Home » Posts tagged 'Icaritin'
Tag Archives: Icaritin
SEARCH THIS BLOG

Blog Stats
- 3,944,419 hits
Pages
- About me
- All about drugs
- Bioavailability
- CLINICAL TRIALS
- Combinatorial Chemistry in Drug Design
- DISCLAIMER
- Drug Basics
- DRUG COMPANIES
- DRUG DESIGN
- DRUG DISCOVERY
- Drug Information
- DRUG NEWS
- DRUG PORTALS
- Drug resistance
- DRUG SITES
- DRUG SYNTHESIS
- DRUGS NDA
- DRUGS, FDA2012
- FDA -US
- GMP
- HEALTH CANADA
- HELP ME/ ACCOLADES
- HSA SINGAPORE
- INDA
- KOREA DRUG APPROVAL PROCESS
- MHLW JAPAN, 厚生労働省
- NMPA CHINA
- PATENT EXPIRY DATES 1/3
- PATENT EXPIRY DATES 2/3
- PATENT EXPIRY DATES 3/3
- Patent portals
- Polymorphism
- Regulations and Guidance
- Scientificupdate (UK) on a roll
- sFDA CHINA
- SOUTH AFRICA, MCC
- SPECIAL DRUGS
- Traditional Medicine
- WHAT IS A DRUG
- World drug tracker
Archives
- June 2022 (7)
- May 2022 (5)
- April 2022 (7)
- March 2022 (7)
- February 2022 (12)
- January 2022 (15)
- December 2021 (26)
- November 2021 (17)
- October 2021 (21)
- September 2021 (21)
- August 2021 (19)
- July 2021 (13)
- June 2021 (30)
- May 2021 (7)
- April 2021 (9)
- March 2021 (25)
- February 2021 (10)
- January 2021 (17)
- December 2020 (21)
- November 2020 (5)
- October 2020 (5)
- September 2020 (12)
- August 2020 (3)
- July 2020 (5)
- June 2020 (1)
- May 2020 (1)
- April 2020 (1)
- March 2020 (19)
- February 2020 (9)
- January 2020 (12)
- December 2019 (4)
- November 2019 (4)
- October 2019 (11)
- September 2019 (8)
- August 2019 (14)
- July 2019 (23)
- June 2019 (15)
- May 2019 (16)
- April 2019 (21)
- March 2019 (14)
- February 2019 (7)
- January 2019 (17)
- December 2018 (7)
- November 2018 (14)
- October 2018 (12)
- September 2018 (18)
- August 2018 (22)
- July 2018 (15)
- June 2018 (38)
- May 2018 (14)
- April 2018 (19)
- March 2018 (25)
- February 2018 (15)
- January 2018 (17)
- December 2017 (20)
- November 2017 (15)
- October 2017 (19)
- September 2017 (8)
- August 2017 (13)
- July 2017 (11)
- June 2017 (6)
- May 2017 (10)
- April 2017 (23)
- March 2017 (18)
- February 2017 (17)
- January 2017 (15)
- December 2016 (19)
- November 2016 (31)
- October 2016 (38)
- September 2016 (33)
- August 2016 (40)
- July 2016 (53)
- June 2016 (50)
- May 2016 (50)
- April 2016 (70)
- March 2016 (45)
- February 2016 (49)
- January 2016 (42)
- December 2015 (37)
- November 2015 (37)
- October 2015 (49)
- September 2015 (35)
- August 2015 (29)
- July 2015 (25)
- June 2015 (28)
- May 2015 (21)
- April 2015 (41)
- March 2015 (51)
- February 2015 (23)
- January 2015 (33)
- December 2014 (46)
- November 2014 (31)
- October 2014 (38)
- September 2014 (74)
- August 2014 (86)
- July 2014 (101)
- June 2014 (170)
- May 2014 (98)
- April 2014 (113)
- March 2014 (80)
- February 2014 (63)
- January 2014 (70)
- December 2013 (100)
- November 2013 (91)
- October 2013 (102)
- September 2013 (104)
- August 2013 (114)
- July 2013 (129)
- June 2013 (131)
- May 2013 (155)
- April 2013 (109)
- March 2013 (105)
- February 2013 (81)
Categories
- 0rphan drug status (207)
- 2020 APPROVALS (48)
- accelerated approval (1)
- Acute Hepatic Porphyria (1)
- Acute myeloid leukaemia (1)
- African medicine (6)
- AIDS (7)
- Alzheimer's (3)
- ANAESTHETIC (1)
- anaesthetics (4)
- analgesic (2)
- ANALYTICAL (1)
- ANDA (5)
- Anthony crasto (38)
- ANTI ACNE (2)
- ANTI DIABETES (1)
- ANTI FUNGAL (6)
- ANTI INFLAMATORY (2)
- anti tubeculosis (1)
- antibacterial (9)
- Antibiotics (5)
- ANTIBODIES (54)
- ANTICONVULSANT (1)
- Antiemetic (2)
- antiglaucoma (1)
- Antihypertensives (2)
- antiinfluenza (2)
- antimalarials (12)
- Antineoplastic (6)
- antiobesity (1)
- Antispasmodic (1)
- ANTITUSSIVE (1)
- Antiulcerative (1)
- Antivirals (5)
- APPROVALS 2021 (82)
- APPROVALS 2022 (26)
- ARAB MEDICINE (5)
- Atopic dermatitis (1)
- Australia (1)
- AUSTRALIA 2021 (1)
- AWARD (11)
- AYURVEDA (78)
- Biosimilar drugs (39)
- BLA (4)
- BLOGS (26)
- Breakthrough Therapy Designation (67)
- canada (4)
- CANADA 2021 (1)
- cancer (154)
- cfda (6)
- CHINA 2011 (1)
- CHINA 2012 (1)
- CHINA 2018 (1)
- china 2019 (1)
- china pipeline (36)
- CHINESE HERBS (24)
- chronic kidney disease (1)
- CLINICAL TRIALS (10)
- COMPANIES (81)
- conference (5)
- Contrast agent (7)
- CORONAVIRUS (47)
- COVID-19 (45)
- CRL (1)
- CYSTIC FIBRIOSIS (1)
- Dengue (2)
- DIABETES (50)
- DNDi (1)
- Drug discovery (22)
- DRUG MARKETING (5)
- DRUG REVIEW (8)
- Duchenne muscular dystrophy (1)
- EMA (4)
- EU 2003 (1)
- EU 2005 (1)
- EU 2014 (5)
- EU 2015 (6)
- EU 2016 (4)
- EU 2017 (8)
- EU 2018 (5)
- EU 2020 (5)
- EU 2021 (11)
- EU 2022 (1)
- EU PIPELINE (61)
- EU SUBMISSION (32)
- EXTENDED USE (1)
- FAST TRACK FDA (74)
- FDA 15 (4)
- FDA 2010 (2)
- FDA 2011 (1)
- FDA 2012 (7)
- FDA 2013 (6)
- FDA 2014 (53)
