New Drug Approvals

Home » Posts tagged 'CANCER' (Page 9)

Tag Archives: CANCER

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,811,535 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Apigenin: this chemical breaks the immortality of cancer cells


parsley apigenin
Apigenin, which abounds in particular parsley, have protective effects against cancer. Indeed, a U.S. study showed that apigenin alters the process of gene regulation in cancer cells, which has the effect of making them sensitive to the new process of cell death. Credits: H. Zell
Apigenin, a very natural chemical compound present in the Mediterranean diet, breaks immortality of cancer cells. A result obtained by researchers at the Ohio State University (USA).
Apigeninapigenin
Apigenin is found in many fruits and vegetables, but parsleycelery and chamomile tea are the most common sources

Cuba may have found cure for cancer


cuba's cancercure

Cuban doctors have filed Wednesday in Havana, the result of 14 years of research, a solution of antitumor peptides whose natural analogue is able to offer positive dynamics in cancer treatments

http://youthandeldersja.wordpress.com/2014/03/22/cuba-may-have-found-cure-for-cancer/

Dandelion, Burdock, and Cancer


burdockburdock
Dandelion root and burdock root are my two most commonly prescribed herbs when chronic conditions require anti-inflammatory, blood purifying alterativ…
dandeliondandelion

Dandelion root and burdock root are my two most commonly prescribed herbs when chronic conditions require anti-inflammatory, blood purifying alteratives for gentle detoxification. This includes conditions such as arthritis and cancer. I’ve studied literally hundreds of herbs from around the world, and considering cost, availability, palatability (no small matter, as people with chronic disease like cancer need to be able to take their herbs at least three times a day for months) – there are probably no two more simple and powerful anticancer herbs on the planet than dandelion and burdock.*

After prescribing both of these in strong dose clinically for years with great results (patients feel better, or experience slowing or even complete remission of some cancers), I learned that many professional British medical herbalists also use the same two-herb combination for conditions requiring blood, lymphatic and liver detoxification.


http://www.planetherbs.com/michaels-blog/dandelion-burdock-and-cancer.html

Moringa Oleifera Kills 97% of Pancreatic Cancer Cells in Vitro


Moringa Oleifera Kills 97% of Pancreatic Cancer Cells in Vitro:

 

A hot-water extract of moringa leaves was shown to kill up to 97% of human pancreatic cancer cells (Panc-1) after 72 hours in this study. Moringa, also called the “miracle tree,” has a long history of use in traditional and Ayurvedic medicine due to its many beneficial properties as an anti-fungal, anti-bacterial, antidepressant, anti-diabetes, pain and fever reducer and even relief from asthma. But it also contains numerous powerful anti-cancer compounds such as kaempferol, rhamnetin, isoquercetin and others.

Latest research is now proving out moringa’s anti-cancer potential with positive results so far against ovarian cancer, liver cancer, lung cancer, and melanoma. Moringa is now extensively cultivated throughout Southeast Asia, Oceania, the Caribbean and Central America, but the largest crop in the world is produced by India – where it grows natively.

That may be one reason why the death rate from pancreatic cancer in India is a stunning 84% lower than in the United States.

http://www.ncbi.nlm.nih.gov/pubmed/23957955

Carrots Cut Men’s Prostate Cancer Risk by 50%:


