.

“I witnessed some of the earliest cases of HIV and AIDS, at a time when the diagnosis was terrifying to patients because in many cases it was a death sentence,” said David Ho, M.D., chief scientific advisor of TaiMed and scientific director and CEO of the Aaron Diamond AIDS Research Center. “Since then, treatment advances and the discovery that combinations of ARTs was the best way to bring viral load below the level of detection have allowed most people to manage HIV like a chronic condition and live long, healthy lives. However, this is not the reality for people whose HIV is resistant to multiple drugs and whose viral load is not controlled, which is why TaiMed dedicated the past decade to advancing ibalizumab in the clinic. For these patients, it represents the next breakthrough.”

Up to 25,000 Americans with HIV are currently multidrug resistant, of which 12,000 are in urgent need of a new treatment option because their current treatment regimen is failing them and their viral load has risen to detectable levels, jeopardizing their health and making HIV transmittable.2-13 The best way to prevent the transmission of multidrug resistant HIV is to control the virus in those living with it. According to new guidance from the Centers for Disease Control and Prevention (CDC), the HIV virus cannot be transmitted if it is being fully suppressed.13

“I’ve struggled with multidrug resistant HIV for almost 30 years and it was completely debilitating to feel like I had run out of options – I made no long-term plans,” said Nelson Vergel, founder of the Program for Wellness Restoration (PoWeR) and Trogarzo™ patient. “Since starting treatment with Trogarzo™ six years ago and getting my viral load to an undetectable level, I have been my happiest, most productive self. Trogarzo™ is a new source of hope and peace of mind for people whose treatments have failed them, and I feel incredibly lucky to have been able to participate in the clinical trial program.”

TaiMed and Theratechnologies partnered on the development of Trogarzo™ so patients who can benefit from the treatment have access to it. For patients who need assistance accessing Trogarzo™ or who face challenges affording medicines, Theratechnologies has a team of patient care coordinators available to help. Patients can get assistance and expert support by contacting THERA patient support™ at 1-833-23-THERA (84372).

“In Phase 3 ibalizumab trials, we saw marked improvements in patients’ health who not only were heavily treatment-experienced and had limited remaining treatment options, but in cases they also had extremely high viral loads and significantly impaired immune systems,” said Edwin DeJesus, M.D., Medical Director for the Orlando Immunology Center. “As an investigator for ibalizumab clinical trials over nearly 10 years, it was remarkable and inspiring to see the dramatic effect ibalizumab had on such vulnerable patients. As a clinician, I am excited that we will now have another option with a different mechanism of action for our heavily pretreated patients who are struggling to keep their viral load below detection because their HIV is resistant to multiple drugs.”

Clinical Trial Findings

Clinical studies show that Trogarzo™, in combination with other ARTs, significantly reduces viral load and increases CD4+ (T-cell) count among patients with multidrug resistant HIV-1.

The Phase 3 trial showed:1

  • Trogarzo™ significantly reduced viral load within seven days after the first dose of functional monotherapy and maintained the treatment response when combined with an optimized background regimen that included at least one other active ART for up to 24 weeks of treatment, while being safe and well tolerated.
  • More than 80% of patients achieved the study’s primary endpoint – at least a 0.5 log10 (or 70%) viral load reduction from baseline seven days after receiving a 2,000 mg loading dose of Trogarzo™ and no adjustment to the failing background regimen.
  • The average viral load reduction after 24 weeks was 1.6 log10 with 43% of patients achieving undetectable viral loads.

Patients experienced a clinically-significant mean increase in CD4+ T-cells of 44 cells/mm3, and increases varied based on T-cell count at baseline. Rebuilding the immune system by increasing T-cell count is particularly important as people with multidrug resistant HIV-1 often have the most advanced form of HIV.1

The most common drug-related adverse reactions (incidence ≥ 5%) were diarrhea (8%), dizziness (8%), nausea (5%) and rash (5%). No drug-drug interactions were reported with other ARTs or medications, and no cross-resistance with other ARTs were observed.1

About Trogarzo™ (ibalizumab-uiyk) Injection

Trogarzo™ is a humanized monoclonal antibody for the treatment of multidrug resistant HIV-1 infection. Trogarzo™ binds primarily to the second extracellular domain of the CD4+ T receptor, away from major histocompatibility complex II molecule binding sites. It prevents HIV from infecting CD4+ immune cells while preserving normal immunological function.

IMPORTANT SAFETY INFORMATION

Trogarzo™ is a prescription HIV medicine that is used with other antiretroviral medicines to treat human immunodeficiency virus-1 (HIV-1) infections in adults.

Trogarzo™ blocks HIV from infecting certain cells of the immune system. This prevents HIV from multiplying and can reduce the amount of HIV in the body.

Before you receive Trogarzo™, tell your healthcare provider if you:

  • are pregnant or plan to become pregnant. It is not known if Trogarzo™ may harm your unborn baby.
  • are breastfeeding or plan to breastfeed. It is not known if Trogarzo™ passes into breast milk.

Tell your healthcare provider about all the medicines you take, including all prescription and over-the-counter medicines, vitamins, and herbal supplements.

Trogarzo™ can cause serious side effects, including:

Changes in your immune system (Immune Reconstitution Inflammatory Syndrome) can happen when you start taking HIV-1 medicines.  Your immune system might get stronger and begin to fight infections that have been hidden in your body for a long time.  Tell your health care provider right away if you start having new symptoms after starting your HIV-1 medicine.

The most common side effects of Trogarzo™ include:

  • Diarrhea
  • Dizziness
  • Nausea
  • Rash

Tell your healthcare provider if you have any side effect that bothers you or that does not go away. These are not all the possible side effects of Trogarzo™. For more information, ask your healthcare provider or pharmacist.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.  You may also report side effects to at 1-833-23THERA (1-833-238-4372).

 

About Theratechnologies

Theratechnologies (TSX: TH) is a specialty pharmaceutical company addressing unmet medical needs to promote healthy living and an improved quality of life among HIV patients. Further information about Theratechnologies is available on the Company’s website at www.theratech.com and on SEDAR at www.sedar.com.

/////Trogarzo, ibalizumab-uiyk, fda 2018, Fast TrackPriority Review, Breakthrough Therapy designations,  Orphan Drug designation

FDA approves new treatment Hemlibra (emicizumab-kxwh) to prevent bleeding in certain patients with hemophilia A


FDA approves new treatment to prevent bleeding in certain patients with hemophilia A

The U.S. Food and Drug Administration today approved Hemlibra (emicizumab-kxwh) to prevent or reduce the frequency of bleeding episodes in adult and pediatric patients with hemophilia A who have developed antibodies called Factor VIII (FVIII) inhibitors.Continue reading.

 

 

November 16, 2017

Summary

FDA approves new treatment to prevent or reduce frequency of bleeding episodes in patients with hemophilia A who have Factor VIII inhibitors.

Release

The U.S. Food and Drug Administration today approved Hemlibra (emicizumab-kxwh) to prevent or reduce the frequency of bleeding episodes in adult and pediatric patients with hemophilia A who have developed antibodies called Factor VIII (FVIII) inhibitors.

“Reducing the frequency or preventing bleeding episodes is an important part of disease management for patients with hemophilia. Today’s approval provides a new preventative treatment that has been shown to significantly reduce the number of bleeding episodes in patients with hemophilia A with Factor VIII inhibitors,” said Richard Pazdur, M.D., acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research and director of the FDA’s Oncology Center of Excellence. “In addition, patients treated with Hemlibra reported an improvement in their physical functioning.”

Hemophilia A is an inherited blood-clotting disorder that primarily affects males. According to the National Institutes of Health, hemophilia affects one in every 5,000 males born in the United States, approximately 80 percent of whom have hemophilia A. Patients with hemophilia A are missing a gene which produces Factor VIII, a protein that enables blood to clot. Patients may experience repeated episodes of serious bleeding, primarily into their joints, which can be severely damaged as a result. Some patients develop an immune response known as a FVIII inhibitor or antibody. The antibody interferes with the effectiveness of currently available treatments for hemophilia.

Hemlibra is a first-in-class therapy that works by bridging other Factors in the blood to restore blood clotting for these patients. Hemlibra is a preventative (prophylactic) treatment given weekly via injection under the skin (subcutaneous).

The safety and efficacy of Hemlibra was based on data from two clinical trials. The first was a trial that included 109 males aged 12 and older with hemophilia A with FVIII inhibitors. The randomized portion of the trial compared Hemlibra to no prophylactic treatment in 53 patients who were previously treated with on-demand therapy with a bypassing agent before enrolling in the trial. Patients taking Hemlibra experienced approximately 2.9 treated bleeding episodes per year compared to approximately 23.3 treated bleeding episodes per year for patients who did not receive prophylactic treatment. This represents an 87 percent reduction in the rate of treated bleeds. The trial also included patient-reported Quality of Life metrics on physical health. Patients treated with Hemlibra reported an improvement in hemophilia-related symptoms (painful swellings and joint pain) and physical functioning (pain with movement and difficulty walking) compared to patients who did not receive prophylactic treatment.

The second trial was a single arm trial of 23 males under the age of 12 with hemophilia A with FVIII inhibitors. During the trial, 87 percent of the patients taking Hemlibra did not experience a bleeding episode that required treatment.

Common side effects of Hemlibra include injection site reactions, headache, and joint pain (arthralgia).

The labeling for Hemlibra contains a boxed warning to alert healthcare professionals and patients that severe blood clots (thrombotic microangiopathy and thromboembolism) have been observed in patients who were also given a rescue treatment (activated prothrombin complex concentrate) to treat bleeds for 24 hours or more while taking Hemlibra.

The FDA granted this application Priority Review and Breakthrough Therapydesignations. Hemlibra also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The FDA granted the approval of Hemlibra to Genentech, Inc.

///////Hemlibra, emicizumab-kxwh, FDA 2017, hemophilia A, Priority Review and Breakthrough Therapy designation,  Orphan Drug designation

 

 

“NEW DRUG APPROVALS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

Pracinostat


Pracinostat.svg

ChemSpider 2D Image | Pracinostat | C20H30N4O2

Pracinostat.png

2D chemical structure of 929016-96-6

Pracinostat

  • Molecular Formula C20H30N4O2
  • Average mass 358.478 Da
2-Propenamide, 3-[2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl]-N-hydroxy-, (2E)-
929016-96-6 [RN]
SB939
(2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1,3-benzodiazol-5-yl}-N-hydroxyprop-2-enamide
N-hydroxy-1-[(4-methoxyphenyl)methyl]-1H-indole-6-carboxamide
PCI 34051,  UNII: GPO2JN4UON
929016-98-8 DI HCl salt, C20 H30 N4 O2 . 2 Cl H, 431.4
929016-96-6 (free base)
929016-97-7 (trifluoroacetate)
S*BIO (Originator)
Leukemia, acute myeloid, phase 3, helsinn
Image result for S*BIO
str1
CAS 929016-98-8 DI HCl salt, C20 H30 N4 O2 . 2 Cl H, 431.4
E)-3-[2-Butyl-1-(2-diethylaminoethyl)-1H-benzimidazol-5-yl]-N-hydroxyacrylamide Dihydrochloride Salt

Pracinostat (SB939) is an orally bioavailable, small-molecule histone deacetylase (HDAC) inhibitor based on hydroxamic acid with potential anti-tumor activity characterized by favorable physicochemical, pharmaceutical, and pharmacokinetic properties.

WO-2017192451  describes Novel polymorphic crystalline forms of pracinostat (designated as Form 3) and their hydrates, processes for their preparation and compositions and combination comprising them are claimed. Also claimed is their use for inhibiting histone deacetylase and treating cancer, such as myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), breast cancer, colon cancer, prostate cancer, pancreas cancer, leukemia, lymphoma, ovary cancer, melanoma and neuroblastoma.

See WO2014070948 ,  Helsinn , under sub-license from MEI Pharma (under license from S*Bio), is developing pracinostat, an oral HDAC inhibitor, for treating hematological tumors, including AML, MDS and myelofibrosis.

The oncolytic agent pracinostat hydrochloride is an antagonist of histone deacetylase 1 (HDAC1) and 2 (HDAC2) that was discovered by the Singapore-based company S*BIO. Helsinn obtained the exlusive development and commercialization rights in July 2016, and is conducting phase III clinical trials in combination with azacitidine in adults with newly diagnosed acute myeloid leukemia. Phase II trials are also under way for the treatment of previously untreated intermediate-2 or high risk myelodysplastic syndrome patients and for the treatment of primary or post essential thrombocythemia/polycythemia vera) in combination with ruxolitinib.In North America, S*BIO had been conducting phase II clinical trials of pracinostat hydrochloride in patients with solid tumors and for the treatment of myeloproliferative diseases and phase I clinical trials in patients with leukemia; however, recent progress reports are not available at present. The University of Queensland had been evaluating the compound in preclinical studies for malaria.

Image result for University of Queensland

University of Queensland

Image result for MEI Pharma

MEI Pharma

The Canadian Cancer Society Research Institute (the research branch of the Canadian Cancer Society upon its integration with the National Cancer Institute of Canada to form the new Canadian Cancer Society) is conducting phase II clinical trials in Canada for the treatment of recurrent or metastatic prostate cancer.

Image result for Canadian Cancer Society Research Institute

Canadian Cancer Society Research Institute

In 2012, the product was licensed to MEI Pharma by S*BIO on a worldwide basis. In 2016, MEI Pharma and Helsinn entered into a licensing, development and commercialization agreement by which Helsinn obtained exclusive worldwide rights (including manufacturing and commercialization rights).

Image result for HELSINN

HELSINN

In 2014, the FDA assigned an orphan drug designation to MEI Pharma for the treatment of acute myeloid leukemia. In 2016, the product received breakthrough therapy designation in the U.S. in combination with azacitidine for the treatment of patients with newly diagnosed acute myeloid leukemia (AML) who are older than 75 years of age or unfit for intensive chemotherapy.

Pracinostat is an orally available, small-molecule histone deacetylase (HDAC) inhibitor with potential antineoplastic activity. Pracinostat inhibits HDACs, which may result in the accumulation of highly acetylated histones, followed by the induction of chromatin remodeling; the selective transcription of tumor suppressor genes; the tumor suppressor protein-mediated inhibition of tumor cell division; and, finally, the induction of tumor cell apoptosis. This agent may possess improved metabolic, pharmacokinetic and pharmacological properties compared to other HDAC inhibitors.

Pracinostat is a novel HDAC inhibitor with improved in vivo properties compared to other HDAC inhibitors currently in clinical trials, allowing oral dosing. Data demonstrate that Pracinostat is a potent and effective anti-tumor drug with potential as an oral therapy for a variety of human hematological and solid tumors

SYNTHESIS

Figure

Clinically tested HDAC inhibitors.

Activity

Pracinostat selectively inhibits HDAC class I,II,IV without class III and HDAC6 in class IV,[1] but has no effect on other Zn-binding enzymes, receptors, and ion channels. It accumulates in tumor cells and exerts a continuous inhibition to histone deacetylase,resulting in acetylated histones accumulation, chromatin remodeling, tumor suppressor genes transcription, and ultimately, apoptosis of tumor cells.[2]

Clinical medication

Clinical studies suggests that pracinostat has potential best pharmacokinetic properties when compared to other oral HDAC inhibitors.[3]In March 2014, pracinostat has granted Orphan Drug for acute myelocytic leukemia (AML) and for the treatment of T-cell lymphoma by the Food and Drug Administration.

Clinical Trials

CTID Title Phase Status Date
NCT03151304 A Safety and Efficacy Study of Pracinostat and Azacitidine in Patients With High Risk Myelodysplastic Syndromes 2 Recruiting
2017-10-27
NCT03151408 An Efficacy and Safety Study Of Pracinostat In Combination With Azacitidine In Adults With Acute Myeloid Leukemia 3 Recruiting
2017-10-17
NCT02267278 Ruxolitinib and Pracinostat Combination Therapy for Patients With Myelofibrosis (MF) 2 Active, not recruiting
2017-04-27
NCT01873703 Phase 2 Study of Pracinostat With Azacitidine in Patients With Previously Untreated Myelodysplastic Syndrome 2 Active, not recruiting
2017-04-21
NCT02118909 Evaluate the Effects of Itraconazole and Ciprofloxacin on Single-Dose PK of Pracinostat in Healthy Nonsmoking Subjects 1 Completed
2017-02-22
NCT02058784 Study to Evaluate the Food Effect of Single-dose Bioavailability of Pracinostat in Healthy Adult Subjects 1 Completed
2017-02-22
NCT01993641 Phase 2 Study Adding Pracinostat to a Hypomethylating Agent (HMA) in Patients With MDS Who Failed to Respond to Single Agent HMA 2 Completed
2017-02-22
NCT01112384 A Study of SB939 in Patients With Translocation-Associated Recurrent/Metastatic Sarcomas 2 Completed
2016-11-25
NCT01184274 A Phase I Study of SB939 in Pediatric Patients With Refractory Solid Tumours and Leukemia 1 Completed
2014-01-16
NCT01200498 Study of SB939 in Subjects With Myelofibrosis 2 Completed
2013-12-13

PATENT

WO2005028447

Inventors Dizhong ChenWeiping DengKanda SangthongpitagHong Yan SongEric T. SunNiefang YuYong Zou
Applicant S*Bio Pte Ltd

Scheme I

Figure imgf000041_0001

Scheme II

Figure imgf000042_0001Scheme III

Figure imgf000043_0001Scheme IV

Figure imgf000044_0001 Scheme V

Figure imgf000045_0001

PAPER

Discovery of (2E)-3-{2-Butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an Orally Active Histone Deacetylase Inhibitor with a Superior Preclinical Profile

Chemistry Discovery, Biology Discovery, and §Pre-Clinical Development, S*BIO Pte Ltd., 1 Science Park Road, No. 05-09 The Capricorn, Singapore Science Park II, Singapore 117528, Singapore
J. Med. Chem.201154 (13), pp 4694–4720
DOI: 10.1021/jm2003552
Phone: +65-68275019. Fax: +65-68275005. E-mail: haishan_wang@sbio.com.

Abstract

Abstract Image

A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC50), liver microsomal stability (t1/2), cytochrome P450 inhibitory (3A4 IC50), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.

(E)-3-[2-Butyl-1-(2-diethylaminoethyl)-1H-benzimidazol-5-yl]-N-hydroxyacrylamide Dihydrochloride Salt (3)

The freebase of 3 was prepared according to procedure D. The hydroxamic acid moiety was identified by 1H–15N HSQC (DMSO-d6) with δN = 169.0 ppm (CONHOH). Other nitrogens in 3were identified by 1H–15N HMBC (DMSO-d6) with δN of 241.4 ppm for N3 of the benzimidazole ring, 152.3 ppm for N1, and 41.3 ppm for the diethylamino group (reference to nitromethane δN = 380.0 ppm in CDCl3). The dihydrochloride salt of 3 was prepared according to procedure D as white or off-white solid or powder in ∼60% yield from 9 in two steps. LC–MS m/z 359.2 ([M + H]+).
1H NMR (DMSO-d6) δ 11.79 (brs, 1H, NH or OH), 10.92 (very br s, 1H), 8.18 (d, J = 8.6 Hz, 1H), 7.97 (s, 1H), 7.79 (d, J = 8.6 Hz, 1H), 7.64 (d, J = 15.8 Hz, 1H), 6.65 (d, J = 15.8 Hz, 1H), 5.01 (t-like, J = 7.7 Hz, 2H), 3.48 (m, 2H), 3.30–3.19 (m, 6H), 1.87 (quintet, J = 7.8 Hz, 2H), 1.47 (sextet, J = 7.5 Hz, 2H), 1.29 (t, J = 7.2 Hz, 6H), 0.97 (t, J = 7.3 Hz, 3H);
13C NMR (DMSO-d6) δ 162.3, 156.0, 137.3 (CH), 132.8, 132.3, 132.0 (br, identified by HMBC), 124.7 (CH), 120.2 (CH), 113.1 (2 × CH), 48.2, 46.3, 39.0, 28.1, 25.0, 21.7, 13.6, 8.3.
Anal. (C20H30N4O2·2HCl·0.265H2O) C, H, N, Cl. Water content = 1.09% (Karl Fisher method). HRMS (ESI) m/z [M + H]+ calcd for C20H31N4O2, 359.2442; found, 359.2449.