- FDA 2015 (39)
- FDA 2016 (23)
- FDA 2017 (58)
- FDA 2018 (53)
- FDA 2019 (44)
- FDA 2020 (34)
- fda 2021 (45)
- FDA 2022 (13)
- Featured product (1)
- female sexual dysfunction (1)
- FIBROMYGALIA (1)
- flow synthesis (14)
- FORMULATION (14)
- GAIN (1)
- Gastric Proton Pump Inhibitor (1)
- Generating Antibiotic Incentives Now (1)
- GENERIC DRUG (106)
- GENERICS (22)
- glenmark (18)
- GLENMARK (16)
- GLIPTIN (1)
- GMP (10)
- gout (1)
- Greek medicine (3)
- hepatitis C viral infections (1)
- Herbals (8)
- HOMEOPATHY (3)
- HORMONE (1)
- Human medicines European Public Assessment Report EPAR (2)
- Hypertension (1)
- hypnotic (1)
- idiopathic pulmonary fibrosis (3)
- IMPLANTS (2)
- IND (1)
- IND 2017 (2)
- IND 2018 (3)
- IND 2021 (8)
- IND Filed (2)
- INDIA 2020 (5)
- INDIA 2022 (1)
- Insomnia (1)
- Investigational device exemption (IDE) approval (2)
- JAPAN 2009 (1)
- JAPAN 2013 (1)
- JAPAN 2014 (1)
- JAPAN 2015 (2)
- JAPAN 2016 (1)
- japan 2017 (6)
- JAPAN 2018 (10)
- japan 2019 (8)
- japan 2020 (10)
- JAPAN 2021 (11)
- JAPAN 2022 (10)
- Japan marketing (34)
- Japan pipeline (38)
- Korea (3)
- korea 2012 (2)
- korea 2016 (1)
- korea 2019 (1)
- Lactams (1)
- MAA (3)
- Macrolides (2)
- Malaria (17)
- MANUFACTURING (8)
- Market info (3)
- Marketing authorisation application EU (4)
- MEDICAL DEVICE (9)
- MIGRAINE (1)
- molybdenum cofactor deficiency (1)
- Monoclonal antibody (88)
- Nanotechnology (5)
- NCE (2)
- NDA (52)
- NDA JAPAN (3)
- neuropathic pain (1)
- Neutraceuticals (1)
- New Drug Application Resubmission FDA (5)
- NEW DRUGS (76)
- New drugs canada (5)
- New drugs china (6)
- New drugs EU (10)
- New drugs Japan (2)
- NEW USE DRUGS (1)
- Newzealand (2)
- NICE (2)
- non-Hodgkin's lymphoma (1)
- NUCLEOTIDES (1)
- obesity (3)
- OCCULAR (2)
- ocular hypertension (1)
- organic chemistry (12)
- osteoarthritis (2)
- PAIN (1)
- Parkinson's disease (1)
- PATENT (93)
- PATENTS (82)
- Peptide drugs (53)
- PFIZER (1)
- PHASE 1 (84)
- PHASE 3 (11)
- PHASE1 (140)
- Phase2 drugs (266)
- Phase3 drugs (301)
- plaque psoriasis (1)
- POLYMORPH (10)
- Preclinical china (14)
- Preclinical drugs (121)
- Premture ejaculation (3)
- prime designation (1)
- Priority review (88)
- PROCESS (39)
- Promising clips (9)
- Psoriasis (1)
- QbD (2)
- QIDP (23)
- radio labelled (3)
- RADIOACTIVE AGENT (3)
- RADIOLABELLED (8)
- Rare disease (3)
- RARE PEDIATRIC DISEASE REVIEW (1)
- Regenerative medicine (4)
- Regulatory (74)
- Resubmission FDA (2)
- REVIEW (10)
- rheumatoid arthritis (3)
- SCHLEROSING AGENT (2)
- Scottish Medicines Consortium (1)
- sex arousal (2)
- SFDA FAST TRACK (2)
- SINGAPORE (4)
- sNDA (12)
- sNDA JAPAN (2)
- Solid tumours (2)
- spectroscopy (16)
- SPOTLIGHT (53)
- Stem cells (3)
- SYNTHESIS (10)
- TIVE (1)
- TOXINS (1)
- Translational medicine (2)
- Transverse myletis (2)
- Tropical Disease Priority Review Voucher (1)
- UK (1)
- UNANI MEDICINE (2)
- Uncategorized (2,117)
- US HERBS (7)
- USFDA SUBMISSION (1)
- vaccine (26)
- veterinary (6)
- virus (1)
- VITAMINS (3)
- x ray contrast agent (1)
Recent Posts
- Darinaparsin June 28, 2022
- Pimitespib June 26, 2022
- VP1-001 June 20, 2022
- Vutrisiran sodium, ALN 65492, Votrisiran June 17, 2022
- DIFLUPREDNATE June 13, 2022
- COBITOLIMOD June 8, 2022
- Dr. D Srinivasa Reddy appointed Director CSIR-IICT Hyderabad India on 7th June 2022. A new assignment June 8, 2022
- ARIMOCLOMOL May 30, 2022
- IMIPRIDONE May 20, 2022
- Tirzepatide May 18, 2022
- CLOSANTEL May 12, 2022
- MONENSIN May 6, 2022
- SIBUTRAMINE April 27, 2022
- Olipudase alfa April 22, 2022
- Andexanet alfa April 20, 2022
ORGANIC SPECTROSCOPY

SUBSCRIBE

Enter your email address:
Delivered by FeedBurner
Subscribe to New Drug Approvals by EmailDR ANTHONY MELVIN CRASTO Ph.D
DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with GLENMARK LIFE SCIENCES LTD, Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 30 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, Dr T.V. Radhakrishnan and Dr B. K. Kulkarni, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 30 PLUS year tenure till date June 2021, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 9 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 90 Lakh plus views on dozen plus blogs, 233 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 33 lakh plus views on New Drug Approvals Blog in 233 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc
Personal Links
- my sites on the net
- DR ANTHONY MELVIN CRASTO
- GOOGLE GROUP ORGANIC PROCESS DEVELOPMENT
- mixxt
- epernicus
- scipeople
- jimdo
- yolasite
- my cv
- slidestaxx
- wordpress blog
- ABOUT ME
- BRANDSITE
- SKILLPAGES
- Academia.edu
- DIIGO
- WIX
- WIX BLOG
- ISSUU
- SCRIBD
- BIZ
- GOOGLE BLOG
- APNACIRCLE