Carrots Cut Men’s Prostate Cancer Risk by 50%: A new meta-study out of China has just shown that eating one large carrot (100 grams) daily may decrease prostate cancer risk by a stunning 50% in men. The study noted a 5% risk reduction for every 10 grams eaten daily, or full serving eaten weekly. But it’s not the beta-carotene that’s doing it. It’s the alpha-carotene (carrots are the richest source). This is confirmed by another very recent study out of Japan showing that men with the highest intake of alpha-carotene from all sources had 54% less risk of prostate cancer. And yet another study out of the USA showed men with the highest alpha-carotene intake were 51% less likely to have high PSA levels – a marker for prostate cancer. In both those studies, beta-carotene was found to offer no protection. Alpha-carotene is a powerful antioxidant: it’s also been shown to reduce the risk of breast cancer, bladder cancer, lung cancer, and pancreatic cancer in large population studies. Carrots are the single richest source of alpha-carotene in our diets, but pumpkin and winter squash (butternut, hubbard) are also good sources. It makes good sense, then, to get more of these low calorie super-vegetables (preferably organic) in our daily cuisine as part of a well-balanced, healthy diet including plentiful other organic vegetables, fruit and whole foods.<br /><br />
#ProstateCancer #Carrot #Carotene<br /><br />
http://www.ncbi.nlm.nih.gov/pubmed/24519559
Carrots Cut Men’s Prostate Cancer Risk by 50%
A new meta-study out of China has just shown that eating one large carrot (100 grams) daily may decrease prostate cancer risk by a stunning 50% in men. The study noted a 5% risk reduction for every 10 grams eaten daily, or full serving eaten weekly. But it’s not the beta-carotene that’s doing it. It’s the alpha-carotene (carrots are the richest source). This is confirmed by another very recent study out of Japan showing that men with the highest intake of alpha-carotene from all sources had 54% less risk of prostate cancer. And yet another study out of the USA showed men with the highest alpha-carotene intake were 51% less likely to have high PSA levels – a marker for prostate cancer. In both those studies, beta-carotene was found to offer no protection. Alpha-carotene is a powerful antioxidant: it’s also been shown to reduce the risk of breast cancer, bladder cancer, lung cancer, and pancreatic cancer in large population studies. Carrots are the single richest source of alpha-carotene in our diets, but pumpkin and winter squash (butternut, hubbard) are also good sources. It makes good sense, then, to get more of these low calorie super-vegetables (preferably organic) in our daily cuisine as part of a well-balanced, healthy diet including plentiful other organic vegetables, fruit and whole foods.

http://www.ncbi.nlm.nih.gov/pubmed/24519559

This Little Known Chinese Herb Kills 12,000 Cancer Cells For Every Healthy Cell


WORMWOOD PLANT
This Little Known Chinese Herb Kills 12,000 Cancer Cells For Every Healthy Cell
collective-evolution.com
Today, odds are that you have had/have cancer, or know somebody who does. In Canada, approximately one million Canadians that were alive at…
read all at
or
A little known Chinese herb might be eligible for the growing list of cancer killers via alternative methods of treatment. According to  studies published  in Life Sciences, Cancer Letters and Anticancer Drugs, artemesinin, a derivative of the wormwood plant commonly used in Chinese medicine, can kill off  cancer cells, and do it at a rate of 12,000 cancer cells for every healthy cell.
Artemisinin is currently FDA approved for the treatment of malaria, it’s very safe and easy to use. It’s inexpensive and works on all cancers but has yet to find it’s way into the mainstream. It’s really time to move beyond just radiation, surgery and chemotherapy for the treatment of cancer.
Artemisinin.svgartemisinin
“Artemisinin reacts with iron to form free radicals that kill cells. Since cancer cells uptake relatively larger amounts of iron than normal cells, they are more susceptible to the toxic effect of artemisinin. In previous research, we have shown that artemisinin is more drawn to cancer cells than to normal cells. In the present research, we covalently attached artemisinin to the iron-carying plasma glycoprotein transferrin.Transferrin is transported into the cells via receptor-mediated endocytosis and cancer cells express significantly more transferrin receptors on their cell surface and endocytose more transferrin than normal cells. Thus, we hypothesize that by tagging artemisinin to transferrin, both iron and artemisinin would be transported into cancer cells in one package. Once inside a cell, iron is released and can readily react with artemisinin close by tagged to the transferrin. This would enhance the toxicity and selectivity of artemisinin towards cancer cells. We found that holotransferrin-tagged artemisinin, when compared with artemisinin, was very potent and selective in killing cancer cells. Thus, this ‘tagged-compound’ could potentially be developed into an effective chemotherapeutic agent for cancer treatment.” 

Wormwood

Other common name(s): absinthium, absinth wormwood

Scientific/medical name(s): Artemisia absinthium

Description

Wormwood is a shrubby perennial plant whose upper shoots, flowers, and leaves are used in herbal remedies and as a bitter flavoring for alcoholic drinks. It is native to Europe, northern Africa, and western Asia, and now also grows in North America.