PATENT

WO 2007030080

http://google.com/patents/WO2007030080A1?cl=en

 
Inventors Dizhong ChenWeiping DengKen Chi Lik LeePek Ling LyeEric T. SunHaishan WangNiefang Yu
Applicant S*Bio Pte Ltd

SEE

WO 2008108741

WO 2014070948

Patent

WO-2017192451

References

  1. Jump up^ “In vitro enzyme activity of SB939 and SAHA”. 22 Aug 2014.
  2. Jump up^ “The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML”. Blood Cancer Journaldoi:10.1038/bcj.2012.14.
  3. Jump up^ Veronica Novotny-Diermayr; et al. (March 9, 2010). “SB939, a Novel Potent and Orally Active Histone Deacetylase Inhibitor with High Tumor Exposure and Efficacy in Mouse Models of Colorectal Cancer”Mol Cancer Therdoi:10.1158/1535-7163.MCT-09-0689.
PATENT 
Cited Patent Filing date Publication date Applicant Title
WO2005028447A1 * Sep 21, 2004 Mar 31, 2005 S*Bio Pte Ltd Benzimidazole derivates: preparation and pharmaceutical applications
US20050137234 * Dec 14, 2004 Jun 23, 2005 Syrrx, Inc. Histone deacetylase inhibitors
Reference
1 None
2 See also references of EP1937650A1
Citing Patent Filing date Publication date Applicant Title
WO2009084544A1 * Dec 24, 2008 Jul 9, 2009 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocyclic derivative and organic electroluminescent device using the same
WO2010043953A2 * Oct 14, 2009 Apr 22, 2010 Orchid Research Laboratories Ltd. Novel bridged cyclic compounds as histone deacetylase inhibitors
WO2010043953A3 * Oct 14, 2009 Mar 24, 2011 Orchid Research Laboratories Ltd. Novel bridged cyclic compounds as histone deacetylase inhibitors
WO2017030938A1 * Aug 12, 2016 Feb 23, 2017 Incyte Corporation Heterocyclic compounds and uses thereof
DE102007037579A1 Aug 9, 2007 Feb 19, 2009 Emc Microcollections Gmbh Neue Benzimidazol-2-yl-alkylamine und ihre Anwendung als mikrobizide Wirkstoffe
US8865912 Jan 27, 2014 Oct 21, 2014 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
US9024029 Sep 3, 2013 May 5, 2015 Mei Pharma, Inc. Benzimidazole derivatives: preparation and pharmaceutical applications
US9062003 Sep 9, 2014 Jun 23, 2015 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
US9156797 May 15, 2015 Oct 13, 2015 Glaxosmithkline Llc Benzimidazole derivatives as PI3 kinase inhibitors
US9402829 Feb 20, 2015 Aug 2, 2016 Mei Pharma, Inc. Benzimidazole derivatives: preparation and pharmaceutical applications
US9717713 Jun 10, 2016 Aug 1, 2017 Mei Pharma, Inc. Benzimidazole derivatives: preparation and pharmaceutical applications
Patent ID

Patent Title

Submitted Date

Granted Date

US2016158186 USE OF DIANHYDROGALACTITOL AND ANALOGS AND DERIVATIVES THEREOF TO TREAT RECURRENT MALIGNANT GLIOMA OR PROGRESSIVE SECONDARY BRAIN TUMOR
2015-04-09
2016-06-09
US2015051288 Methods and Compositions for Treatment of Autism
2014-10-10
2015-02-19
US2017128534 TREATING ROTATOR CUFF CONDITIONS
2015-07-09
Patent ID

Patent Title

Submitted Date

Granted Date

US2014235649 USE OF PHOSPHATASE INHIBITORS OR HISTONE DEACETYLASE INHIBITORS TO TREAT DISEASES CHARACTERIZED BY LOSS OF PROTEIN FUNCTION
2012-05-24
2014-08-21
US2013102595 TREATMENT OF CANCERS HAVING K-RAS MUTATIONS
2012-10-15
2013-04-25
US9624515 System and Method of Producing Volatile Organic Compounds from Fungi
2013-02-01
2013-05-30
US2014349938 METHODS OF DIAGNOSING AND TREATING AMYOTROPHIC LATERAL SCLEROSIS
2012-06-01
2014-11-27
US2017100354 COMPOSITIONS AND METHODS FOR TREATING KABUKI SYNDROME AND RELATED DISORDERS
2015-05-29
Patent ID

Patent Title

Submitted Date

Granted Date

US9387263 RbAp48 TRANSGENIC MICE FOR DRUG DISCOVERY IN AGE-RELATED MEMORY DECLINE
2012-08-02
2014-10-02
US2014051716 COMPOUNDS AND METHODS FOR IMPROVING IMPAIRED ENDOGENOUS FIBRINOLYSIS USING HISTONE DEACETYLASE INHIBITORS
2012-03-09
2014-02-20
US2010098691 COMBINATION OF BENZIMIDAZOLE ANTI-CANCER AGENT AND A SECOND ANTI-CANCER AGENT
2010-04-22
US2016069887 BIOMARKERS FOR PROGNOSIS
2014-04-08
2016-03-10
US8937050 Methods and compositions for treatment of autism
2012-10-31
2015-01-20
Patent ID

Patent Title

Submitted Date

Granted Date

US2017049784 METHOD OF TREATING ACUTE MYELOID LEUKEMIA AND/OR ACUTE LYMPHOBLASTIC LEUKEMIA USING THIENOTRIAZOLODIAZEPINE COMPOUNDS
2015-05-01
US2017095484 METHOD OF TREATING RESISTANT NON-HODGKIN LYMPHOMA, MEDULLOBLASTOMA, AND/OR ALK+NON-SMALL CELL LUNG CANCER USING THIENOTRIAZOLODIAZEPINE COMPOUNDS
2015-05-01
US2017157141 METHOD OF TREATING LEUKEMIA USING PHARMACEUTICAL FORMULATION CONTAINING THIENOTRIAZOLODIAZEPINE COMPOUNDS
2014-11-26
US2015258068 COMBINATION THERAPIES
2013-10-30
2015-09-17
US2015182490 METHODS FOR TREATING TYROSINE-KINASE-INHIBITOR-RESISTANT MALIGNANCIES IN PATIENTS WITH GENETIC POLYMORPHISMS OR AHI1 DYSREGULATIONS OR MUTATIONS EMPLOYING DIANHYDROGALACTITOL, DIACETYLDIANHYDROGALACTITOL, DIBROMODULCITOL, OR ANALOGS OR DERIVATIVES THEREOF
2013-06-24
2015-07-02
Patent ID

Patent Title

Submitted Date

Granted Date

US8143282 Heterocyclic Compounds
2009-02-19
2012-03-27
US2017020874 COMPOUNDS AND METHODS FOR IMPROVING IMPAIRED ENDOGENOUS FIBRINOLYSIS USING HISTONE DEACETYLASE INHIBITORS
2015-12-01
US2017231931 PRODUCTS FOR THE TREATMENT AND PREVENTION OF NEUROLOGICAL DISORDERS COURSING WITH A COGNITION DEFICIT OR IMPAIRMENT, AND OF NEURODEGENERATIVE DISEASES
2015-08-25
US2017273988 METHODS OF TREATING LYMPHOMA USING THIENOTRIAZOLODIAZEPINE COMPOUNDS
2015-08-19
US2017095436 METHODS FOR TREATING MENDELIAN DISORDERS OF THE EPIGENETIC MACHINERY
2015-05-29
Pracinostat
Pracinostat.svg
Names
IUPAC name

(E)-3-(2-Butyl-1-(2-(diethylamino)ethyl)-1H-benzo[d]imidazol-5-yl)-N-hydroxyacrylamide
Other names

Pracinostat
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
Properties
C20H30N4O2
Molar mass 358.49 g·mol−1
Density 1.1±0.1 g/cm3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

//////////////Pracinostat, PCI 34051, SB939, orphan drug designation, Leukemia, acute myeloid, phase 3, helsinn

CCCCC1=NC2=C(N1CCN(CC)CC)C=CC(=C2)C=CC(=O)NO

 

“NEW DRUG APPROVALS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This is a compilation for educational purposes only. P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

FDA approves new treatment Endari (L-glutamine oral powder) for sickle cell disease


Image result for sickle cell disease
07/07/2017
The U.S. Food and Drug Administration today approved Endari (L-glutamine oral powder) for patients age five years and older with sickle cell disease to reduce severe complications associated with the blood disorder.

July 7, 2017

Release

The U.S. Food and Drug Administration today approved Endari (L-glutamine oral powder) for patients age five years and older with sickle cell disease to reduce severe complications associated with the blood disorder.

“Endari is the first treatment approved for patients with sickle cell disease in almost 20 years,” said Richard Pazdur, M.D., acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research and director of the FDA’s Oncology Center of Excellence. “Until now, only one other drug was approved for patients living with this serious, debilitating condition.”

Sickle cell disease is an inherited blood disorder in which the red blood cells are abnormally shaped (in a crescent, or “sickle,” shape). This restricts the flow in blood vessels and limits oxygen delivery to the body’s tissues, leading to severe pain and organ damage. According to the National Institutes of Health, approximately 100,000 people in the United States have sickle cell disease. The disease occurs most often in African-Americans, Latinos and other minority groups. The average life expectancy for patients with sickle cell disease in the United States is approximately 40 to 60 years.

The safety and efficacy of Endari were studied in a randomized trial of patients ages five to 58 years old with sickle cell disease who had two or more painful crises within the 12 months prior to enrollment in the trial. Patients were assigned randomly to treatment with Endari or placebo, and the effect of treatment was evaluated over 48 weeks. Patients who were treated with Endari experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac (sickle cell crises), on average, compared to patients who received a placebo (median 3 vs. median 4), fewer hospitalizations for sickle cell pain (median 2 vs. median 3), and fewer days in the hospital (median 6.5 days vs. median 11 days).  Patients who received Endari also had fewer occurrences of acute chest syndrome (a life-threatening complication of sickle cell disease) compared with patients who received a placebo (8.6 percent vs. 23.1 percent).

Common side effects of Endari include constipation, nausea, headache, abdominal pain, cough, pain in the extremities, back pain and chest pain.

Endari received Orphan Drug designation for this use, which provides incentives to assist and encourage the development of drugs for rare diseases.  In addition, development of this drug was in part supported by the FDA Orphan Products Grants Program, which provides grants for clinical studies on safety and/or effectiveness of products for use in rare diseases or conditions.

The FDA granted the approval of Endari to Emmaus Medical Inc.

Image result for Emmaus Medical Inc

Image result for sickle cell disease

/////////////FDA2017, Endari, Orphan Drug designation,  Emmaus Medical Inc., L-glutamine oral powder

FDA approves drug to treat ALS, Radicava (Edaravone) , эдаравон, إيدارافون , 依达拉奉 ,ラジカット,


Edaravone.svg

05/05/2017
The U.S. Food and Drug Administration today approved Radicava (edaravone) to treat patients with amyotrophic lateral sclerosis (ALS), commonly referred to as Lou Gehrig’s disease.

May 5, 2017

Release

The U.S. Food and Drug Administration today approved Radicava (edaravone) to treat patients with amyotrophic lateral sclerosis (ALS), commonly referred to as Lou Gehrig’s disease.

“After learning about the use of edaravone to treat ALS in Japan, we rapidly engaged with the drug developer about filing a marketing application in the United States,” said Eric Bastings, M.D., deputy director of the Division of Neurology Products in the FDA’s Center for Drug Evaluation and Research. “This is the first new treatment approved by the FDA for ALS in many years, and we are pleased that people with ALS will now have an additional option.”

ALS is a rare disease that attacks and kills the nerve cells that control voluntary muscles. Voluntary muscles produce movements such as chewing, walking, breathing and talking. The nerves lose the ability to activate specific muscles, which causes the muscles to become weak and leads to paralysis. ALS is progressive, meaning it gets worse over time. The Centers for Disease Control and Prevention estimates that approximately 12,000-15,000 Americans have ALS. Most people with ALS die from respiratory failure, usually within three to five years from when the symptoms first appear.

Radicava is an intravenous infusion given by a health care professional. It is administered with an initial treatment cycle of daily dosing for 14 days, followed by a 14-day drug-free period. Subsequent treatment cycles consist of dosing on 10 of 14 days, followed by 14 days drug-free.

The efficacy of edaravone for the treatment of ALS was demonstrated in a six-month clinical trial conducted in Japan. In the trial, 137 participants were randomized to receive edaravone or placebo. At Week 24, individuals receiving edaravone declined less on a clinical assessment of daily functioning compared to those receiving a placebo.

The most common adverse reactions reported by clinical trial participants receiving edaravone were bruising (contusion) and gait disturbance.

Radicava is also associated with serious risks that require immediate medical care, such as hives, swelling, or shortness of breath, and allergic reactions to sodium bisulfite, an ingredient in the drug. Sodium bisulfite may cause anaphylactic symptoms that can be life-threatening in people with sulfite sensitivity.

The FDA granted this drug orphan drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The FDA granted approval of Radicava to Mitsubishi Tanabe Pharma America, Inc,

ChemSpider 2D Image | Edaravone | C10H10N2O

1-Phenyl-3-methyl-5-pyrazolone
3H-Pyrazol-3-one, 2,4-dihydro-5-methyl-2-phenyl- [ACD/Index Name]
89-25-8 [RN]
эдаравон [Russian]
إيدارافون [Arabic]
依达拉奉 [Chinese]
ラジカット,
MCI-186

Edaravone (brand name ラジカット, Radicut) is a nootropic and neuroprotective agent used for the purpose of aiding neurological recovery following acute brain ischemia and subsequent cerebral infarction.[1] It acts as a potent antioxidant and strongly scavenges free radicals, protecting against oxidative stress and neuronal apoptosis.[2][3][4] It has been marketed solely in Japan by Mitsubishi Pharma since 2001.[1] It is also marketed in India by Edinburgh Pharmaceuticals by the brand name Arone.

On June 26, 2015, Mitsubishi Tanabe Pharma Corporation announced it has received approval to market Radicut for treatment of ALS in Japan. The phase III clinical trial began in 2011 in Japan. The company was awarded Orphan Drug Designation for Radicut by the FDA and EU in 2015. Radicut is an intravenous drug and administrated 14 days followed by 14 days drug holiday.

The biotech company Treeway is developing an oral formulation of edaravone (TW001) and is currently in clinical development. Treeway was awarded orphan drug designation for edaravone by the EMA in November 2014 and FDA in January 2015.

Edaravone has been shown to attenuate methamphetamine– and 6-OHDA-induced dopaminergic neurotoxicity in the striatum and substantia nigra, and does not affect methamphetamine-induced dopamine release or hyperthermia.[5][6] It has also been demonstrated to protect against MPTP-mediated dopaminergic neurotoxicity to the substantia nigra, though notably not to the striatum.[7][8][9]

Image result for edaravone synthesis

Edaravone (CAS NO.: 89-25-8), with other name of 3-Methyl-1-phenyl-2-pyrazolin-5-one, could be produced through many synthetic methods.

Following is one of the synthesis routes: By direct cyclization of phenylhydrazine (I) with ethyl acetoacetate (II) in refluxing ethanol.

SYNTHESIS

Edaravone, chemical name: 3-methyl-1-phenyl-2-pyrazoline-5-one, of the formula: Formula: CiciHltlN2O, molecular weight: 174.20, the formula:

 

Figure CN101830852BD00031

[0004] Edaravone is a brain-protecting agent (free radical scavenger). Clinical studies suggest that N- acetyl aspartate (NAA) is a specific sign of the survival of nerve cells, dramatically reducing the initial content of cerebral infarction. In patients with acute cerebral infarction Edaravone suppressed reduce peri-infarct regional cerebral blood flow, so that the first concept of days after the onset of brain NAA glycerol content than the control group significantly increased. Preclinical studies suggest that rats after ischemia / reperfusion of ischemic intravenous edaravone, can prevent the progress of cerebral edema and cerebral infarction, and relieve the accompanying neurological symptoms, suppress delayed neuronal death. Mechanism studies suggest that edaravone can scavenge free radicals, inhibiting lipid peroxidation, thereby inhibiting brain cells, endothelial cells, oxidative damage nerve cells.

For the synthesis of edaravone reported some use of benzene and methyl ethyl ketone amide corpus obtained, but methyl ethyl ketone amide difficult to obtain and slow reaction, which now has basically been abandoned; some use benzene corpus and ethyl acetoacetate in ethanol (see US4857542A, Synthesis Example 1) or water (Dykhanov NN Ethyl and butyl acetoacetates, Med Prom SSSR, 1961,15 (1):. 42-45) refluxing the reaction of the reaction The resulting purity edaravone poor, and the yield is not high, only about 70%.

Edaravone, chemical name: 2,4_-dihydro-5-methyl-2-phenyl pyrazole -3H- – one, of the formula: CiciHltlN2O, molecular weight: 174.20, the formula:

Figure CN102285920BD00031

edaravone is a clear cerebral infarction harmful factors (free radicals), protection of new therapeutic agents for cerebral infarction nerve cells. Clinical studies have shown that N- acetyl aspartate (NAA) is a specific sign of the survival of nerve cells, dramatically reducing the initial content of cerebral infarction. When patients with acute cerebral infarction Edaravone, peri-infarct rCBF decrease has improved, and the first 28 days after the onset of brain NAA content was significantly higher than that in the control group glycerol. Mechanism studies suggest that edaravone can clear the brain is highly cytotoxic hydroxyl radicals, inhibiting the synthesis of lipids free radicals, which can suppress brain infarction after reperfusion edema, protecting brain from damage and improve nerve impairment symptoms, and the delayed neuronal death inhibition, to protect the brain.

 The first is by phenylhydrazine and methyl ethyl ketone amide (National API process compilation, 1980.737-739) condensation reaction in water at 50 ° C, a yield of up to 97%, but the raw material ketone amide ( CH3C0CH2C0NH2) are not readily available. Formula I

Edaravone synthetic route for the reaction:

Figure CN102285920BD00032

[0008] The second is to phenylhydrazine and ethyl acetoacetate in ethanol or water at reflux the reaction, sodium bisulfite as the preparation of the catalyst. From the perspective of the chemical reaction, acetyl ethyl ketone amide more than hydrazine reacted with benzene and ethyl acetoacetate more readily available, the price is cheaper, but lower reaction yield of about 70%. Formula 2 for the synthesis route Edaravone reaction formula:

Figure CN102285920BD00041

PATENT

https://www.google.com/patents/CN101830852B?cl=en

Figure CN101830852BD00041

1 Edaravone Synthesis Example [0023] Example

[0024] (1) Weigh benzene hydrochloride corpus 13. 5g (94mmol), was added to IOOml water, stirred for 0.5 hours, sodium hydroxide was added an equimolar 3. 76g, stirred for 0.5 hours; [0025] ( 2) To the reaction solution was added dropwise ethyl acetoacetate 11. 7g (90mmol), the reaction exotherm, the reaction was heated to reflux for 2.5 hours, heating was stopped, cooled to room temperature with stirring, filtered and dried to give a pale yellow granular crude 15. 5g;

[0026] (3) The crude product was added 30ml volume ratio of 2: 1 isopropanol – water, 2g of activated carbon was added and refluxed for 1 hour, filtered hot, cooled to room temperature a white solid was precipitated to give 14 a white crystalline powder. 8g, yield 90%, mpU9 ° C, with a purity of 99.9% 0

2 Edaravone Synthesis Example [0027] Example

[0028] (1) Weigh 15g of benzene hydrochloride corpus (I (Mmmol), was added to 120ml of water and stirred for 0.5 hours, sodium hydroxide was added an equimolar 4. 16g, stirred for 0.5 hours;

[0029] (2) To the reaction solution was added dropwise 13g of ethyl acetoacetate (lOOmmol), the reaction exotherm, the reaction was heated to reflux for 2.5 hours, heating was stopped, cooled to room temperature with stirring, filtered and dried to give a pale yellow granular crude 16. 7g;

(3) The crude product was added 40ml volume ratio of 2: 1 isopropanol – water, 2. 5g of activated carbon was added and refluxed for 1 hour, filtered hot, cooled to room temperature to precipitate a white solid, as a white crystalline powder 16. lg, a yield of 88.9%, mpU8 ° C, with a purity of 99.9% 0

3 Edaravone Synthesis Example [0031] Example

[0032] (1) Weigh 22g of benzene hydrochloride corpus (152mm0l), was added to 200ml of water and stirred for 0.5 hours, sodium hydroxide was added an equimolar 6. 08g, stirred for 0.5 hours;

[0033] (2) To the reaction solution was added dropwise 19g of ethyl acetoacetate (146mm0l), the reaction exotherm, the reaction was heated to reflux for 3 hours, heating was stopped, cooled to room temperature with stirring, filtered and dried to give a pale yellow granular crude 24. Sg;

[0034] (3) The crude product was added 50ml volume ratio of 2: 1 isopropanol – water, 3g of activated carbon was added and refluxed for 1 hour, filtered hot, cooled to room temperature a white solid was precipitated to give 23 a white crystalline powder. 2g, a yield of 87. 8%, mpU8 ° C, with a purity of 99.9% 0

[0035] Comparative Example

[0036] The ethyl acetoacetate 65g (0. 5mol) and 180ml of anhydrous ethanol mixed, with stirring at 50 ° C was added dropwise benzyl corpus 54g (0. 5mol) and a solution consisting of 30ml absolute ethanol, dropwise at reflux for 2 Bi hours, ethanol was distilled off 60ml, cooled, suction filtered, washed crystals with cold absolute ethanol twice, and dried in vacuo to give pale yellow crystals 70g. Recrystallized twice from absolute ethanol to give pale yellowish white crystals 56g (yield 65%).

PATENT

https://www.google.com/patents/CN102285920B?cl=en

Example 1: Preparation of phenylhydrazine edaravone.

[0024] a. Weigh 5.1g phenylhydrazine (47mmol), was added under stirring to water containing 45mL round-bottom flask, take appropriate concentrated hydrochloric acid solution was adjusted to pH 6.0 with PH meter.

[0025] b. To the above solution was slowly added dropwise ethyl acetoacetate 5.85g (45mmol), the reaction exotherm, was added 1.5g sodium dithionite (Na2S2O6), heated to 105 ° C to room temperature until reflux After 3h, heating was stopped, and then stirred, cooling, filtration, and dried to give a pale yellow granular edaravone crude.

[0026] c. With anhydrous ethanol recrystallization, filtration, and dried to obtain a white crystalline powder that is refined edaravone, 85% yield, 99.2% purity 0

[0027] Example 2: Preparation of phenylhydrazine hydrochloride edaravone.

[0028] a. Weigh 6.8g phenylhydrazine hydrochloride (47mmol), was added under stirring to water containing 45mL round-bottomed flask, the pH of the solution adjusted to 6.0 with aqueous ammonia.

[0029] b. To the above solution was slowly added dropwise ethyl acetoacetate 5.85g (45mmol), the reaction exotherm, 1.25g was added sodium dithionite (Na2S2O6), heated to 105 ° C to room temperature until reflux After 3h, heating was stopped, and then stirred, cooling, filtration, and dried to give a pale yellow granular edaravone crude.

[0030] c. With anhydrous ethanol recrystallization, filtration, and dried to obtain a white crystalline powder that is refined edaravone, 84% yield, with a purity of 99.2%. [0031] Comparative Example:

Under the [0032] state of agitation will phenylhydrazine 10.2g (94mmol) added to a round bottom flask equipped with IOOmL water in an appropriate amount of concentrated hydrochloric acid was dubbed the volume ratio of 1: 1 aqueous hydrochloric acid, with a PH adjusting pH of the solution was measured 6.0. After weighing Ethylacetoacetate 11.7g (90mmol) added to the reaction mixture, the reaction was exothermic and cooling to room temperature, sodium bisulfite (NaHSO3), heated to 105 ° C under reflux for 3h, the hot solution Water was added into the beaker and mechanical stirring, cooling, filtration, and dried to give the yellow edaravone crude, 73% yield, with a purity of 99.1%.

Figure CN102285920BD00042

CLIP

http://www.rsc.org/suppdata/books/184973/9781849739634/bk9781849739634-chapter%204.2.3.pdf

Edaravone:

IR (KBr) max/cm-1 : 3431, 3129, 1602, 1599, 1580;

1 H NMR (300 MHz, CDCl3): δ 7.86 (d, J = 7.5 Hz, 2H, ArH), 7.40 (m, 2H, ArH), 7.18 (m, 1H, ArH), 3.41 (d, J =0.6 Hz, 2H, CH2), 2.19 (s, 3H, CH3);

13C NMR (75 MHz, CDCl3): 170.6, 156.4, 130.1, 128.8, 125.0, 118.9, 43.1, 17.0;

1 H NMR (300 MHz, DMSO-d6): δ 11.5 (bs, 1H, NH), 7.71 (m, 2H, ArH), 7.40 (m, 2H, ArH), 7.22 (m, 1H, ArH), 5.36 (s, 1H, CH), 2.12 (s, 3H, CH3);

13C NMR (75 MHz, DMSO-d6):171.7, 158.9, 148.7, 139.2, 138.6, 129.3,125.4, 124.8, 118.4, 43.5, 17.1, 14.2.

These values are in accordance with the previous published in literature1 .

In the carbon spectrum in DMSO presented in Figure SM 4.2.3.1.8 is evident the presence of the two major tautomeric structures of edaravone, signals are identified by different colours in both structures in the figure. Also in the IR analysis of the solid material (Figure SM 4.2.3.1.9) is possible to see either the NH form (max/cm-1, 3129), the OH form (max/cm- 1 , 3431) and the C=O (max/cm-1, 1599) of the enol and keto tautomeric forms of edaravone.