- Eurekamoments in Organic Chemistry
- Organic Chemistry by Dr Anthony
- Green Chemistry International
- Technology Transfer
- Stereochemistry
- Spectroscopy
- Polymorphism
- Reactions in Org Chem
- DR ANTHONY MELVIN CRASTO Ph.D
- Pharmaceuticals
- Medicinal chemistry
- Organic chemistry literature
- Patent related site
- Green chemistry
- Reagents
- R & D
- Molecules
- Heterocyclic chem
- Sourcing
- NEW DRUG APPROVALS
- WORLD DRUG TRACKER
- Green Chemistry International
- drug regulatory affairs international
- ORGANIC SPECTROSCOPY INTERNATIONAL
- ORGANIC SYNTHESIS INTERNATIONAL
- ALL ABOUT DRUGS
- ORGANIC CHEMISTRY INTERNATIONAL
- GOOGLE PLUS
- Drug Scaleup and Manufacturing International
- MEDICINAL CHEMISTRY INTERNATIONAL
- DRUG SYNTHESIS INTERNATIONAL
- SLIDESHARE
- DRUGS WEB
- GOOGLE SCHOLAR
- MEDCHEM-amcrasto
- ONE ORGANIC CHEMISTONE DAY
- DRUG PATENTS INTERNATIONAL
- MEDCHEM ANTHONY CRASTO
- MEDCHEM anthony crasto
- Gravatar
- ZING ME VIETNAM
- RESEARCH GATE
- AWARDS
Verified Services
Pages
- About me
- All about drugs
- Bioavailability
- CLINICAL TRIALS
- Combinatorial Chemistry in Drug Design
- DISCLAIMER
- Drug Basics
- DRUG COMPANIES
- DRUG DESIGN
- DRUG DISCOVERY
- Drug Information
- DRUG NEWS
- DRUG PORTALS
- Drug resistance
- DRUG SITES
- DRUG SYNTHESIS
- DRUGS NDA
- DRUGS, FDA2012
- FDA -US
- GMP
- HEALTH CANADA
- HELP ME/ ACCOLADES
- HSA SINGAPORE
- INDA
- KOREA DRUG APPROVAL PROCESS
- MHLW JAPAN, 厚生労働省
- NMPA CHINA
- PATENT EXPIRY DATES 1/3
- PATENT EXPIRY DATES 2/3
- PATENT EXPIRY DATES 3/3
- Patent portals
- Polymorphism
- Regulations and Guidance
- Scientificupdate (UK) on a roll
- sFDA CHINA
- SOUTH AFRICA, MCC
- SPECIAL DRUGS
- Traditional Medicine
- WHAT IS A DRUG
- World drug tracker
Archives
- June 2022 (7)
- May 2022 (5)
- April 2022 (7)
- March 2022 (7)
- February 2022 (12)
- January 2022 (15)
- December 2021 (26)
- November 2021 (17)
- October 2021 (21)
- September 2021 (21)
- August 2021 (19)
- July 2021 (13)
- June 2021 (30)
- May 2021 (7)
- April 2021 (9)
- March 2021 (25)
- February 2021 (10)
- January 2021 (17)
- December 2020 (21)
- November 2020 (5)
- October 2020 (5)
- September 2020 (12)
- August 2020 (3)
- July 2020 (5)
- June 2020 (1)
- May 2020 (1)
- April 2020 (1)
- March 2020 (19)
- February 2020 (9)
- January 2020 (12)
- December 2019 (4)
- November 2019 (4)
- October 2019 (11)
- September 2019 (8)
- August 2019 (14)
- July 2019 (23)
- June 2019 (15)
- May 2019 (16)
- April 2019 (21)
- March 2019 (14)
- February 2019 (7)
- January 2019 (17)
- December 2018 (7)
- November 2018 (14)
- October 2018 (12)
- September 2018 (18)
- August 2018 (22)
- July 2018 (15)
- June 2018 (38)
- May 2018 (14)
- April 2018 (19)
- March 2018 (25)
- February 2018 (15)
- January 2018 (17)
- December 2017 (20)
- November 2017 (15)
- October 2017 (19)
- September 2017 (8)
- August 2017 (13)
- July 2017 (11)
- June 2017 (6)
- May 2017 (10)
- April 2017 (23)
- March 2017 (18)
- February 2017 (17)
- January 2017 (15)
- December 2016 (19)
- November 2016 (31)
- October 2016 (38)
- September 2016 (33)
- August 2016 (40)
- July 2016 (53)
- June 2016 (50)
- May 2016 (50)
- April 2016 (70)
- March 2016 (45)
- February 2016 (49)
- January 2016 (42)
- December 2015 (37)
- November 2015 (37)
- October 2015 (49)
- September 2015 (35)
- August 2015 (29)
- July 2015 (25)
- June 2015 (28)
- May 2015 (21)
- April 2015 (41)
- March 2015 (51)
- February 2015 (23)
- January 2015 (33)
- December 2014 (46)
- November 2014 (31)
- October 2014 (38)
- September 2014 (74)
- August 2014 (86)
- July 2014 (101)
- June 2014 (170)
- May 2014 (98)
- April 2014 (113)
- March 2014 (80)
- February 2014 (63)
- January 2014 (70)
- December 2013 (100)
- November 2013 (91)
- October 2013 (102)
- September 2013 (104)
- August 2013 (114)
- July 2013 (129)
- June 2013 (131)
- May 2013 (155)
- April 2013 (109)
- March 2013 (105)
- February 2013 (81)
Categories
- 0rphan drug status (207)
- 2020 APPROVALS (48)
- accelerated approval (1)
- Acute Hepatic Porphyria (1)
- Acute myeloid leukaemia (1)
- African medicine (6)
- AIDS (7)
- Alzheimer's (3)
- ANAESTHETIC (1)
- anaesthetics (4)
- analgesic (2)
- ANALYTICAL (1)
- ANDA (5)
- Anthony crasto (38)
- ANTI ACNE (2)
- ANTI DIABETES (1)
- ANTI FUNGAL (6)
- ANTI INFLAMATORY (2)
- anti tubeculosis (1)
- antibacterial (9)
- Antibiotics (5)
- ANTIBODIES (54)
- ANTICONVULSANT (1)
- Antiemetic (2)
- antiglaucoma (1)
- Antihypertensives (2)
- antiinfluenza (2)
- antimalarials (12)
- Antineoplastic (6)
- antiobesity (1)
- Antispasmodic (1)
- ANTITUSSIVE (1)
- Antiulcerative (1)
- Antivirals (5)
- APPROVALS 2021 (82)
- APPROVALS 2022 (26)
- ARAB MEDICINE (5)
- Atopic dermatitis (1)
- Australia (1)
- AUSTRALIA 2021 (1)
- AWARD (11)