Overview

Available scientific evidence does not support claims that wormwood is effective in treating cancer, the side effects of cancer treatment, or any other conditions. The plant contains a volatile oil with a high level of thujone (see Thuja). There are reports that taking large doses of wormwood internally can cause serious problems with the liver and kidneys. It can also cause nausea, vomiting, stomach pain, headache, dizziness, seizures, numbness of the legs and arms, delirium, and paralysis.

Wormwood, or Artemisia absinthium, should not be confused with sweet wormwood, or Artemisia annua. Although wormwood is related to sweet wormwood, they are used in different ways. Extracts of sweet wormwood have been used in traditional herbal medicine, and an active ingredient, artemisinin, is now used in conventional medical treatment of malaria.

How is it promoted for use?

Wormwood is promoted as a sedative and anti-inflammatory. There are also claims that it can treat loss of appetite, stomach disorders, and liver and gallbladder complaints. In folk medicine it is used for a wide range of stomach disorders, fever, and irregular menstruation. It is also used to fight intestinal worms. Externally, it is applied to poorly healing wounds, ulcers, skin blotches, and insect bites. It is used in Moxibustion treatments for cancer (seeMoxibustion). Available scientific evidence does not support these claims.

What does it involve?

Wormwood is taken in small doses for a short period of time, usually a maximum of 4 weeks. It is available as a capsule and as a liquid that can be added to water to make a tincture. The whole herb is sometimes brewed as a tea. Wormwood oil, washes, or poultices can also be used on the skin. Although pure wormwood is not available, “thujone-free” wormwood extract has been approved by the US Food and Drug Administration (FDA) for use in foods and as a flavoring in alcoholic drinks such as vermouth.

What is the history behind it?

Artemisia absinthium was used by Hippocrates, and the earliest references to wormwood in Western civilization can be found in the Bible. Extract of wormwood was also used in ancient Egypt. The herb is mentioned often in first-century Greek and Roman writings and reportedly was placed in the sandals of Roman soldiers to help soothe their sore feet. It was taken as a treatment for tapeworms as far back as the Middle Ages.

In 1797, Henri Pernod developed absinthe, an alcoholic drink containing distilled spirits of wormwood, fennel, anise and sometimes other herbs. Absinthe became very popular in Europe and the United States in the nineteenth century. It was eventually banned in several countries in the early twentieth century due to its purported ill effects and addictive qualities. More recent analysis has suggested that, when properly prepared and distilled, the thujone content in these drinks was very low. It appears more likely that the addictiveness and other ill effects of absinthe were due to its alcohol content, which is around 60% to 85%. Varying additives or impurities from different distillers may have also produced some of these effects. Even though absinthe is illegal in some countries, various types can be found in some European countries. However, their thujone content is strictly limited. Wormwood is also an ingredient in vermouth and other drinks.

What is the evidence?

Available scientific studies do not support the use of wormwood for the treatment of cancer or the side effects of conventional cancer treatment. There is not enough evidence available to support its use for other conditions. Wormwood oil has been tested in laboratory studies and appears to inhibit the growth of some fungi. However, human tests have not been completed.

Some derivatives of Artemisia annua, or sweet wormwood, a relative of wormwood, have been shown to be effective in the treatment of malaria. In fact, the World Health Organization approved artemisinin for use against malaria in Africa in 2004. These extracts also show some promise in laboratory studies as cancer treatment drugs. Further studies are required to find out whether the anti-cancer results apply to people. It is important to remember that extracted compounds are not the same as the whole herb, and study results are not likely to show the same effects.

Are there any possible problems or complications?

This product is sold as a dietary supplement in the United States. Unlike companies that produce drugs (which must be tested before being sold), the companies that make supplements are not required to prove to the Food and Drug Administration that their supplements are safe or effective, as long as they don’t claim the supplements can prevent, treat, or cure any specific disease.
Some such products may not contain the amount of the herb or substance that is on the label, and some may include other substances (contaminants). Actual amounts per dose may vary between brands or even between different batches of the same brand. In 2007, the FDA wrote new rules to improve the quality of manufacturing for dietary supplements and the proper listing of supplement ingredients. But these rules do not address the safety of the ingredients or their effects on health.
Most such supplements have not been tested to find out if they interact with medicines, foods, or other herbs and supplements. Even though some reports of interactions and harmful effects may be published, full studies of interactions and effects are not often available. Because of these limitations, any information on ill effects and interactions below should be considered incomplete.