1. S. Pal, J. Mareddy and N. S. Devi, J.  Braz. Chem. Soc., 2008, 19, 1207.

CLIP

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532008000600023

We have shown that the short reaction time, in combination with good yields can make microwave assisted reaction of hydrazines with β-ketoesters ideal for a rapid entry to pyrazolones. All the compounds synthesized are characterized by spectroscopic (1H NMR, IR and MS) data. While determination of tautomeric composition of compound 3 is quite challenging as eight possible tautomeric forms need to be considered, interestingly, two major tautomeric forms of compound 3a was observed in two different solvents. For example, it exists as 1,2-dihydro pyrazolone (T-1Figure 2) in DMSO and 2,4-dihydro form (T-2Figure 2) in chloroform as indicated by 1H NMR spectra (Figure 3). The olefinic proton of T-1 appeared at 5.36 δ whereas the methylene hydrogens appeared at 3.43 δ in case of T-2. Additionally, the NH proton of T-1 at 11.40 δ was not observed incase of T-2 confirmed the absence of NH in the 2,4-dihydro form. Existence of two major tautomeric forms was also observed in case compound 3b (see 1H NMR data in the experimental section). However, X-ray study on single crystal of 2-(4-chlorophenyl)-5-methyl-1,2-dihydro pyrazol-3-one (3i) indicates that 2-aryl pyrazol-3-ones e.g. 3a-b3e-f and 3i exist as 1,2-dihydro form in crystal state. 27 It is mention worthy that the aryl ring of all these 2-aryl pyrazol-3-ones remain twisted with respect to the pyrazole plane as indicated by the crystallographic data of 3i [the dihedral angle between the pyrazole and benzene ring planes was found to be 15.81 (11)º].27

 

 

 

5-Methyl-2-phenyl-1,2-dihydro pyrazol-3-one (3a)

mp 125-127 ºC (lit21 126-130 ºC); 

IR (KBr) νmax/cm-1: 3127, 1597, 1525, 1498, 1454;

 1H NMR (400 MHz, DMSO-d6δ 11.40 (bs, 1H), 7.71-7.69 (m, 2H), 7.42-7.38 (m, 2H), 7.21-7.18 (m, 1H), 5.36 (s, 1H), 2.10 (s, 3H); 

13C NMR (50 MHz, DMSO-d6δ 170.6, 156.2, 138.1, 128.8 (2C), 124.9, 118.9 (2C), 43.1, 16.9; 

Mass (CI, m/z) 175 (M+1, 100).

1H NMR (400 MHz, CDCl3)δ 7.85 (d, J 8.3 Hz, 2H), 7.40-7.37 (m, 2H), 7.24-7.18 (m, 1H), 3.43 (s, 2H), 2.20 (s, 3H).

21. Makhija, M. T.; Kasliwal, R. T.; Kulkarni, V. M.; Neamati, N.; Bioorg. Med. Chem. 200412, 2317.         [ Links ]

CN101830852A Mar 22, 2010 Sep 15, 2010 海南美兰史克制药有限公司 Edaravone compound synthesized by new method
CN102060771A Nov 18, 2009 May 18, 2011 南京长澳制药有限公司 Edaravone crystal form and preparation method thereof
CN102180834A Mar 24, 2011 Sep 14, 2011 江苏正大丰海制药有限公司 Preparation method for edaravone

References

  1. ^ Jump up to:a b Doherty, Annette M. (2002). Annual Reports in Medicinal Chemistry, Volume 37 (Annual Reports in Medicinal Chemistry). Boston: Academic Press. ISBN 0-12-040537-7.
  2. Jump up^ Watanabe T, Tanaka M, Watanabe K, Takamatsu Y, Tobe A (March 2004). “[Research and development of the free radical scavenger edaravone as a neuroprotectant]”. Yakugaku Zasshi (in Japanese). 124 (3): 99–111. doi:10.1248/yakushi.124.99. PMID 15049127.
  3. Jump up^ Higashi Y, Jitsuiki D, Chayama K, Yoshizumi M (January 2006). “Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases”. Recent Patents on Cardiovascular Drug Discovery. 1 (1): 85–93. doi:10.2174/157489006775244191. PMID 18221078.
  4. Jump up^ Yoshida H, Yanai H, Namiki Y, Fukatsu-Sasaki K, Furutani N, Tada N (2006). “Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury”. CNS Drug Reviews. 12 (1): 9–20. doi:10.1111/j.1527-3458.2006.00009.x. PMID 16834755.
  5. Jump up^ Yuan WJ, Yasuhara T, Shingo T, et al. (2008). “Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons”. BMC Neuroscience. 9: 75. doi:10.1186/1471-2202-9-75. PMC 2533664Freely accessible. PMID 18671880.
  6. Jump up^ Kawasaki T, Ishihara K, Ago Y, et al. (August 2006). “Protective effect of the radical scavenger edaravone against methamphetamine-induced dopaminergic neurotoxicity in mouse striatum”. European Journal of Pharmacology. 542 (1-3): 92–9. doi:10.1016/j.ejphar.2006.05.012. PMID 16784740.
  7. Jump up^ Kawasaki T, Ishihara K, Ago Y, Baba A, Matsuda T (July 2007). “Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a radical scavenger, prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in the substantia nigra but not the striatum”. The Journal of Pharmacology and Experimental Therapeutics. 322 (1): 274–81. doi:10.1124/jpet.106.119206. PMID 17429058.
  8. Jump up^ Yokoyama H, Takagi S, Watanabe Y, Kato H, Araki T (June 2008). “Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice”. Journal of Neural Transmission (Vienna, Austria : 1996). 115 (6): 831–42. doi:10.1007/s00702-008-0019-6. PMID 18235988.
  9. Jump up^ Yokoyama H, Yano R, Aoki E, Kato H, Araki T (September 2008). “Comparative pharmacological study of free radical scavenger, nitric oxide synthase inhibitor, nitric oxide synthase activator and cyclooxygenase inhibitor against MPTP neurotoxicity in mice”. Metabolic Brain Disease. 23 (3): 335–49. doi:10.1007/s11011-008-9096-3. PMID 18648914.

External links

Edaravone
Edaravone.svg
Edaravone ball-and-stick model.png
Clinical data
Trade names Radicut
Routes of
administration
Oral
ATC code
  • none
Legal status
Legal status
  • Rx-only (JP)
Identifiers
Synonyms MCI-186
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
ECHA InfoCard 100.001.719
Chemical and physical data
Formula C10H10N2O
Molar mass 174.20 g/mol
3D model (Jmol)
////////// Radicava, edaravone, fda 2017, Lou Gehrig’s disease, amyotrophic lateral sclerosis,  Mitsubishi Tanabe, orphan drug designation89-25-8, эдаравон, إيدارافون , 依达拉奉 ,ラジカット,
O=C1CC(=NN1c1ccccc1)C

FDA approves first treatment for a form of Batten disease, Brineura (cerliponase alfa)


Image result
04/27/2017
The U.S. Food and Drug Administration today approved Brineura (cerliponase alfa) as a treatment for a specific form of Batten disease. Brineura is the first FDA-approved treatment to slow loss of walking ability (ambulation) in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency.

The U.S. Food and Drug Administration today approved Brineura (cerliponase alfa) as a treatment for a specific form of Batten disease. Brineura is the first FDA-approved treatment to slow loss of walking ability (ambulation) in symptomatic pediatric patients 3 years of age and older with late infantile neuronal ceroid lipofuscinosis type 2 (CLN2), also known as tripeptidyl peptidase-1 (TPP1) deficiency.

“The FDA is committed to approving new and innovative therapies for patients with rare diseases, particularly where there are no approved treatment options,” said Julie Beitz, M.D., director of the Office of Drug Evaluation III in the FDA’s Center for Drug Evaluation and Research. “Approving the first drug for the treatment of this form of Batten disease is an important advance for patients suffering with this condition.”

CLN2 disease is one of a group of disorders known as neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease. CLN2 disease is a rare inherited disorder that primarily affects the nervous system. In the late infantile form of the disease, signs and symptoms typically begin between ages 2 and 4. The initial symptoms usually include language delay, recurrent seizures (epilepsy) and difficulty coordinating movements (ataxia). Affected children also develop muscle twitches (myoclonus) and vision loss. CLN2 disease affects essential motor skills, such as sitting and walking. Individuals with this condition often require the use of a wheelchair by late childhood and typically do not survive past their teens. Batten disease is relatively rare, occurring in an estimated two to four of every 100,000 live births in the United States.

Brineura is an enzyme replacement therapy. Its active ingredient (cerliponase alfa) is a recombinant form of human TPP1, the enzyme deficient in patients with CLN2 disease. Brineura is administered into the cerebrospinal fluid (CSF) by infusion via a specific surgically implanted reservoir and catheter in the head (intraventricular access device). Brineura must be administered under sterile conditions to reduce the risk of infections, and treatment should be managed by a health care professional knowledgeable in intraventricular administration. The recommended dose of Brineura in pediatric patients 3 years of age and older is 300 mg administered once every other week by intraventricular infusion, followed by an infusion of electrolytes. The complete Brineura infusion, including the required infusion of intraventricular electrolytes, lasts approximately 4.5 hours. Pre-treatment of patients with antihistamines with or without antipyretics (drugs for prevention or treatment of fever) or corticosteroids is recommended 30 to 60 minutes prior to the start of the infusion.

The efficacy of Brineura was established in a non-randomized, single-arm dose escalation clinical study in 22 symptomatic pediatric patients with CLN2 disease and compared to 42 untreated patients with CLN2 disease from a natural history cohort (an independent historical control group) who were at least 3 years old and had motor or language symptoms. Taking into account age, baseline walking ability and genotype, Brineura-treated patients demonstrated fewer declines in walking ability compared to untreated patients in the natural history cohort.

The safety of Brineura was evaluated in 24 patients with CLN2 disease aged 3 to 8 years who received at least one dose of Brineura in clinical studies. The safety and effectiveness of Brineura have not been established in patients less than 3 years of age.

The most common adverse reactions in patients treated with Brineura include fever, ECG abnormalities including slow heart rate (bradycardia), hypersensitivity, decrease or increase in CSF protein, vomiting, seizures, hematoma (abnormal collection of blood outside of a blood vessel), headache, irritability, increased CSF white blood cell count (pleocytosis), device-related infection, feeling jittery and low blood pressure.

Brineura should not be administered to patients if there are signs of acute intraventricular access device-related complications (e.g., leakage, device failure or signs of device-related infection such as swelling, erythema of the scalp, extravasation of fluid, or bulging of the scalp around or above the intraventricular access device). In case of intraventricular access device complications, health care providers should discontinue infusion of Brineura and refer to the device manufacturer’s labeling for further instructions. Additionally, health care providers should routinely test patient CSF samples to detect device infections. Brineura should also not be used in patients with ventriculoperitoneal shunts (medical devices that relieve pressure on the brain caused by fluid accumulation).

Health care providers should also monitor vital signs (blood pressure, heart rate, etc.) before the infusion starts, periodically during infusion and post-infusion in a health care setting. Health care providers should perform electrocardiogram (ECG) monitoring during infusion in patients with a history of slow heart rate (bradycardia), conduction disorder (impaired progression of electrical impulses through the heart) or structural heart disease (defect or abnormality of the heart), as some patients with CLN2 disease can develop conduction disorders or heart disease. Hypersensitivity reactions have also been reported in Brineura-treated patients. Due to the potential for anaphylaxis, appropriate medical support should be readily available when Brineura is administered. If anaphylaxis occurs, infusion should be immediately discontinued and appropriate treatment should be initiated.

The FDA will require the Brineura manufacturer to further evaluate the safety of Brineura in CLN2 patients below the age of 2 years, including device related adverse events and complications with routine use. In addition, a long-term safety study will assess Brineura treated CLN2 patients for a minimum of 10 years.

The FDA granted this application Priority Review and Breakthrough Therapydesignations. Brineura also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The sponsor is also receiving a Rare Pediatric Disease Priority Review Voucherunder a program intended to encourage development of new drugs and biologics for the prevention and treatment of rare pediatric diseases. A voucher can be redeemed by a sponsor at a later date to receive Priority Review of a subsequent marketing application for a different product. This is the tenth rare pediatric disease priority review voucher issued by the FDA since the program began.

The FDA granted approval of Brineura to BioMarin Pharmaceutical Inc.

////////Brineura, cerliponase alfa, fda 2017, Batten disease, BioMarin Pharmaceutical Inc, Priority Review,  Breakthrough Therapy designations, Orphan Drug designation,

FDA approves Xermelo (telotristat ethyl) for carcinoid syndrome diarrhea


ChemSpider 2D Image | Telotristat ethyl | C27H26ClF3N6O3Image result for telotristat ethyl

 

Telotristat ethyl

Molecular Formula, C27-H26-Cl-F3-N6-O3,

Molecular Weight, 574.9884,

RN: 1033805-22-9
UNII: 8G388563M

LX 1032

(2S)-2-Amino-3-[4-[2-amino-6-[[(1R)-1-[4-chloro-2-(3-methylpyrazol-1-yl)phenyl]-2,2,2-trifluoroethyl]oxy]pyrimidin-4-yl]phenyl]propionic acid ethyl ester

Ethyl-4-(2-amino-6-{(1R)-1-[4-chlor-2-(3-methyl-1H-pyrazol-1-yl)phenyl]-2,2,2-trifluorethoxy}-4-pyrimidinyl)-L-phenylalaninat

L-Phenylalanine, 4-[2-amino-6-[(1R)-1-[4-chloro-2-(3-methyl-1H-pyrazol-1-yl)phenyl]-2,2,2-trifluoroethoxy]-4-pyrimidinyl]-, ethyl ester
SEE……………
Image result for Telotristat etiprate,LX1606 Hippurate.png
Telotristat etiprate,
(S)-ethyl 2-amino-3-(4-(2-amino-6-((R)-1-(4-chloro-2-(3-methyl-1H-pyrazol-1-yl)phenyl)-2,2,2-trifluoroethoxy)pyrimidin-4-yl)phenyl)propanoate 2-benzamidoacetate .
CAS: 1137608-69-5 (etiprate), LX 1606
Chemical Formula: C36H35ClF3N7O6
Molecular Weight: 754.16
L-Phenylalanine, 4-[2-amino-6-[(1R)-1-[4-chloro-2-(3-methyl-1H-pyrazol-1-yl)phenyl]-2,2,2-trifluoroethoxy]-4-pyrimidinyl]-, ethyl ester, compd. with N-benzoylglycine (1:1)
  • LX 1032 hippurate
  • LX 1606
SEE ALSO………….
Telotristat, also known as LX1033, 1033805-28-5 CAS OF ACID FORM
 Arokiasamy Devasagayaraj
02/28/2017
The U.S. Food and Drug Administration today approved Xermelo (telotristat ethyl) tablets in combination with somatostatin analog (SSA) therapy for the treatment of adults with carcinoid syndrome diarrhea that SSA therapy alone has inadequately controlled.
February 28, 2017
The U.S. Food and Drug Administration today approved Xermelo (telotristat ethyl) tablets in combination with somatostatin analog (SSA) therapy for the treatment of adults with carcinoid syndrome diarrhea that SSA therapy alone has inadequately controlled.

Carcinoid syndrome is a cluster of symptoms sometimes seen in people with carcinoid tumors. These tumors are rare, and often slow-growing. Most carcinoid tumors are found in the gastrointestinal tract. Carcinoid syndrome occurs in less than 10 percent of patients with carcinoid tumors, usually after the tumor has spread to the liver. The tumors in these patients release excess amounts of the hormone serotonin, resulting in diarrhea. Complications of uncontrolled diarrhea include weight loss, malnutrition, dehydration, and electrolyte imbalance.

“Today’s approval will provide patients whose carcinoid syndrome diarrhea is not adequately controlled with another treatment option,” said Julie Beitz, M.D., director of the Office of Drug Evaluation III in the FDA’s Center for Drug Evaluation and Research.

Xermelo, in a regimen with SSA therapy, is approved in tablet form to be taken orally three times daily with food. Xermelo inhibits the production of serotonin by carcinoid tumors and reduces the frequency of carcinoid syndrome diarrhea.

The safety and efficacy of Xermelo were established in a 12-week, double-blind, placebo-controlled trial in 90 adult participants with well-differentiated metastatic neuroendocrine tumors and carcinoid syndrome diarrhea. These patients were having between four to 12 daily bowel movements despite the use of SSA at a stable dose for at least three months. Participants remained on their SSA treatment, and were randomized to add placebo or treatment with Xermelo three times daily. Those receiving Xermelo added on to their SSA treatment experienced a greater reduction in average bowel movement frequency than those on SSA and placebo. Specifically, 33 percent of participants randomized to add Xermelo on to SSA experienced an average reduction of two bowel movements per day compared to 4 percent of patients randomized to add placebo on to SSA.

The most common side effects of Xermelo include nausea, headache, increased levels of the liver enzyme gamma-glutamyl transferase, depression, accumulation of fluid causing swelling (peripheral edema), flatulence, decreased appetite and fever. Xermelo may cause constipation, and the risk of developing constipation may be increased in patients whose bowel movement frequency is less than four bowel movements per day. Patients treated with a higher than recommended dosage of Xermelo developed severe constipation in clinical trials. One patient required hospitalization and two other patients developed complications of either intestinal perforation or intestinal obstruction. Patients should be monitored for severe constipation. If a patient experiences severe constipation or severe, persistent or worsening abdominal pain, they should discontinue Xermelo and contact their healthcare provider.

The FDA granted this application fast track designation and priority review. The drug also received orphan drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

Xermelo is manufactured by Woodlands, Texas-based Lexicon Pharmaceuticals, Inc.

SYNTHESIS…….WO 2011100285

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2011100285&recNum=142&docAn=US2011024141&queryString=((serotonin)%2520OR%2520(HT2C)%2520OR%2520(&

5.67. Synthesis of (S)-2-Amino-3-[4-(2-amino-6-{R-l-[4-chloro-2-(3-methyl-pyrazol-l-yll- phenyll-2,2,2-trifluoro-ethoxy)-pyrimidin-4-yl)-phenyll-propionic acid ethyl ester

The title compound was prepared stepwise, as described below:

Step 1: Synthesis of l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanone. To a 500 ml 2 necked RB flask containing anhydrous methanol (300 ml) was added thionyl chloride (29.2 ml, 400 mmol) dropwise at 0-5°C (ice water bath) over 10 minutes. The ice water bath was removed, and 2-bromo-4-chloro-benzoic acid (25 g, 106 mmol) was added. The mixture was heated to mild reflux for 12h. Progress of the reaction was monitored by TLC and LCMS. After completion of the reaction, the reaction mixture was concentrated. Crude product was dissolved in dichloromethane (DCM, 250 ml), washed with water (50 ml), sat. aq. NaHC03 (50 ml), brine (50 ml), dried over sodium sulfate, and concentrated to give the 2- bromo-4-chloro-benzoic acid methyl ester (26 g, 99 %), which was directly used in the following step.

2-Bromo-4-chloro-benzoic acid methyl ester (12.4 g, 50 mmol) in toluene (200 ml) was cooled to -70°C, and trifluoromethyl trimethyl silane (13 ml, 70 mmol) was added.

Tetrabutylamonium fluoride (1M, 2.5 ml) was added dropwise, and the mixture was allowed to warm to room temperature over 4h, after which it was stirred for 10 hours at room temperature. The reaction mixture was concentrated to give the crude [l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-l-methoxy-ethoxy]-trimethyl-silane. The crude intermediate was dissolved in methanol (100 ml) and 6N HCI (100 ml) was added. The mixture was kept at 45-50°C for 12h. Methanol was removed, and the crude was extracted with dichloromethane (200 ml). The combined DCM layer was washed with water (50 ml), NaHC03 (50 ml), brine (50 ml), and dried over sodium sulfate. Removal of solvent gave a crude product, which was purified by ISCO column chromatography, using 1-2% ethyl acetate in hexane as solvent, to afford l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanone (10 g, 70%). !H-NMR (300 MHz, CDC ): δ (ppm) 7.50 (d,lH), 7.65(d,lH), 7.80(s,lH).

Step 2: Synthesis of R-l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanol. To catechol borane (1M in THF 280 ml, 280 mmol) in a 2L 3-necked RB flask was added S-2-methyl-CBS oxazaborolidine (7.76 g, 28 mmol) under nitrogen, and the resulting mixture was stirred at room temperature for 20 min. The reaction mixture was cooled to -78°C (dry ice/acetone bath), and 1-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanone (40 g, 139 mmol) in THF (400 ml) was added dropwise over 2 hours. The reaction mixture was allowed to warm to -36°C, and was stirred at that temperature for 24 hours, and further stirred at -32 °C for another 24h. 3N NaOH (250 ml) was added, and the cooling bath was replaced by ice-water bath. Then 30 % hydrogen peroxide in water (250 ml) was added dropwise over 30 minutes. The ice water bath was removed, and the mixture was stirred at room temperature for 4 hours. The organic layer was separated, concentrated and re-dissolved in ether (200 ml). The aqueous layer was extracted with ether (2 x 200 ml). The combined organic layers were washed with IN aq. NaOH (4 x 100 ml), brine, and dried over sodium sulfate. Removal of solvent gave crude product which was purified by column chromatography using 2 to 5% ethyl acetate in hexane as solvent to give desired alcohol 36.2 g (90 %, e.e. >95%). The alcohol (36.2 g) was crystallized from hexane (80 ml) to obtain R-l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanol 28.2 g (70 %; 99-100 % e.e.). !H-NMR (400 MHz, CDCIs) δ (ppm) 5.48 (m, 1H), 7.40 (d, 1H), 7.61 (d, 2H).

Step 3: Synthesis of R-l-[4-chloro-2-(3-methyl-pyrazol-l-yl)-phenyll-2.2.2-trifluoro-ethanol. R-l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanol (15.65 g, 54.06 mmol), 3-methylpyrazole (5.33 g, 65 mmol), Cul (2.06 g, 10.8 mmol), 2CO3 (15.7 g, 113.5 mmol), (lR,2R)-N,N’-dimethyl-cyclohexane-l,2-diamine (1.54 g, 10.8 mmol) and toluene (80 ml) were combined in a 250 ml pressure tube and heated to 130°C (oil bath temperature) for 12 hours. The reaction mixture was diluted with ethyl acetate and washed with H2O (4 x 100 ml), brine, and dried over sodium sulfate. Removal of solvent gave a crude product, which was purified by ISCO column chromatography using 5-10 % ethyl acetate in hexane as solvent to get R-l-[4-chloro-2-(3-methyl-pyrazol-l-yl)-phenyl]-2,2,2-trifluoro-ethanol (13.5 g; 86 %). i-H-NMR (400 MHz, CDC ): δ (ppm) 2.30(s, 3H), 4.90(m, 1H), 6.20(s, 1H), 6.84(d, 1H), 7.20(s, 1H), 7.30(d, 1H), 7.50(d, 1H).

Step 4: Synthesis of (S)-2-Amino-3- 4-(2-amino-6-fR-l-[4-chloro-2-(3-methyl-pyrazol-l-yl)-phenyll^^^-trifluoro-ethoxyl-pyrimidin^-yll-phenvD-propionic acid ethyl ester. R-l-[4-chloro-2-(3-methyl-pyrazol-l-yl)-phenyl]-2,2,2-trifluoro-ethanol (17.78 g, 61.17 mmol), (S)-3-[4-(2-amino-6-chloro-pyrimidine-4-yl)-phenyl]-2-tert-butoxycarbonylamino-propionic acid (20.03 g, 51 mmol), 1,4-dioxane (250 ml), and CS2CO3 (79.5 g, 244 mmol) were combined in a 3-necked 500 ml RB flask and heated to 100°C (oil bath temperature) for 12-24 hours. The progress of reaction was monitored by LCMS. After the completion of the reaction, the mixture was cooled to 60°C, and water (250 ml) and THF (400 ml) were added. The organic layer was separated and washed with brine (150 ml). The solvent was removed to give crude BOC protected product, which was taken in THF (400 ml), 3N HCI (200 ml). The mixture was heated at 35-40 °C for 12 hours. THF was removed in vacuo. The remaining aqueous layer was extracted with isopropyl acetate (2x 100 ml) and concentrated separately to recover the unreacted alcohol (3.5 g). Traces of remaining organic solvent were removed from the aqueous fraction under vacuum.