- AYURVEDA (78)
- Biosimilar drugs (39)
- BLA (4)
- BLOGS (26)
- Breakthrough Therapy Designation (67)
- canada (4)
- CANADA 2021 (1)
- cancer (154)
- cfda (6)
- CHINA 2011 (1)
- CHINA 2012 (1)
- CHINA 2018 (1)
- china 2019 (1)
- china pipeline (36)
- CHINESE HERBS (24)
- chronic kidney disease (1)
- CLINICAL TRIALS (10)
- COMPANIES (81)
- conference (5)
- Contrast agent (7)
- CORONAVIRUS (47)
- COVID-19 (45)
- CRL (1)
- CYSTIC FIBRIOSIS (1)
- Dengue (2)
- DIABETES (50)
- DNDi (1)
- Drug discovery (22)
- DRUG MARKETING (5)
- DRUG REVIEW (8)
- Duchenne muscular dystrophy (1)
- EMA (4)
- EU 2003 (1)
- EU 2005 (1)
- EU 2014 (5)
- EU 2015 (6)
- EU 2016 (4)
- EU 2017 (8)
- EU 2018 (5)
- EU 2020 (5)
- EU 2021 (11)
- EU 2022 (1)
- EU PIPELINE (61)
- EU SUBMISSION (32)
- EXTENDED USE (1)
- FAST TRACK FDA (74)
- FDA 15 (4)
- FDA 2010 (2)
- FDA 2011 (1)
- FDA 2012 (7)
- FDA 2013 (6)
- FDA 2014 (53)
- FDA 2015 (39)
- FDA 2016 (23)
- FDA 2017 (58)
- FDA 2018 (53)
- FDA 2019 (44)
- FDA 2020 (34)
- fda 2021 (45)
- FDA 2022 (13)
- Featured product (1)
- female sexual dysfunction (1)
- FIBROMYGALIA (1)
- flow synthesis (14)
- FORMULATION (14)
- GAIN (1)
- Gastric Proton Pump Inhibitor (1)
- Generating Antibiotic Incentives Now (1)
- GENERIC DRUG (106)
- GENERICS (22)
- glenmark (18)
- GLENMARK (16)
- GLIPTIN (1)
- GMP (10)
- gout (1)
- Greek medicine (3)
- hepatitis C viral infections (1)
- Herbals (8)
- HOMEOPATHY (3)
- HORMONE (1)
- Human medicines European Public Assessment Report EPAR (2)
- Hypertension (1)
- hypnotic (1)
- idiopathic pulmonary fibrosis (3)
- IMPLANTS (2)
- IND (1)
- IND 2017 (2)
- IND 2018 (3)
- IND 2021 (8)
- IND Filed (2)
- INDIA 2020 (5)
- INDIA 2022 (1)
- Insomnia (1)
- Investigational device exemption (IDE) approval (2)
- JAPAN 2009 (1)
- JAPAN 2013 (1)
- JAPAN 2014 (1)
- JAPAN 2015 (2)
- JAPAN 2016 (1)
- japan 2017 (6)
- JAPAN 2018 (10)
- japan 2019 (8)
- japan 2020 (10)
- JAPAN 2021 (11)
- JAPAN 2022 (10)
- Japan marketing (34)
- Japan pipeline (38)
- Korea (3)
- korea 2012 (2)
- korea 2016 (1)
- korea 2019 (1)
- Lactams (1)
- MAA (3)
- Macrolides (2)
- Malaria (17)
- MANUFACTURING (8)
- Market info (3)
- Marketing authorisation application EU (4)
- MEDICAL DEVICE (9)
- MIGRAINE (1)
- molybdenum cofactor deficiency (1)
- Monoclonal antibody (88)
- Nanotechnology (5)
- NCE (2)
- NDA (52)
- NDA JAPAN (3)
- neuropathic pain (1)
- Neutraceuticals (1)
- New Drug Application Resubmission FDA (5)
- NEW DRUGS (76)
- New drugs canada (5)
- New drugs china (6)
- New drugs EU (10)
- New drugs Japan (2)
- NEW USE DRUGS (1)
- Newzealand (2)
- NICE (2)
- non-Hodgkin's lymphoma (1)
- NUCLEOTIDES (1)
- obesity (3)
- OCCULAR (2)
- ocular hypertension (1)
- organic chemistry (12)
- osteoarthritis (2)
- PAIN (1)
- Parkinson's disease (1)
- PATENT (93)
- PATENTS (82)
- Peptide drugs (53)
- PFIZER (1)
- PHASE 1 (84)
- PHASE 3 (11)
- PHASE1 (140)
- Phase2 drugs (266)
- Phase3 drugs (301)
- plaque psoriasis (1)
- POLYMORPH (10)
- Preclinical china (14)
- Preclinical drugs (121)
- Premture ejaculation (3)
- prime designation (1)
- Priority review (88)
- PROCESS (39)
- Promising clips (9)
- Psoriasis (1)
- QbD (2)
- QIDP (23)
- radio labelled (3)
- RADIOACTIVE AGENT (3)
- RADIOLABELLED (8)
- Rare disease (3)
- RARE PEDIATRIC DISEASE REVIEW (1)
- Regenerative medicine (4)
- Regulatory (74)
- Resubmission FDA (2)
- REVIEW (10)
- rheumatoid arthritis (3)
- SCHLEROSING AGENT (2)
- Scottish Medicines Consortium (1)
- sex arousal (2)
- SFDA FAST TRACK (2)
- SINGAPORE (4)
- sNDA (12)
- sNDA JAPAN (2)
- Solid tumours (2)
- spectroscopy (16)
- SPOTLIGHT (53)
- Stem cells (3)
- SYNTHESIS (10)
- TIVE (1)
- TOXINS (1)
- Translational medicine (2)
- Transverse myletis (2)
- Tropical Disease Priority Review Voucher (1)
- UK (1)
- UNANI MEDICINE (2)
- Uncategorized (2,117)
- US HERBS (7)
- USFDA SUBMISSION (1)
- vaccine (26)
- veterinary (6)
- virus (1)
- VITAMINS (3)
- x ray contrast agent (1)
Recent Comments
DR ANTHONY MELVIN CR… on ARIMOCLOMOL | |
DR ANTHONY MELVIN CR… on LANSOPRAZOLE | |
DR ANTHONY MELVIN CR… on Molnupiravir, EIDD 2801 | |
shivkr2 on JBI-802 BY JUBILANT | |
DR ANTHONY MELVIN CR… on MAX 40279 |
SEARCH THIS BLOG
Beijing Shenogen Granted Fast Track Status for Novel Cancer Drug, Icaritin
September 21, 2015 3:14 am / Leave a comment
Icaritin; 118525-40-9; AC1NSXIV; UNII-UFE666UELY;
3,5,7-trihydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-enyl)chromen-4-one
3,5,7-trihydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-enyl)chromen-4-one
C21H20O6 | |
Molecular Weight: | 368.3799 g/mol |
---|
The roots of Epimedium brevicornu Maxim
Beijing Shenogen Granted Fast Track Status for Novel Cancer Drug
Written by Richard Daverman, PhD, Executive Editor, Greg B. Scott.