Wormwood should be avoided, especially by women who are pregnant or breast-feeding, by people who have had seizures, and by those with ulcers or stomach irritation. Thujone, a component of wormwood, is known to cause muscle spasms, seizures, and hallucinations if taken internally. In high doses it is known to damage the liver and the kidneys.

Because of its thujone content, large doses of wormwood taken internally can lead to vomiting, stomach and intestinal cramps, headaches, dizziness, nervous system problems, and seizures. Wormwood can also lead to liver failure. The New England Journal of Medicine reported that a man who ordered essential oil of wormwood over the Internet, thinking he had purchased absinthe, suffered liver failure shortly after drinking the oil. Wormwood may also make seizures more likely and may interfere with the anti-convulsant effects of medicines such as phenobarbital.

The plant is a relative of ragweed and daisies. Those with allergies to these types of plants may also be allergic to wormwood. Contact with wormwood can cause rash in some people.

Relying on this type of treatment alone and avoiding or delaying conventional medical care for cancer may have serious health consequences.

Replacing insulin though stem cell-derived pancreatic cells under the skin


Islet of Langerhans

Microscopic view of Islet of Langerhans in the pancreas. Beta cells in the Islets are responsible for producing insulin

Sanford-Burnham and UC San Diego School of Medicine scientists have shown that by encapsulating immature pancreatic cells derived from human embryonic stem cells (hESC), and implanting them under the skin in animal models of diabetes, sufficient insulin is produced to maintain glucose levels without unwanted potential trade-offs of the technology. The research suggests that encapsulated hESC-derived insulin-producing cells hold great promise as an effective and safe cell-replacement therapy for insulin-dependent diabetes. “Our study critically evaluates some of the potential pitfalls of using stem cells to treat insulin-dependent diabetes,” said Pamela Itkin-Ansari, Ph.D., adjunct assistant professor in the Development, Aging, and Regenerative Program at Sanford-Burnham, with a joint appointment at UC San Diego. – See more at: http://beaker.sanfordburnham.org/2014/03/replacing-insulin-though-stem-cell-derived-pancreatic-cells-under-the-skin/#sthash.GDnpkm3h.dpuf

See more at: http://beaker.sanfordburnham.org/2014/03/replacing-insulin-though-stem-cell-derived-pancreatic-cells-under-the-skin/

Licorice मुलेठी, 甘草, شیرین بیان Inhibits 92% of Breast Cancer Cells & Slows Growth by 83% in Vivo:


Licorice Inhibits 92% of Breast Cancer Cells & Slows Growth by 83% in Vivo:
Isoliquiritigenin.svgIsoliquiritigenin
Isoliquiritigenin, a natural licorice compound, inhibited 92% of human breast cancer cells (both ER+ and triple-negative) in vitro after 48 hours of treatment in this new study. When given to mice, it resulted in breast tumors 83% smaller than untreated mice after 25 days.
Researchers discovered this licorice compound was not only cytotoxic to the breast cancer cells but also profoundly reduced the key angiogenesis factor VEGF by up to 85%, thus disabling the cancer from connecting new blood supplies to feed the tumors. Licorice is a powerful herb which has already shown strong activity against prostate cancer, colon cancer, cervical cancer, leukemia and others in lab studies.
Although used as a candy in the West, licorice root has been used as a medicinal herb for centuries in traditional Chinese and Ayurvedic medicine for treating asthma, allergies, stomach ache, insomnia, inflammation, viral infection and many other conditions. Licorice is also a proven adrenal booster, which makes it a great alternative to caffeine in fighting fatigue and boosting energy levels.
Bottom line: this super-herb could be a great addition to a healthy diet centered on organic vegetables, fruit and whole foods. And if you want to limit your sugar intake, it’s simple to make as a tea.  read all this at

Liquorice or licorice (/ˈlɪk(ə)rɪʃ/ lik-(ə-)rish or /ˈlɪk(ə)rɪs/ lik-(ə-)ris)[2] is the root of Glycyrrhiza glabra from which a somewhat sweet flavor can be extracted. The liquorice plant is a legume that is native to southern Europe and parts of Asia. It is not botanically related to anisestar anise, or fennel, which are sources of similar flavouring compounds. The word ‘liquorice’/’licorice’ is derived (via the Old French licoresse), from the Greek γλυκύρριζα (glukurrhiza), meaning “sweet root”,[3] from γλυκύς (glukus), “sweet”[4] + ῥίζα (rhiza), “root”,[5][6] the name provided by Dioscorides.[7]