To a 1L beaker equipped with a temperature controller and pH meter, was added H3PO4 (40 ml, 85 % in water) and water (300 ml) then 50 % NaOH in water to adjust pH to 6.15. The temperature was raised to 58 °C and the above acidic aqueous solution was added dropwise into the buffer with simultaneous addition of 50 % NaOH solution in water so that the pH was maintained between 6.1 to 6.3. Upon completion of addition, precipitated solid was filtered and washed with hot water (50-60°C) (2 x 200 ml) and dried to give crude (S)-2-amino-3-[4-(2-amino-6-[R-l-[4-chloro-2-(3-methyl-pyrazol-l-yl)-phenyl]-2,2,2-trifluoro-ethoxy}-pyrimidin-4-yl)-phenyl}^ propionic acid (26.8 g; 95 %). LCMS and HPLC analysis indicated the compound purity was about 96-97 %.

To anhydrous ethanol (400 ml) was added SOC (22 ml, 306 mmol) dropwise at 0-5°C.

Crude acid (26.8 ) from the above reaction was added. The ice water bath was removed, and the reaction mixture was heated at 40-45°C for 6-12 hours. After the reaction was completed, ethanol was removed in vacuo. To the residue was added ice water (300 ml), and extracted with isopropyl acetate (2 x 100 ml). The aqueous solution was neutralized with saturated Na2C03 to adjust the pH to 6.5. The solution was extracted with ethyl acetate (2 x 300 ml). The combined ethyl acetate layer was washed with brine and concentrated to give 24 g of crude ester (HPLC purity of 96-97 %). The crude ester was then purified by ISCO column chromatography using 5 % ethanol in DCM as solvent to give (S)-2-amino-3-[4-(2-amino-6-{R-l-[4-chloro-2-(3-methyl-pyrazol-l-yl)-phenyl]-2,2,2-trifluoro-ethoxy}-pyrimidin-4-yl)-phenyl}-propionic acid ethyl ester (20.5g; 70 %; HPLC purity of 98 %). LCMS M+l = 575. !H-NMR (400 MHz, CDsOD): δ (ppm) 1.10 (t, 3H), 2.25 (s, 3H), 2.85 (m, 2H), 3.65 (m, IH), 4.00 (q, 2H), 6.35 (s, IH), 6.60 (s, IH), 6.90 (m, IH), 7.18 (d, 2H), 7.45 (m, 2H), 7.70 (d, IH), 7.85 (m, 3H).

SYNTHESIS OF INTERMEDIATE

WO 2009048864

https://google.com/patents/WO2009048864A1?cl=en

6.15. Preparation of 6SV3-(4-(2-Amino-6-chloropyrimidin-4-yl)phenyl)-2- (fert-butoxycarbonylamino)propanoic Acid Using the Lithium Salt of (S)-2-(te^-butoxycarbonylamino)-3-(4-(4,4,5,5-tetramethyl-l,3,2- dioxaborolan-2-yl)phenyl)propanoic Acid

Figure imgf000021_0001

During preparation of compound 7, the isolation of the free acid can be optionally omitted. Thus, an aqueous solution of the lithium salt of compound 7 in 100 ml water, prepared from 5.0 g of Boc-Tyr-OMe (4, 17 mmol), was mixed 2-amino-4,6- dichloropyrimidine (3.3 g, 1.2 eq), potassium bicarbonate (5.0 g, 3 eq), bis(triphenylphosphine)palladium(II) dichloride (60 mg, 0.5 mol%), and 100 ml ethanol. The resulting mixture was heated at 700C for 5 hours. Additional 2-amino-4,6- dichloropyrimidine (1.1 g, 0.4 eq) was added and heating was continued at 7O0C for an additional 2 hours. HPLC analysis showed about 94% conversion. Upon cooling and filtration, the filtrate was analyzed by HPLC against a standard solution of compound 8. The assay indicated 3.9 g compound 8 was contained in the solution (59% yield from compound 4).

6.16. Alternative Procedure for Preparation of (S)-3-(4-f2-Amino-6- chloropyrimidin-4-yl)phenyl)-2-(fe^-butoxycarbonylamino)propanoic Acid Using Potassium Carbonate as Base

Figure imgf000021_0002

The boronic acid compound 11 (Ryscor Science, Inc., North Carolina, 1.0 g, 4.8 mmol) and potassium carbonate (1.32 g, 2 eq) were mixed in aqueous ethanol (15 ml ethanol and 8 ml water). Di-ter£-butyldicarbonate (1.25 g, 1.2 eq) was added in one portion. After 30 minutes agitation at room temperature, HPLC analysis showed complete consumption of the starting compound 11. The 2-amino-4,6- dichloropyrimidine (1.18 g, 1.5 eq) and the catalyst bis(triphenylphosphine)palladium(II) dichloride (34 mg, 1 mol%) were added and the resulting mixture was heated at 65-700C for 3 hours. HPLC analysis showed complete consumption of compound 12. After concentration and filtration, HPLC analysis of the resulting aqueous solution against a standard solution of compound 8 showed 1.26 g compound 8 (67% yield).

6.17. Alternative procedure for preparation of (5)-3-(4-(2-Amino-6-

Figure imgf000022_0001

The boronic acid compound 11 (10 g, 48 mmol) and potassium bicarbonate (14.4 g, 3 eq) were mixed in aqueous ethanol (250 ml ethanol and 50 ml water). Oi-tert- butyldicarbonate (12.5 g, 1.2 eq) was added in one portion. HPLC analysis indicated that the reaction was not complete after overnight stirring at room temperature. Potassium carbonate (6.6 g, 1.0 eq) and additional di-te/t-butyldicarbonate (3.1 g, 0.3 eq) were added. After 2.5 hours agitation at room temperature, HPLC analysis showed complete consumption of the starting compound 11. The 2-amino-4,6-dichloropyrimidine (11.8 g, 1.5 eq) and the catalyst bis(triphenylphosphine)-palladium(II) dichloride (0.34 g, 1 mol%” were added and the resulting mixture was heated at 75-8O0C for 2 hours. HPLC analysis showed complete consumption of compound 12. The mixture was concentrated under reduced pressure and filtered. The filtrate was washed with ethyl acetate (200 ml) and diluted with 3 : 1 THF/MTBE (120 ml). This mixture was acidified to pH about 2.4 by 6 N hydrochloric acid. The organic layer was washed with brine and concentrated under reduced pressure. The residue was precipitated in isopropanol, filtered, and dried at 500C under vacuum to give compound 8 as an off-white solid (9.0 g, 48% yield). Purity: 92.9% by HPLC analysis. Concentration of the mother liquor yielded and additional 2.2 g off-white powder (12% yield). Purity: 93.6% by HPLC analysis

PATENT

https://www.google.com/patents/WO2013059146A1?cl=en

This invention is directed to solid pharmaceutical dosage forms in which an active pharmaceutical ingredient (API) is (S)-ethyl 2-amino-3-(4-(2-amino-6-((R)-l-(4-chloro-2-(3- methyl-lH-pyrazol-l-yl)phenyl)-2,2,2-trifluoroethoxy)pyrimidin-4-yl)phenyl)propanoate

(telotristat):

Figure imgf000004_0001

or a pharmaceutically acceptable salt thereof. The compound, its salts and crystalline forms can be obtained by methods known in the art. See, e.g., U.S. patent no. 7,709,493.

PATENT

http://www.google.co.in/patents/WO2008073933A2?cl=en

6.19. Synthesis of (S)-2-Amino-3-r4-q-amino-6-{R-l-r4-chloro-2-(3-methyl- Pyrazol-l-yl)-phenyll-2,2,2-trifluoro-ethoxy}-pyrimidin-4-yl)-phenyll- propionic acid ethyl ester

Figure imgf000042_0001

The title compound was prepared stepwise, as described below: Step 1 : Synthesis of l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanone. To a 500 ml 2 necked RB flask containing anhydrous methanol (300 ml) was added thionyl chloride (29.2 ml, 400 mmol) dropwise at 0-50C (ice water bath) over 10 min. The ice water bath was removed, and 2-bromo-4-chloro-benzoic acid (25 g, 106 mmol) was added. The mixture was heated to mild reflux for 12h. Progress of the reaction was monitored by TLC and LCMS. After completion of the reaction, the reaction mixture was concentrated. Crude product was dissolved in dichloromethane (DCM, 250 ml), washed with water (50 ml), sat. aq. NaHCO3 (50 ml), brine (50 ml), dried over sodium sulfate, and concentrated to give the 2- bromo-4-chloro-benzoic acid methyl ester (26 g, 99 %), which was directly used in the following step.

2-Bromo-4-chloro-benzoic acid methyl ester (12.4 g, 50 mmol) in toluene (200 ml) was cooled to -700C, and trifluoromethyl trimethyl silane (13 ml, 70 mmol) was added. Tetrabutylamonium fluoride (IM, 2.5 ml) was added dropwise, and the mixture was allowed to warm to room temperature over 4h, after which it was stirred for 1Oh at room temperature. The reaction mixture was concentrated to give the crude [l-(2-bromo-4-chloro-phenyl)-2,2,2- trifluoro-l-methoxy-ethoxy]-trimethyl-silane. The crude intermediate was dissolved in methanol (100 ml) and 6N HCl (100 ml) was added. The mixture was kept at 45-500C for 12h. Methanol was removed, and the crude was extracted with dichloromethane (200 ml). The combined DCM layer was washed with water (50 ml), NaHCO3 (50 ml), brine (50 ml), and dried over sodium sulfate. Removal of solvent gave a crude product, which was purified by ISCO column chromatography, using 1-2% ethyl acetate in hexane as solvent, to afford 1- (2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanone (10 g, 70%). 1H-NMR (300 MHz, CDCl3): δ (ppm) 7.50 (d,lH), 7.65(d,lH), 7.80(s,lH).

Step 2: Synthesis of R-l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanol. To catechol borane (IM in THF 280 ml, 280 mmol) in a 2L 3-necked RB flask was added S-2- methyl-CBS oxazaborolidine (7.76 g, 28 mmol) under nitrogen, and the resulting mixture was stirred at room temperature for 20 min. The reaction mixture was cooled to -78°C (dry ice/acetone bath), and l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanone (40 g, 139 mmol) in THF (400 ml) was added dropwise over 2h. The reaction mixture was allowed to warm to -36°C, and was stirred at that temperature for 24 h, and further stirred at -32°C for another 24h. 3N NaOH (250 ml) was added, and the cooling bath was replaced by ice-water bath. Then 30 % hydrogen peroxide in water (250 ml) was added dropwise over 30 minutes. The ice water bath was removed, and the mixture was stirred at room temperature for 4h. The organic layer was separated, concentrated and re-dissolved in ether (200 ml). The aqueous layer was extracted with ether (2 x 200 ml). The combined organic layers were washed with IN aq. NaOH (4 x 100 ml), brine, and dried over sodium sulfate. Removal of solvent gave crude product which was purified by column chromatography using 2 to 5% ethyl acetate in hexane as solvent to give desired alcohol 36.2 g (90 %, e.e. >95%). The alcohol (36.2 g) was crystallized from hexane (80 ml) to obtain R-l-(2-bromo-4-chloro- phenyl)-2,2,2-trifiuoro-ethanol 28.2 g (70 %; 99-100 % e.e.). 1H-NMR (400 MHz, CDCl3) δ (ppm) 5.48 (m, IH), 7.40 (d, IH), 7.61 (d, 2H). Step 3: Synthesis of R-l-r4-chloro-2-(3-methyl-pyrazol-l-vπ-phenyl1-2.2.2-trifluoro- ethanol. R-l-(2-bromo-4-chloro-phenyl)-2,2,2-trifluoro-ethanol (15.65g, 54.06 mmol), 3- methylpyrazole (5.33 g, 65 mmol), CuI (2.06 g, 10.8 mmol), K2CO3 (15.7 g, 113.5 mmol), (lR,2R)-N,N’-dimethyl-cyclohexane-l,2-diamine (1.54 g, 10.8 mmol) and toluene (80 ml) were combined in a 250 ml pressure tube and heated to 1300C (oil bath temperature) for 12 h. The reaction mixture was diluted with ethyl acetate and washed with H2O (4 x 100 ml), brine, and dried over sodium sulfate. Removal of solvent gave a crude product, which was purified by ISCO column chromatography using 5-10 % ethyl acetate in hexane as solvent to get R-I- [4-chloro-2-(3-methyl-pyrazol-l-yl)-phenyl]-2,2,2-trifluoro-ethanol (13.5 g; 86 %). 1H-NMR (400 MHz, CDCl3): δ (ppm) 2.30(s, 3H), 4.90(m, IH), 6.20(s, IH), 6.84(d, IH), 7.20(s, IH), 7.30(d, IH), 7.50(d, IH).

Step 4: Synthesis of (S)-2-Amino-3- r4-(2-amino-6- (R-I- r4-chloro-2-(3-methyl- pyrazol- 1 -ylVphenyl~|-2,2.,2-trifluoro-ethoxy| -pyrimidin-4-yl)-phenyU -propionic acid ethyl ester. R-l-[4-chloro-2-(3-methyl-pyrazol-l-yl)-phenyl]-2,2,2-trifluoro-ethanol (17.78 g, 61.17 mmol), (S)-3-[4-(2-amino-6-chloro-pyrimidine-4-yl)-phenyl]-2-tert- butoxycarbonylamino-propionic acid (20.03 g, 51 mmol), 1,4-dioxane (250 ml), and Cs2CO3 (79.5 g, 244 mmol) were combined in a 3-necked 500 ml RB flask and heated to 1000C (oil bath temperature) for 12-24 h. The progress of reaction was monitored by LCMS. After the completion of the reaction, the mixture was cooled to 600C, and water (250 ml) and THF (400 ml) were added. The organic layer was separated and washed with brine (150 ml). The solvent was removed to give crude BOC protected product, which was taken in THF (400 ml), 3N HCl (200 ml). The mixture was heated at 35-400C for 12h. THF was removed in vacuo. The remaining aqueous layer was extracted with isopropyl acetate (2x 100 ml) and concentrated separately to recover the unreacted alcohol (3.5 g). Traces of remaining organic solvent were removed from the aqueous fraction under vacuum.

To a IL beaker equipped with a temperature controller and pH meter, was added H3PO4 (40 ml, 85 % in water) and water (300 ml) then 50 % NaOH in water to adjust pH to 6.15. The temperature was raised to 58°C and the above acidic aqueous solution was added dropwise into the buffer with simultaneous addition of 50 % NaOH solution in water so that the pH was maintained between 6.1 to 6.3. Upon completion of addition, precipitated solid was filtered and washed with hot water (50-600C) (2 x 200 ml) and dried to give crude (S)-2- amino-3-[4-(2-amino-6-{R-l-[4-chloro-2-(3-methyl-pyrazol-l-yl)-phenyl]-2,2,2-trifluoro- ethoxy}-pyrimidin-4-yl)-phenyl} -propionic acid (26.8 g; 95 %). LCMS and HPLC analysis indicated the compound purity was about 96-97 %. To anhydrous ethanol (400 ml) was added SOCl2 (22 ml, 306 mmol) dropwise at 0-

5°C. Crude acid (26.8 g ) from the above reaction was added. The ice water bath was removed, and the reaction mixture was heated at 40-450C for 6-12h. After the reaction was completed, ethanol was removed in vacuo. To the residue was added ice water (300 ml), and extracted with isopropyl acetate (2 x 100 ml). The aqueous solution was neutralized with saturated Na2CO3 to adjust the pH to 6.5. The solution was extracted with ethyl acetate (2 x 300 ml). The combined ethyl acetate layer was washed with brine and concentrated to give 24 g of crude ester (HPLC purity of 96-97 %). The crude ester was then purified by ISCO column chromatography using 5 % ethanol in DCM as solvent to give (S)-2-amino-3-[4-(2- amino-6- (R- 1 -[4-chloro-2-(3-methyl-pyrazol- 1 -yl)-phenyl]-2,2,2-trifluoro-ethoxy} – pyrimidin-4-yl)-phenyl} -propionic acid ethyl ester (20.5g; 70 %; HPLC purity of 98 %). LCMS M+l = 575. 1H-NMR (400 MHz, CD3OD): δ (ppm) 1.10 (t, 3H), 2.25 (s, 3H), 2.85 (m, 2H), 3.65 (m, IH), 4.00 (q, 2H), 6.35 (s, IH), 6.60 (s, IH), 6.90 (m, IH), 7.18 (d, 2H), 7.45 (m, 2H), 7.70 (d, IH), 7.85 (m, 3H).

PATENT

WO 2011056916

https://www.google.com/patents/WO2011056916A1?cl=en

PATENT

WO 2010065333

https://www.google.com/patents/WO2010065333A1?cl=en

CLIP,……..PL CHECK ERROR

CONFUSION ON CODES, CLEAR PIC BELOW……LINK
Description of Telotristat Etiprate
Telotristat etiprate is the hippurate salt of telotristat ethyl.
Telotristat ethyl, also known as LX1032, has the chemical name, CAS identifier, and chemical structure shown below:
Chemical name: (S)-ethyl 2-amino-3-(4-(2-amino-6-((R)-1-(4-chloro-2-(3-methyl-1H-pyrazol-1-yl)phenyl)-2,2,2-trifluoroethoxy)pyrimidin-4-yl)phenyl)propanoate
CAS Registry number: 1033805-22-9
Chemical structure:
Telotristat etiprate, also known as LX1606, is the hippurate salt of telotristat ethyl, and has the chemical name, CAS identifier, and chemical structure shown below:
Chemical Name: (S)-ethyl 2-amino-3-(4-(2-amino-6-((R)-1-(4-chloro-2-(3-methyl-1H-pyrazol-1-yl)phenyl)-2,2,2-trifluoroethoxy)pyrimidin-4-yl)phenyl)propanoate 2-benzamidoacetate
CAS Registry number: 1137608-69-5
Chemical Structure:
Description of LX1033
Telotristat, also known as LX1033, has the chemical name, CAS identifier and chemical structure shown below:
Chemical Name: (S)-2-amino-3-(4-(2-amino-6-((R)-1-(4-chloro-2-(3-methyl-1H-pyrazol-1-yl)phenyl)-2,2,2-trifluoroethoxy)pyrimidin-4-yl)phenyl)propanoic acid
CAS Registry number: 1033805-28-5
Chemical Structure:

REFERENCES

Kulke, M.H.; Hoersch, D.; Caplin, M.E.; et al.
Telotristat ethyl, a tryptophan hydroxylase inhibitor for the treatment of carcinoid syndrome
J Clin Oncol 2017, 35(1): 14

WO2010056992A1 * Nov 13, 2009 May 20, 2010 The Trustees Of Columbia University In The City Of New York Methods of preventing and treating low bone mass diseases
US7709493 May 20, 2009 May 4, 2010 Lexicon Pharmaceuticals, Inc. 4-phenyl-6-(2,2,2-trifluoro-1-phenylethoxy)pyrimidine-based compounds and methods of their use
US20090088447 * Sep 25, 2008 Apr 2, 2009 Bednarz Mark S Solid forms of (s)-ethyl 2-amino-3-(4-(2-amino-6-((r)-1-(4-chloro-2-(3-methyl-1h-pyrazol-1-yl)phenyl)-2,2,2-trifluoroethoxy)-pyrimidin-4-yl)phenyl)propanoate and methods of their use
Citing Patent Filing date Publication date Applicant Title
US9199994 Sep 5, 2014 Dec 1, 2015 Karos Pharmaceuticals, Inc. Spirocyclic compounds as tryptophan hydroxylase inhibitors
US9512122 Sep 1, 2015 Dec 6, 2016 Karos Pharmaceuticals, Inc. Spirocyclic compounds as tryptophan hydroxylase inhibitors

///////////telotristat ethyl, fast track designation,priority review,orphan drug designation, Xermelo ,  Woodlands, Texas-based,  Lexicon Pharmaceuticals, Inc, fda 2017, LX 1606, LX 1032

O=C(OCC)[C@@H](N)Cc1ccc(cc1)c2cc(nc(N)n2)O[C@H](c3ccc(Cl)cc3n4ccc(C)n4)C(F)(F)F

O=C(OCC)[C@@H](N)CC1=CC=C(C2=NC(N)=NC(O[C@H](C3=CC=C(Cl)C=C3N4N=C(C)C=C4)C(F)(F)F)=C2)C=C1.O=C(O)CNC(C5=CC=CC=C5)=O

Deflazacort


Deflazacort structure.svgChemSpider 2D Image | Deflazacort | C25H31NO6

Deflazacort

  • CAS 14484-47-0
  • Molecular Formula C25H31NO6
  • Average mass 441.517 Da
(11b,16b)-21-(Acetyloxy)-11-hydroxy-2′-methyl-5’H-pregna-1,4-dieno[17,16-d]oxazole-3,20-dione
11b,21-Dihydroxy-2′-methyl-5’bH-pregna-1,4-dieno[17,16-d]oxazole-3,20-dione 21-acetate
2-[(4aR,4bS,5S,6aS,6bS,9aR,10aS,10bS)-5-Hydroxy-4a,6a,8-trimethyl-2-oxo-2,4a,4b,5,6,6a,9a,10,10a,10b,11,12-dodecahydro-6bH-naphtho[2′,1′:4,5]indeno[1,2-d][1,3]oxazol-6b-yl]-2-oxoethyl acetate
  • 5’βH-Pregna-1,4-dieno[17,16-d]oxazole-3,20-dione, 11β,21-dihydroxy-2′-methyl-, 21-acetate (8CI)
  • (11β,16β)-21-(Acetyloxy)-11-hydroxy-2′-methyl-5’H-pregna-1,4-dieno[17,16-d]oxazole-3,20-dione
  • 2H-Naphth[2′,1′:4,5]indeno[1,2-d]oxazole, 5’H-pregna-1,4-dieno[17,16-d]oxazole-3,20-dione deriv.
  • Azacort
  • Azacortinol
  • Calcort
  • DL 458IT
  • Deflan
Optical Rotatory Power +62.3 ° Conc: 0.5 g/100mL; Solv: chloroform (67-66-3); Wavlength: 589.3 nm

…………..REF, “Drugs – Synonyms and Properties” data were obtained from Ashgate Publishing Co. (US)Hoechst Marion Roussel (now Aventis Pharma) has developed and launched Deflazacort (Dezacor; Flantadin; Lantadin; Calcort) a systemic corticosteroid developed for the treatment of a variety of inflammatory conditions .

In March 1990, the drug was approved in Spain, and by January 2013, the drug had been launched by FAES Farma . By the end of 1999, the product had been launched in Germany, Italy, Belgium, Switzerland and South Korea

Deflazacort is a corticosteroid first launched in 1985 by Guidotti in Europe for the oral treatment of allergic asthma, rheumatoid arthritis, arthritis, and skin allergy.