Beijing Shenogen Biomedical announced that Icaritin, a China Class I cancer drug, was granted Fast Track Review status after the company filed its New Drug Approval submission to the Beijing Food & Drug Administration. Icaritin is an oral traditional Chinese medicine, derived from barrenwort, which targets the estrogen receptor α36. Shenogen has conducted clinical trials of Icaritin in patients with liver cancer, though it expects the drug will also prove effective in breast cancer and other estrogen-related cancers as well. More details…. http://www.chinabiotoday.com/articles/20150917
Antiproliferative agent (IC50 values are 8,13 and 18 μM for K562, CML-CP and CML-BC cells respectively). Inhibits H/R-induced PTK activation. Induces G(2)/M cell cycle arrest and mitochondrial transmembrane potential drop. Modulates MAPK/ERK/JNK and JAK2/STAT3 /AKT signaling. Inhibits PPAR-g. Modulates differentiation. Inhibits cytochrome P450 in vivo. Orally active.
Cardiovascular function improvement, hormone regulation and antitumor activity.
2. The anti-MM activity of Icaritin was mainly mediated by inhibiting IL-6/JAK2/STAT3 signaling.
3. The inhibitory activity of Icariside II on pre-osteoclast RAW264.7 growth was synergized by Icaritin, which maybe contribute to the efficiency of Herba Epimedii extract on curing bone-related diseases, such as osteoporosis.
4. The Icaritin at low concentration (4 or 8 μmol/L) can promote rat chondrocyte proliferation and inhibit cell apoptosis, while the effect of Icaritin on rat chondrocyte at high concentration was reversed.
5. Icaritin might be a new potent inhibitor by inducing S phase arrest and apoptosis in human lung carcinoma A549 cells.
6. Icaritin dose-dependently inhibits ENKL cell proliferation and induces apoptosis and cell cycle arrest at G2/M phase. Additionally, Icaritin upregulates Bax, downregulates Bcl-2 and pBad, and activates caspase-3 and caspase-9.
What is Epimedium ?
Herba epimedii (Epimedium, also called bishop’s hat, horny goat weed or yin yang huo), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. It is a genus of about 60 flowering herbs, cultivated as a ground cover plant and an aphrodisiac. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Most of them bloom in the early spring, and the leaves of some species change colors in the fall, while other species retain their leaves year round.
Figure 1 Epimedium
Epimedium Raw Material
The herbs we used to extract icariin is one species of Epimedium, which name is Epimedium brevicornum Maxim. This kind of epimedium only can be abundantly found in Gansu province of China. And because of the growth habit of this kind of herb, which only grows under trees, it can’t to be planted, only can harvest the wild one.
This wild epimedium contains quite a bit of active components, depending on its long growth time and rich nutrient. Usually the content of the icariin is not lower than 1%.
Below photo is the herb specimen which we use. Picking in the epimedium full-bloom stage. And the medicinal value of the herb is the best at this time. The herb we select contains roots, stems, leaves and flowers. And we extract with the whole herb.
Figure 2 Epimedium for extract
Epimedium Extract
Epimedium extract is a herbal supplement claimed to be beneficial for the treatment of sexual problems such as impotence. It is believed to contain a number of active components, including plant compounds that may have antioxidant activity and estrogen-like compounds. The major components of Epimedium brevicornum are icariin, epimedium B and epimedium C. It is reported to have anti-inflammatory, anti-proliferative, and anti-tumor effects. It is also reported to have potential effects on the management of erectile dysfunction.
Figure 3 HPLC spectrum of icariin
Our specification available is Icariin HPLC 50%- 98%. Below please see the the information for reference:
Figure 4 Epimedium Extract(Icariin)
Derivatives
The plant extracts of epimedium traditionally used for male impotence, and the individual compounds is icariin, were screened against phosphodiesterase-5A1 (PDE5A1) activity. Human recombinant PDE5A1 was used as the enzyme source. The E. brevicornum extract and its active principle icariin were active. To improve its inhibitory activity, some derivatives ware subjected to various structural modifications, which include icaritin, icariside II and 3,7-bis(2-hydroxyethyl) icaritin. There have some scientific papers report that the improved pharmacodynamic profile and lack of cytotoxicity on human fibroblasts make such compounds a promising candidate for further development. We hope that our new products can help you to find more commercial opportunity.