 

Description

It is a herbaceous perennial, growing to 1 m in height, with pinnate leaves about 7–15 cm (3–6 in) long, with 9–17 leaflets. The flowers are 0.8–1.2 cm (⅓–½ in) long, purple to pale whitish blue, produced in a loose inflorescence. The fruit is an oblong pod, 2–3 cm (1 in) long, containing several seeds.[8]The roots are stoloniferous.[9]

Chemistry

The scent of liquorice root comes from a complex and variable combination of compounds, of which anethole is the most minor component (0-3% of total volatiles). Much of the sweetness in liquorice comes from glycyrrhizin, which has a sweet taste, 30–50 times the sweetness of sugar. The sweetness is very different from sugar, being less instant and lasting longer.

The isoflavene glabrene and the isoflavane glabridin, found in the roots of liquorice, are xenoestrogens.[10][11]

 

A, phase I metabolites of ILG formed during incubation with rat liver microsomes and NADPH. Based on accurate mass measurements, HPLC retention times, MS/MS analyses, and comparison with data reported by Guo et al. (18), the structures of metabolites M1, M2, M3, M4, M5, M6, and M7 were assigned as liquiritigenin, 7,8,4′-trihydroxychalcone, sulfuretin, 7,3′,4′-trihydroxychalcone, davidigenin, trans-6,4′-dihydroxyaurone, and cis-6,4′-dihydroxyaurone, respectively. B, structures of ILG glucuronide conjugates formed by rat liver microsomes in the presence of UDPGA.

Cultivation and uses

Liquorice grows best in deep valleys, well-drained soils, with full sun, and is harvested in the autumn, two to three years after planting.[8] Countries producing liquorice include Iran, Afghanistan, the People’s Republic of China, Pakistan, Iraq, Azerbaijan, Uzbekistan, Turkmenistan and Turkey.[12]

The world’s leading manufacturer of liquorice products is M&F Worldwide, which manufactures more than 70% of the worldwide liquorice flavors sold to end-users.[13]

 

Tobacco

Most liquorice is used as a flavoring agent for tobacco. For example, M&F Worldwide reported in 2011 that approximately 63% of its liquorice product sales are to the worldwide tobacco industry for use as tobacco flavor enhancing and moistening agents in the manufacture of American blend cigarettes, moist snuffchewing tobacco and pipe tobacco.[12] American blend cigarettes made up a larger portion of worldwide tobacco consumption in earlier years,[14] and the percentage of liquorice products used by the tobacco industry was higher in the past. M&F Worldwide sold approximately 73% of its liquorice products to the tobacco industry in 2005,[15] and a consultant to M&F Worldwide’s predecessor company stated in 1975 that it was believed that well over 90% of the total production of liquorice extract and its derivatives found its way into tobacco products.[16]

Liquorice provides tobacco products with a natural sweetness and a distinctive flavor that blends readily with the natural and imitation flavoring components employed in the tobacco industry, represses harshness, and is not detectable as liquorice by the consumer.[16] Tobacco flavorings such as liquorice also make it easier to inhale the smoke by creating bronchodilators, which open up the lungs.[17] Chewing tobacco requires substantially higher levels of liquorice extract as emphasis on the sweet flavor appears highly desirable.[16]

Food and candy

Liquorice flavour is found in a wide variety of liquorice candies or sweets. In most of these candies the taste is reinforced by aniseed oil, and the actual content of liquorice is very low. Liquorice confections are primarily purchased by consumers in the European Union.[12]

In the Netherlands, where liquorice candy (“drop”) is one of the most popular forms of sweet, only a few of the many forms that are sold contain aniseed, although mixing it with mintmenthol or with laurel is quite popular. Mixing it with ammonium chloride (‘salmiak’) is also popular. The most popular liquorice, known in the Netherlands as zoute drop (salty liquorice) actually contains very little salt, i.e. sodium;[18] the salty taste is probably due to ammonium chloride, and the blood pressure raising effect is due to glycyrrhizin, see below. Strong, salty candies are popular in Scandinavia.