In 2017, an oral formulation developed at Marathon Pharmaceuticals was approved by the FDA for the treatment of Duchenne’s muscular dystrophy in patients 5 years of age and older.

Deflazacort (trade name Emflaza or Calcort among others) is a glucocorticoid used as an anti-inflammatory and immunosuppressant.

In 2013, orphan drug designation in the U.S. was assigned to the compound for the treatment of Duchenne’s muscular dystrophy. In 2015, additional orphan drug designation in the U.S. was assigned for the treatment of pediatric juvenile idiopathic arthritis (JIA) excluding systemic JIA.

Also in 2015, deflazacort was granted fast track and rare pediatric disease designations in the U.S. for the treatment of Duchenne’s muscular dystrophy.

Deflazacort is a glucocorticoid used as an anti-inflammatory and immunosuppressant. It was approved in February, 2017 by the FDA for use in treatment of Duchenne muscular dystrophy (trade name Emflaza).
  • Aventis Pharma (Originator), Lepetit (Originator), Guidotti (Licensee), Shire Laboratories (Licensee)

Image result for deflazacort

February 9, 2017 FDA approved

The U.S. Food and Drug Administration today approved Emflaza (deflazacort) tablets and oral suspension to treat patients age 5 years and older with Duchenne muscular dystrophy (DMD), a rare genetic disorder that causes progressive muscle deterioration and weakness. Emflaza is a corticosteroid that works by decreasing inflammation and reducing the activity of the immune system.

Corticosteroids are commonly used to treat DMD across the world. This is the first FDA approval of any corticosteroid to treat DMD and the first approval of deflazacort for any use in the United States.

Image result for Deflazacort

“This is the first treatment approved for a wide range of patients with Duchenne muscular dystrophy,” said Billy Dunn, M.D., director of the Division of Neurology Products in the FDA’s Center for Drug Evaluation and Research. “We hope that this treatment option will benefit many patients with DMD.”

DMD is the most common type of muscular dystrophy. DMD is caused by an absence of dystrophin, a protein that helps keep muscle cells intact. The first symptoms are usually seen between 3 and 5 years of age and worsen over time. The disease often occurs in people without a known family history of the condition and primarily affects boys, but in rare cases it can affect girls. DMD occurs in about one of every 3,600 male infants worldwide.

People with DMD progressively lose the ability to perform activities independently and often require use of a wheelchair by their early teens. As the disease progresses, life-threatening heart and respiratory conditions can occur. Patients typically succumb to the disease in their 20s or 30s; however, disease severity and life expectancy vary.

The effectiveness of deflazacort was shown in a clinical study of 196 male patients who were 5 to 15 years old at the beginning of the trial with documented mutation of the dystrophin gene and onset of weakness before age 5. At week 12, patients taking deflazacort had improvements in a clinical assessment of muscle strength across a number of muscles compared to those taking a placebo. An overall stability in average muscle strength was maintained through the end of study at week 52 in the deflazacort-treated patients. In another trial with 29 male patients that lasted 104 weeks, deflazacort demonstrated a numerical advantage over placebo on an assessment of average muscle strength. In addition, although not statistically controlled for multiple comparisons, patients on deflazacort appeared to lose the ability to walk later than those treated with placebo.

The side effects caused by Emflaza are similar to those experienced with other corticosteroids. The most common side effects include facial puffiness (Cushingoid appearance), weight gain, increased appetite, upper respiratory tract infection, cough, extraordinary daytime urinary frequency (pollakiuria), unwanted hair growth (hirsutism) and excessive fat around the stomach (central obesity).

Other side effects that are less common include problems with endocrine function, increased susceptibility to infection, elevation in blood pressure, risk of gastrointestinal perforation, serious skin rashes, behavioral and mood changes, decrease in the density of the bones and vision problems such as cataracts. Patients receiving immunosuppressive doses of corticosteroids should not be given live or live attenuated vaccines.

The FDA granted this application fast track designation and priority review. The drug also received orphan drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The sponsor is receiving a rare pediatric disease priority review voucher under a program intended to encourage development of new drugs and biologics for the prevention and treatment of rare pediatric diseases. A voucher can be redeemed by a sponsor at a later date to receive priority review of a subsequent marketing application for a different product. This is the ninth rare pediatric disease priority review voucher issued by the FDA since the program began.

Emflaza is marketed by Marathon Pharmaceuticals of Northbrook, Illinois.

Medical uses

The manufacturer lists the following uses for deflazacort:[1]

In the United States, deflazacort is only FDA-approved for the treatment of Duchenne muscular dystrophy in people over the age of 5.

Image result for DeflazacortImage result for Deflazacort

Image result for DeflazacortImage result for Deflazacort

Adverse effects

Deflazacort carries the risks common to all corticosteroids, including immune suppression, decreased bone density, and endocrine insufficiency. In clinical trials, the most common side effects (>10% above placebo) were Cushing’s-like appearance, weight gain, and increased appetite.[2]

Pharmacology

Mechanism of action

Deflazacort is an inactive prodrug which is metabolized rapidly to the active drug 21-desacetyldeflazacort.[3]

Relative potency

Deflazacort’s potency is around 70–90% that of prednisone.[4] A 2017 review found its activity of 7.5 mg of deflazacort is approximately equivalent to 25 mg cortisone, 20 mg hydrocortisone, 5 mg of prednisolone or prednisone, 4 mg of methylprednisolone or triamcinolone, or 0.75 mg of betamethasone or dexamethasone. The review noted that the drug has a high therapeutic index, being used at initial oral doses ranging from 6 to 90 mg, and probably requires a 50% higher dose to induce the same demineralizing effect as prednisolone. Thus it has “a smaller impact on calcium metabolism than any other synthetic corticosteroid, and therefore shows a lower risk of growth rate retardation in children and of osteoporosis” in the elderly, and comparatively small effects on carbohydrate metabolism, sodium retention, and hypokalemia.[5]

History

In January 2015, the FDA granted fast track status to Marathon Pharmaceuticals to pursue approval of deflazacort as a potential treatment for Duchenne muscular dystrophy, a rare, “progressive and fatal disease” that affects boys.[6] Although deflazacort was approved by the FDA for use in treatment of Duchenne muscular dystrophy on February 9, 2017,[7][8] Marathon CEO announced on February 13, 2017 that the launch of deflazacort (Emflaza) would be delayed amidst controversy over the steep price Marathon was asking for the drug – $89,000-a-year. In Canada the same drug can be purchased for around $1 per tablet.[9] Marathon has said that Emflaza is estimated to cost $89,000/year which is “roughly 70 times” more than it would cost overseas.[10] Deflazacort is sold in the United Kingdom under the trade name Calcort;[4] in Brazil as Cortax, Decortil, and Deflanil; in India as Moaid, Zenflav, Defolet, DFZ, Decotaz, and DefZot; in Bangladesh as Xalcort; in Panama as Zamen; Spain as Zamene; and in Honduras as Flezacor.[11]

SYNTHESIS

Worlddrugtracker drew this

1 Protection of the keto groups in pregna-1,4-diene derivative  with NH2NHCOOMe using HCOOH, yields the corresponding methyl ester.

2 Cleavage of epoxide  with NH3 in DMAc/DMF gives amino-alcohol,

3 which on esterification with acetic anhydride in the presence of AcOH furnishes acetate.

4 Cyclization of amine using NaOH, Na2CO3 or K2CO3 produces oxazoline derivative ,

5 which is finally deprotected with HCl to afford Deflazacort 

SYNTHESIS FROM CHEMDRUG

The cyclization of 17alpha-azido-3beta,16alpha-acetoxy-5alpha-pregnane-11,20-dione (I) by hydrogenation with H2 over Pt in methanol, followed by a treatment with 10% HCl gives 3beta-hydroxy-5alpha-pregnane-11,20-dione-[17alpha,16alpha-d]-2′-methyloxazoline (II), which is converted into the semicarbazone (III) by treatment with semicarbazide hydrochloride (A) and pyridine in refluxing methanol. The reduction of one ketonic group of (III) with NaBH4 in refluxing ethanol yields the dihydroxy-semicarbazone (IV), which is hydrolyzed with 10% HCl in refluxing methanol to afford the ketodiol (V). The oxidation of (V) with cyclohexanone and aluminum isopropoxide in refluxing toluene gives 11beta-hydroxy-5alpha-pregnane-3,20-dione-[17alpha,16alpha-d]-2′-methyloxazoline (VI). The dehydrogenation of (VI) by treatment with Br2 in dioxane-acetic acid, followed by treatment with Li2CO3 in DMF at 140 C yields the corresponding 1,4-diene derivative (VII). Finally, the reaction of (VII) with I2 by means of azobisisobutyronitrile in CH2Cl2 affords the corresponding 21-iodo compound, which is then acetylated with triethylammonium acetate in refluxing acetone.

The monoacetylation of (V) with acetic anhydride and pyridine at 100 C gives the 3-acetoxy-11-hydroxy compound (IX), which is dehydrated by treatment with methanesulfonyl chloride and then with sodium acetate yielding 3beta-acetoxy-5alpha-pregn-9(11)-ene-20-one-[17alpha,16alpha-d]-2′-methyloxazoline (X). The hydrolysis of (X) with KOH in refluxing methanol affords the corresponding hydroxy compound (XI), which is acetoxylated by treatment with I2 and AZBN as before giving the iodo derivative (XII), and then with triethylammonium acetate also as before, yielding 3beta-hydroxy-21-acetoxy-5alpha-pregn-9(11)-ene-20-one-[17alpha,16alpha-d]-2′-methyloxazoline (XIII). The oxidation of (XIII) with CrO3 in acetone yields the 3,20-diketone (XIV), which by treatment with Br2 and Li2CO3 as before is dehydrogenated affording the 1,4,9(11)-pregnatriene (XV). Finally, the reaction of (XV) with N-bromoacetamide in THF yields 9alpha-bromo-11beta-hydroxy-21-acetoxy-5alpha-pregna-1,4-dieno-3,20-dione-[17alpha,16alpha-d]-2′-methyloxazoline (XVI), which is then debrominated by reaction with chromous acetate and butanethiol in DMSO.

PAPER

Journal of Medicinal Chemistry (1967), 10(5), 799-802

Steroids Possessing Nitrogen Atoms. III. Synthesis of New Highly Active Corticoids. [17α,16α,-d]Oxazolino Steroids

J. Med. Chem., 1967, 10 (5), pp 799–802
DOI: 10.1021/jm00317a009

PATENT

CN 105622713

PATENT CN 106008660

MACHINE TRANSLATED FROM CHINESE may seem funny

Description of the drawings

[0007] Figure 1 is a map of the traditional method of the combination process;

Figure 2 is a two-step method of the present invention.

detailed description

[0008] In order to more easily illustrate the gist and spirit of the present invention, the following examples illustrate:

Example 1

A: Preparation of hydroxylamine

In a 100 ml three-necked flask, 20 g of 16 (17) a-epoxy prednisolone, 30 ml of DMF, 300 ml of chloroform was added and incubated at 30-35 ° C with 8 g of ammonia gas at 1-2 atmospheres Reaction 16 ~ 20 hours, TLC detection reaction end point, after the reaction, the vacuum exhaust ammonia gas, add 3x100ml saturated brine washing 3 times, plus 10ml pure water washing times, then, under reduced pressure to chloroform to dry, add 200ml Ethyl acetate, Ig activated carbon, stirring reflux 60-90 minutes, cooling to 50-55 degrees, hot filter, l-2ml ethyl acetate washing carbon, combined filtrate and lotion, and then below 500C concentrated under pressure 95 % Of ethyl acetate, the system cooled to -5-0 ° C, stirring crystallization 2 ~ 3 hours, filter, 0.5-lml ethyl acetate washing, lotion and filtrate combined sets of approved; filter cake below 70 ° C Drying, get hydroxylamine 18.2g, HPLC content of 99.2%, weight loss of 91%.

[0009] B: Preparation of terracavir

Add 10 g of hydroxylamine, 150 ml of glacial acetic acid and 150 ml of acetic anhydride in a 100 ml three-necked flask. Add 5 g of concentrated sulfuric acid under stirring at room temperature. The reaction was carried out at 30-35 ° C for 12-16 hours. TLC confirmed the end of the reaction. Add 500ml of pure water, and adjust the pH of 7.5.5 with liquid alkali, cool to 10 ~ 15 ° C, stirring crystallization 2-3 hours, filtration, washing to neutral, combined filtrate and lotion, pretreated into Waste water treatment tank, filter cake below 70 V drying, Texaco can be special crude 112.5g, HPLC content of 98.2%, the yield of 112.5% ο the above terracotta crude dissolved in 800ml of alcohol, add 5g activated carbon, Decolorization 1-1.5 hours, hot filter, 10ml alcohol detergent cake, lotion and filtrate combined, atmospheric pressure recovery of about 90% of the alcohol, and then cooled to -5-0 ° C, frozen crystal 2-3 hours, Filtration, filter cake with 4-5ml alcohol washing, 70 ° C below drying, digoxin special product 89.2g, melting point 255.5-256.0 degrees, HPLC content of 99.7%, yield 89.2%. The mother liquor is recycled with solvent and crude.

[0010] Example II

A: Preparation of hydroxylamine

In a 100 ml three-necked flask, 20 g of 16 (17) a-epoxy prednisolone, 120 ml of toluene was added and incubated at 30-35 ° C with 8 g of ammonia and 16 to 20 at atmospheric pressure The reaction was carried out in the presence of 3 x 50 ml of saturated brine and 50 ml of pure water was added. Then, the toluene was dried under reduced pressure to dryness, and 200 ml of ethyl acetate, Ig activated carbon was added, and the mixture was stirred. Reflux 60-90 minutes, cool to 50-55 ° C, hot filter, l2ml ethyl acetate wash carbon, combined filtrate and lotion, and then below 500C under reduced pressure 95% ethyl acetate, the system cooling To 5-0C, stirring crystallization 2 ~ 3 hours, filter, 0.5-lml ethyl acetate washing, lotion and filtrate combined sets of the next batch; filter cake 70 ° C below drying, hydroxylamine 18.0g, HPLC content 99.1%, 90% by weight.

[0011] B: Preparation of terracavir

Add 10 g of hydroxylamine, 500 ml of chloroform and 150 ml of acetic anhydride in a 100 ml three-necked flask, add 5 g of p-toluenesulfonic acid under stirring at room temperature, and incubate at 30-35 ° C for 12-16 hours. TLC confirms the reaction end, After the addition of 500ml of pure water, and with the liquid alkali pH 7.55, down to 10 ~ 15 ° C, stirring 0.5_1 hours, separate the water layer, washed to neutral, combined with water and lotion, pretreated into Waste water treatment tank, organic layer under reduced pressure concentrated chloroform to near dry, adding 200ml hexane, reflux 0.5-1 hours, slowly cooling to -5 ~ O0C, stirring crystallization 2-3 hours, filter, filter cake with 4-5ml Alcohol washing, the filtrate and lotion combined apply to the next batch, the filter cake below 70 ° C drying, Texaco can crude 110.5g, HPLC content of 98.4%, the yield of 110.5%. The above-mentioned diltiazem crude product dissolved in 800ml alcohol, add 5g activated carbon, temperature reflux bleaching 1-1.5 hours, hot filter, 10ml alcohol washing cake, lotion and filtrate combined, atmospheric pressure recovery of about 90% of the alcohol And then cooled to -500C, frozen crystallization for 2-3 hours, filtration, filter cake with 4-5ml alcohol washing, 70 ° C the following drying, digester can special products 88.6g, melting point 255.0-256.0 degrees, HPLC content of 99.5%, the yield of 88.6%. The mother liquor is recycled with solvent and crude.

[0012] Example 3

A: Preparation of hydroxylamine

Add 20 g of 16 (17) a-epoxy prednisolone to 120 ml of ethanol in a 100 ml three-necked flask and incubate at 30-35 ° C with stirring to give Sg ammonia at 16 to 20 hours , TLC test reaction end point, after the reaction, vacuum exhaust ammonia gas, concentrated ethanol to the near dry, cooling, adding 300ml chloroform, stirring dissolved residue, and then add 3x100ml saturated brine washing, plus 10ml pure water washing, washing And then concentrated to reduce the chloroform to dry, add 200ml of ethyl acetate, Ig activated carbon, stirring reflux 60-90 minutes, cooling to 50-55 ° C, hot filter, l2ml ethyl acetate washing carbon, combined filtrate and lotion And then concentrated below 50 ° C to 95% ethyl acetate under reduced pressure. The system was cooled to -5-0 0C, stirred for 2 to 3 hours, filtered, 0.5-l of ethyl acetate, washed and filtrate The filter cake was dried at 70 ° C, 18.6 g of hydroxylamine, 99.5% of HPLC, and 93% by weight.

[0013] B: Preparation of terracavir

In a 100ml three-necked flask, add 10g of hydroxylamine, 500ml toluene, 150ml acetic anhydride, stirring at room temperature by adding 5g concentrated sulfuric acid, insulation at 30-35 degrees stirring reaction 12-16 hours, TLC confirmed the end of the reaction, after the reaction, Add 500ml of pure water, and liquid pH adjustment pH 7.5, cooling to 1 ~ 15 ° C, stirring 0.5-1 hours, the water layer, washed to neutral, combined with water and lotion, pretreated into the wastewater The cells were dried and the organic layer was concentrated to dryness under reduced pressure. 200 ml of hexane was added and refluxed

0.5-1 hours, slowly cool to -5 ~ O0C, stirring crystallization 2-3 hours, filtration, filter cake with 4-5ml hexane, the filtrate and lotion combined apply to the next batch, filter cake below 70 ° C Drying, digoxin crude 112.5g, HPLC content of 97.4%, the yield of 112,5% ο will be the above terracotta crude dissolved in 800ml of alcohol, add 5g activated carbon, heating reflux bleaching 1-1.5 hours, while Hot filter, 10ml alcohol detergent cake, lotion and filtrate combined, atmospheric pressure recovery of about 90% of the alcohol, and then cooled to -500C, frozen crystallization for 2-3 hours, filter, filter cake with 4-5ml alcohol Washing, 70 ° C below the dry, Diges can special products 86.2g, melting point 255.5-256.0 degrees, HPLC content of 99.8%, the yield of 86.2%. The mother liquor is recycled with solvent and crude.

PATENT

https://www.google.com/patents/CN101418032A?cl=en

Example 1

21- bromo -ll (3- hydroxy – pregna–l, 4- diene -3, 20-dione [170, 16o-d] -2′- methyl-oxazoline (4) Preparation:

A dry fitted with a thermometer, a reflux condenser, magnetically stirred flask was added 250mL three compound (2) (19.17 g; Fw: 383.48; 50 mmol), N- bromosuccinimide (9.79 g; Fw: 178.00; 55 mmol), 150 ml of ether; then ammonium acetate (0.39 g; Fw: 77.08; 0.005 mmol) added to the system. System continues to stir at 20 ° C 0.5 h, the reaction is complete. After completion of the reaction was filtered to remove the white precipitate cake was washed with 50 mL of dichloromethane, and the combined organic Xiangde pale yellow clear liquid, the solvent was evaporated under reduced pressure to give a pale yellow solid 21.27 g, yield: 92%, HPLC content of greater than 95%.

Example 2

21- bromo -lip- hydroxy – pregna–l, 4- diene -3, 20-dione [17 “16o-d] -2′- methyl-oxazoline (4) Preparation:

A dry fitted with a thermometer, a reflux condenser, magnetically stirred flask were added sequentially 250mL three compound (2) (19.17 g; Fw: 383.48; 50 mmol), N- bromosuccinimide (9.79 g; Fw : 178.00; 55 mmol), 150 ml of toluene; then ammonium acetate (0.39 g; Fw: 77.08; 0.005 mmol) added to the system. System continues to stir at 110 ° C 5 h, the reaction is complete. After completion of the reaction was cooled to room temperature, the white precipitate was removed by filtration cake was washed with 50 mL of dichloromethane, and the combined organic Xiangde pale yellow clear liquid, concentrated under reduced pressure to remove the solvent to give a pale yellow solid 19.65 g, yield: 85%, HPLC content greater than 95%.

Example 3

21 Jie bromo -11 – hydroxy – pregna-1,4-diene -3, 20-dione [17a, 16o-d] -2′- methyl-oxazoline (4) Preparation:

A dry fitted with a thermometer, a reflux condenser, magnetically stirred flask were added sequentially 250mL three compound (2) (19.17 g; Fw: 383.48; 50 mmol), 1,3- dibromo-5,5-dimethyl- Hein (35.74 g; Fw: 285.94; 125 mmol), 150 ml of ether; then ammonium acetate (0.39 g; Fw: 77.08; 0.005 mmol) added to the system. System Stirring was continued at reflux for 3 h, the reaction was completed. After completion of the reaction a white precipitate was removed by filtration and the cake was washed with 50 mL of diethyl ether, and the combined organic Xiangde pale yellow clear liquid, concentrated under reduced pressure to remove the solvent to give a pale yellow solid 16.18 g, yield: 70%, HPLC content greater than 92%.

Example 4

21- bromo -11 Jie – hydroxy – pregna-1,4-diene -3, 20- dione [17c, 16o-d] -2′- methyl-oxazoline (4) Preparation:

A dry fitted with a thermometer, a reflux condenser, magnetically stirred flask were added sequentially 250mL three compound (2) (19.17 g; Fw: 383.48; 50 mmol), 1,3- dibromo-5,5-dimethyl- Hein (35.74 g; Fw: 285.94; 125 mmol), 150 ml dichloromethane; followed by ammonium acetate (0.039 g; Fw: 77.08; 0.0005 mmol) added to the system. System Stirring was continued at reflux for 24 h, the reaction was completed. After completion of the reaction a white precipitate was removed by filtration and the cake was washed with 50 mL of diethyl ether, and the combined organic Xiangde pale yellow clear liquid, concentrated under reduced pressure to remove the solvent to give a pale yellow solid 16.41 g, yield: 71%, HPLC content of greater than 92. / 0.

Example 5

Deflazacort Preparation:

In a nitrogen-filled dry fitted with a thermometer, magnetic stirring and a reflux condenser 100 mL three-necked flask was charged with Compound (4) (11.56 g; Fw: 462.38; 25 mmol), followed by addition of sodium acetate (8.20g; Fw: 82.03; lOOmmol), 50 mL methanol was added to the system.

Then tetrabutylammonium bromide (O. 81g; Fw: 322.38; 2.5 mmol). Warmed to 50 ° C with stirring

48 h. Until after the completion of the reaction was cooled to room temperature. After completion of the reaction, temperature of the system was cooled to room temperature, the system was supplemented with chloroform 50mL, filtered, and the filter cake was washed with small amount of chloroform and then to confirm that no product was dissolved, and the combined organic phases, the organic phase washed with 10% aqueous sodium carbonate paint 3 times, saturated sodium chloride once. The organic phase was dried over anhydrous sodium sulfate, the inorganic salt was removed to give a pale yellow liquid, was concentrated to dryness, purified ethyl acetate to give the product 9.93g, yield 90%, HPLC content> 990/0.