In this way, we can introduce those products as below, and we can also provide more details about the products according to your demand. The 1H-NMR of icaritin and 3,7-bis(2-hydroxyethyl) icaritin is as below.
Product Name | Specification | CAS No. |
Icariin | HPLC 50%-98% | 489-32-7 |
icaritin | HPLC 98% | 118525-40-9 |
icariside II | HPLC 98% | 113558-15-9 |
3,7-bis(2-hydroxyethyl) icaritin | HPLC 98% | 1067198-74-6 |
Figure 4 1H-NMR of icaritin and 3,7-bis(2-hydroxyethyl) icaritin
Main Function of Epimedium Extract
horny goat weed; epimedium; Icariin; penis medicine;epimedium p.e;epimedium brevicornum; shorthorned epimedium herb; Icariins; Icaritin; 3,7-Bis(2-Hydroxyethyl)Icaritin; icariin 60%; icariin 98%; epimedium graepimedium; icarisides II;epimedium sagittatum;epimedium leaf; barrenwort.powder extract
Epimedium has been used to treat male erectile dysfunction in Traditional Chinese Medicine for many centuries. The main functions of Epimedium brevicornum in ancient Chinese books focused on the nourishment of kidney viscera and reinforcement of ‘yang’, resulting in the restoration of erectile function in males.
Epimedium contains chemicals which might help increase blood flow and improve sexual function. It also contains phytoestrogens, chemicals that act somewhat like the female hormone estrogen that might reduce bone loss in postmenopausal women.
Figure 5 some products from epimedium extract
………..
PAPER
The novel total synthesis of icaritin (1), naturally occurring with important bioactive 8-prenylflavonoid, was performed via a reaction sequence of 8 steps including Baker-Venkataraman reaction, chemoselective benzyl or methoxymethyl protection, dimethyldioxirane (DMDO) oxidation, O-prenylation, Claisen rearrangement and deprotection, starting from 2,4,6-trihydroxyacetophenone and 4-hydroxybenzoic acid in overall yields of 23%. The key step was Claisen rearrangement under microwave irradiation. MS, 1H and 13C NMR techniques have been used to confirm the structures of all synthetic compounds. – See more at: http://www.eurekaselect.com/124334/article
…….
PAPER
Synthesis of icariin from kaempferol through regioselective methylation and para-Claisen–Cope rearrangement
2Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
3College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, China…http://www.beilstein-journals.org/bjoc/single/articleFullText.htm?publicId=1860-5397-11-135
The present invention relates to compositions comprising icariside I, and to a novel, one step method of preparing such compositions, comprising converting specific prenylated flavonol glycosides such as epimedium A, epimedium B, epimedium C, icariin, and their corresponding acetate derivatives contained in an Epimedium plant extract to a single compound, namely icariside I shown below as compound I, which was surprisingly discovered to be a strong PDE-5 inhibitor.
This invention further comprises compositions enriched for anhydroicaritin, and to methods of preparing such compositions. One method of this invention for preparing compositions enriched for anhydroicaritin comprises a one-step method of converting prenylated flavonol glycosides, specifically the sagittatoside compounds A, B, and C, and the corresponding acetate derivatives, present in Epimedium plant extracts to a single compound, namely anhydroicaritin shown below as compound II, which was also discovered to be a strong PDE-5 inhibitor.
EXAMPLES Example 1 Acid Hydrolysis of a 50% EtOH Extract and Purification by Reversed Phase ChromatographyWhole Epimedium grandiflorum leaves were extracted with a 1:1 mixture of ethanol and water at 55° C. The resulting extract (referred to as a “50% EtOH extract”) was filtered and the filtrate concentrated at 40-50° C. under vacuum and then dried under vacuum at 60° C. to a dry solid. The dried extract (131 g) containing approximately 5.8 g of total PFG’s was placed in a 2 liter round bottom flask and 1 L of 90% ethanol was added. The mixture was heated to reflux to help dissolve the solids. Concentrated sulfuric acid (28 mL) was added. The mixture refluxed for 2 hr, cooled to room temperature, and 900 mL of water added with stirring. Next the mixture was filtered using vacuum to remove insoluble sulfate salts and other solids and loaded on a 2.5×56 cm (275 mL) column packed with 250-600 micron divinylbenzene cross-linked polystyrene resin (Mitsubishi Chemical). The column was washed with 2 column volumes (CVs) of 60% ethanol and the icariside I was eluted with 2 CVs of 95% ethanol. The product pool was air-dried producing 11.3 g of brown solids. HPLC analysis (FIG. 5) showed that the solids contained 18% icariside I (peak 15.27 min) and 12% anhydroicaritin (peak 25.15 min). The recovery of the icariside I in the product pool was 87% of the amount present in the hydrolyzate.
Example 2 Purification of a Hydrolyzate by Liquid/liquid ExtractionThe ethanolic hydrolyzate (25 mL) prepared in Example 1 was mixed with 62.5 mL of de-ionized water and the pH was adjusted to 7.0 using 50% (w/w) sodium hydroxide solution. The resulting mixture was extracted with three 25 mL portions of ethyl acetate and the combined ethyl acetate extracts were back extracted with 150 mL of water. The ethyl acetate layers were combined, dried, and assayed for icariside I. HPLC analysis (FIG. 6) showed that the dried EtOAc fractions contained 22% icariside I (peak 15.29 min) and 11% anhydroicaritin (peak 25.27 min), and icariside I recovery into the ethyl acetate was 97% of the amount present in the hydrolyzate. The partition coefficient for icariside I between ethyl acetate and water was found to be 16, indicating that the icariside I has a high affinity for ethyl acetate over water.
Example 3 Acid Hydrolysis of a 50% EtOH Extract and Purification by PrecipitationThe dried extract (204 g) described in Example 1 was mixed with 1 L of 90% EtOH and then heated to reflux to help dissolve the solids. Sulfuric acid (25 ML) was added slowly with swirling. The mixture was refluxed 90 minutes and immediately chilled to stop the reaction. After cooling to room temperature, the mixture was filtered under reduced pressure through cellulose paper to remove insoluble sulfates and other materials, and the cake was washed with about 350 mL of 90% ethanol. The resulting ethanolic hydrolyzate (1.34 L) contained 4.1 g of icariside I.
The ethanolic hydrolyzate prepared above (1.32 L) was placed in a 10 L container and 40 g of 50% (w/w) sodium hydroxide solution was added followed by 20 mL of phosphoric acid. Next 3.3 L of deionized water was added with stirring. The pH of this mixture was 2.4. Sodium hydroxide solution (50% w/w ) was added until the pH was 8.25. The mixture was heated to 65° C. to assist with the coagulation of the precipitate. The mixture was cooled to room temperature and stirred for 0.5 hr at room temperature before filtering through a cellulose filter using vacuum. The resulting brown solids were washed with 715 mL of 10% ethanol and dried either under vacuum at room temperature or in air at 55° C. to yield brown solids. HPLC analysis (FIG. 7) showed the solids contained 20% icariside I (peak 15.27 min) and 10% anhydroicaritin. Recovery of icariside I using this precipitation procedure was 94% of the amount present in the hydrolyzate.
Example 4 Acid Hydrolysis of a Water Extract and Purification by PrecipitationGround Epimedium grandiflorum leaves (0.40 kg) were mixed with 5 L water in a 10 L round bottom flask. The flask was placed on a rotary evaporator for two hours at a rotation speed of 120 rpm and a water bath temperature of 90° C. The extract was filtered under reduced pressure through cellulose paper. The resulting filtrate (3.2 L) was evaporated using the rotary evaporator to a volume of 100 mL and dried under vacuum at 50° C.
The dark brown solids prepared above (40.4 g) were mixed with 200 mL of 90% ethanol and 6.0 mL of sulfuric acid in a 500 mL round bottom flask. The mixture was refluxed for 90 minutes and immediately chilled to stop the reaction. This mixture was filtered under reduced pressure through cellulose paper to remove insoluble sulfates and other materials. The cake was washed with 15 mL of 90% ethanol. The resulting ethanolic hydrolyzate (215 mL) contained 0.53 g of icariside I.
The hydrolyzate prepared above (50 mL) was transferred to a 250 mL beaker and 2.5 mL of 50% (w/w) sodium hydroxide solution was added with stirring to adjust the pH of the solution to pH 9, followed by 1.5 mL of concentrated phosphoric acid. Deionized water (125 mL) was added, and the mixture was adjusted to pH 8.2 using 1.5 mL of 50% sodium hydroxide solution. The mixture was heated to 65° C. to assist with coagulation of the precipitate and cooled to room temperature. The mixture was allowed to sit undisturbed at room temperature for 30 minutes prior to filtration under reduced pressure through cellulose paper. The resulting olive-green solids were washed with 25 mL of de-ionized water and dried under vacuum at room temperature or in air at 80° C. to produce olive-green solids. HPLC analysis (FIG. 8) showed the solids contained 60% icariside I (peak 15.33 min) and 2.4% anhydroicaritin (peak 25.40 min). Recovery of icariside I using this precipitation procedure was 92% of the amount present in the hydrolyzate.
Example 5 Enzymatic Hydrolysis of Icariside Ia) The substrate was a partially purified icariside I product with 20% icariside I and 11% anhydroicaritin. About 50 mg was dissolved in 10 mL of ethanol, and water or buffer was added until the mixture became cloudy (about 20% ethanol). The following dry enzymes were added to separate samples: α-amylase, α-glucosidase, β-amylase, β-glucosidase, hesperidinase, lactase, and pectinase. The samples were incubated overnight at 40 ° C. and analyzed by HPLC. The results were only semi-quantitative due to the difficulty in dissolving the anhydroicaritin that precipitated from the samples. However, several of the chromatograms did show a definite reduction in icariside I and increase in the ratio of anhydroicaritin to icariside I. The best results were obtained using hesperidinase, lactase, β-glucosidase and pectinase.
A larger scale experiment was done using hesperidinase in order to isolate pure anhydroicaritin for characterization. Pure icariside I (20 mg )was dissolved in 10 mL of ethanol and 50 mL of water and 200 mg of hesperidinase enzyme was added and the mixture was incubated for 24 hr at 40 ° C. Crude anhydroicaritin was collected via filtration and purified on a 2.5×30 cm semi-prep C-18 HPLC column using a gradient of 50:50 (MeCN/H2O) to 80:20 (MeCN/H2O) in 20 min. The pure anhydroicaritin was analyzed by LC/MS and proton NMR.
b) Enzymatic Hydrolysis of PFG’s: The purified PFG solids (55.3%, purified by reversed-phase chromatography of a 50% EtOH extract) were subjected to enzymatic hydrolysis with the same enzymes and conditions described in part (a). Hesperidinase, lactase, β-glucosidase and pectinase appeared to convert the mixture of PFG’s to a mixture of sagittatosides, but no icariside I or anhydroicaritin were observed. This indicated that these enzymes were specific for the 7-β-glucosyl group and did not hydrolyze the 3-position sugar(s).
Example 6 Preparation of a High Anhydroicaritin-containing ProductA high sagittatosides Epimedium sagittatum extract containing 24.7% total sagittatosides (assayed as icariin) and 8.1% icariin and other expected prenylated flavonol glycosides was obtained from China. A 50 g portion of this extract was mixed with 250 mL of 90% ethanol and 7.5 mL of concentrated sulfuric acid in a 500 mL round bottom flask. The mixture was refluxed for 90 minutes, then allowed to cool to room temperature. The hydrolyzed mixture was filtered under reduced pressure through cellulose paper to remove insoluble sulfates and other materials. The cake was washed with approximately 20 mL of 90% ethanol. The resulting filtered ethanolic hydrolyzate (305 mL) contained 3.75 g of anhydroicaritin and 2.50 g of icariside I.
The filtered hydrolyzate prepared above (200 mL) was transferred to a 1000 mL container and 8.0 mL of 50% (w/w) sodium hydroxide solution was added with stirring, followed by 4.0 mL of phosphoric acid. De-ionized water (500 mL) was then added. This mixture was adjusted to pH 4.9 using 50% sodium hydroxide solution. The mixture was allowed to sit undisturbed at room temperature for 24 hours prior to decanting off the liquid. The resulting solids were macerated using de-ionized water and filtered under reduced pressure through cellulose paper. The resulting dark brown solids (11.9 g) were washed with de-ionized water and dried in air overnight. The dark brown solids contained 20% anhydroicaritin and 12% icariside I and an anhydroicaritin/icariside I ratio of 1.66. The recovery of anhydroicaritin in the precipitation procedure was 94% from the hydrolyzate.