Pontefract in Yorkshire was the first place where liquorice mixed with sugar began to be used as a sweet in the same way it is in the modern day.[19] Pontefract cakes were originally made there. In County Durham, Yorkshire and Lancashire it is colloquially known as Spanish, supposedly because Spanish monks grew liquorice root at Rievaulx Abbey near Thirsk.[20]

Liquorice root

Various liquorice products.

Different flavoured liquorice sticks

Liquorice is popular in Italy (particularly in the South) and Spain in its natural form. The root of the plant is simply dug up, washed and chewed as a mouth freshener. Throughout Italy unsweetened liquorice is consumed in the form of small black pieces made only from 100% pure liquorice extract; the taste is bitter and intense. In Calabria a popular liqueur is made from pure liquorice extract. Liquorice is also very popular in Syria where it is sold as a drink. Dried liquorice root can be chewed as a sweet. Black liquorice contains approximately 100 calories per ounce (15 kJ/g).[21]

Medicine

Foliage

Glycyrrhiza glabra from Koehler’sMedicinal-Plants

The compound glycyrrhizin (or glycyrrhizic acid), found in liquorice, has been proposed as being useful for liver protection in tuberculosis therapy, however evidence does not support this use which may in fact be harmful.[22] Glycyrrhizin has also demonstrated antiviral, antimicrobial, anti-inflammatory, hepatoprotective and blood-pressure increasing effects in vitro and in vivo, as is supported by the finding that intravenous glycyrrhizin (as if it is given orally very little of the original drug makes it into circulation) slows the progression of viral and autoimmune hepatitis.[23][24][25][26] Liquorice has also demonstrated promising activity in one clinical trial, when applied topically, against atopic dermatitis.[27] Additionally liquorice has also proven itself effective in treating hyperlipidaemia (a high amount of fats in the blood).[28] Liquorice has also demonstrated efficacy in treating inflammation-induced skin hyperpigmentation.[29][30] Liquorice may also be useful in preventing neurodegenerative disorders and cavities.[31][32][33] Anti-ulcer, laxative, anti-diabetic, anti-inflammatory, immunomodulatory, antitumour and expectorant properties of liquorice have also been noted.[34][35][36]

In traditional Chinese medicine, liquorice (मुलेठी, 甘草, شیرین بیان) is commonly used in herbal formulae to “harmonize” the other ingredients in the formula and to carry the formula to the twelve “regular meridians”.[37]

Liquorice may be useful in conventional and naturopathic medicine for both mouth ulcers[38] and peptic ulcers.[39]

Its major dose-limiting toxicities are corticosteroid, in nature, due to the inhibitory effect its chief active constituents, glycyrrhizin and enoxolone have oncortisol degradation and include: oedemahypokalaemia, weight gain or loss and hypertension.[40][41]