Example 6

Deflazacort Preparation –

In a nitrogen-filled dry fitted with a thermometer, magnetic stirring and a reflux condenser 100 mL three-necked flask was charged with Compound (4) (11.56 g; Fw: 462.38; 25 mmol), followed by addition of anhydrous potassium acetate (3.68g; Fw: 98.14; 37.5 mmol), 50 mL acetone was added to the system. Followed by tetrabutylammonium iodide (0.10g; Fw: 369.37; 0.25 mmol). Heated to reflux with stirring 2h. Until after the completion of the reaction was cooled to room temperature. After completion of the reaction, temperature of the system was cooled to room temperature, the system was supplemented with chloroform 50mL, filtered, and the filter cake was washed with small amount of chloroform and then to confirm that no product was dissolved, and the combined organic phases, the organic phase was washed 3 times with 10% aqueous sodium carbonate , washed once with saturated sodium chloride. The organic phase was dried over anhydrous sodium sulfate, the inorganic salt was removed to give a pale yellow liquid, was concentrated to dryness, ethyl acetate was purified to give the product 10.93 g, yield 99%, HPLC content> 99%.

Example 7

Deflazacort Preparation:

In a nitrogen-filled dry fitted with a thermometer, magnetic stirring and a reflux condenser 100 mL three-necked flask was charged with Compound (4) (11.56 g; Fw: 462.38; 25 mmol), followed by addition of anhydrous potassium acetate (3.68g; Fw: 98.14; 37.5 mmol), 50 mL acetonitrile was added to the system. Followed by tetrabutylammonium iodide (0.10g; Fw: 369.37; 0.25 mmol). Heated to reflux with stirring 2h. Until after the completion of the reaction was cooled to room temperature. After completion of the reaction, temperature of the system was cooled to room temperature, the system was supplemented with chloroform 50mL, filtered, and the filter cake was washed with small amount of chloroform and then to confirm that no product was dissolved, and the combined organic phases, the organic phase was washed 3 times with 10% aqueous sodium carbonate , washed once with saturated sodium chloride. The organic phase was dried over anhydrous sodium sulfate, the inorganic salt was removed to give a pale yellow liquid, was concentrated to dryness, ethyl acetate was purified to give the product 10.93 g, yield 99%, HPLC content> 99%.

Example 8

Deflazacort Preparation:

In a nitrogen-filled dry fitted with a thermometer, magnetic stirring and a reflux condenser 100 mL three-necked flask was charged with Compound (4) (11.56 g; Fw: 462.38; 25 mmol), followed by addition of anhydrous potassium acetate (2.45g; Fw: 98.14; 25 mmol), the N, N- dimethylformamide, 50 mL added to the system. Followed by tetrabutylammonium iodide (O.IO g; Fw: 369.37; 0.25 mmol). Warmed to 120. C stirring 2h. Until after the completion of the reaction was cooled to room temperature. After completion of the reaction, temperature of the system was cooled to room temperature, the system was supplemented with chloroform 50mL, filtered, and the filter cake was washed with small amount of chloroform and then to confirm that no product was dissolved, and the combined organic phases, the organic phase was washed 3 times with 10% aqueous sodium carbonate , washed once with saturated sodium chloride. The organic phase was dried over anhydrous sodium sulfate, the inorganic salt was removed to give a pale yellow liquid, was concentrated to dryness, ethyl acetate was purified to give the product 10.93 g, yield 99%, HPLC content> 99o / q.

PATENT

https://www.google.com/patents/WO1997021722A1?cl=zh

compound (llβ,16β)-21-(acetyloxy)-11- hydroxy-2 ‘ -methyl-5 ‘H-pregna-1, -dieno[17 , 16-d Joxazole- 3,20-dione, also known, and hereinafter referred to, with the INN (International Nonproprietary Name) deflazacort. Deflazacort is represented by the following formula I

Figure imgf000003_0001

Deflazacort is employed in therapy aince some years as a calcium-sparing corticoid agent. This compound belongs to the more general class of pregneno-oxazolines, for which anti-inflammatory, glucocorticoid and hormone-like pharmacological activities are reported. Examples of compounds of the above class, comprising deflazacort, are disclosed in US 3413286, where deflazacort is referred to as llβ-21-dihydroxy-2 ‘ -methyl-5 ‘ βH-pregna-1,4-dieno.17 , 16- d]oxazole-3,20-dione 21-acetate.

According to the process disclosed by US 3413286, deflazacort is obtained from 5-pregnane-3β-ol-ll , 20- dione-2 ‘-methyloxazoline by 2 , -dibromination with Br2– dioxane, heating the product in the presence of LiBr- iC03 for obtaining the 1,4-diene, and converting this latter into the 21-iodo and then into the desired 21- acetyloxy compound. By hydrolysis of deflazacort, the llβ-21-dihydroxy-2 ‘ -methyl-5 ‘βH-pregna-1, -dieno[ 17 , 16- d-]oxazoline-3, 20-dione of formula II is obtained:

Figure imgf000004_0001

The compound of formula II is preferably obtained according to a fermentation process disclosed in

EP-B-322630; in said patent, the compound of formula II is referred to as llβ-21-dihydroxy-2 ‘-methyl-5 ‘ βH- pregna-1,4-dieno[17,16-d-]oxazoline-3,20-dione.

The present invention provides a new advantageous single-step process for obtaining deflazacort, by acetylation of the compound of formula II.

CLIP

Image result for Deflazacort NMR

tructure of deflazacort and its forced degradation product (A), chromatogram plot of standard deflazacort (B), contour plot of deflazacort (C). Deflazacort was found to be a stable drug under stress condition such as thermal, neutral and oxidative condition. However, the forceddegradation study on deflazacort showed that the drug degraded under alkaline, acid and photolytic conditions.

Mass fragmentation pathway for degradant product of deflazacort.

PATENT

CN 103059096

Figure CN103059096AD00051

Example 1: Protective reaction To the reaction flask was added 20 g of 1,4-diene-11? -hydroxy-16,17-epoxy_3,20-dione pregnone (Formula I) 20% of the aqueous solution of glacial acetic acid 300g, stirring 5 minutes, temperature 10 ° C ~ 15 ° C, adding ethyl carbazate 14g, temperature control 30 ° C reaction 6 hours; TLC detection reaction is complete, cooling to 0 ° C ~ 5 ° C for 2 hours, until dry, washed to neutral; 60 ° C vacuum dry to dry creatures 20. 5g; on P, oxazoline ring reaction The above protective products into the reaction bottle, add 41ml Of the DMAC dissolved, temperature 25 ~ 30 ° C, access to ammonia, to keep the reaction bottle micro-positive pressure, the reaction of 32 hours, atmospheric pressure exhaust ammonia and then decompression pumping ammonia for 30 minutes; 5 ° C, temperature 5 ~ 0 ° C by adding 5ml glacial acetic acid, then add 21ml acetic anhydride, heated to 35 ° C reaction 4 hours, the sample to confirm the reaction completely; slowly add 5% sodium hydroxide solution 610ml and heated to 60 ~ 70 ° C reaction 2 hours; point plate to confirm the end of the reaction, cooling to 50 ° C, half an hour by adding refined concentrated hydrochloric acid 40ml, insulation 50 ~ 55 ° C reaction 10 hours; to the end of the reaction temperature to room temperature, chloroform Extraction, drying and filtration, concentration of at least a small amount of solvent, ethyl acetate entrained twice, leaving a small amount of solvent, frozen crystallization filter high purity [17a, 16a-d] terfu Kete intermediate. Example 2: Protective reaction 20 g of 1,4-diene-l1-la-hydroxy-16,17-epoxy_3,20_dione progestin (Formula I) was added to the reaction flask and 15% Formic acid solution 300g, stirring for 5 minutes, temperature 10 ~ 15 ° C, adding methyl carbazate 12g, temperature control 30 ° C reaction 5 hours to test the end of the reaction, cooling to O ~ 5 ° C stirring 2 hours crystallization, Suction to dry, washed to neutral; 60 ° C vacuum drying to dry protection of 20g; on P, oxazoline ring reaction The protection of the reaction into the reaction flask, add 30ml of DMF dissolved, temperature control 25 ~ 30 ° C, access to ammonia, keep the reaction bottle in the micro-positive pressure, reaction 30 hours, atmospheric pressure exhaust ammonia and then decompression pumping ammonia for 30 minutes, ice water cooled to 5 ° C, temperature 5 ~ 10 ° C add 5ml of glacial acetic acid, then add 20ml acetic anhydride, heated to 30 ° C reaction for 5 hours to confirm the reaction is complete; slowly add 20% sodium carbonate aqueous solution 500ml and heated to 60 ~ 70 ° C reaction 4 hours, the point plate to confirm the reaction The temperature of 55 ~ 60 ° C for 10 hours; to be the end of the reaction temperature to room temperature, chloroform extraction, drying and filtration, concentration of a small amount of solvent, acetic acid isopropyl The ester was entrained twice, leaving a small amount of solvent, frozen and crystallized to obtain high purity [17a, 16a-d] oxazoline residues. [0024] Example 3: Protective reaction 20 g of I, 4-diene-16,17-epoxy-3,11,20-triketone pregnone (Formula I) was added to the reaction flask and 20% Formic acid solution 300g, stirring for 5 minutes, temperature 10 ~ 15 ° C, adding hydrazine carbamate 15g, temperature control 30 ° C reaction 5 hours to test the end of the reaction, cooling to O ~ 5 ° C stirring 2 hours crystallization, To the dry, washed to neutral; 60 ° C vacuum drying to dry protection of 22g; on P, oxazoline ring reaction of the protection of the reaction into the bottle, add 30ml of DMAC dissolved temperature control 35 ~ 40 ° C, access to ammonia, keep the reaction bottle in the micro-positive pressure, reaction 40 hours, atmospheric pressure exhaust ammonia and then decompression pumping ammonia for 30 minutes, ice water cooling to 5 ° C, temperature 5 ~ 10 ° C add 5ml of glacial acetic acid, then add 20ml acetic anhydride, heated to 40 ° C reaction 5 hours to confirm the reaction is complete; slowly add 20% potassium carbonate aqueous solution 500ml and heated to 60 ~ 70 ° C reaction 7 hours, the point plate to confirm the reaction The temperature of the reaction to the end of the temperature to room temperature, chloroform extraction, drying filter, concentrated to a small amount of solvent, acetic acid isopropyl The ester was entrained twice, leaving a small amount of solvent, frozen and crystallized to obtain high purity [17a, 16a-d] oxazoline residues.

PATENT

CN 102936274

Figure CN102936274BD00041

xample 1

[0028] A 30 g 16, 17 α- epoxy – pregn -20- substituting methyl hydrazine -3-acetyl-1,4-diene, 11- dione (a) and 150 mL of chloroform and 15 mLDMF mixed, pressure reactor, stirring ammonia gas to the reactor pressure to 0.15 MPa (during ventilation control the reaction temperature at 10-15 ° C), 30 ° C heat reaction, TLC track the progress of the reaction. Completion of the reaction, the material was transferred to a glass reaction flask, the temperature of the material to be reduced to below 10 ° C, add acetic acid adjusted to pH 5 to 6, the solvent was removed under reduced pressure; reaction flask was added 30 mL of acetic acid, 30 g of acetic anhydride, The reaction temperature was controlled at 30 ° C, the reaction 6 hours, the reaction mixture was poured into cold 500 mL10% sodium hydroxide solution, stirred for 1 hour, filtration to give product 30.6 g, 102% mass yield, product by HPLC , a purity of 95.2%.

[0029] Example 2

[0030] A 30 g 16, 17 α- epoxy – pregn -20- substituting methyl hydrazine -3-acetyl-1,4-diene, 11- dione (a) and 150 mL of chloroform and 30 mL of pyridine were mixed, added pressure reactor, stirring ammonia gas to the reactor pressure to 0. 15 MPa (during ventilation control the reaction temperature at 10~15 ° C), 15 ° C heat reaction, TLC track the progress of the reaction. Completion of the reaction, the material was transferred to a glass reaction flask, the temperature of the material to be reduced to below 10 ° C, add acetic acid adjusted to pH 5 to 6, the solvent was removed under reduced pressure; reaction flask was added 30 mL of acetic acid, 30 g of acetic anhydride, The reaction temperature was controlled at 30 ° C, the reaction 6 hours, the reaction mixture was poured into cold 500 mL10% sodium hydroxide solution, stirred for 1 hour, filtration to give product 28.6 g, yield 95% by mass, product by HPLC , a purity of 94.8%.

[0031] Example 3

[0032] A 30 g 16, 17 α- epoxy – pregn -20- substituting methyl hydrazine -3-acetyl-1,4-diene, 11- dione (a) and 150 mL of chloroform and 30 mLDMF mixed, pressure reactor, stirring ammonia gas to the reactor pressure to 0.15 MPa (during ventilation control the reaction temperature at 10~15 ° C), 40 ° C heat reaction, TLC track the progress of the reaction.Completion of the reaction, the material was transferred to a glass reaction flask, the temperature of the material to be reduced to below 10 ° C, add acetic acid adjusted to pH 5 to 6, the solvent was removed under reduced pressure; reaction flask was added 30 mL of acetic acid, 30 g of acetic anhydride, The reaction temperature was controlled at 30 ° C, the reaction for 6 hours. The reaction mixture was poured into cold 500 mL10% sodium hydroxide solution, stirred for 1 hour, filtration to give the product 31.2 g, yield 104% quality products by HPLC , a purity of 95.4%.

[0033] Example 4

[0034] A 30 g 16, 17 α- epoxy – pregn -20- substituting methyl hydrazine -3-acetyl-1,4-diene, 11- dione (a) and 150 mL of chloroform and 30 mLDMF mixed, pressure reactor, stirring ammonia gas to the reactor pressure to 0.5 MPa (during ventilation control the reaction temperature at 10~15 ° C), 40 ° C heat reaction, TLC track the progress of the reaction. Completion of the reaction, the material was transferred to a glass reaction flask, the temperature of the material to be reduced to below 10 ° C, add acetic acid adjusted to pH 5 to 6, the solvent was removed under reduced pressure; reaction flask was added 30 mL of acetic acid, 30 g of acetic anhydride, The reaction temperature was controlled at 30 ° C, the reaction 6 hours, the reaction mixture was poured into cold 500 mL10% sodium hydroxide solution, stirred for 1 hour, filtration to give the product 31. I g, 102% mass yield, product by by HPLC, the purity was 95.2%.

[0035] Example 5

[0036] A 30 g 16, 17 α- epoxy – pregn -20- substituting methyl hydrazine -3-acetyl-1,4-diene, 11- dione (a) and 150 mL of chloroform and 30 mLDMF mixed, pressure reactor, stirring ammonia gas to the reactor pressure to 0.15 MPa (during ventilation control the reaction temperature at 10~15 ° C), 40 ° C heat reaction, TLC track the progress of the reaction. Completion of the reaction, the material was transferred to a glass reaction flask, the temperature of the material to be reduced to below 10 ° C, add acetic acid adjusted to pH 5 to 6, the solvent was removed under reduced pressure; reaction flask was added 60 mL of acetic acid, 15 g of acetic anhydride, The reaction temperature was controlled at 30 ° C, the reaction 6 hours, the reaction mixture was poured into cold 500 mL10% sodium hydroxide solution, stirred for 1 hour, filtration to give the product 29. 5 g, yield 98% by mass, the product of by HPLC, purity of 95%.

[0037] Example 6

[0038] A 30 g 16, 17 α- epoxy – pregn -20- substituting methyl hydrazine -3-acetyl-1,4-diene, 11- dione (a) and 150 mL of chloroform and 30 mLDMF mixed, pressure reactor, stirring ammonia gas to the reactor pressure to 0.15 MPa (during ventilation control the reaction temperature at 10~15 ° C), 40 ° C heat reaction, TLC track the progress of the reaction. The reaction was complete, the material was transferred to a glass reaction flask until the material temperature drops below 10 ° C, plus acetic acid to adjust the pH to 5 to 6, the solvent was removed under reduced pressure; the reaction flask was added 30 mL of acetic acid, 30 g of maleic dianhydride, the reaction temperature was controlled at 30 ° C, the reaction 6 hours, the reaction mixture was poured into cold 500 mL10% sodium hydroxide solution, stirred for 1 hour, filtration to give the product 30 g, 100% mass yield, product by HPLC purity of 95.2%.

[0039] Example 7

[0040] A 30 g 16, 17 α- epoxy – pregn -20- substituting methyl hydrazine -3-acetyl-1,4-diene, 11- dione (a) and 150 mL of chloroform and 30 mLDMF mixed, pressure reactor, stirring ammonia gas to the reactor pressure to 0.15 MPa (during ventilation control the reaction temperature at 10~15 ° C), 40 ° C heat reaction, TLC track the progress of the reaction. Completion of the reaction, the material was transferred to a glass reaction flask, the temperature of the material to be reduced to below 10 ° C, add acetic acid adjusted to pH 5 to 6, the solvent was removed under reduced pressure; reaction flask was added 30 mL of acetic acid, 30 g of propionic anhydride, The reaction temperature was controlled at 30 ° C, the reaction for 6 hours. The reaction mixture was poured into cold 500 mL10% sodium hydroxide solution, stirred for 1 hour, filtration to give the product 27.6 g, 92% yield of quality products by HPLC , a purity of 93.5%.

[0041] Example 8

[0042] A 30 g 16, 17 α- epoxy – pregn -20- substituting methyl hydrazine -3-acetyl-1,4-diene, 11- dione (a) and 150 mL of chloroform and 30 mLDMF mixed, pressure reactor, stirring ammonia gas to the reactor pressure to 0.15 MPa (during ventilation control the reaction temperature at 10~15 ° C), 40 ° C heat reaction, TLC track the progress of the reaction. Completion of the reaction, the material was transferred to a glass reaction flask, the temperature of the material to be reduced to below 10 ° C, add acetic acid adjusted to pH 5 to 6, the solvent was removed under reduced pressure; reaction flask was added 30 mL of acetic acid, 30 g of acetic anhydride, The reaction temperature is controlled at 50 ° C, the reaction for 6 hours. The reaction mixture was poured into cold 500 mL10% sodium hydroxide solution, stirred for 1 hour, filtration to give the product 29.8 g, 99% yield of quality products by HPLC , a purity of 94.8%.

References

  1. Jump up^ “Refla: deflazacort” (PDF).
  2. Jump up^http://www.accessdata.fda.gov/drugsatfda_docs/label/2017/208684s000,208685s000lbl.pdf
  3. Jump up^ Möllmann, H; Hochhaus, G; Rohatagi, S; Barth, J; Derendorf, H (1995). “Pharmacokinetic/pharmacodynamic evaluation of deflazacort in comparison to methylprednisolone and prednisolone”. Pharmaceutical Research. 12 (7): 1096–100. PMID 7494809.
  4. ^ Jump up to:a b “Calcort”. electronic Medicines Compendium. June 11, 2008. Retrieved on October 28, 2008.
  5. Jump up^ Luca Parente (2017). “Deflazacort: therapeutic index, relative potency and equivalent doses versus other corticosteroids”. BMC Pharmacol Toxicol. doi:10.1186/s40360-016-0111-8.
  6. Jump up^ Ellen Jean Hirst (January 19, 2015), Duchenne muscular dystrophy drug could get OK for U.S. sales in 2016, The Chicago Tribune, retrieved February 13, 2017,has been shown to prolong lives … a progressive and fatal disease that has no drug treatment available in the US
  7. Jump up^ “FDA approves drug to treat Duchenne muscular dystrophy”. http://www.fda.gov. 2017-02-09. Retrieved 2017-02-10.
  8. Jump up^ “Marathon Pharmaceuticals to Charge $89,000 for Muscular Dystrophy Drug”. http://www.wsj.com. 2017-02-10. Retrieved 2017-02-10.
  9. Jump up^ Clifton Sy Mukherjee (February 10, 2017). “Brainstorm Health Daily”. Retrieved February 13, 2017.
  10. Jump up^ Joseph Walker and Susan Pulliam (February 13, 2017), Marathon Pharmaceuticals to Charge $89,000 for Muscular Dystrophy Drug After 70-Fold Increase, The Wall Street Journal, retrieved February 13, 2017,FDA-approved deflazacort treats rare type of disease affecting boys
  11. Jump up^ “Substâncias: DEFLAZACORT” (in Portuguese). Centralx. 2008. Retrieved on October 28, 2008.
Deflazacort
Deflazacort structure.svg
Clinical data
Trade names Emflaza, Calcort, others
AHFS/Drugs.com International Drug Names
Routes of
administration
By mouth
ATC code
Legal status
Legal status
Pharmacokinetic data
Protein binding 40%
Metabolism By plasma esterases, to active metabolite
Biological half-life 1.1–1.9 hours (metabolite)
Excretion Renal (70%) and fecal (30%)
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
ECHA InfoCard 100.034.969
Chemical and physical data
Formula C25H31NO6
Molar mass 441.517 g/mol
3D model (Jmol)
CN102746358A * Apr 22, 2011 Oct 24, 2012 天津金耀集团有限公司 Novel technology for synthesis of pregnane 21-bit bromide
CN102746358B * Apr 22, 2011 Feb 10, 2016 天津金耀集团有限公司 一种合成孕甾21位溴化物的工艺
CN102936274A * Nov 12, 2012 Feb 20, 2013 浙江仙居君业药业有限公司 Preparation method for [17alpha, 16alpha-d] methyl oxazoline
CN102936274B * Nov 12, 2012 Apr 1, 2015 江西君业生物制药有限公司 Preparation method for [17alpha, 16alpha-d] methyl oxazoline

///////FDA 2017, Emflaza, Calcort, Deflazacort, orphan drug designation, FAST TRACK

[H][C@@]12C[C@@]3([H])[C@]4([H])CCC5=CC(=O)C=C[C@]5(C)[C@@]4([H])[C@@]([H])(O)C[C@]3(C)[C@@]1(N=C(C)O2)C(=O)COC(C)=O

Pridopidine.svg

Pridopidine

  • Molecular Formula C15H23NO2S
  • Average mass 281.414 Da
346688-38-8  CAS FREE FORM
882737-42-0 (hydrochloride)
1440284-30-9 HBr
4-[3-(Methylsulfonyl)phenyl]-1-propylpiperidin
4- (3 -Methanesulfonyl-phenyl ) – 1-propyl -piperidine
ACR16
Huntexil
UNII-HD4TW8S2VK;
4-[3-(Methylsulfonyl)phenyl]-1-propylpiperidine
ACR 16
  • ASP 2314
FR 310826

Huntingtons chorea

Dopamine D2 receptor antagonist; Opioid receptor sigma agonist 1

Neurosearch INNOVATORS, In 2012, the product was acquired by Teva

In January 2017, pridopidine was reported to be in phase 3 clinical development,  pridopidine for treating or improving cognitive functions and Alzheimer’s disease.

Teva Pharmaceutical Industries, following an asset acquisition from NeuroSearch, is developing pridopidine, a fast-off dopamine D2 receptor antagonist that strengthens glutamate function, for treating HD.
The drug holds orphan drug designation in the U.S. and the E.U. for the treatment of Huntington’s disease

PRIDOPIDINE.png

About Huntington Disease

HD is a fatal neurodegenerative disease for which there is no known cure or prevention. People who suffer from HD will likely have a variety of steadily-worsening symptoms, including uncoordinated and uncontrolled movements, cognition and memory deterioration and a range of behavioral and psychological problems. HD symptoms typically start in middle age, but the disease may also manifest itself in childhood and in old age. Disease progression is characterized by a gradual decline in motor control, cognition and mental stability, and generally results in death within 15 to 25 years of clinical diagnosis. Current treatment is limited to managing the symptoms of HD, as there are no treatments that have been shown to alter the progression of HD. Studies estimate that HD affects about 13 to 15 people per 100,000 in Caucasians, and for every affected person there are approximately three to five people who may carry the mutation but are not yet ill.