Example 7 Recrystallization of Icariside IIcariside 1 (30 mg) obtained by a method described in Example 1 was dissolved in a minimum of hot tetrahydrofuran (THF). Hot methanol (approximately 10 mL) was then added. The hot THF/MeOH solution was filtered through a PTFE filter into a vial and allowed to evaporate at room temperature to about 5 mL, whereupon crystals began to form, and then placed in a 4° C. refrigerator for 24 hours. The crystals were filtered and washed with cold methanol and dried in a vacuum. Icariside I (21 mg) was isolated as yellow crystals and had a chromatographic purity of 97.4%.
Example 8 Large Scale Acid Hydrolysis of an Epimedium extractAn 800 g portion of an Epimedium sagittatum powder extract obtained from China containing about 13% total prenylflavonol glycosides as icariin was mixed with 4.0 L of 90% ethanol and 120 mL of sulfuric acid in a 10 L round bottom flask. The mixture was refluxed for 90 minutes and immediately chilled to stop the reaction. This mixture was filtered under reduced pressure through cellulose paper to remove insoluble sulfates and other materials. The cake was washed with approximately 200 mL of 90% ethanol. The resulting ethanolic hydrolyzate (4.0 L) contained 33.7 g of icariside I.
The ethanolic hydrolyzate prepared above was transferred to a 34 L container and 200 mL of 50% (w/w) sodium hydroxide solution was added with stirring, followed by 120 mL of phosphoric acid. De-ionized water (10 L) was then added. This mixture was adjusted to pH 8.2 using 120 mL of 50% sodium hydroxide solution. The mixture was stirred for 10 minutes and allowed to sit undisturbed at room temperature for 60 minutes prior to filtration under reduced pressure through cellulose paper. The resulting olive-green solids were washed with 750 mL of de-ionized water and dried under vacuum at 50° C. or in air at 80° C. The olive-green solids contained 44.6% icariside I. Recovery of icariside I in the precipitation procedure was 96% from the hydrolyzate.
Example 9 Large Scale Purification of an Epimedium Extract Containing Prenylflavonoid GlycosidesA 3.7 kg portion of an Epimedium sagittatum powdered extract obtained from China containing approximately 10% total prenylflavonol glycosides (PFG’s) assayed as icariin was stirred with 35 L of 85/15 acetone/water (v/v) in a 50 L mixing tank. The mixture was stirred vigorously for 30 minutes and allowed to sit for 5 minutes. The acetone extract layer (36 L) was decanted from the tank and contained 362 g of PFG’s. Recovery of the PFG’s in this extraction procedure was 96%.
A portion (about 500 mL) of the acetone extract was dried under reduced pressure at 50° C. or less, providing 16.1 g of brown solids which were analyzed to contain 28.6% total PFG’s when assayed as icariin.
TABLE 1 | |||
PDE-5 | |||
IC50 | |||
Entry | Sample description | % PFG’s | (μg/mL) |
1 | Vat extraction of Epimedium leaves, | 8.0 | 5.78 |
refluxing for 17 hours with methanol | |||
2 | Extract prepared by extracting Epimedium | 7.2 | 4.24 |
leaves with 50% ethanol | |||
3 | Extract prepared by extracting Epimedium | 10.2 | 12.50 |
leaves with 90% ethanol | |||
4 | Extract prepared by extracting Epimedium | 16.30 | 5.27 |
leaves with 50% EtOH and then purifying | |||
the extract (after removal of EtOH) by | |||
liq/liq extraction with butanol. Sample | |||
tested was the butanol fraction. | |||
5 | Extract prepared by extracting Epimedium | 19.3 | 3.97 |
leaves with 50% EtOH and purifying by | |||
liquid/liquid extraction. Sample tested was | |||
the aqueous fraction of the liq/liq extraction. | |||
6 | Purification of a 90% ethanol extract on | 65.60 | 1.87 |
a HP-20 reversed phase column | |||
TABLE 2 | |||
PDE-5 | |||
% | IC50 | ||
Entry | Sample description | icarside I | (μg/mL) |
7 | Crude hydrolyzate composition obtained | 2.1 | 24.30 |
from a 50% EtOH extract of Epimedium | |||
leaves | |||
8 | Crude hydrolyzate composition obtained | 5.3 | 9.39 |
from a 90% EtOH extract of Epimedium | |||
leaves | |||
9 | Icariside I fraction obtained from | 21.4 | 1.50 |
purifying hydrolyzate Sample No. 7 on a | |||
SP-70 reversed-phase column and | |||
eluting icariside I with alcohol | |||
10 | Pure (recrystallized) icariside I | 100 | 0.33 |
11 | Pure anhydroicaritin | 0 | 1.50 |
12 | icariside I hydrate | 0 | 21.50 |
13 | sildenafil | 0 | 0.031 |
- Liang DL & Zheng SL Effects of icaritin on cytochrome P450 enzymes in rats. Pharmazie 69:301-5 (2014).Read more (PubMed: 24791596) »
- Guo Y et al. An anticancer agent icaritin induces sustained activation of the extracellular signal-regulated kinase (ERK) pathway and inhibits growth of breast cancer cells. Eur J Pharmacol 658:114-22 (2011). Read more (PubMed: 21376032) »
- Zhu Jf et al. Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT signalings. PLoS One 6:e23720 (2011). Read more (PubMed: 21887305) »
- The roots of Epimedium brevicornu Maxim
Patent | Submitted | Granted |
---|---|---|
Compositions comprising icariside I and anhydroicaritin and methods for making the same [US6399579] | 2002-06-04 | |
COSMETIC COMPOSITION CONTAINING HYDROLYSATES OF ICARIIN [US2009170787] | 2009-07-02 | |
COMPOUNDS AND METHODS FOR TREATING ESTROGEN RECEPTOR-RELATED DISEASES [US8252835] | 2008-06-19 | 2012-08-28 |
/////////Beijing Shenogen, Granted Fast Track Status, Novel Cancer Drug, Icaritin, New Drug Approval submission, Beijing Food & Drug Administration, oral traditional Chinese medicine, barrenwort