References

  1.  “Glycyrrhiza glabra information from NPGS/GRIN”. http://www.ars-grin.gov. Retrieved 6 March 2008.
  2.  licorice. Merriam-Webster’s Medical Dictionary, © 2007 Merriam-Webster, Inc.
  3.  γλυκύρριζα, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  4.  γλυκύς, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus
  5.  ῥίζα, Henry George Liddell, Robert Scott, A Greek-English Lexicon, on Perseus<
  6.  liquorice, on Oxford Dictionaries
  7.  google books Maud Grieve, Manya Marshall – A modern herbal: the medicinal, culinary, cosmetic and economic properties, cultivation and folk-lore of herbs, grasses, fungi, shrubs, & trees with all their modern scientific uses, Volume 2 Dover Publications, 1982 & Pharmacist’s Guide to Medicinal Herbs Arthur M. Presser Smart Publications, 1 Apr 2001 2012-05-19
  8.  Huxley, A., ed. (1992). New RHS Dictionary of GardeningISBN 0-333-47494-5
  9.  Brown, D., ed. (1995). “The RHS encyclopedia of herbs and their uses”. ISBN 1-4053-0059-0
  10.  Somjen, D.; Katzburg, S.; Vaya, J.; Kaye, A. M.; Hendel, D.; Posner, G. H.; Tamir, S. (2004). “Estrogenic activity of glabridin and glabrene from licorice roots on human osteoblasts and prepubertal rat skeletal tissues”. The Journal of Steroid Biochemistry and Molecular Biology 91(4–5): 241–246. doi:10.1016/j.jsbmb.2004.04.008PMID 15336701.
  11.  Tamir, S.; Eizenberg, M.; Somjen, D.; Izrael, S.; Vaya, J. (2001). “Estrogen-like activity of glabrene and other constituents isolated from licorice root”. The Journal of steroid biochemistry and molecular biology78 (3): 291–298. doi:10.1016/S0960-0760(01)00093-0.PMID 11595510.
  12.  M & F Worldwide Corp., Annual Report on Form 10-K for the Year Ended December 31, 2010.
  13.  M & F Worldwide Corp., Annual Report on Form 10-K for the Year Ended December 31, 2001.
  14.  Erik Assadourian, Cigarette Production DropsVital Signs 2005, at 70.
  15.  M & F Worldwide Corp., Annual Report on Form 10-K for the Year Ended December 31, 2005.
  16.  Marvin K. Cook, The Use of Licorice and Other Flavoring Material in Tobacco (Apr. 10, 1975).
  17. Boeken v. Phillip Morris Inc., 127 Cal. App. 4th 1640, 1673, 26 Cal. Rptr. 3d 638, 664 (2005).
  18.  [1] the online Dutch food composition database]
  19.  “Right good food from the Ridings”. AboutFood.com. 25 October 2007.
  20. “Where Liquorice Roots Go Deep”. Northern Echo. Retrieved 9 December 2008.
  21. Licorice Calories
  22. Liu Q, Garner P, Wang Y, Huang B, Smith H (2008). “Drugs and herbs given to prevent hepatotoxicity of tuberculosis therapy: systematic review of ingredients and evaluation studies”BMC Public Health (Systematic review) 8: 365. doi:10.1186/1471-2458-8-365PMC 2576232.PMID 18939987.
  23. Sato, H; Goto, W; Yamamura, J; Kurokawa, M; Kageyama, S; Takahara, T; Watanabe, A; Shiraki, K (May 1996). “Therapeutic basis of glycyrrhizin on chronic hepatitis B.”. Antiviral Research 30 (2-3): 171–7.doi:10.1016/0166-3542(96)00942-4PMID 8783808.
  24.  van Rossum, TG; Vulto, AG; de Man, RA; Brouwer, JT; Schalm, SW (March 1998). “Review article: glycyrrhizin as a potential treatment for chronic hepatitis C.” (PDF). Alimentary Pharmacology & Therapeutics12 (3): 199–205. doi:10.1046/j.1365-2036.1998.00309.x.PMID 9570253.
  25.  Chien, CF; Wu, YT; Tsai, TH (January 2011). “Biological analysis of herbal medicines used for the treatment of liver diseases.”. Biomedical Chromatography 25 (1-2): 21–38. doi:10.1002/bmc.1568.PMID 21204110.
  26.  Yasui, S; Fujiwara, K; Tawada, A; Fukuda, Y; Nakano, M; Yokosuka, O (December 2011). “Efficacy of intravenous glycyrrhizin in the early stage of acute onset autoimmune hepatitis.”. Digestive Diseases and Sciences56 (12): 3638–47. doi:10.1007/s10620-011-1789-5.PMID 21681505.
  27. Reuter, J; Merfort, I; Schempp, CM (2010). “Botanicals in dermatology: an evidence-based review.”. American Journal of Clinical Dermatology11 (4): 247–67. doi:10.2165/11533220-000000000-00000.PMID 20509719.
  28.  Hasani-Ranjbar, S; Nayebi, N; Moradi, L; Mehri, A; Larijani, B; Abdollahi, M (2010). “The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia; a systematic review.”. Current pharmaceutical design 16 (26): 2935–47. PMID 20858178.
  29.  Callender, VD; St Surin-Lord, S; Davis, EC; Maclin, M (April 2011). “Postinflammatory hyperpigmentation: etiologic and therapeutic considerations.”. American Journal of Clinical Dermatology 12 (2): 87–99. doi:10.2165/11536930-000000000-00000PMID 21348540.
  30.  Leyden, JJ; Shergill, B; Micali, G; Downie, J; Wallo, W (October 2011). “Natural options for the management of hyperpigmentation.”. Journal of the European Academy of Dermatology and Venereology 25 (10): 1140–5. doi:10.1111/j.1468-3083.2011.04130.xPMID 21623927.
  31.  Kannappan, R; Gupta, SC; Kim, JH; Reuter, S; Aggarwal, BB (October 2011). “Neuroprotection by spice-derived nutraceuticals: you are what you eat!” (PDF). Molecular Neurobiology 44 (2): 142–59.doi:10.1007/s12035-011-8168-2PMC 3183139.PMID 21360003.
  32.  Gazzani, G; Daglia, M; Papetti, A (April 2012). “Food components with anticaries activity.”. Current Opinion in Biotechnology 23 (2): 153–9.doi:10.1016/j.copbio.2011.09.003PMID 22030309.
  33.  Messier, C; Epifano, F; Genovese, S; Grenier, D (January 2012). “Licorice and its potential beneficial effects in common oro-dental diseases.”. Oral Diseases 18 (1): 32–9. doi:10.1111/j.1601-0825.2011.01842.xPMID 21851508.
  34.  Shibata, S (October 2000). “A drug over the millennia: pharmacognosy, chemistry, and pharmacology of licorice.”. Yakugaku Zasshi 120 (10): 849–62. PMID 11082698.
  35.  Fiore, C; Eisenhut, M; Ragazzi, E; Zanchin, G; Armanini, D (July 2005). “A history of the therapeutic use of liquorice in Europe.”. Journal of Ethnopharmacology 99 (3): 317–24. doi:10.1016/j.jep.2005.04.015.PMID 15978760.
  36. Ming, LJ; Yin, AC (March 2013). “Therapeutic effects of glycyrrhizic acid.”. Natural Product Communications 8 (3): 415–8.PMID 23678825.
  37.  Bensky, Dan; et al. (2004). Chinese Herbal Medicine: Materia Medica, Third Edition. Eastland Press. ISBN 0-939616-42-4.
  38. Das, S. K.; Das, V.; Gulati, A. K.; Singh, V. P. (1989). “Deglycyrrhizinated liquorice in aphthous ulcers”. The Journal of the Association of Physicians of India 37 (10): 647. PMID 2632514.
  39.  Krausse, R.; Bielenberg, J.; Blaschek, W.; Ullmann, U. (2004). “In vitro anti-Helicobacter pylori activity of Extractum liquiritiae, glycyrrhizin and its metabolites”. Journal of Antimicrobial Chemotherapy 54 (1): 243–246.doi:10.1093/jac/dkh287PMID 15190039.
  40. Olukoga, A; Donaldson, D (June 2000). “Liquorice and its health implications.”. The Journal of the Royal Society for the Promotion of Health 120 (2): 83–9. doi:10.1177/146642400012000203.PMID 10944880.
  41.  Armanini, D; Fiore, C; Mattarello, MJ; Bielenberg, J; Palermo, M (September 2002). “History of the endocrine effects of licorice.”.Experimental and Clinical Endocrinology & diabetes 110 (6): 257–61.doi:10.1055/s-2002-34587PMID 12373628.

Brisbane scientists make cancer treatment breakthrough


Are you serious 5-10 years !! They are doing this in Germany for all cancers – it’s called immunotherapy. Again more money going to research on research already done !! and again my knickers are in a twist – actually think it may be a wedgie by now – he he he. However all silliness aside I do hope more people are starting to see the bigger picture of why we are not progressing forward 
Brisbane scientists make cancer treatment breakthrough
abc.net.au
Queensland medical researchers say they have made a remarkable discovery that could lead to improved cancer treatments.

Onion extract slows colon cancer growth just as effectively as chemo drug


cancer

(NaturalNews) Researchers have just discovered that flavonoids extracted from common onions slow the rate of colon cancer growth in mice just as effectively as a chemotherapy drug. And while the mice on chemo saw their LDL cholesterol go up (a possible side effect of the drug), the mice on onion extract actually saw their LDL levels drop.

Onion flavonoids slow colon tumor growth by 67% in vivo

Learn more: http://www.naturalnews.com/044318_onion_extract_colon_cancer_chemotherapy_drug.html##ixzz2wD3udzfF

http://www.naturalnews.com/044318_onion_extract_colon_cancer_chemotherapy_drug.html#