Image result for Pridopidine

Pridopidine, also known as ACR16, is a dopamine stabilizer, which improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. Huntington disease (HD) is a neurodegenerative disorder for which new treatments are urgently needed. Pridopidine is a new dopaminergic stabilizer, recently developed for the treatment of motor symptoms associated with HD.

Figure

Dopamine D2 ligands. Dopamine D2 receptor agonists dopamine (1) and apomorphine (2), classical antagonists haloperidol (3) and olanzapine (4), partial agonists (−)-3-(3-hydroxyphenyl)-Nn-propylpiperidine (5), bifeprunox (6), aripiprazole (7), and 3-(1-benzylpiperidin-4-yl)phenol (9a), and dopaminergic stabilizers S-(−)-OSU6162 (8) and pridopidine (12b).

Dopamine is a neurotransmitter in the brain. Since this discovery, made in the 1950s, the function of dopa-mine in the brain has been intensely explored. To date, it is well established that dopamine is essential in several aspects of brain function including motor, cognitive, sensory, emotional and autonomous (e.g. regulation of appetite, body temperature, sleep) functions. Thus, modulation of dopaminergic function may be beneficial in the treatment of a wide range of disorders affecting brain functions. In fact, both neurologic and psychiatric disorders are treated with medications based on interactions with dopamine systems and dopamine receptors in the brain.
Drugs that act, directly or indirectly, at central dopamine receptors are commonly used in the treatment of neurologic and psychiatric disorders, e.g. Parkinson’s disease and schizophrenia. Currently available dopaminer-gic pharmaceuticals have severe side effects, such as ex-trapyramidal side effects and tardive dyskinesia in dopaminergic antagonists used as antipsychotic agents, and dyskinesias and psychoses in dopaminergic agonists used as anti -Parkinson ‘ s agents. Therapeutic effects are un-satisfactory in many respects. To improve efficacy and reduce side effects of dopaminergic pharmaceuticals, novel dopamine receptor ligands with selectivity at specific dopamine receptor subtypes or regional selectivity are sought for. In this context, also partial dopamine receptor agonists, i.e. dopamine receptor ligands with some but not full intrinsic activity at dopamine receptors, are being developed to achieve an optimal degree of stimulation at dopamine receptors, avoiding excessive do-pamine receptor blockade or excessive stimulation.
Compounds belonging to the class of substituted 4- (phenyl-N-alkyl) -piperazine and substituted 4-(phenyl-N-alkyl) -piperidines have been previously reported. Among these compounds, some are inactive in the CNS, some dis-play serotonergic or mixed serotonergic/dopaminergic pharmacological profiles while some are full or partial dopamine receptor agonists or antagonists with high affinity for dopamine receptors.
A number of 4-phenylpiperazines and 4 -phenyl -piperidine derivatives are known and described, for example Costall et al . European J. Pharm. 31, 94, (1975), Mewshaw et al . Bioorg. Med. Chem. Lett., 8, 295, (1998). The reported compounds are substituted 4 -phenyl -piperazine ‘ s, most of them being 2-, 3- or 4 -OH phenyl substituted and displaying DA autoreceptor agonist properties .
Fuller R. W. et al , J. Pharmacol. Exp . Therapeut . 218, 636, (1981) disclose substituted piperazines (e.g. 1- (m-trifluoro-methylphenyl) piperazine) which reportedly act as serotonin agonists and inhibit serotonin uptake.

Fuller R. W. et al , Res. Commun. Chem. Pathol . Pharmacol. 17, 551, (1977) disclose the comparative effects on the 3 , 4-dihydroxy-phenylacetic acid and Res. Commun. Chem. Pathol. Pharmacol. 29, 201, (1980) disclose the compara-tive effects on the 5-hydroxyindole acetic acid concentration in rat brain by 1- (p-chlorophenol) -piperazine .
Boissier J. et al Chem Abstr. 61:10691c, disclose disubstituted piperazines. The compounds are reportedly adrenolytics, antihypertensives , potentiators of barbitu-rates, and depressants of the central nervous system.
A number of different substituted piperazines have been published as ligands at 5-HT1A receptors, for example Glennon R.A. et al J. Med. Chem., 31, 1968, (1988), van Steen B.J., J. Med. Chem., 36, 2751, (1993), Mokrosz, J. et al, Arch. Pharm. (Weinheim) 328, 143-148 (1995), and Dukat M.-L., J. Med. Chem., 39, 4017, (1996). Glennon R. A. discloses, in international patent applications WO93/00313 and WO 91/09594 various amines, among them substituted piperazines, as sigma receptor ligands. Clinical studies investigating the properties of sigma receptor ligands in schizophrenic patients have not generated evi-dence of antipsychotic activity, or activity in any other CNS disorder. Two of the most extensively studied selective sigma receptor antagonists, BW234U (rimcazole) and BMY14802, have both failed in clinical studies in schizophrenic patients (Borison et al , 1991, Psychopharmacol Bull 27(2): 103-106; Gewirtz et al , 1994, Neuropsycho-pharmacology 10:37-40) .
Further, WO 93/04684 and GB 2027703 also describe specific substituted piperazines useful in the treatment of CNS disorders

Pridopidine (Huntexil, formerly ACR16) is an experimental drug candidate belonging to a class of agents known as dopidines, which act as dopaminergic stabilizers in the central nervous system. These compounds may counteract the effects of excessive or insufficient dopaminergic transmission,[1][2] and are therefore under investigation for application in neurological and psychiatric disorders characterized by altered dopaminergic transmission, such as Huntington’s disease (HD).

Pridopidine is in late-stage development by Teva Pharmaceutical Industries who acquired the rights to the product from its original developer NeuroSearch in 2012. In April 2010, NeuroSearch announced results from the largest European phase 3 study in HD carried out to date (MermaiHD). The MermaiHD study examined the effects of pridopidine in patients with HD and the results showed after six months of treatment, pridopidine improved total motor symptoms, although the primary endpoint of the study was not met. Pridopidine was well tolerated and had an adverse event profile similar to placebo.[3]

The US Food and Drug Administration (FDA) and European Medicines Agency (EMA) have both indicated they will not issue approval for pridopidine to be used in human patients on the basis of the MermaiHD and HART trials, and a further, positive phase 3 trial is required for approval.[4][5]

Image result for Pridopidine

Dopidines

Dopidines, a new class of pharmaceutical compounds, act as dopaminergic stabilizers, enhancing or counteracting dopaminergic effects in the central nervous system.[1][2] They have a dual mechanism of action, displaying functional antagonism of subcortical dopamine type 2 (D2) receptors, as well as strengthening of cortical glutamate and dopamine transmission.[6] Dopidines are, therefore, able to regulate both hypoactive and hyperactive functioning in areas of the brain that receive dopaminergic input (i.e. cortical and subcortical regions). This potential ability to restore the cortical–subcortical circuitry to normal suggests dopidines may have the potential to improve symptoms associated with several neurological and psychiatric disorders, including HD.

SYNTHESIS

Figure

aReagents and conditions: (a) n-butyllithium, 1-Boc-4-piperidone, THF; (b) trifluoroacetic acid, CH2Cl2, Δ; (c) triethylamine, methyl chloroformate, CH2Cl2; (d) m-CPBA, CH2Cl2; (e) Pd/C, H2, MeOH, HCl; (f) HCl, EtOH, Δ; (g) RX, K2CO3, acetonitrile, Δ.

Pharmacology

In vitro studies demonstrate pridopidine exerts its effects by functional antagonism of D2 receptors. However, pridopidine possesses a number of characteristics[1][2][6][7] that differentiate it from traditional D2 receptor antagonists (agents that block receptor responses).

  • Lower affinity for D2 receptors than traditional D2 ligands[8]
  • Preferential binding to activated D2 (D2high) receptors (i.e. dopamine-bound D2 receptors)[8]
  • Rapid dissociation (fast ‘off-rate’) from D2 receptors
  • D2 receptor antagonism that is surmountable by dopamine
  • Rapid recovery of D2-receptor-mediated responses after washout[1][2][6][7]

Pridopidine is less likely to produce extrapyramidal symptoms, such as akinesia (inability to initiate movement) and akathisia (inability to remain motionless), than dopamine antagonists (such as antipsychotics).[9] Furthermore, pridopidine displays no detectable intrinsic activity,[9][10] differentiating it from D2 receptor agonists and partial agonists (agents that stimulate receptor responses). Pridopidine, therefore, differs from D2 receptor antagonists, agonists and partial agonists.[6]

As a dopaminergic stabilizer, pridopidine can be considered to be a dual-acting agent, displaying functional antagonism of subcortical dopaminergic transmission and strengthening of cortical glutamate transmission.

Clinical development

The MermaiHD study

In 2009, NeuroSearch completed the largest European HD trial to date, the Multinational EuRopean Multicentre ACR16 study In Huntington’s Disease (MermaiHD) study.

This six-month, phase 3, randomized, double-blind, placebo-controlled trial recruited patients from Austria, Belgium, France, Germany, Italy, Portugal, Spain and the UK, and compared two different pridopidine dose regimens with placebo. Patients were randomly allocated to receive pridopidine (45 mg once daily or 45 mg twice daily) or placebo. During weeks 1–4, patients received once-daily treatment (as a morning dose). Thereafter, patients took two doses (one morning and one afternoon dose) until the end of the treatment period. The study had a target recruitment of 420 patients; recruitment was finalized in April 2009 with 437 patients enrolled.[14]

The purpose of the study was to assess the effects of pridopidine on a specific subset of HD motor symptoms defined in the modified motor score (mMS).[14] The mMS comprises 10 items relating to voluntary motor function from the Unified Huntington’s Disease Rating Scale Total Motor Score (UHDRS—TMS).[14] Other study endpoints included the UHDRS—TMS, submotor items, cognitive function, behaviour and symptoms of depression and anxiety.

After six months of treatment, patients who received pridopidine 45 mg twice daily showed significant improvements in motor function, as measured by the UHDRS-TMS, compared with placebo. For the mMS, which was the primary endpoint of the study, a strong trend in treatment effect was seen, although statistical significance was not reached. Pridopidine was also very well tolerated, had an adverse event profile similar to placebo and gave no indication of treatment-associated worsening of symptoms.[3]

The MermaiHD study – open-label extension

Patients who completed the six-month, randomized phase of the MermaiHD study could choose to enter the MermaiHD open-label extension study and receive pridopidine 45 mg twice daily for six months. In total, 357 patients were enrolled into the MermaiHD open-label extension study and of these, 305 patients completed the entire 12-month treatment period.[15]

The objective of this study was to evaluate the long-term safety and tolerability profile of pridopidine and to collect efficacy data after a 12-month treatment period to support the safety evaluation. Safety and tolerability assessments included the incidence and severity of adverse events, routine laboratory parameters, vital signs and electrocardiogram measurements.[15]

Results from the MermaiHD open-label extension study showed treatment with pridopidine for up to 12 months (up to 45 mg twice daily for the first six months; 45 mg twice daily for the last six months) was well tolerated and demonstrated a good safety profile.[3][15]

The HART study

In October 2010, NeuroSearch reported results from their three-month, phase 2b, randomized, double-blind, placebo-controlled study carried out in Canada and the USA – Huntington’s disease ACR16 Randomized Trial (HART). This study was conducted in 28 centres and enrolled a total of 227 patients, who were randomly allocated to receive pridopidine 10 mg, 22.5 mg or 45 mg twice daily) or placebo.[14][16] During weeks 1–4, patients received once-daily treatment (as a morning dose). Thereafter, patients took two treatment doses (one morning and one afternoon dose) until the end of the treatment period. Study endpoints were the same as those for the MermaiHD study.

Results from the HART study were consistent with findings from the larger MermaiHD study. After 12 weeks of treatment with pridopidine 45 mg twice daily, total motor function significantly improved, as measured by the UHDRS–TMS. The primary endpoint, improvement in the mMS, was not met.[16]

In both studies, the effects on the UHDRS–TMS and the mMS were driven by significant improvements in motor symptoms such as gait and balance, and hand movements, deemed by the authors to be “clinically relevant”. However, the magnitude of the improvements was small. Pridopdiine demonstrated a favourable tolerability and safety profile, including no observations of treatment-related disadvantages in terms of worsening of other disease signs or symptoms.[15][16]

Compassionate use programme and open-ended, open-label study

To meet requests from patients and healthcare professionals for continued treatment with pridopidine, NeuroSearch has established a compassionate use programme in Europe to ensure continued access to pridopidine for patients who have completed treatment in the MermaiHD open-label extension study. The programme is active in all of the eight European countries where the MermaiHD study was conducted.

NeuroSearch has initiated an open-ended, open-label clinical study in the USA and Canada, called the Open HART study. In this study, all patients who have completed treatment in the HART study are offered the chance to restart treatment with pridopidine until either marketing approval has been obtained in the countries in question, or the drug’s development is discontinued. The first patients were enrolled in March 2011.[3]

Regulatory agency advice

The results of the MermaiHD and HART trials were presented to the American and European regulatory agencies: the FDA in March 2011 and EMA in May, 2011. Both agencies indicated insufficient evidence had been produced to allow approval in human patients, and a further phase 3 trial would be required for approval.[4][5]

PATENT

WO 2001046145

Example 6: 4- (3 -Methanesulfonyl-phenyl ) – 1-propyl -piperidine
m.p. 200°C (HCl) MS m/z (relative intensity, 70 eV) 281 (M+, 5), 252 (bp) , 129 (20), 115 (20), 70 (25.

PAPER

Journal of Medicinal Chemistry (2010), 53(6), 2510-2520.

Synthesis and Evaluation of a Set of 4-Phenylpiperidines and 4-Phenylpiperazines as D2 Receptor Ligands and the Discovery of the Dopaminergic Stabilizer 4-[3-(Methylsulfonyl)phenyl]-1-propylpiperidine (Huntexil, Pridopidine, ACR16)

NeuroSearch Sweden AB, Arvid Wallgrens Backe 20, S-413 46 Göteborg, Sweden
J. Med. Chem., 2010, 53 (6), pp 2510–2520
DOI: 10.1021/jm901689v
*To whom correspondence should be addressed. Phone: +(46) 31 7727710. Fax: +(46) 31 7727701. E-mail: fredrik.pettersson@neurosearch.se.

Abstract

Abstract Image

Modification of the partial dopamine type 2 receptor (D2) agonist 3-(1-benzylpiperidin-4-yl)phenol (9a) generated a series of novel functional D2 antagonists with fast-off kinetic properties. A representative of this series, pridopidine (4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine; ACR16, 12b), bound competitively with low affinity to D2 in vitro, without displaying properties essential for interaction with D2 in the inactive state, thereby allowing receptors to rapidly regain responsiveness. In vivo, neurochemical effects of 12b were similar to those of D2 antagonists, and in a model of locomotor hyperactivity, 12b dose-dependently reduced activity. In contrast to classic D2 antagonists, 12b increased spontaneous locomotor activity in partly habituated animals. The “agonist-like” kinetic profile of 12b, combined with its lack of intrinsic activity, induces a functional state-dependent D2 antagonism that can vary with local, real-time dopamine concentration fluctuations around distinct receptor populations. These properties may contribute to its unique “dopaminergic stabilizer” characteristics, differentiating 12b from D2 antagonists and partial D2agonists.

4-[3-(Methylsulfonyl)phenyl]-1-propylpiperidine (12b)

Purification with flash chromatography using CH2Cl2/MeOH [1:1 (v/v)] as eluent afforded pure 12b (3.28 g, 79%).
MS m/z (relative intensity, 70 eV) 281 (M+, 5), 252 (bp), 129 (20), 115 (20), 70 (25).
1H NMR (300 MHz, CDCl3) δ ppm 0.96 (t, J = 7.3 Hz, 3 H), 1.53−1.64 (m, 2 H), 1.89 (dd, J = 9.6, 3.54 Hz, 4 H), 2.03−2.14 (m, 2 H), 2.31−2.41 (m, 2 H), 2.64 (ddd, J = 15.4, 5.7, 5.5 Hz, 1 H), 3.06−3.15 (m, 5 H), 7.51−7.58 (m, 2 H), 7.78−7.86 (m, 2 H).
13C NMR (75 MHz, CDCl3) δ ppm 11.98, 20.18, 33.29, 42.59, 44.43, 54.06, 60.93, 124.99, 125.74, 129.39, 132.04, 148.28.
The amine was converted to the HCl salt and recrystallized in EtOH/diethyl ether: mp 212−214 °C. Anal. (C15H24ClNO2S) C, H, N.

PATENT

WO-2017015609

Pridopidine (Huntexil®) is a unique compound developed for the treatment of patients with motor symptoms associated with Huntington’s disease. The chemical name of pridopidine is 4-(3-(Methylsulfonyl)phenyl)-l-propylpiperidine, and its Chemical Registry Number is CAS 346688-38-8 (CSED:7971505, 2016). The Chemical Registry number of pridopidine hydrochloride is 882737-42-0 (CSID:25948790 2016). Processes of synthesis of pridopidine and a pharmaceutically acceptable salt thereof are disclosed in U.S. Patent No. 7,923,459. U.S. Patent No. 6,903,120 claims pridopidine for the treatment of Parkinson’s disease, dyskinesias, dystonias, Tourette’s disease, iatrogenic and non-iatrogenic psychoses and hallucinoses, mood and anxiety disorders, sleep disorder, autism spectrum disorder, ADHD, Huntington’s disease, age-related cognitive impairment, and disorders related to alcohol abuse and narcotic substance abuse.

US Patent Application Publication Nos. 20140378508 and 20150202302, describe methods of treatment with high doses of pridopidine and modified release formulations of pridopidine, respectively.

EXAMPLES

Example 1: Pridopidine-HCl synthesis

An initial process for synthesizing pridopidine HC1 shown in Scheme 1 and is a modification of the process disclosed in US Patent No. 7,923,459.

The synthesis of Compound 9 started with the halogen-lithium exchange of 3-bromothioanisole (3BTA) in THF employing n-hexyllithium (HexLi) in hexane as the lithium source. Li-thioanisole (3LTA) intermediate thus formed was coupled with 1 -propyl-4-piperidone (1P4P) forming a Li-Compound 9. These two reactions require low (cryogenic) temperature. The quenching of Li-Compound 9 was done in water HCl/MTBE resulting in precipitation of Compound 9-HCl salt. A cryogenic batch mode process for this step was developed and optimized. The 3BTA and THF were cooled to less than -70°C. A solution of HexLi in n-hexane (33%) was added at a temperature below -70°C and the reaction is stirred for more than 1 hour. An in-process control sample was taken and analyzed for completion of halogen exchange, l-propyl-4-piperidone (1P4P) was then added to the reaction at about -70°C letting the reaction mixture to reach -40°C and further stirred at this temperature for about 1 hour. An in-process sample was analyzed to monitor the conversion according to the acceptance criteria (Compound 9 not less than 83% purity). The reaction mixture was added to a mixture of 5N hydrochloric acid (HC1) and methyl teri-butyl ether (MTBE). The resulting precipitate was filtered and washed with MTBE to give the hydrochloric salt of Compound 9 (Compound 9-HCl) wet.

Batch mode technique for step 1 requires an expensive and high energy-consuming cryogenic system that cools the reactor with a methanol heat exchange, in which the methanol is circulated in counter current liquid nitrogen. This process also brings about additional problems originated from the workup procedure. The work-up starts when the reaction mixture is added into a mixture of MTBE and aqueous HC1. This gives three phases: (1) an organic phase that contains the organic solvents MTBE, THF and hexane along with other organic related materials such as thioanisole (TA), hexyl-bromide,

3-hexylthioanisole and other organic side reaction impurities (2) an aqueous phase containing inorganic salts (LiOH and LiBr), and (3) a solid phase which is mostly Compound 9-HCl but also remainders of 1P4P as an HC1 salt.

The isolation of Compound 9-HCl from the three phase work-up mixture is by filtration followed by MTBE washings. A major problem with this work-up is the difficulty of the filtration which resulted in a long filtration and washing operations. The time it takes to complete a centrifugation and washing cycle is by far beyond the normal duration of such a manufacturing operation. The second problem is the inevitable low and non-reproducible assay (purity of -90% on dry basis) of Compound 9-HCl due to the residues of the other two phases. It should be noted that a high assay is important in the next step in order to control the amount of reagents. The third problem is the existence of THF in the wet Compound 9-HCl salt which is responsible for the Compound 3 impurity that is discussed below.

Example 6.2: Pridopidine crude – work-up development

After the reduction, pridopidine HC1 is precipitated by adding HC1/IPA to the solution of pridopidine free base in ΓΡΑ in the process of Example 1. Prior to that, a solvent swap from toluene to ΓΡΑ is completed by 3 consecutive vacuum distillations. The amount of toluene in the ΓΡΑ solution affects the yield and it was set to be not more than 3% (IPC by GC method). The spontaneous precipitation produces fine crystals with wide PSD. In order to narrow the PSD, Example 1 accomplishes HC1/IPA addition in two cycles with cooling/warming profile.

The updated process is advantageous for crystallizing pridopidine free base over the procedure in Example 1 for two reasons.

First, it simplifies the work-up of the crude because the swap from toluene to PA is not required. The pridopidine free base is crystallized from toluene/n-heptanes system. Only one vacuum distillation of toluene is needed (compared to three in the work-up of Example 1) to remove water and to increase yield.

Second, in order to control pridopidine-HCl physical properties. Pridopidine free base is a much better starting material for the final crystallization step compared to the pridopidine HC1 salt because it is easily dissolved in ΓΡΑ which enables a mild absolute (0.2μ) filtration required in the final step of API manufacturing.

Crystallization of pridopidine free base in toluene/n-heptane system

First, crystallization of pridopidine free base in toluene/n-heptane mixture was tested in order to find the right ratio to maximize the yield. In order to obtain pridopidine free base, pridopidine-HCl in water/toluene system was basified with NaOH(aq) to pH>12. Two more water washes of the toluene phase brought the pH of the aqueous phase to <10. Addition of n-heptane into the toluene solution

resulted in pridopidine free base precipitation. Table 21 shows data from the toluene/n-heptane crystallization experiments.

Example 7: Development of the procedure for the purification of Compound 1 in pridopidine free base.

The present example describes lowering Compound 1 levels in pridopidine free base. This procedure involves dissolving pridopidine FB in 5 Vol of toluene at 20-30°C, 5 Vol of water are added and after the mixing phases are separated and the organic phase is washed three times with 5 Vol water. The toluene mixture is then distilled up to 2.5 Vol in the reactor and 4 Vol of heptane are added for crystallization. Experiment No. 2501 was completed using this procedure. Table 24 summarizes the results.

Example 8: Step 4 in Scheme 2: Pridopidine Hydrochloride process

This example discusses the step used to formulate pridopidine-HCl from pridopidine crude. The corresponding stage in Example 1 was part of the last (third) stage in which pridopidine-HCl was obtained directly from Compound 8 without isolation of pridopidine crude. In order to better control pridopidine-HCl physical properties, it is preferable to start with well-defined pridopidine free base which enables control on the exact amount of HC1 and IPA.

Pridopidine-HCl preparation – present procedure

Pridopidine-HCl was prepared according to the following procedure: Solid pridopidine crude was charged into the first reactor followed by 8 Vol of IPA (not more than (NMT) 0.8% water by KF) and the mixture is heated to Tr =40-45°C (dissolution at Tr = 25-28°C). The mixture was then filtered through a 0.2 μιη filter and transferred into the second (crystallizing) reactor. The first hot reactor was washed with 3.8 Vol of IPA. The wash was transferred through the filter to the second reactor. The temperature was raised to 65-67°C and 1.1 eq of IPA/HCl are added to the mixture (1.1 eq of HC1, from IPA/HCl 5N solution, 0.78 v/w). The addition of EPA HCl into the free base is exothermic; therefore, it was performed slowly, and the temperature maintained at Tr = 60-67°C. After the addition, the mixture was stirred for 15 min and pH is measured (pH<4). If pH adjustment is needed,

0.2 eq of HCl (from IPA/HC1 5 N solution) is optional. At the end of the addition, the mixture was stirred for 1 hour at Tr = 66°C to start sedimentation. If sedimentation does not start, seeding with 0.07% pridopidine hydrochloride crystals is optional at this temperature. Breeding of the crystals was performed by stirring for 2.5 h at Tr =64-67°C. The addition HCl line was washed with 0.4 Vol of ΓΡΑ to give~13 Vol solution. The mixture was cooled to Tr =0°C The solid is filtered and washed with cooled 4.6 Vol ΓΡΑ at LT 5°C. Drying as performed under vacuum (P< ) at 30-60°C to constant weight: Dried pridopidine-HCl was obtained as a white solid.

Purification of Compound 4 during pridopidine-HCl process

A relationship between high temperature in the reduction reaction and high levels of Compound 4 impurity have been observed. A reduction in 50°C leads to 0.25% of Compound 4. For that reason the process of Example 1 limits the reduction reaction temperature to 30±5°C since this is the final step and Compound 4 level should be not more than 0.15%. The present process has another crystallization stage by which Compound 4 can be purified.

PATENT

https://www.google.ch/patents/US20130150406

Pridopidine, i.e. 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine, is a drug substance currently in clinical development for the treatment of Huntington’s disease. The hydrochloride salt of 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine and a method for its synthesis is described in WO 01/46145. In WO 2006/040155 an alternative method for the synthesis of 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine is described. In WO 2008/127188 N-oxide and/or di-N-oxide derivatives of certain dopamine receptor stabilizers/modulators are reported, including the 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine-1-oxide.

1H NMR PREDICTIONS

ACTUAL VALUES

1H NMR (300 MHz, CDCl3) δ ppm 0.96 (t, J = 7.3 Hz, 3 H), 1.53−1.64 (m, 2 H), 1.89 (dd, J = 9.6, 3.54 Hz, 4 H), 2.03−2.14 (m, 2 H), 2.31−2.41 (m, 2 H), 2.64 (ddd, J = 15.4, 5.7, 5.5 Hz, 1 H), 3.06−3.15 (m, 5 H), 7.51−7.58 (m, 2 H), 7.78−7.86 (m, 2 H).
 
13C NMR (75 MHz, CDCl3) δ ppm 11.98, 20.18, 33.29, 42.59, 44.43, 54.06, 60.93, 124.99, 125.74, 129.39, 132.04, 148.28.

13C NMR PREDICTIONS

References

  1.  Seeman P, Tokita K, Matsumoto M, Matsuo A, Sasamata M, Miyata K (October 2009). “The dopaminergic stabilizer ASP2314/ACR16 selectively interacts with D2(High) receptors”. Synapse. 63 (10): 930–4. doi:10.1002/syn.20663. PMID 19588469.
  2.  Rung JP, Rung E, Helgeson L, et al. (June 2008). “Effects of (-)-OSU6162 and ACR16 on motor activity in rats, indicating a unique mechanism of dopaminergic stabilization”. Journal of Neural Transmission. 115 (6): 899–908. doi:10.1007/s00702-008-0038-3. PMID 18351286.
  3. “NeuroSearch A/S announces the results of additional assessment and analysis of data from the Phase III MermaiHD study with Huntexil® in Huntington’s disease” (Press release). NeuroSearch. 28 April 2010. Retrieved 2010-04-28.
  4. “NeuroSearch press releases (dated 23.03.2011 and 24.05.2011)”. NeuroSearch “Huntexil update: EMA asks for further trial”. HDBuzz. Retrieved 11 December 2011.
  5.  Ponten, H.; Kullingsjö, J.; Lagerkvist, S.; Martin, P.; Pettersson, F.; Sonesson, C.; Waters, S.; Waters, N. (2003-11-19) [2000-12-22]. “In vivo pharmacology of the dopaminergic stabilizer pridopidine”. European Journal of Pharmacology. 644 (1-3) (1–3): 88–95. doi:10.1016/j.ejphar.2010.07.023. PMID 20667452.
  6. Dyhring T, Nielsen E, Sonesson C, et al. (February 2010). “The dopaminergic stabilizers pridopidine (ACR16) and (-)-OSU6162 display dopamine D(2) receptor antagonism and fast receptor dissociation properties”. European Journal of Pharmacology. 628 (1–3): 19–26. doi:10.1016/j.ejphar.2009.11.025. PMID 19919834.
  7.  Pettersson, F; Pontén, H; Waters N; Waters S; Sonesson C (March 2010). “Synthesis and Evaluation of a Set of 4-Phenylpiperidines and 4-Phenylpiperazines as D2 Receptor Ligands and the Discovery of the Dopaminergic Stabilizer 4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (Pridopidine; ACR16)”. Journal of Medicinal Chemistry. 53 (6): 2510–2520. doi:10.1021/jm901689v. PMID 20155917.
  8.  Natesan S, Svensson KA, Reckless GE, et al. (August 2006). “The dopamine stabilizers (S)-(-)-(3-methanesulfonyl-phenyl)-1-propyl-piperidine [(-)-OSU6162] and 4-(3-methanesulfonylphenyl)-1-propyl-piperidine (ACR16) show high in vivo D2 receptor occupancy, antipsychotic-like efficacy, and low potential for motor side effects in the rat”. The Journal of Pharmacology and Experimental Therapeutics. 318 (2): 810–8. doi:10.1124/jpet.106.102905. PMID 16648369.
  9.  Tadori Y, Forbes RA, McQuade RD, Kikuchi T (November 2008). “Characterization of aripiprazole partial agonist activity at human dopamine D3 receptors”. European Journal of Pharmacology. 597 (1–3): 27–33. doi:10.1016/j.ejphar.2008.09.008. PMID 18831971.
  10.  Rung JP, Carlsson A, Markinhuhta KR, Carlsson ML (June 2005). “The dopaminergic stabilizers (-)-OSU6162 and ACR16 reverse (+)-MK-801-induced social withdrawal in rats”. Progress in Neuro-psychopharmacology & Biological Psychiatry. 29 (5): 833–9. doi:10.1016/j.pnpbp.2005.03.003. PMID 15913873.
  11.  Nilsson M, Carlsson A, Markinhuhta KR, et al. (July 2004). “The dopaminergic stabiliser ACR16 counteracts the behavioural primitivization induced by the NMDA receptor antagonist MK-801 in mice: implications for cognition”. Progress in Neuro-psychopharmacology & Biological Psychiatry. 28 (4): 677–85. doi:10.1016/j.pnpbp.2004.05.004. PMID 15276693.
  12. Pettersson F, Waters N, Waters ES, Carlsson A, Sonesson C (November 7, 2002). The development of a new class of dopamine stabilizers. Society for Neuroscience Annual Conference. Orlando, FL.
  13.  Tedroff, J.; Krogh, P. Lindskov; Buusman, A.; Rembratt, Å. (2010). “Poster 20: Pridopidine (ACR16) in Huntington’s Disease: An Update on the MermaiHD and HART Studies”. Neurotherapeutics. 7: 144. doi:10.1016/j.nurt.2009.10.004.
  14.  “NeuroSearch announces results from an open-label safety extension to the Phase III MermaiHD study of Huntexil® in patients with Huntington’s disease” (Press release). NeuroSearch. 15 September 2010. Retrieved 2010-09-15.
  15.  “The HART study with Huntexil® shows significant effect on total motor function in patients with Huntington’s disease although it did not meet the primary endpoint after 12 weeks of treatment” (Press release). NeuroSearch. 14 October 2010. Retrieved 2010-10-14.

REFERENCES CITED:

U.S. Patent No. 6,903,120

U.S. Patent No. 7,923,459

U.S. Publication No. US-2013-0267552-A1

CSED:25948790, http://w .chemspider.com/Chernical-Stmcture.25948790.

CSID:7971505, http://ww.chemspider.com/Chermcal-Stmcture.7971505.html

Ebenezer et al, Tetrahedron Letters 55 (2014) 5323-5326.

REFERENCES

1: Squitieri F, de Yebenes JG. Profile of pridopidine and its potential in the treatment of Huntington disease: the evidence to date. Drug Des Devel Ther. 2015 Oct 28;9:5827-33. doi: 10.2147/DDDT.S65738. eCollection 2015. PubMed PMID: 26604684; PubMed Central PMCID: PMC4629959.

2: Rabinovich-Guilatt L, Siegler KE, Schultz A, Halabi A, Rembratt A, Spiegelstein O. The effect of mild and moderate renal impairment on the pharmacokinetics of pridopidine, a new drug for Huntington’s disease. Br J Clin Pharmacol. 2016 Feb;81(2):246-55. doi: 10.1111/bcp.12792. Epub 2015 Nov 25. PubMed PMID: 26407011.

3: Shannon KM, Fraint A. Therapeutic advances in Huntington’s Disease. Mov Disord. 2015 Sep 15;30(11):1539-46. doi: 10.1002/mds.26331. Epub 2015 Jul 30. Review. PubMed PMID: 26226924.

4: Sahlholm K, Sijbesma JW, Maas B, Kwizera C, Marcellino D, Ramakrishnan NK, Dierckx RA, Elsinga PH, van Waarde A. Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active doses. Psychopharmacology (Berl). 2015 Sep;232(18):3443-53. doi: 10.1007/s00213-015-3997-8. Epub 2015 Jul 11. PubMed PMID: 26159455; PubMed Central PMCID: PMC4537502.

5: Squitieri F, Di Pardo A, Favellato M, Amico E, Maglione V, Frati L. Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. J Cell Mol Med. 2015 Nov;19(11):2540-8. doi: 10.1111/jcmm.12604. Epub 2015 Jun 22. PubMed PMID: 26094900; PubMed Central PMCID: PMC4627560.

6: Waters S, Ponten H, Klamer D, Waters N. Co-administration of the Dopaminergic Stabilizer Pridopidine and Tetrabenazine in Rats. J Huntingtons Dis. 2014;3(3):285-98. doi: 10.3233/JHD-140108. PubMed PMID: 25300332.

7: Waters S, Ponten H, Edling M, Svanberg B, Klamer D, Waters N. The dopaminergic stabilizers pridopidine and ordopidine enhance cortico-striatal Arc gene expression. J Neural Transm (Vienna). 2014 Nov;121(11):1337-47. doi: 10.1007/s00702-014-1231-1. Epub 2014 May 11. PubMed PMID: 24817271.

8: Reilmann R. The pridopidine paradox in Huntington’s disease. Mov Disord. 2013 Sep;28(10):1321-4. doi: 10.1002/mds.25559. Epub 2013 Jul 11. PubMed PMID: 23847099.

9: Gronier B, Waters S, Ponten H. The dopaminergic stabilizer pridopidine increases neuronal activity of pyramidal neurons in the prefrontal cortex. J Neural Transm (Vienna). 2013 Sep;120(9):1281-94. doi: 10.1007/s00702-013-1002-4. Epub 2013 Mar 7. PubMed PMID: 23468085.

10: Huntington Study Group HART Investigators. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord. 2013 Sep;28(10):1407-15. doi: 10.1002/mds.25362. Epub 2013 Feb 28. PubMed PMID: 23450660.

11: Squitieri F, Landwehrmeyer B, Reilmann R, Rosser A, de Yebenes JG, Prang A, Ivkovic J, Bright J, Rembratt A. One-year safety and tolerability profile of pridopidine in patients with Huntington disease. Neurology. 2013 Mar 19;80(12):1086-94. doi: 10.1212/WNL.0b013e3182886965. Epub 2013 Feb 27. PubMed PMID: 23446684.

12: Ponten H, Kullingsjö J, Sonesson C, Waters S, Waters N, Tedroff J. The dopaminergic stabilizer pridopidine decreases expression of L-DOPA-induced locomotor sensitisation in the rat unilateral 6-OHDA model. Eur J Pharmacol. 2013 Jan 5;698(1-3):278-85. doi: 10.1016/j.ejphar.2012.10.039. Epub 2012 Nov 2. PubMed PMID: 23127496.

13: Lindskov Krog P, Osterberg O, Gundorf Drewes P, Rembratt Å, Schultz A, Timmer W. Pharmacokinetic and tolerability profile of pridopidine in healthy-volunteer poor and extensive CYP2D6 metabolizers, following single and multiple dosing. Eur J Drug Metab Pharmacokinet. 2013 Mar;38(1):43-51. doi: 10.1007/s13318-012-0100-2. Epub 2012 Sep 5. PubMed PMID: 22948856.

14: Ruiz C, Casarejos MJ, Rubio I, Gines S, Puigdellivol M, Alberch J, Mena MA, de Yebenes JG. The dopaminergic stabilizer, (-)-OSU6162, rescues striatal neurons with normal and expanded polyglutamine chains in huntingtin protein from exposure to free radicals and mitochondrial toxins. Brain Res. 2012 Jun 12;1459:100-12. doi: 10.1016/j.brainres.2012.04.021. Epub 2012 Apr 21. PubMed PMID: 22560595.

15: Helldén A, Panagiotidis G, Johansson P, Waters N, Waters S, Tedroff J, Bertilsson L. The dopaminergic stabilizer pridopidine is to a major extent N-depropylated by CYP2D6 in humans. Eur J Clin Pharmacol. 2012 Sep;68(9):1281-6. doi: 10.1007/s00228-012-1248-z. Epub 2012 Mar 8. PubMed PMID: 22399238.

16: Sahlholm K, Århem P, Fuxe K, Marcellino D. The dopamine stabilizers ACR16 and (-)-OSU6162 display nanomolar affinities at the σ-1 receptor. Mol Psychiatry. 2013 Jan;18(1):12-4. doi: 10.1038/mp.2012.3. Epub 2012 Feb 21. PubMed PMID: 22349783.

17: Neurodegenerative disease: Pridopidine for Huntington disease falls short of primary efficacy end point in phase III trial. Nat Rev Neurol. 2011 Dec 26;8(1):4. doi: 10.1038/nrneurol.2011.208. PubMed PMID: 22198402.

18: de Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, Saft C, Magnet MK, Sword A, Rembratt A, Tedroff J; MermaiHD study investigators. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2011 Dec;10(12):1049-57. doi: 10.1016/S1474-4422(11)70233-2. Epub 2011 Nov 7. PubMed PMID: 22071279.

19: Feigin A. Pridopidine in treatment of Huntington’s disease: beyond chorea? Lancet Neurol. 2011 Dec;10(12):1036-7. doi: 10.1016/S1474-4422(11)70247-2. Epub 2011 Nov 7. PubMed PMID: 22071278.

20: Esmaeilzadeh M, Kullingsjö J, Ullman H, Varrone A, Tedroff J. Regional cerebral glucose metabolism after pridopidine (ACR16) treatment in patients with Huntington disease. Clin Neuropharmacol. 2011 May-Jun;34(3):95-100. doi: 10.1097/WNF.0b013e31821c31d8. PubMed PMID: 21586914.

US6903120 Dec 22, 2000 Jun 7, 2005 A. Carlsson Research Ab Modulators of dopamine neurotransmission
US7417043 Dec 21, 2004 Aug 26, 2008 Neurosearch Sweden Ab Modulators of dopamine neurotransmission
US7923459 Apr 10, 2007 Apr 12, 2011 Nsab, Filial Af Neurosearch Sweden Ab, Sverige Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-N-propyl-piperidine
US20070238879 * Apr 10, 2007 Oct 11, 2007 Gauthier Donald R Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-n-propyl-piperidine
US20100105736 Apr 14, 2008 Apr 29, 2010 Nsab, Filial Af Neurosearch Sweden Ab, Sverige N-oxide and/or di-n-oxide derivatives of dopamine receptor stabilizers/modulators displaying improved cardiovascular side-effects profiles
US20130150406 Dec 7, 2012 Jun 13, 2013 IVAX International GmbH Hydrobromide salt of pridopidine
US20130197031 Aug 31, 2011 Aug 1, 2013 IVAX International GmbH Deuterated analogs of pridopidine useful as dopaminergic stabilizers
US20130267552 Apr 3, 2013 Oct 10, 2013 IVAX International GmbH Pharmaceutical compositions for combination therapy
US20140088140 Sep 27, 2013 Mar 27, 2014 Teva Pharmaceutical Industries, Ltd. Combination of laquinimod and pridopidine for treating neurodegenerative disorders, in particular huntington’s disease
US20140088145 Sep 27, 2013 Mar 27, 2014 Teva Pharmaceutical Industries, Ltd. Combination of rasagiline and pridopidine for treating neurodegenerative disorders, in particular huntington’s disease
CN101056854A Oct 13, 2005 Oct 17, 2007 神经研究瑞典公司 Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-N-propyl-piperidine
WO2001046145A1 Dec 22, 2000 Jun 28, 2001 A. Carlsson Research Ab New modulators of dopamine neurotransmission
WO2006040155A1 Oct 13, 2005 Apr 20, 2006 Neurosearch Sweden Ab Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-n-propyl-piperidine
US9006445 6. Sept. 2012 14. Apr. 2015 IVAX International GmbH Polymorphic form of pridopidine hydrochloride
US9139525 11. Apr. 2008 22. Sept. 2015 Teva Pharmaceuticals International Gmbh N-oxide and/or di-N-oxide derivatives of dopamine receptor stabilizers/modulators displaying improved cardiovascular side-effects profiles
US20100105736 * 14. Apr. 2008 29. Apr. 2010 Nsab, Filial Af Neurosearch Sweden Ab, Sverige N-oxide and/or di-n-oxide derivatives of dopamine receptor stabilizers/modulators displaying improved cardiovascular side-effects profiles
US20160176821 * 18. Dez. 2015 23. Juni 2016 Teva Pharmaceuticals International Gmbh L-tartrate salt of pridopidine
USRE46117 22. Dez. 2000 23. Aug. 2016 Teva Pharmaceuticals International Gmbh Modulators of dopamine neurotransmission
WO2014205229A1 * 19. Juni 2014 24. Dez. 2014 IVAX International GmbH Use of high dose pridopidine for treating huntington’s disease
WO2015112601A1 * 21. Jan. 2015 30. Juli 2015 IVAX International GmbH Modified release formulations of pridopidine
WO2016106142A1 * 18. Dez. 2015 30. Juni 2016 Teva Pharmaceuticals International Gmbh L-tartrate salt of pridopidine
Pridopidine
Pridopidine.svg
Names
IUPAC name

4-(3-(Methylsulfonyl)phenyl)-1-propylpiperidine
Identifiers
346688-38-8 Yes
3D model (Jmol) Interactive image
ChemSpider 7971505 
KEGG D09953 
PubChem 9795739
UNII HD4TW8S2VK Yes
Properties
C15H23NO2S
Molar mass 281.41 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

/////////pridopidine, PHASE 3, TEVA, 346688-38-8, orphan drug designation, Neurosearch, ACR16, Huntexil, ASP 2314, FR 310826, UNII-HD4TW8S2VK

CCCN1CCC(CC1)c2cccc(c2)S(C)(=O)=O

OXIDE

Example 5 – Preparation Of Compound 5 (4-(3-(methylsulfonyl)phenyl)-l-propylpiperidine 1-oxide)

Pridopidine (50.0g, 178mmol, leq) was dissolved in methanol (250mL) and 33% hydrogen peroxide (20mL, 213mmol, 1.2eq). The reaction mixture was heated and kept at 40°C for 20h. The reaction mixture was then concentrated in a rotavapor to give 71g light-yellow oil. Water (400mL) was added and the suspension was extracted with isopropyl acetate (150mL) which after separation contains unreacted pridopidine while water phase contains 91% area of Compound 5 (HPLC). The product was then washed with dichloromethane (400mL) after adjusting the water phase pH to 9 by sodium hydroxide. After phase separation the water phase was washed again with dichloromethane (200mL) to give 100% area of Compound 5 in the water phase (HPLC). The product was then extracted from the water phase into butanol (lx400mL, 3x200ml) and the butanol phases were combined and concentrated in a rotavapor to give 80g yellow oil (HPLC: 100% area of Compound 5). The oil was washed with water (150mL) to remove salts and the water was extracted with butanol. The organic phases were combined and concentrated in a rotavapor to give 43g of white solid which was suspended in MTBE for lhr, filtered and dried to give 33g solid that was melted when standing on air. After high vacuum drying (2mbar, 60°C, 2.5h) 32.23g pure Compound 5 were obtained (HPLC: 99.5% area, 1H-NMR assay: 97.4%).

NMR Identity Analysis of Compound 5

Compound 5:

The following data in Tables 10 and 11 was determined using a sample of 63.06 mg Compound 5, a solvent of 1.2 ml DMSO-D6, 99.9 atom%D, and the instrument was a Bruker Avance ΙΠ 400 MHz.

Table 10: Assignment of ¾ NMRa,c

a The assignment is based on the coupling pattern of the signals, coupling constants and chemical shifts.

b Weak signal.

c Spectra is calibrated by the solvent residual peak (2.5 ppm).

Table 11: Assignment of 13C NMRa,b

a The assignment is based on the chemical shifts and 1H-13C couplings extracted from HSQC and HMBC experiments.

b Spectra is calibrated by a solvent peak (39.54 ppm)

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016003919&recNum=5&docAn=US2015038349&queryString=EN_ALL:nmr%20AND%20PA:(teva%20pharmaceutical)&maxRec=677#H3

PATENT

http://www.google.bg/patents/WO2013086425A1?cl=en&hl=bg

Preparation of pridopidine HBr

In order to prepare 33 g of pridopidine HBr, 28.5 g of free base was dissolved in 150 ml 99% ethanol at room temperature. 1 .5 equivalents of hydrobromic acid 48% were added. Precipitation occurred spontaneously, and the suspension was left in refrigerator for 2.5 hours. Then the crystals were filtered, followed by washing with 99% ethanol and ether. The crystals were dried over night under vacuum at 40°C: m.p. 196°C. The results of a CHN analysis are presented in Table 2, below.

NMR 1 H NMR (DMSO-d6): 0.93 ( 3H, t), 1 .68-1 .80 ( 2H, m), 1 .99-2.10 ( 4H, m) 2.97-3.14 (5H, m), 3.24 ( 3H, s), 3.57-3.65 ( 2H, d), 7.60-7.68 (2H, m), 7.78-7.86 ( 2H, m) and 9.41 ppm (1 H, bs).

%d bloggers like this: