New Drug Approvals
Follow New Drug Approvals on WordPress.com

FLAGS AND HITS

Flag Counter
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO

Archives

Categories

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Researchgate

Anthony Melvin Crasto Dr.

  Join me on Facebook FACEBOOK   ...................................................................Join me on twitter Follow amcrasto on Twitter     ..................................................................Join me on google plus Googleplus

MYSELF

DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 36Yrs Exp. in the feld of Organic Chemistry,Working for AFRICURE PHARMA as ADVISOR earlier with GLENMARK PHARMA at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, NO ADVERTISEMENTS , ACADEMIC , NON COMMERCIAL SITE, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution, ........amcrasto@gmail.com..........+91 9323115463, Skype amcrasto64 View Anthony Melvin Crasto Ph.D's profile on LinkedIn Anthony Melvin Crasto Dr.

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Recent Posts

Fovinaciclib


Fovinaciclib

CAS 2146171-49-3

MF C29H40N8OS

Exact Mass: 548.3046

Molecular Weight: 548.75

7-cyclopentyl-N,N-dimethyl-2-({5-[4-(4-methylpiperazin-1-yl)piperidin-1-yl]pyridin-2-yl}amino) thieno[3,2-d]pyrimidine-6-carboxamide

7-cyclopentyl-N,N-dimethyl-2-((5-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)pyridin-2-yl)amino)thieno[3,2-d]pyrimidine-6-carboxamide

7-cyclopentyl-N, N-dimethyl-2- ( (5- (4- (4-methylpiperazin-1-yl) piperidin-1-yl) pyridin-2-yl) amino) thieno [3, 2-d] pyrimidine-6-carboxamide 

7-Cyclopentyl-N,N-dimethyl-2-((5-(4-(1-methylpiperidin-4-yl)piperazin-1-yl)pyridin-2-yl)amino Thieno[3,2-d]pyrimidine-6-carboxamide
cyclin dependent kinase inhibitor, antineoplastic, Fovinaciclibum, LPW3H579X8, inzhou Aohong Pharmaceutical Co

  • OriginatorChongqing Fochon Pharmaceutical
  • DeveloperAhon Pharmaceutical; Chongqing Fochon Pharmaceutical; Shanghai Fosun Pharmaceutical
  • Class2 ring heterocyclic compounds; Amides; Amines; Antineoplastics; Cyclopentanes; Piperazines; Piperidines; Pyridines; Pyrimidines; Small molecules; Thiophenes
  • Mechanism of ActionCyclin-dependent kinase 4 inhibitors; Cyclin-dependent kinase 6 inhibitors
  • MarketedHER2 negative breast cancer
  • No development reportedSolid tumours
  • 04 Sep 2025Chemical structure information added.
  • 02 Sep 2025Launched for HER2-negative-breast-cancer (Late-stage disease, Second-line therapy or greater) in China (PO) (Shanghai Henlius Biotech pipeline, September 2025)
  • 26 Aug 2025Registered for HER2-negative-breast-cancer (Late-stage disease, Second-line therapy or greater) in China (PO) prior to August 2025

Fovinaciclib is an orally bioavailable inhibitor of cyclin-dependent kinase (CDK) types 4 (CDK4) and 6 (CDK6), with potential antineoplastic activity. Upon administration, fovinaciclib selectively inhibits CDK4 and CDK6, which inhibits the phosphorylation of retinoblastoma protein (Rb) early in the G1 phase, prevents CDK-mediated G1/S transition and leads to cell cycle arrest. This suppresses DNA replication and decreases tumor cell proliferation. CDK4 and 6 are serine/threonine kinases that are upregulated in many tumor cell types and play key roles in the regulation of both cell cycle progression from the G1-phase into the S-phase and cell proliferation.

On May 29, 2025, China’s National Medical Products Administration (NMPA) approved the Class 1 innovative drug Fovinaciclib (CDK4&6 inhibitor), developed by Jinzhou Aohong Pharmaceutical Co., Ltd. This medication, in combination with fulvestrant, is indicated for the treatment of adult patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative recurrent or metastatic breast cancer, who have experienced disease progression following prior endocrine therapy.

Notably, Fovinaciclib represents an excellent example of scaffold hopping—its design replaces the pyrrolo-pyrimidine core of Ribociclib (first approved on March 13, 2017) with a thieno-pyrimidine ring.

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=CN236278427&_cid=P21-MGRD95-18783-1

Example 3
         7-Cyclopentyl-N,N-dimethyl-2-((5-(4-(1-methylpiperidin-4-yl)piperazin-1-yl)pyridin-2-yl)amino Thieno[3,2-d]pyrimidine-6-carboxamide (3)

According to the synthesis method of Example 2, CH
 3 CHO replaced by CH
 2 O, to prepare the title compound 7-cyclopentyl-N,N-dimethyl-2-((5-(4-(1-methylpiperidin-4-yl)piperazin-1-yl)pyridin-2-yl)amino)thieno[3,2-d]pyrimidine-6-carboxamide (3). MS-ESI (m/z): 549 [M+1] + .

PAT

WO2017193872

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017193872&_cid=P21-MGRDEF-24321-1

Example 5

[0266]

7-cyclopentyl-N, N-dimethyl-2- ( (5- (4- (4-methylpiperazin-1-yl) piperidin-1-yl) pyridi n-2-yl) amino) thieno [3, 2-d] pyrimidine-6-carboxamide (5)

[0267]

To a solution of 7-cyclopentyl-N, N-dimethyl-2- ( (5- (4- (piperazin-1-yl) piperidin-1-yl) pyridin-2-yl) amino) thieno [3, 2-d] pyrimidine-6-carboxamide (4) (1.5 g, 2.8 mmol) in DCM (45 mL) was added NaBH (OAc) 3(3.56 mg, 16.8 mmol) followed by CH 2O (40%in water, 252 mg, 3.4 mmol) . The mixture was stirred at r.t. for 30 min. The mixture was diluted with saturated aqueous NaHCO 3(100 mL) and extracted with DCM (2 × 30 mL) . The extracts were dried over Na 2SO 4. Solvents were evaporated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with 96: 3: 1 DCM/methanol/ammonia to give 7-cyclopentyl-N, N-dimethyl-2- ( (5- (4- (4-methylpiperazin-1-yl) piperidin-1-yl) pyridin-2-yl) amino) thieno [3, 2-d] pyrimidine-6-carboxamide (5) . MS-ESI (m/z) : 549 [M + 1] +.

PAT

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

//////////Fovinaciclib, CHINA 2025, APPROVALS 2025, cyclin dependent kinase inhibitor, antineoplastic, Fovinaciclibum, LPW3H579X8, inzhou Aohong Pharmaceutical Co

Foselutoclax


Foselutoclax

CAS 2271269-01-1

MF C53H59ClF3N6O10PS3 MW 1159.7 g/mol

(10R)-14-chloro-25-methyl-7,7-dioxo-10-[(phenylsulfanyl)methyl]-134-(phosphonooxy)-21-(propan-2-yl)-83-(trifluoromethanesulfonyl)-21H-7λ6-thia-6,9-diaza-4(1,4)-piperazina-13(1)-piperidina-2(2,3)-pyrrola-1(1),3(1,3),5,8(1,4)-tetrabenzenatridecaphane-24-carboxylic acid

5-(4-chlorophenyl)-2-methyl-4-[3-[4-[4-[[4-[[(2R)-1-phenylsulfanyl-4-(4-phosphonooxypiperidin-1-yl)butan-2-yl]amino]-3-(trifluoromethylsulfonyl)phenyl]sulfonylamino]phenyl]piperazin-1-yl]phenyl]-1-propan-2-ylpyrrole-3-carboxylic acid
B-cell lymphoma 2 (Bcl-2) inhibitor, antineoplastic, VT53CL5GES, UBX 1325

Foselutoclax is an investigational new drug that is being evaluated for the treatment of age-related eye diseases, particularly diabetic macular edema (DME) and wet age-related macular degeneration (AMD). Developed by Unity Biotechnology, this senolytic compound acts as a potent inhibitor of Bcl-xL, a protein that senescent cells rely on for survival.[1] Foselutoclax is designed to selectively eliminate senescent cells in the retina, potentially addressing the underlying causes of vision loss in these conditions.[2]

  • Assess the Efficacy and Safety of Repeat Intravitreal Injections of Foselutoclax (UBX1325) in Patients With DME (ASPIRE)CTID: NCT06011798Phase: Phase 2Status: CompletedDate: 2025-08-05
  • Safety, Tolerability and Evidence of Activity Study of UBX1325 in Patients With Diabetic Macular Edema (BEHOLD)CTID: NCT04857996Phase: Phase 2Status: CompletedDate: 2024-05-16
  • Safety and Tolerability Study of UBX1325 in Patients With Diabetic Macular Edema or Neovascular Age-Related Macular DegenerationCTID: NCT04537884Phase: Phase 1Status: CompletedDate: 2022-03-10

REF

PAT

Treatment of Lung Diseases Using Pharmaceutical Agents that Eliminate Senescent Cells

Publication Number: US-2020354336-A9

Priority Date: 2017-08-11

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=US279621490&_cid=P21-MGPXU3-15237-1

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=US421382898&_cid=P21-MGPXWE-19244-1

A crystalline solid meglumine salt of of (R)-5-(4-chlorophenyl)-1-isopropyl-2-methyl-4-(3-(4-(4-((4-((1-(phenylthio)-4-(4-((phosphonooxy)methyl)piperidin-1-yl)butan-2-yl)amino)-3-((trifluoromethyl)sulfonyl)phenyl)sulfonamido)phenyl)piperazin-1-yl)phenyl)-1H-pyrrole-3-carboxylic acid, the compound of Formula I:

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=US348024244&_cid=P21-MGPXWE-19244-1

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesUBX1325
Identifiers
IUPAC name
CAS Number2271269-01-1
PubChem CID147562879
IUPHAR/BPS13366
ChemSpider115277082
UNIIVT53CL5GES
Chemical and physical data
FormulaC53H59ClF3N6O10PS3
Molar mass1159.69 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  Crago SM (22 June 2023). “Design for Phase 2B ASPIRE Study of UBX1325 for DME announced by UNITY”Modern Retina. Archived from the original on 13 August 2024.
  2.  Macha N, Yu M, Sapieha P, Klier S, Ghosh A, White L, et al. (September 2024). “Multifocal Electroretinography Changes after UBX1325 (Foselutoclax) Treatment in Neovascular Age-Related Macular Degeneration”Journal of Clinical Medicine13 (18): 5540. doi:10.3390/jcm13185540PMC 11433175PMID 39337030.

//////////foselutoclax, antineoplastic, VT53CL5GES, UBX 1325

Fosdesdenosine sipalabenamide


Fosdesdenosine sipalabenamide

CAS 2348493-39-8

MF C26H29N6O7P, MW=568.5 g/mol

benzyl N-(P-ambo-3′-deoxy-OP-phenyl-5′-adenylyl)-Lalaninate

benzyl (2S)-2-[[[(2S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxyoxolan-2-yl]methoxy-phenoxyphosphoryl]amino]propanoate

3′-Deoxyadenosine 5′-O-phenyl-(benzoxy-L-alaninyl)-phosphatenucleoside analogue, antineoplastic, NUC 7738, Y7BFN2M72F

Fosdesdenosine sipalabenamide is an investigational new drug that is being evaluated for the treatment of advanced solid tumors and lymphoma.[1] This compound is a phosphoramidate derivative of cordycepin (3′-deoxyadenosine), an adenosine analog originally isolated from the fungus Cordyceps.[2][3] As a nucleoside analog with potential antineoplastic properties, Fosdesdenosine sipalabenamide is designed to inhibit RNA synthesis and act as an RNA inhibitor.[1] The drug is being developed by NuCana Plc.[1]

Fosdesdenosine Sipalabenamide is a phosphoramidate derivative of the monophosphate form of cordycepin (3′-deoxyadenosine; 3′-dA), an adenosine derivative first isolated from Cordyceps sinensis, with potential antineoplastic, antioxidant, and anti-inflammatory activities. Upon administration and cellular uptake of fosdesdenosine sipalabenamide by passive diffusion, cordycepin monophosphate (3′-dAMP) is converted into its active anti-cancer metabolite 3′-deoxyadenosine triphosphate (3′-dATP). 3′-dATP functions as a ribonucleoside analogue and competes with ATP during transcription. Therefore, this agent causes RNA synthesis inhibition, inhibits cellular proliferation, and induces apoptosis. Also, 3′-dAMP activates AMP-activated protein kinase (AMPK) and reduces mammalian target of rapamycin (mTOR) signaling. This prevents the hyperphosphorylation of the translation repressor protein 4E-BP1. This results in the induction of tumor cell apoptosis and a decrease in tumor cell proliferation. mTOR, a serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase (PIKK) family, plays an important role in the PI3K/AKT/mTOR signaling pathway that regulates cell growth and proliferation, and its expression or activity is frequently dysregulated in human cancers. Compared to cordycepin alone, the addition of the phosphoramidate moiety may overcome cancer resistance and allow for greater cytotoxicity as fosdesdenosine sipalabenamide does not require a nucleoside transporter for cellular uptake, is independent of enzymatic activation by adenosine kinase (AK) and is not susceptible to enzymatic degradation by adenosine deaminase (ADA). Altogether, this may help overcome cancer resistance to cordycepin.

SYN

Synthesis and Characterization of NUC-7738, an Aryloxy Phosphoramidate of 3′-Deoxyadenosine, as a Potential Anticancer Agent

Publication Name: Journal of Medicinal Chemistry

Publication Date: 2022-11-23

PMCID: PMC9743095

PMID: 36417756

DOI: 10.1021/acs.jmedchem.2c01348

Rp)- and (Sp)-3′-Deoxyadenosine 5′-O-phenyl-(benzoxy-l-alaninyl)-phosphate (7a)

Prepared according to general procedure C using 3′-deoxyadenosine (1) (0.05 g, 0.20 mmol) in anhydrous THF (4 mL), N-methyl imidazole (0.080 μL, 1.0 mmol), and phenyl(benzyloxy-l-alaninyl) phosphorochloridate (4a) (0.021 g, 0.6 mmol) in THF (2.4 mL) Purification by Biotage Isolera One (cartridge SNAP 25 g, 25 mL/min, CH3OH/CH2Cl2 1–8% 10 CV, 8% 5 CV) and preparative TLC (1000 μM, eluent system CH3OH/CH2Cl2 5/95) afforded the title compound 7a as a white solid (0.032 g, 28%). 31P NMR (202 MHz, CD3OD) δP 3.91, 3.73. 1H NMR (500 MHz, CDCl3) δH 8.26 (s, 0.5H, H-8), 8.24 (s, 0.5H, H-8), 8.22 (s, 0.5H, H-2), 8.21 (s, 0.5H, H-2), 7.34–7.25 (m, 7H, Ar), 7.21–7.13 (m, 3H, Ar), 6.01 (d, J = 1.5 Hz, 0.5H, H-1′), 6.00 (d, J = 1.5 Hz, 0.5H, H-1′), 5.15–5.04 (m, 2H, CH2Ph), 4.73–4.63 (m, 2H, H-2′, H-4′), 4.43–4.35 (m, 1H, H-5′), 4.27–4.20 (m, 1H, H-5′), 4.03–3.91 (m, 1H, CHCH3), 2.35–2.28 (m, 1H, H-3′), 2.09–2.02 (m, 1H, H-3′), 1.32 (d, J = 7.4 Hz, 1.5 H, CHCH3), 1.28 (d, J = 7.4 Hz, 1.5 H, CHCH3). 13C NMR (125 MHz, CD3OD) δC 174.84 (d, 3JC-P = 4.5 Hz, C=O), 174.63 (d, 3JC-P = 4.5 Hz, C═O), 157.32 (C-6), 157.31 (C-6), 153.86 (C-2), 153.84 (C-2), 152.13 (C-4), 152.07 (C-4), 150.20 (C-Ar), 150.18 (C-Ar), 140.47 (C-8), 137.26 (C-Ar), 137.19 (C-Ar), 130.76 (CH-Ar), 130.74 (CH-Ar), 129.57 (CH-Ar), 129.32 (CH-Ar), 129.31 (CH-Ar), 129.29 (CH-Ar), 129.26 (CH-Ar), 126.16 (CH-Ar), 126.14 (CH-Ar), 121.46 (d, 3JC-P = 4.7 Hz, CH-Ar), 121.38 (d, 3JC-P = 4.7 Hz, CH-Ar) 120.54 (C-5), 120.53 (C-5), 93.24 (C-1′), 93.18 (C-1′), 80.43 (d, 3JC-P = 3.6 Hz, C-4′), 80.36 (d, 3JC-P = 3.6 Hz, C-4′), 76.62 (C-2′), 68.62 (d, 2JC-P = 5.3 Hz, C-5′), 68.30 (d, 2JC-P = 5.3 Hz, C-5′), 67.95 (CH2Ph), 67.92 (CH2Ph), 51.74 (CHCH3), 51.60 (CHCH3), 34.91 (C-3′), 34.70 (C-3′), 20.45 (d, 3JC-P = 7.0 Hz, CHCH3), 20.28 (d, 3JC-P = 7.0 Hz, CHCH3). Reversed-phase HPLC eluting with H2O/CH3CN from 100/10 to 0/100 in 30 min, F = 1 mL/min, λ = 254 nm, tR 13.56 and 13.75 min. C26H29N6O7P required m/z 568.2 [M]. MS (ES+) found m/z 569.2 [M + H]+, 591.2 [M + Na]+, 1159.4 [2M+Na]+.

The two diastereoisomers 7a-Rp and 7a-Sp were separated via Biotage Isolera One (cartridge SNAP-Ultra C18 12 g, F: 12 mL/min, isocratic eluent system: H2O/CH3OH 45/55 in 30 min, 150 mg sample) to obtain:

7a-Rp as Fast Eluting Isomer (76 mg)

31P NMR (202 MHz, CD3OD) δP 3.91. 1H NMR (500 MHz, CDCl3) δH 8.26 (s, 1H, H-8), 8.22 (s, 1H, H-2), 7.37–7.25 (m, 7H, Ar), 7.22–7.12 (m, 3H, Ar), 6.01 (d, J = 1.5 Hz, 1H, H-1′), 5.12 (AB q, JAB = 12.0 Hz, 2H, CH2Ph), 4.74–4.70 (m, 1H, H-2′), 4.69–4.62 (m, 1H, H-4′), 4.44–4.38 (m, 1H, H-5′), 4.28–4.21 (m, 1H, H-5′), 3.99–3.90 (m, 1H, CHCH3), 2.35–2.27 (m, 1H, H-3′), 2.09–2.02 (m, 1H, H-3′), 1.29 (d, J = 7.0 Hz, 3H, CHCH3). HPLC reversed-phase HPLC eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, F = 1 mL/min, λ = 254 nm, showed one peak with tR 13.56 min.

7a-Sp as Slow-Eluting Isomer (61 mg)

31P NMR (202 MHz, CD3OD) δP 3.73. 1H NMR (500 MHz, CDCl3) δH 8.24 (s, 1H, H-8), 8.22 (s, 1H, H-2), 7.36–7.26 (m, 7H, Ar), 7.22–7.13 (m, 3H, Ar), 6.01 (d, J = 1.5 Hz, 1H, H-1′), 5.08 (AB q, JAB = 12.0 Hz, 2H, CH2Ph), 4.70–4.67 (m, 1H, H-2′), 4.66–4.60 (m, 1H, H-4′), 4.41–4.35 (m, 1H, H-5′), 4.26–4.19 (m, 1H, H-5′), 4.02–3.94 (m, 1H, CHCH3), 2.36–2.27 (m, 1H, H-3′), 2.08–2.01 (m, 1H, H-3′), 1.34–1.30 (m, 3H, CHCH3). HPLC reversed-phase HPLC eluting with H2O/CH3CN from 90/10 to 0/100 in 30 min, F = 1 mL/min, λ = 254 nm, tR 13.75 min.

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

……

Clinical data
Other namesNUC-7738
Identifiers
IUPAC name
CAS Number2348493-39-8
PubChem CID166177279
DrugBankDB19148
UNIIY7BFN2M72F
ChEMBLChEMBL5277528
Chemical and physical data
FormulaC26H29N6O7P
Molar mass568.527 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  “Fosdesdenosine sipalabenamide”PatSnap.
  2.  “Fosdesdenosine Sipalabenamide”PubChem. U.S. National Library of Medicine.
  3.  Serpi M, Ferrari V, McGuigan C, Ghazaly E, Pepper C (December 2022). “Synthesis and Characterization of NUC-7738, an Aryloxy Phosphoramidate of 3′-Deoxyadenosine, as a Potential Anticancer Agent”Journal of Medicinal Chemistry65 (23): 15789–15804. doi:10.1021/acs.jmedchem.2c01348PMC 9743095PMID 36417756.

….///////Fosdesdenosine sipalabenamide, antineoplastic, NUC 7738, Y7BFN2M72F

Flezurafenib


Flezurafenib

CAS 2760321-00-2

MF C26H21FN4O3 MW456.5 g/mol, P26TTM6U27

5-({(3S)-3-[4-(4-fluorophenyl)-1H-imidazol-2-yl]-3,4-dihydro-2H-1-benzopyran-6-yl}oxy)-3,4-dihydro-1,8-naphthyridin-2(1H)-one

5-[[(3S)-3-[5-(4-fluorophenyl)-1H-imidazol-2-yl]-3,4-dihydro-2H-chromen-6-yl]oxy]-3,4-dihydro-1H-1,8-naphthyridin-2-one
rapidly accelerated fibrosarcoma (Raf) kinase inhibitor,
antineoplastic

Flezurafenib is an investigational new drug designed as a rapidly accelerated fibrosarcoma (RAF) kinase inhibitor which is being evaluated for the treatment of cancer. Developed by Jazz Pharmaceuticals, this novel therapeutic agent is currently being explored for its efficacy against solid tumors and hematological malignancies harboring oncogenic mutations that activate the RAS-RAF-MAPK signaling pathway.[1][2] As of January 2025, flezurafenib has reached Phase 1 clinical trials, where it is being evaluated for the treatment of advanced cancers and advanced malignant solid neoplasms.[1]

PAT

WO2022023450]

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022023450&_cid=P11-MGN3DV-58095-1

[0402] Example 3. Chiral Synthesis of Compounds A-l and A-2

[0403] A. Synthesis of P2

[0404] Step 1: To a solution of 2,5-dihydroxybenzaldehyde (200 g, 1448 mmol) and pyridinium p-toluenesulfonate (18.2 g, 72.4 mmol) in DCM (3.75 L) was added 3,4-dihydro-2H-pyran (165 mL, 1810 mmol) dropwise over 10 minutes and the reaction temperature warmed to 30 °C. The reaction was stirred for 2 hours and checked by UPLC-MS which indicated the reaction was 92% complete (~5% starting material and ~3% later running unknown). The reaction was stopped. The reaction was washed with water (1.5 L) and the DCM solution was passed through a 750g silica pad and followed through by DCM (2.5 L). The DCM solution was reduced in-vacuo and the crude product was then slowly diluted with Pet. Ether to ~1L total volume, stirred and cooled to -10° C to afford a thick yellow slurry. The product was filtered and washed with Pet. Ether (2 x 150 mL) and pulled dry for 3 hours to afford 2-hydroxy-5-tetrahydropyran-2-yloxy-benzaldehyde (265g, 1192 mmol, 82% yield) as a bright yellow solid. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 10.35 (s, 1H), 10.23 (s, 1H), 7.32 – 7.19 (m, 2H), 6.94 (d, J = 8.9 Hz, 1H), 5.36 (t, J = 3.3 Hz, 1H), 3.77 (ddd, J = 11.2, 8.8, 3.6 Hz, 1H), 3.59 – 3.49 (m, 1H), 1.94 – 1.45 (m, 6H). UPLC-MS (ES+, Short acidic): 1.64 min, m/z 223.0 [M+H]+ (100%).

[0405] Step 2: 2-hydroxy-5-tetrahydropyran-2-yloxy-benzaldehyde (107 g, 481 mmol) was dissolved in diglyme (750 mL) and K2CO3 (133 g, 963 mmol) was added on one portion with stirring to afford a bright yellow suspension. The reaction was then heated to 140°C and tert-butyl acrylate (155 mL, 1059 mmol) in DMF (75 mL) was added over 10 minutes starting at ~110°C and up to 130°C. Maintained this temperature for a further 1 hour. UPLC-MS indicated that the

reaction had progressed 75%. After a further hour this showed clean conversion to 85% product and little or no side-products. After another 3 hours UPLC-MS showed 88% product (previous reactions had showed that further heating did not afford more conversion). The dark brown reaction was cooled to room temperature overnight and filtered to remove inorganics. The reaction was suspended in EtOAc (2.5 L) and water (2.5 L) and the phases separated. The aqueous was re-extracted with EtOAc (2.5 L) and the combined organics were washed with brine (2 x 1.5 L) and the organics were reduced in-vacuo. The crude product was then purified on silica (2Kg) loading in a minimum volume of DCM. A gradient of EtOAc in Pet. Ether (10 – 25%) was run and clean product fractions combined and reduced in-vacuo to afford tert-butyl 6-tetrahydropyran-2-yloxy-2H-chromene-3-carboxylate (93.5 g, 281 mmol, 58% yield) as a yellow solid. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 7.37 (q, J = 1.2 Hz, 1H), 7.05 (d, J = 2.9 Hz, 1H), 6.94 (dd, J = 8.8, 2.9 Hz, 1H), 6.79 (dd, J = 8.7, 0.7 Hz, 1H), 5.35 (t, J = 3.3 Hz, 1H), 4.82 (d, J = 1.4 Hz, 2H), 3.77 (ddt, J = 13.3, 8.3, 4.2 Hz, 1H), 3.59 – 3.48 (m, 1H), 1.93 – 1.49 (m, 6H), 1.49 (s, 9H). UPLC-MS (ES+, Short acidic): 2.18 min, m/z ([M+H]+) not detected (100%).

[0406] Step 3: tert-butyl 6-tetrahydropyran-2-yloxy-2H-chromene-3-carboxylate (215 g, 647 mmol) was suspended in MeOH (1.6 L) at room temperature (did not dissolve immediately) and pyridinium p-toluenesulfonate (16.3 g, 64.7 mmol) added. The reaction was warmed to 40°C with a hot water bath and checked by UPLC-MS for progress after 1 hour which indicated the reaction was complete and was a clear orange solution. The reaction was reduced in-vacuo and the crude product dissolved in DCM (2 L) and washed with water (1 L). The organic layer was dried (MgSC>4), filtered and reduced in-vacuo to afford the crude product as a yellow solid. This was suspended in Pet. Ether and stirred in an ice bath before filtering, to afford a bright yellow solid. This was dried under high vac at 50°C for 2 hours to afford tert-butyl 6-hydroxy-2H-chromene-3-carboxylate (144.4 g, 582 mmol, 90% yield). ¾ NMR (400 MHz, DMSO-d6) d/ppm: 9.17 (s, 1H), 7.33 (s, 1H), 6.76 – 6.64 (m, 3H), 4.77 (d, J = 1.4 Hz, 2H), 1.49 (s, 9H). UPLC-MS (ES+, Short acidic): 1.71 min, m/z 247.2 [M-H]- (100%).

[0407] Step 4: tert-Butyl 6-hydroxy-2H-chromene-3-carboxylate (84. g, 338.34mmol) was dissolved in DCM (500mL) and trifluoroacetic acid (177.72mL, 2320.9mmol) added at room temperature and the reaction stirred to give a brown solution. Initially gas evolution was noted and the reaction was stirred over several days at room temperature. DCM and TFA were removed in-vacuo and finally azeotroped with 200ml of toluene before slurrying with diethyl ether and filtering to give the crude product 6-hydroxy-2H-chromene-3-carboxylic acid (53.15g, 276.58mmol, 81.745% yield) as a cream solid. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 12.77 (s, 1H), 9.14 (s, 1H), 7.37 (t, J = 1.4 Hz, 1H), 6.72 (dd, J = 2.4, 0.9 Hz, 1H), 6.70 – 6.64 (m, 2H), 4.78 (d, J = 1.4 Hz, 2H).

[0408] Step 5: (R)-Phanephos and [RuCl2(p-cym)]2 (1.2: 1 eq., 6.6 mg, 3.0 mg respectively) were weighed into a 50 mL glass lined Parr vessel followed by the substrate (1.845 g, 9.6 mmol). Methanol (16 mL, 0.6 M substrate concentration) was added to the vessel followed by triethylamine (135 μL, 0.96 mmol, 0.1 eq.). A PTFE stirrer bar was added and the thermocouple was covered with PTFE tape. The vessel was sealed and purged with nitrogen 5 times (at ~2 bar) and 5 times with stirring (~500 rpm). The vessel was then purged with hydrogen 5 times (at -10 bar) and 5 times with stirring (~500 rpm). The vessel was then pressurised to 5 bar hydrogen pressure and heated to 40 °C (with 1500 rpm stirring speed). The pressure was kept constant but with venting and refilling to 5 bar after sampling. After 21.5 hours, the vessel was allowed to cool. After 22.5 hours, the vessel was vented and purged with nitrogen. Each -0.1 mL sample was diluted to -1 mL with MeOH for SFC analysis. Work-up procedure: MeOH removed by concentrating under vacuum, followed by addition of EtOAc (10 mL) and 1 M HC1 (10 mL). The layers were mixed before separating. The EtOAc layer was washed with a further portion of 1 M HC1 (4 mL) before removing the aqueous layer to leave the EtOAc organic phase. The aqueous layer was then washed with a further portion of EtOAc (4 mL) and the organic layers were combined. EtOAc was then removed under vacuum to leave behind the product as a greyish solid (See Table 29). P2 is the first eluting product with a retention time of 5.8 min and PI is the second eluting product with a retention time of 6.1 min using the SFC method as described in Example 1.

[0409] B. Synthesis of 5-fluoro-3,4-dihydro-l,8-naphthyridin-2(lH)-one

0410] Step 1: 2-Amino-4-fluoropyridine (400 g, 3568 mmol) was charged into a 10 L fixed reactor vessel and then taken up in DCM (4 L) as a slurry under nitrogen atmosphere. To this was added DMAP (43.6 g, 357 mmol) and cooled to 10°C. Di-tert-butyldicarbonate (934 g, 4282 mmol) was added, as a solution in DCM (1 L), over the space of 1.5 hours. The reaction was stirred at room temperature for 2 hours after which time the complete consumption of the starting material was evident by NMR. To the reaction was added N,N-dimethylethylenediamine (390 mL, 3568 mmol) and the reaction warmed to 40°C overnight (converting any di-BOC material back to the mono-BOC desired product). Allowed to cool to room temperature and then diluted with further DCM (2 L) and washed with water (2 L). Extracted with further DCM (2 L), washed with water

(1 L), brine (1.2 L) and dried (MgSO4) before filtering. The solvents were removed in-vacuo and the resultant product was slurried in DCM/Pet. Ether (1:1) (500 mL). Filtered, washed with further Pet. Ether and pulled dry to afford tert- butyl N-(4-fluoro-2-pyridyl)carbamate (505 g, 2380 mmol, 67% yield) as a cream solid product. A second crop of material was isolated from the mother liquors after passing through a short pad of silica followed by trituration with DCM/Pet. Ether (1:1) (-200 mL) to afford tert-butyl N-(4-fluoro-2-pyridyl)carbamate (46.7 g, 220 mmol, 6% yield). ¾ NMR (400 MHz, DMSO-d6) d/ppm: 10.13 (d, J = 1.7 Hz, 1H), 8.26 (dd, J = 9.4, 5.7 Hz, 1H), 7.60 (dd, J = 12.3, 2.4 Hz, 1H), 6.94 (ddd, J = 8.2, 5.7, 2.4 Hz, 1H), 1.47 (s, 9H). UPLC-MS (ES+, Short acidic): 1.64 min, m/z 213.1 [M+H]+ (98%).

[0411] Step 2: tert-butyl-N-(4-fluoro-2-pyridyl)carbamate (126 g, 594 mmol) and TMEDA (223 mL, 1484 mmol) were taken up in dry THF (1.7 L) and then cooled to -78°C under nitrogen atmosphere. To this solution was added n-butyllithium solution (2.5M solution in hexanes) (285 mL, 713 mmol) and then allowed to stir for a further 10 minutes. sec-Butyllithium solution (1.2M in cyclohexane) (509 mL, 713 mmol) was added keeping the reaction temperature below -70°C whilst stirred for 1 hour. After this time, Iodine (226 g, 891 mmol) in THF (300 mL) was added slowly and dropwise over 30 minutes to keep the temp below -65°C. Stirred at -70°C for another 10 minutes and then quenched by the addition of sat. aq. NH4CI solution (400 mL) and then a solution of sodium thiosulphate (134 g, 848 mmol) dissolved in water (600 mL). This addition raised the temperature to — 25°C. The reaction was warmed to room temperature then transferred to the 5L separator and extracted with EtOAc (2 x 1.5 L) and then washed with brine (500 mL), dried (MgSCL) and then evaporated in vacuo to afford crude material (~200g). This was taken up in hot DCM (500 mL) (slurry added to the silica pad) and then passed through a 2Kg silica pad. Washed through with DCM (10 x 1 L fractions) and then the product was eluted from the column with EtOAc in Pet. Ether (10% to 100%), (1 L at each 10% increase, with 1 L fractions). This gave 2 mixed fractions and clean product containing fractions, which were combined and evaporated in vacuo to afford tert-butyl N-(4-fluoro-3-iodo-2-pyridyl)carbamate (113.4 g, 335.4 mmol, 57% yield) as a white solid. Clean by UPLC-MS and NMR. The mixed fractions were combined with previous crude material to afford 190g in total of a cream solid that was composed of -50% of the desired product. This was re-columned as above to afford a combined second crop from all 4 batches as a cream solid tert-butyl N-(4-fluoro-3-iodo-2-pyridyl) carbamate (107.5 g, 318 mmol, 54% yield). ¾ NMR (400 MHz, DMSO-d6) d/ppm: 9.47 (s, 1H), 8.33 (dd, J = 8.7, 5.5 Hz, 1H), 7.19 (dd, J = 7.3, 5.5 Hz, 1H), 1.46 (s, 9H). UPLC-MS (ES+, Short acidic): 1.60 mm, m/z 339.1 [M+H]+ (100%).

[0412] Step 3: tert-butyl N-(4-fluoro-3-iodo-2-pyridyl)carbamate (300 g, 887 mmol), 3,3-dimethoxyprop- 1 -ene (137 mL, 1153 mmol) and DIPEA (325 mL, 1863 mmol) were suspended in DMF (2 L) and water (440 mL) to give a yellow slurry. This was degassed for 20 minutes at 30°C. To this mixture was then added Palladium (II) acetate (19.92 g, 89 mmol) in one portion and degassed again for a further 15mins. The reaction was slowly and carefully heated to 100°C. Gas evolution at around 85°C (large volumes of off gassing, presumably due to the loss of Boc group as CO2 and isobutylene). The reaction became darker once off gassing finished and full solubility achieved. The reaction was then heated at 100°C for 3 hours and checked by UPLC-MS (70% desired product, 18% un-cyclised intermediate and 7% des-iodo BOC). The reaction was heated for a further 2 hours and this showed 81% desired product, 12% un-cyclised intermediate and 8% des-iodo BOC. After 7 hours the reaction showed 89% desired product, 4% un-cyclised

intermediate and 7% des-iodo BOC. The reaction was heated overnight. The reaction solution was cooled and filtered through celite and evaporated in-vacuo to a thick dark orange slurry which was then suspended in water (1 L) and acidified to pH~l-2 with aq. HC1 (4N) solution. This was then basified to pH~9 with sat. aq. Na2CO3 solution. Extracted with DCM (2 x 2L) and washed with brine and dried (MgS04). EtOAc (2 L) was added to the solution and then the organics were passed through a 500g silica plug. This was then followed by DCM/EtOAc (1 : 1) (2 L) and finally EtOAc (2 L) (the final wash through contained only baseline). The product containing fractions were combined and reduced in-vacuo to give an orange slurry and then suspended in hot diethyl ether (300 mL), cooled back to ~10°C in an ice bath with stirring before being filtered and washed with 150 mL of ice cold diethyl ether. Pulled dry to afford 5-fluoro-3,4-dihydro-lH-l,8-naphthyridin- 2-one (58.4 g, 351.5 mmol, 39.6 % yield) as a cream fluffy solid. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 10.69 (s, 1H), 8.29 – 7.90 (m, 1H), 6.92 (dd, J = 8.8, 5.7 Hz, 1H), 2.88 (dd, J= 8.3, 7.1 Hz, 2H), 2.57 – 2.47 (m, 2H). UPLC-MS (ES+, Short acidic): 1.04 mm, m/z 167.0 [M+H]+ (100%).

[0413] C. Synthesis of Compounds A-l and A-2

[0414] Step 1: Potassium carbonate (832mg, 6.02mmol) was added to a stirred solution of 5- fluoro-3,4-dihydro-lH-l,8-naphthyridin-2-one (250mg, 1.5mmol), P2 (see step A, 292mg, 1.5mmol; 85% ee) and DMSO (2mL) at room temperature. The reaction was degassed and flushed with nitrogen 3 times before being stirred under a nitrogen atmosphere for 18 hours at 100°C. The reaction mixture was cooled to room temperature and diluted with water (20mL) and the resulting mixture extracted with EtOAc (20mL). A solution of citric acid (1156.3mg, 6.02mmol) in water (lOmL) was then added to the aqueous layer resulting in a solid precipitate which was filtered and dried in vacuo to give (S)- or (R)-6-[(7-oxo-6, 8-dihydro- 5H-1 ,8-naphthyridin-4-yl)oxy]chromane-3 -carboxylic acid (345mg, 1.01 mmol, 67% yield) as a white solid. UPLC-MS (ES+, Short acidic): 1.29 mm, m/z 341.1 [M+H]+. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 12.71 (lH, br s), 10.47 (1H, s), 7.95 (1H, d, J = 6.0Hz), 6.97 (1H, d, J = 2.4Hz), 6.89 (1H, dd, J = 8.4Hz, 2.4Hz), 6.83 (1H, d, J = 8.4Hz), 6.24 (1H, d, J = 6.0Hz), 4.33 (1H, dd, J = 11.2Hz, 3.2Hz), 4.15 (1H, dd, J = 11.2Hz, 7.2Hz), 3.05-2.89 (5H, m), 2.53 (2H, t, J = 7.6Hz).

[0415] Step 2: Propylphosphonic anhydride (0.91mL, 1.52mmol) was added to a stirred solution of (S)-6-[(7-oxo-6,8-dihydro-5H-l,8-naphthyridin-4-yl)oxy]chromane-3-carboxylic acid (345mg, 1.01 mmol), 2-amino- l-(4-fluorophenyl)ethanone hydrochloride (288mg, 1.52mmol), N,N-diisopropylethylamine (0.88mL, 5.07mmol) andDCM (lOmL) at room temperature. After stirring for 2 hours the reaction was complete by LCMS. Water (50mL) and DCM (50mL) were added and the organic layer separated and washed with sat. aq. Na2CO3 (50mL). The organic layer was dried over sodium sulfate and solvent removed in vacuo. The residue was purified by column chromatography using an eluent of 0-5% MeOH in DCM to give (S)- or (R)-N-[2-(4-fluorophenyl)-2-oxo-ethyl]-6-[(7-oxo-6,8-dihydro-5H-l,8-naphthyridin-4-yl)oxy]chromane-3-carboxamide (300mg, 0.63mmol, 62% yield) as a yellow solid. UPLC-MS (ES+, Short acidic): 1.52 mm, m/z 476.4 [M+H]+. ¾ NMR (400 MHz, DMSO-d6) d/ppm: 10.47 (1H, s), 8.60-8.54 (1H, m), 8.08 (1H, dd, J = 8.8Hz, 5.6Hz), 7.95 (1H, d, J = 5.6Hz), 7.41-7.37 (2H, m), 7.01-6.97 (1H, m), 6.90 (1H, dd, J = 8.8Hz, 3.2Hz), 6.86 (1H, d, J = 8.8Hz), 6.25 (1H, d, J = 5.6Hz), 4.65 (2H, d, J = 6.0Hz), 4.42-4.35 (1H, m), 3.96 (1H, t, J = 9.6Hz), 3.03-2.87 (5H, m), 2.55-2.52 (2H, m), 1 exchangeable proton not seen.

[0416] Step 3: (S)- or (R)-N-[2-(4-fluorophenyl)-2-oxo-ethyl]-6-[(7-oxo-6, 8-dihydro- 5H-1, 8-naphthyridin-4-yl)oxy]chromane-3 -carboxamide (300mg, 0.63mmol), ammonium acetate

(1216mg, 15.77mmol) and acetic acid (5mL) were combined in a sealable vial, the vial sealed and the reaction stirred and heated to 130°C for 18 hours after which time the reaction was complete by LCMS. The reaction was cooled to room temperature and AcOH removed in vacuo. DCM (50mL) was added to the residue and sat. aq. Na2CO3 (50mL) added. The organic layer was separated and washed with brine, dried over sodium sulfate and solvent removed in vacuo. The residue was purified by column chromatography using an eluent of 0-10% MeOH in DCM to give (R)- or (S)-5 – [3 – [4-(4-fluorophenyl)- 1 H-imidazol-2-y 1] chroman-6-yl] oxy-3 ,4-dihydro- 1 H- 1 , 8-naphthyridin-2-one (141mg, 0.31mmol, 49% yield) as a yellow solid.

[0417] Chiral LCMS of the product, together with chiral LCMS’s of Compounds A-l and A-2 showed that this product is predominantly Compounds A-l (Fig. 7), with a similar ee to that of the starting acid (85% ee), however accurate analysis cannot be done due to overlap of the peaks. UPLC-MS (ES+, Short acidic): 1.36 mm, m/z 457.2 [M+H]+. Ή NMR (400 MHz, DMSO-d6) d/ppm: 12.31 (0.2H, s), 12.10 (0.8H, s), 10.47 (1H, s), 7.96 (1H, d, J = 6.0Hz), 7.80-7.75 (1.8H, m), 7.69-7.65 (0.2H, m), 7.59-7.78 (0.8H, m), 7.29-7.23 (0.4H, m), 7.19-7.13 (1.8H, m), 7.03-7.00 (1H, m), 6.92 (1H, dd, J = 8.8Hz, 2.8Hz), 6.89 (1H, d, J = 8.8Hz), 6.27 (1H, d, J = 6.0Hz), 4.55-4.48 (1H, m), 4.16-4.09 (1H, m), 3.44-3.36 (1H, m), 3.30-3.21 (1H, m), 3.16-3.09 (1H, m), 2.94 (2H, t, J = 7.2Hz), 2.54 (2H, t, J = 7.2Hz).

[0439] A. Synthesis of P2

[0440] Step 1: 2,5-Dihydroxybenzaldehyde (13.6 kg, 98.18 mol) was dried using 2 x azeotropic concentrations with 2 x 125-130 kg of THF at up to 35 °C, concentrating under vacuum to 27-41 kg each time. The THF was then removed using 4 x azeotropic concentrations with 4 x 179-187 kg of DCM at up to 35 °C, concentrating under vacuum to 27-41 kg each time. The concentrate was diluted with DCM (284 kg) and pyridine p-toluenesulfonate (PPTS; 1.25 kg, 4.97 mol) was added. 3,4-dihydro-2H-pyran (10.4 kg, 123.63 mol) was added slowly at between 25-35 °C and the reaction was stirred at 30 °C for 90 minutes. The mixture was added to a solution of Na2CO3 (7.1 kg) in water (138 kg) at -15 °C and allowed to warm to 25 °C and then stirred for 6 h. The mixture was filtered through Celite® (33 kg), washing with DCM (92.5 kg). The filtrate was allowed to stand for 1 h and then the organic phase was separated and concentrated to 27-41 kg.

The DCM was then removed using 3 x azeotropic concentrations with 3 x 105 kg n-heptane at up to 35 °C, concentrating under vacuum to 27-41 kg each time. The concentrate was diluted with n- heptane (210 kg) and the heated to 30-40 °C and stirred for 6 h. The solution was then cooled to – 5 to -15 °C over 4 h, stirred for 9 h and filtered, washing the filter cake with n-heptane (39.5 kg).

The wet cake was dried at 30-40 °C for 24 h in vacuo to give 2-hydroxy-5-(oxan-2- yloxy)benzaldehyde (9.38 kg, 40.6%). Additional product (8.00 kg, 34.3%) was recovered by dissolving solid attached to the walls of the reaction vessel with 42 kg DCM and concentrating the resultant solution in vacuo to give a further 8.00 kg (34.3% yield ) of product to give a total yield of 74.9% (17.38 kg). LCMS (ES-): 15.18 mm, m/z 221.12 [M-H]-.

[0441] Step 2: To a stirring solution of 2-hydroxy-5-(oxan-2-yloxy)benzaldehyde (16.95 kg, 76.27 mol) in diglyme (113.4 kg) was added K2CO3 (21.4 kg, 154.83 mol) and the mixture was heated to between 80-90 °C. Tert-butyl prop-2-enoate (20.0 kg, 156.04 mol) was added, and the mixture was heated to between 120-130 °C and stirred for 18 hr. The mixture was cooled and

filtered, and the filter cake washed with EtOAc (80.0 kg). The filtrate was diluted with EtOAc (238.0 kg) and water (338.0 kg) and stirred for 1 hr at 20-30 °C, then stood for 2 hr. The mixture was filtered through Celite® (40.0 kg), and the filter cake washed with EtOAc (84.0 kg). The filtrate was left to stand for 2 hr and the aqueous layer was extracted with EtOAc (312.0 kg), stirring for 1 hr at 0-30 °C and standing for 2 hr. The organic layers were combined and washed with 2 x 345 kg water, stirring at between 20-30 °C for 1 hr and standing for 2 hr for each wash. The combined organics were then concentrated to 182.4 kg maintaining the temperature below 50 °C under vacuum. This gave the product tert-butyl 6-(oxan-2-yloxy)-2H-chromene-3-carboxylate as a 9.3% solution in diglyme/EtOAc (66.9% yield) and was used in the next stage without further isolation. LCMS (ES-): 20.26 mm, m/z 247.12 [M-THP]-.

[0442] Step 3: Tert-butyl 6-(oxan-2-yloxy)-2H-chromene-3-carboxylate (16.9 kg, 50.84 mol) as a 181.8 kg solution in diglyme/EtOAc was concentrated to 68 kg under vacuum at 50 °C. TFA (110.3 kg, 1002.46 mol) was added and the reaction was warmed to 40 °C under nitrogen flow and then stirred for 8 hrs. The mixture was then diluted with DCM (222.0 kg) and cooled to between -5 and -15 °C, and then stirred for 7 hrs. The solid was filtered and the filter cake washed with DCM (67.0 kg). The wet cake was dried for 24 hr under vacuum at between 30-40 °C to give 6-hydroxy-2H-chromene-3-carboxylic acid (8.75 kg, 78.5% yield). LCMS (ES-): 0.85 min, m/z 191.11 [M-H]-.

[0443] Step 4: To a stirring solution of 6-hydroxy-2H-chromene-3-carboxylic acid (7.19 kg, 37.4 mol) in N2-degassed EtOH (60 kg) was added (R)-Phanephos (131 g, 0.227 mol), [RuCl2(p-cym)]2 (70 g, 0.114 mol), and Et3N (5.6 kg, 55.3 mol). The reaction atmosphere was replaced with 3 x N2 and then 3 x H2, adjusting the H2 pressure to between 0.5-0.6 MPa, and then stirred for 18 hrs at 40 °C. The atmosphere was then replaced with 3 x N2 and then 3 x H2, adjusting the H2 pressure to between 0.5-0.6 MPa again and the mixture was stirred for a further 18 hrs.

[0444] The mixture was concentrated in vacuo to ca. 30 kg at no more than 40 °C. The reaction was diluted with MTBE (53 kg) and cooled to between 15-25 °C. 5% Na2CO3 (80 kg) was added dropwise, and the mixture was stirred for 2 hrs and stood for 2 hrs at between 15-25 °C. The aqueous layer was collected and 5% Na2CO3 (48 kg) was added to the organic layer, then stirred for 2 hrs at 15-25 °C and filtered through Celite® (10.0 kg). The wet cake was washed with water (20 kg) and the combined aqueous filtrate and aqueous layer were diluted with IP Ac (129.0 kg). The pH of the mixture was adjusted to 1-3 with dropwise addition of 6 N HC1 (29 kg) at 15-25 °C and stirred for 2 hrs. The mixture was filtered through Celite® (10 kg), washing the filter cake with IP Ac (34 kg) and the filtrate was left to stand for 2 hrs at 15-25 °C. The aqueous layer was then extracted with IP Ac (34 kg) and the combined organic layers were concentrated to ca. 35 kg under vacuum at no more than 40 °C. Me-cyclohexane (21 kg) was added dropwise at 15-25 °C and concentrated to ca. 35 kg under vacuum at no more than 40 °C. Further Me-cyclohexane (20 kg) was added dropwise at 15-25 °C and stirred for 3 hrs. The mixture was then stirred at 40-50 °C for 4 hrs and cooled to 15-25 °C over 3 hrs and then stirred for a further 2 hrs.

[0445] The mixture was then filtered, washing the filter cake with 16.4 kg of IPAc/Me-cyclohexane (1/4, v/v). The wet cake was dried for 24 hrs at 35-45 °C under vacuum to give (3R)-6-hydroxy-3,4-dihydro-2H-l-benzopyran-3-carboxylic acid (5.2 kg, 68.6% yield, chiral purity 95.5%). Further product was isolated by rinsing solid from the reaction vessel wall with EtOH (42 kg) and concentrating to dryness. The resulting solid was suspended in IP Ac (875mL) and Me-cyclohexane (2625mL) and stirred for 5 h at 40 °C and then cooled to 20 °C over 2 h and stirred for 16 h and filtered. The filter cake was then split into 2 equal batches and each batch suspended in IP Ac (912mL) and Me-cyclohexane (2737mL). The resulting mixtures were stirred at 45 °C for 18 h and then filtered and the filter cake dried at 45 °C to give (3R)-6-hydroxy-3,4-dihydro-2H-l-benzopyran-3 -carboxylic acid (1.27 kg, 17% yield, chiral purity 96.2%). LCMS (ES-): 1.74 min, m/z 193.03 [M-H]-.

[0446] Chiral resolution to improve chiral purity:

[0447] (3R)-6-Hydroxy-3,4-dihydro-2H-l-benzopyran-3-carboxylicacid (P2; 5.94 kg, 30.59 mol) (chiral purity =95.5%) was dissolved in IP Ac (138.2 kg) and stirred for 2 hrs at 20-30 °C. The solution obtained was filtered through Celite® (12 kg), washing through with IP Ac (25 kg). In a separate vessel, (S)-(+)-2-phenylglycinol (4.4 kg, 32.07 mol) was dissolved in IP Ac (56 kg), stirring for 1 hr at 40-50 °C. The filtrate was added to this solution over 4 hrs at 40-50 °C, and stirred for 1 hr. The mixture was then stirred for 1 hr at 15-25 °C, and concentrated to ca. 120 kg under vacuum at no more than 40 °C. The concentrate was stirred for 3 hrs at 15-25 °C and filtered, washing through with IP Ac (12 kg) (chiral purity = 96.2%).

[0448] The wet cake was redissolved in EtOH (29 kg), heated to 40-50 °C and diluted with IP Ac (64 kg). 30 g of dry product was added and stirred for 30 min at 15-25 °C. The mixture was concentrated to ca. 42 kg under vacuum at no more than 40 °C, and rediluted with IP Ac (64 kg). This step was repeated two additional times, then stirred at 40-50 °C for 8 hrs. The mixture was filtered, washing through with IP Ac (13 kg) (chiral purity = 97.7%). This recrystallisation process was repeated two further times, for a total of 3 recrystallisation rounds to give material with 98.9% chiral purity.

[0449] The wet cake (10.7 kg) was then dissolved in IN HC1 (45.4 kg) and stirred for 1 hr at 20-30 °C. The mixture was filtered through Celite® (11.5 kg), washing through with IP Ac (28 kg). The aqueous layer was extracted with IP Ac (28.8 kg) and the combined organic layers were washed with water (30 kg), then concentrated to ca. 24 kg at 40 °C under vacuum. Me-cyclohexane (19 kg) was added at 20 °C and the mixture was concentrated to ca. 24 kg at 40 °C under vacuum. This step was repeated twice more. The concentrate was diluted with Me-cyclohexane (29 kg) and stirred for 1 hr at 15-25 °C. The mixture was filtered, and the wet cake was rinsed with Me-Cyclohexane (59 kg). The wet cake was dried under vacuum at 35-45 °C for 16 hrs to give (3R)-6-hydroxy-3,4-dihydro-2H-l-benzopyran-3-carboxylic acid (3.02 kg, 50.2% yield).

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=US350349340&_cid=P11-MGN37Z-55206-1

PAT

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesJZP-815
Identifiers
IUPAC name
CAS Number2760321-00-2
PubChem CID162772363
IUPHAR/BPS13233
UNIIP26TTM6U27
KEGGD13132
Chemical and physical data
FormulaC26H21FN4O3
Molar mass456.477 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  “JZP-815”PatSnap.
  2.  Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AA (February 2024). “The role of CRAF in cancer progression: from molecular mechanisms to precision therapies”. Nature Reviews. Cancer24 (2): 105–122. doi:10.1038/s41568-023-00650-xPMID 38195917.

///////////flezurafenib, JZP-815, JZP 815, P26TTM6U27, ANTINEOPLASTIC, CANCER

Ezobresib


Ezobresib

CAS 1800340-40-2

MF C30H33N5O2 MW 495.6 g/mol

2-{3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-[(S)-(oxan-4-yl)(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl}propan-2-ol
bromodomain and extra-terminal motif (BET) inhibitor,
antineoplastic, BMS-986158, BMS 986158, Bristol Myers Squibb, antineoplastic, UNII-X8BW0MQ5PI

2-[3-(3,5-dimethyltriazol-4-yl)-5-[(S)-oxan-4-yl(phenyl)methyl]pyrido[3,2-b]indol-7-yl]propan-2-ol

Ezobresib is an investigational new drug that has been evaluated for the treatment of cancer. It inhibits Bromodomain and Extra-Terminal domain (BET) proteins, with potential antineoplastic activity.[1] Developed by Bristol Myers Squibb, this therapeutic agent has been studied for its efficacy in treating various cancers, including solid tumors and hematological malignancies.[2] Despite showing promise in early-phase clinical trials, recent developments suggest that Bristol Myers Squibb has decided to discontinue further development of ezobresib.[3]

BMS-986158 is under investigation in clinical trial NCT02419417 (Study of BMS-986158 in Subjects With Select Advanced Cancers).

Ezobresib is an inhibitor of the Bromodomain (BRD) and Extra-Terminal domain (BET) family of proteins, with potential antineoplastic activity. Upon administration, ezobresib binds to the acetyl-lysine binding site in the BRD of BET proteins, thereby preventing the interaction between BET proteins and acetylated histones. This disrupts chromatin remodeling and prevents the expression of certain growth-promoting genes, resulting in an inhibition of tumor cell growth. BET proteins (BRD2, BRD3, BRD4 and BRDT) are transcriptional regulators that bind to acetylated lysines on the tails of histones H3 and H4, and regulate chromatin structure and function; they play an important role in the modulation of gene expression during development and cellular growth

SYN

US10112941,

https://patentscope.wipo.int/search/en/detail.jsf?docId=US206490064&_cid=P21-MGLNPO-16484-1

Examples 54 & 55

2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

Step 1: 2-Chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-amine

      To a 100 mL round bottom flask containing 5-bromo-2-chloropyridin-3-amine (2.90 g, 14.0 mmol), 1,4-dimethyl-5-(tributylstannyl)-1H-1,2,3-triazole (2.70 g, 6.99 mmol) [Seefeld, M. A. et al. PCT Int. Appl., 2008, WO2008098104] and Pd(PPh 3(0.61 g, 0.52 mmol) in DMF (20 mL) was added cuprous iodide (0.20 g, 1.05 mmol) and Et 3N (1.9 mL, 14.0 mmol). The reaction mixture was purged with N for 3 min and then heated at 100° C. for 1 h. After cooling to room temperature, the mixture was diluted with 10% LiCl solution and extracted with EtOAc (2×). The combined organics were washed with sat. NaCl, dried over MgSO 4, filtered and concentrated. CH 2Cl was added, and the resulting precipitate was collected by filtration. The mother liquor was concentrated and purified using ISCO silica gel chromatography (40 g column, gradient from 0% to 100% EtOAc/CH 2Cl 2). The resulting solid was combined with the precipitate and triturated with cold EtOAc to give the title compound (740 mg, 47%) as a light tan solid. LCMS (M+H)=224.1; HPLC RT=1.03 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 2: Methyl 3-((2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-yl)amino)benzoate

      Following a procedure analogous to that described in Step 2 of Example 1, 2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-amine (740 mg, 3.31 mmol) was converted to the title compound (644 mg, 54%). 1H NMR (400 MHz, CDCl 3) δ 7.94 (t, J=1.9 Hz, 1H), 7.88 (d, J=2.1 Hz, 1H), 7.83 (dt, J=7.8, 1.3 Hz, 1H), 7.49 (t, J=7.9 Hz, 1H), 7.40 (d, J=2.1 Hz, 1H), 7.36 (ddd, J=8.0, 2.3, 0.9 Hz, 1H), 6.38 (s, 1H), 3.99 (s, 3H), 3.93 (s, 3H), 2.34 (s, 3H); LCMS (M+H)=358.2; HPLC RT=2.34 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 3: Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate

      Following a procedure analogous to that described in Step 3 of Example 1, methyl 3-((2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-yl)amino)benzoate (2.82 g, 7.88 mmol) was converted to the title compound (1.58 g, 62%). 1H NMR (500 MHz, DMSO-d 6) δ 11.93 (s, 1H), 8.62 (d, J=1.8 Hz, 1H), 8.36 (dd, J=8.2, 0.6 Hz, 1H), 8.29-8.22 (m, 1H), 8.16 (d, J=1.8 Hz, 1H), 7.91 (dd, J=8.2, 1.4 Hz, 1H), 4.02 (s, 3H), 3.94 (s, 3H), 2.31 (s, 3H); LCMS (M+H)=322.3; HPLC RT=1.98 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Alternate synthesis of Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate

      A mixture of methyl 3-bromo-5H-pyrido[3,2-b]indole-7-carboxylate (Step 2 of Example 40, 3.000 g, 9.83 mmol), 1,4-dimethyl-5-(tributylstannyl)-1H-1,2,3-triazole (4.18 g, 10.82 mmol), copper (I) iodide (0.281 g, 1.475 mmol), Pd(Ph 3P) (0.738 g, 0.639 mmol) and triethylamine (2.74 mL, 19.66 mmol) in DMF (25 mL) was purged under a nitrogen stream and then heated in a heating block at 95° C. for 2 hours. After cooling to room temperature the reaction mixture was diluted with water and extracted into ethyl acetate. Washed with water, NH 4OH, brine and concentrated. The residue was triturated with 100 mL CHCl 3, filtered off the solid and rinsed with CHCl to give. 1.6 g of product. The filtrate was loaded unto the ISCO column (330 g column, A: DCM; B: 10% MeOH/DCM, 0 to 100% gradient) and chromatographed to give an additional 0.7 g. of methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (2.30 g total, 7.16 mmol, 72.8% yield).

Step 4: Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate

      Following a procedure analogous to that described in Step 4 of Example 1, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (80 mg, 0.25 mmol) was converted to the title compound (65 mg, 53%) after purification by prep HPLC (Column: Phen Luna C18, 30×100 mm, 5 μm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% TFA; Mobile Phase B: 95:5 acetonitrile:water with 0.1% TFA; Gradient: 10-100% B over 14 min, then a 2-min hold at 100% B; Flow: 40 mL/min). 1H NMR (400 MHz, CDCl 3) δ 8.51 (d, J=1.8 Hz, 1H), 8.50 (s, 1H), 8.47 (d, J=8.1 Hz, 1H), 8.10 (dd, J=8.1, 1.1 Hz, 1H), 7.63 (d, J=1.8 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.40-7.30 (m, 3H), 5.62 (d, J=10.6 Hz, 1H), 4.11-4.03 (m, 4H), 3.92-3.83 (m, 4H), 3.56 (td, J=11.9, 1.8 Hz, 1H), 3.35 (td, J=11.9, 1.9 Hz, 1H), 3.18-3.05 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.0 Hz, 1H), 1.71-1.58 (m, 1H), 1.50-1.37 (m, 1H), 1.09 (d, J=12.8 Hz, 1H); LCMS (M+H)=496.3; HPLC RT=2.93 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 5: 2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      Following a procedure analogous to that described in Step 5 of Example 1, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate (65 mg, 0.13 mmol) was converted to racemic 2-[3-(dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol, which was separated by chiral prep SFC (Column: Chiralpak IB 25×2 cm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 50 mL/min); to give Enantiomer A (24 mg, 36%) and Enantiomer B (26 mg, 38%). Enantiomer A: 1H NMR (500 MHz, CDCl 3) δ 8.44 (d, J=1.8 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 7.98 (s, 1H), 7.56 (d, J=1.7 Hz, 1H), 7.47-7.41 (m, 3H), 7.37-7.32 (m, 2H), 7.31-7.28 (m, 1H), 5.59 (d, J=10.5 Hz, 1H), 4.06 (dd, J=11.8, 2.8 Hz, 1H), 3.90-3.84 (m, 4H), 3.55 (td, J=11.9, 2.0 Hz, 1H), 3.35 (td, J=11.9, 2.0 Hz, 1H), 3.15-3.04 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.6 Hz, 1H), 1.92 (s, 1H), 1.75 (s, 6H), 1.69-1.58 (m, 1H), 1.47-1.38 (m, 1H), 1.12 (d, J=13.4 Hz, 1H); LCMS (M+H)=496.4; HPLC RT=2.46 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min). SFC RT=5.50 min (Column: Chiralpak IB 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 2 mL/min); SFC RT=1.06 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min); [α] D 20=−117.23 (c=0.08, CHCl 3). Enantiomer B: 1H NMR (500 MHz, CDCl 3) δ 8.44 (d, J=1.8 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 7.98 (s, 1H), 7.56 (d, J=1.7 Hz, 1H), 7.47-7.41 (m, 3H), 7.37-7.32 (m, 2H), 7.31-7.28 (m, 1H), 5.59 (d, J=10.5 Hz, 1H), 4.06 (dd, J=11.8, 2.8 Hz, 1H), 3.90-3.84 (m, 4H), 3.55 (td, J=11.9, 2.0 Hz, 1H), 3.35 (td, J=11.9, 2.0 Hz, 1H), 3.15-3.04 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.6 Hz, 1H), 1.92 (s, 1H), 1.75 (s, 6H), 1.69-1.58 (m, 1H), 1.47-1.38 (m, 1H), 1.12 (d, J=13.4 Hz, 1H); LCMS (M+H)=496.4; HPLC RT=2.46 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min). SFC RT=8.30 min (Column: Chiralpak IB 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 2 mL/min); SFC RT=2.83 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min); [α] D 20=+88.78 (c=0.10, CHCl 3).

Alternate Synthesis of Examples 54

2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      

Step 1: 2-Chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-amine

      To a 100 mL round bottom flask containing 5-bromo-2-chloropyridin-3-amine (2.90 g, 14.0 mmol), 1,4-dimethyl-5-(tributylstannyl)-1H-1,2,3-triazole (2.70 g, 6.99 mmol) [Seefeld, M. A. et al. PCT Int. Appl., 2008, WO2008098104] and Pd(PPh 3(0.61 g, 0.52 mmol) in DMF (20 mL) was added cuprous iodide (0.20 g, 1.05 mmol) and Et 3N (1.9 mL, 14.0 mmol). The reaction mixture was purged with N for 3 min and then heated at 100° C. for 1 h. After cooling to room temperature, the mixture was diluted with 10% LiCl solution and extracted with EtOAc (2×). The combined organics were washed with sat. NaCl, dried over MgSO 4, filtered and concentrated. CH 2Cl was added, and the resulting precipitate was collected by filtration. The mother liquor was concentrated and purified using ISCO silica gel chromatography (40 g column, gradient from 0% to 100% EtOAc/CH 2Cl 2). The resulting solid was combined with the precipitate and triturated with cold EtOAc to give the title compound (740 mg, 47%) as a light tan solid. LCMS (M+H)=224.1; HPLC RT=1.03 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 2: Methyl 3-((2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-yl)amino)benzoate

      Following a procedure analogous to that described in Step 2 of Example 1, 2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-amine (740 mg, 3.31 mmol) was converted to the title compound (644 mg, 54%). 1H NMR (400 MHz, CDCl 3) δ 7.94 (t, J=1.9 Hz, 1H), 7.88 (d, J=2.1 Hz, 1H), 7.83 (dt, J=7.8, 1.3 Hz, 1H), 7.49 (t, J=7.9 Hz, 1H), 7.40 (d, J=2.1 Hz, 1H), 7.36 (ddd, J=8.0, 2.3, 0.9 Hz, 1H), 6.38 (s, 1H), 3.99 (s, 3H), 3.93 (s, 3H), 2.34 (s, 3H); LCMS (M+H)=358.2; HPLC RT=2.34 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 3: Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate

      Following a procedure analogous to that described in Step 3 of Example 1, methyl 3-((2-chloro-5-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)pyridin-3-yl)amino)benzoate (2.82 g, 7.88 mmol) was converted to the title compound (1.58 g, 62%). 1H NMR (500 MHz, DMSO-d 6) δ 11.93 (s, 1H), 8.62 (d, J=1.8 Hz, 1H), 8.36 (dd, J=8.2, 0.6 Hz, 1H), 8.29-8.22 (m, 1H), 8.16 (d, J=1.8 Hz, 1H), 7.91 (dd, J=8.2, 1.4 Hz, 1H), 4.02 (s, 3H), 3.94 (s, 3H), 2.31 (s, 3H); LCMS (M+H)=322.3; HPLC RT=1.98 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Alternate synthesis of Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate

      A mixture of methyl 3-bromo-5H-pyrido[3,2-b]indole-7-carboxylate (Step 2 of Example 40, 3.000 g, 9.83 mmol), 1,4-dimethyl-5-(tributylstannyl)-1H-1,2,3-triazole (4.18 g, 10.82 mmol), copper (I) iodide (0.281 g, 1.475 mmol), Pd(Ph 3P) (0.738 g, 0.639 mmol) and triethylamine (2.74 mL, 19.66 mmol) in DMF (25 mL) was purged under a nitrogen stream and then heated in a heating block at 95° C. for 2 hours. After cooling to room temperature the reaction mixture was diluted with water and extracted into ethyl acetate. Washed with water, NH 4OH, brine and concentrated. The residue was triturated with 100 mL CHCl 3, filtered off the solid and rinsed with CHCl to give. 1.6 g of product. The filtrate was loaded unto the ISCO column (330 g column, A: DCM; B: 10% MeOH/DCM, 0 to 100% gradient) and chromatographed to give an additional 0.7 g. of methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (2.30 g total, 7.16 mmol, 72.8% yield).

Step 4: Methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate

      Following a procedure analogous to that described in Step 4 of Example 1, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (80 mg, 0.25 mmol) was converted to the title compound (65 mg, 53%) after purification by prep HPLC (Column: Phen Luna C18, 30×100 mm, 5 μm particles; Mobile Phase A: 5:95 acetonitrile:water with 0.1% TFA; Mobile Phase B: 95:5 acetonitrile:water with 0.1% TFA; Gradient: 10-100% B over 14 min, then a 2-min hold at 100% B; Flow: 40 mL/min). 1H NMR (400 MHz, CDCl 3) δ 8.51 (d, J=1.8 Hz, 1H), 8.50 (s, 1H), 8.47 (d, J=8.1 Hz, 1H), 8.10 (dd, J=8.1, 1.1 Hz, 1H), 7.63 (d, J=1.8 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.40-7.30 (m, 3H), 5.62 (d, J=10.6 Hz, 1H), 4.11-4.03 (m, 4H), 3.92-3.83 (m, 4H), 3.56 (td, J=11.9, 1.8 Hz, 1H), 3.35 (td, J=11.9, 1.9 Hz, 1H), 3.18-3.05 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.0 Hz, 1H), 1.71-1.58 (m, 1H), 1.50-1.37 (m, 1H), 1.09 (d, J=12.8 Hz, 1H); LCMS (M+H)=496.3; HPLC RT=2.93 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 5: 2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      Following a procedure analogous to that described in Step 5 of Example 1, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate (65 mg, 0.13 mmol) was converted to racemic 2-[3-(dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol, which was separated by chiral prep SFC (Column: Chiralpak IB 25×2 cm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 50 mL/min); to give Enantiomer A (24 mg, 36%) and Enantiomer B (26 mg, 38%). Enantiomer A: 1H NMR (500 MHz, CDCl 3) δ 8.44 (d, J=1.8 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 7.98 (s, 1H), 7.56 (d, J=1.7 Hz, 1H), 7.47-7.41 (m, 3H), 7.37-7.32 (m, 2H), 7.31-7.28 (m, 1H), 5.59 (d, J=10.5 Hz, 1H), 4.06 (dd, J=11.8, 2.8 Hz, 1H), 3.90-3.84 (m, 4H), 3.55 (td, J=11.9, 2.0 Hz, 1H), 3.35 (td, J=11.9, 2.0 Hz, 1H), 3.15-3.04 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.6 Hz, 1H), 1.92 (s, 1H), 1.75 (s, 6H), 1.69-1.58 (m, 1H), 1.47-1.38 (m, 1H), 1.12 (d, J=13.4 Hz, 1H); LCMS (M+H)=496.4; HPLC RT=2.46 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min). SFC RT=5.50 min (Column: Chiralpak IB 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 2 mL/min); SFC RT=1.06 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min); [α] D 20=−117.23 (c=0.08, CHCl 3). Enantiomer B: 1H NMR (500 MHz, CDCl 3) δ 8.44 (d, J=1.8 Hz, 1H), 8.36 (d, J=8.2 Hz, 1H), 7.98 (s, 1H), 7.56 (d, J=1.7 Hz, 1H), 7.47-7.41 (m, 3H), 7.37-7.32 (m, 2H), 7.31-7.28 (m, 1H), 5.59 (d, J=10.5 Hz, 1H), 4.06 (dd, J=11.8, 2.8 Hz, 1H), 3.90-3.84 (m, 4H), 3.55 (td, J=11.9, 2.0 Hz, 1H), 3.35 (td, J=11.9, 2.0 Hz, 1H), 3.15-3.04 (m, 1H), 2.30 (s, 3H), 2.04 (d, J=13.6 Hz, 1H), 1.92 (s, 1H), 1.75 (s, 6H), 1.69-1.58 (m, 1H), 1.47-1.38 (m, 1H), 1.12 (d, J=13.4 Hz, 1H); LCMS (M+H)=496.4; HPLC RT=2.46 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min). SFC RT=8.30 min (Column: Chiralpak IB 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 2 mL/min); SFC RT=2.83 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min); [α] D 20=+88.78 (c=0.10, CHCl 3).

Alternate Synthesis of Examples 54

2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      
 (MOL) (CDX)

Step 1: (S)-methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate

      The enantiomers of phenyl(tetrahydro-2H-pyran-4-yl)methanol (2.0 g, 10.4 mmol) [Orjales, A. et al. J. Med. Chem. 2003, 46, 5512-5532], were separated on preparative SFC. (Column: Chiralpak AD 5×25 cm, 5 μm; Mobile Phase: 74/26 CO 2/MeOH; Flow: 270 mL/min; Temperature 30° C.). The separated peaks were concentrated and dried under vacuum to give white solids. Enantiomer A: (S)-phenyl(tetrahydro-2H-pyran-4-yl)methanol: (0.91 g, 45.5%) SFC RT=2.32 min (Column: Chiralpac AD 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 3 mL/min); Temperature 40° C. Enantiomer B: (R)-phenyl(tetrahydro-2H-pyran-4-yl)methanol. (0.92 g, 46%) SFC RT=3.09 min (Column: Chiralpac AD 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 3 mL/min); Temperature 40° C.
      Following a procedure analogous to that described in Step 4 of Example 1 except using toluene (120 mL) as the solvent, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (4 g, 12.45 mmol) and (R)-phenyl(tetrahydro-2H-pyran-4-yl)methanol (Enantiomer B above, 5.86 g, 30.5 mmol) was converted to the title compound (5.0 g, 81%). HPLC RT=2.91 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 2. (S)-2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      A 500 mL round bottom flask containing (S)-methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate (5.0 g, 10.09 mmol) in THF (150 mL) was cooled in an ice/MeOH bath. MeMgBr, (3M in Et 2O, 17.0 mL, 51.0 mmol) was added slowly over 4 min. The resulting solution was stirred for 2 h and then quenched carefully with sat. NH 4Cl. The reaction mixture was diluted with 10% LiCl solution extracted with EtOAc. The organic layer was dried over MgSO 4, filtered and concentrated. The crude material was purified using ISCO silica gel chromatography (120 g column, gradient from 0% to 6% MeOH/CH 2Cl 2). The product was collected and concentrated then dissolved in hot MeOH (35 mL). To the mixture was added 15 mL water and the mixture was cooled to room temperature. The resulting white precipitate was collected by filtration with 2:1 MeOH/water rinse then dried under vacuum to give the title compound (3.2 g, 62%). 1H NMR (500 MHz, CDCl 3) δ 8.40 (d, J=1.8 Hz, 1H), 8.33 (d, J=8.2 Hz, 1H), 7.93 (s, 1H), 7.53 (d, J=1.8 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.42 (dd, J=8.2, 1.4 Hz, 1H), 7.37-7.31 (m, 2H), 7.30-7.28 (m, 1H), 5.56 (d, J=10.5 Hz, 1H), 4.06 (d, J=8.9 Hz, 1H), 3.89-3.83 (m, 1H), 3.55 (td, J=11.9, 2.1 Hz, 1H), 3.35 (td, J=11.9, 2.1 Hz, 1H), 3.10 (q, J=10.8 Hz, 1H), 2.39 (s, 3H), 2.23 (s, 3H), 2.03 (d, J=14.2 Hz, 1H), 1.89 (s, 1H), 1.74 (s, 6H), 1.68-1.59 (m, 1H), 1.46-1.36 (m, 1H), 1.12 (d, J=12.2 Hz, 1H); LCMS (M+H)=496.3; HPLC RT=2.44 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min); SFC RT=2.01 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 60/40 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min). SFC RT=1.06 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min).

Step 1: (S)-methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate

      The enantiomers of phenyl(tetrahydro-2H-pyran-4-yl)methanol (2.0 g, 10.4 mmol) [Orjales, A. et al. J. Med. Chem. 2003, 46, 5512-5532], were separated on preparative SFC. (Column: Chiralpak AD 5×25 cm, 5 μm; Mobile Phase: 74/26 CO 2/MeOH; Flow: 270 mL/min; Temperature 30° C.). The separated peaks were concentrated and dried under vacuum to give white solids. Enantiomer A: (S)-phenyl(tetrahydro-2H-pyran-4-yl)methanol: (0.91 g, 45.5%) SFC RT=2.32 min (Column: Chiralpac AD 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 3 mL/min); Temperature 40° C. Enantiomer B: (R)-phenyl(tetrahydro-2H-pyran-4-yl)methanol. (0.92 g, 46%) SFC RT=3.09 min (Column: Chiralpac AD 250×4.6 mm, 5 μm; Mobile Phase: 70/30 CO 2/MeOH; Flow: 3 mL/min); Temperature 40° C.
      Following a procedure analogous to that described in Step 4 of Example 1 except using toluene (120 mL) as the solvent, methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5H-pyrido[3,2-b]indole-7-carboxylate (4 g, 12.45 mmol) and (R)-phenyl(tetrahydro-2H-pyran-4-yl)methanol (Enantiomer B above, 5.86 g, 30.5 mmol) was converted to the title compound (5.0 g, 81%). HPLC RT=2.91 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min).

Step 2. (S)-2-[3-(Dimethyl-1H-1,2,3-triazol-5-yl)-5-[oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl]propan-2-ol

      A 500 mL round bottom flask containing (S)-methyl 3-(1,4-dimethyl-1H-1,2,3-triazol-5-yl)-5-(phenyl(tetrahydro-2H-pyran-4-yl)methyl)-5H-pyrido[3,2-b]indole-7-carboxylate (5.0 g, 10.09 mmol) in THF (150 mL) was cooled in an ice/MeOH bath. MeMgBr, (3M in Et 2O, 17.0 mL, 51.0 mmol) was added slowly over 4 min. The resulting solution was stirred for 2 h and then quenched carefully with sat. NH 4Cl. The reaction mixture was diluted with 10% LiCl solution extracted with EtOAc. The organic layer was dried over MgSO 4, filtered and concentrated. The crude material was purified using ISCO silica gel chromatography (120 g column, gradient from 0% to 6% MeOH/CH 2Cl 2). The product was collected and concentrated then dissolved in hot MeOH (35 mL). To the mixture was added 15 mL water and the mixture was cooled to room temperature. The resulting white precipitate was collected by filtration with 2:1 MeOH/water rinse then dried under vacuum to give the title compound (3.2 g, 62%). 1H NMR (500 MHz, CDCl 3) δ 8.40 (d, J=1.8 Hz, 1H), 8.33 (d, J=8.2 Hz, 1H), 7.93 (s, 1H), 7.53 (d, J=1.8 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.42 (dd, J=8.2, 1.4 Hz, 1H), 7.37-7.31 (m, 2H), 7.30-7.28 (m, 1H), 5.56 (d, J=10.5 Hz, 1H), 4.06 (d, J=8.9 Hz, 1H), 3.89-3.83 (m, 1H), 3.55 (td, J=11.9, 2.1 Hz, 1H), 3.35 (td, J=11.9, 2.1 Hz, 1H), 3.10 (q, J=10.8 Hz, 1H), 2.39 (s, 3H), 2.23 (s, 3H), 2.03 (d, J=14.2 Hz, 1H), 1.89 (s, 1H), 1.74 (s, 6H), 1.68-1.59 (m, 1H), 1.46-1.36 (m, 1H), 1.12 (d, J=12.2 Hz, 1H); LCMS (M+H)=496.3; HPLC RT=2.44 min (Column: Chromolith ODS S5 4.6×50 mm; Mobile Phase A: 10:90 MeOH:water with 0.1% TFA; Mobile Phase B: 90:10 MeOH:water with 0.1% TFA; Temperature: 40° C.; Gradient: 0-100% B over 4 min; Flow: 4 mL/min); SFC RT=2.01 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 60/40 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min). SFC RT=1.06 min (Column: Chiralcel OD-H 250×4.6 mm, 5 μm; Mobile Phase: 50/50 CO 2/(1:1 MeOH/CH 3CN); Flow: 2 mL/min).

PATENT

CN-108558871

WO-2015100282

LIT

PAT

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesBMS-986158
Identifiers
IUPAC name
CAS Number1800340-40-2
PubChem CID118196485
DrugBankDB15435
ChemSpider58828664
UNIIX8BW0MQ5PI
KEGGD12710
ChEMBLChEMBL4297458
Chemical and physical data
FormulaC30H33N5O2
Molar mass495.627 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  Ma Z, Zhang C, Bolinger AA, Zhou J (October 2024). “An updated patent review of BRD4 degraders”Expert Opinion on Therapeutic Patents34 (10): 929–951. doi:10.1080/13543776.2024.2400166PMC 11427152PMID 39219068.
  2.  “Clinical Trials Using Ezobresib”National Cancer Institute.
  3.  Brown A. “Bristol backs out of BET inhibition”ApexOnco.

////////////Ezobresib, antineoplastic, BMS-986158, BMS 986158, Bristol Myers Squibb, antineoplastic, UNII-X8BW0MQ5PI

Epsametostat


Epsametostat

CAS 2202678-06-4

MF C31H36F3N7O3 MW611.7 g/mol

N-[(4-methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl]-6-methyl-1-(6-methylpyridazin-3-yl)-5-{(1R)-1-[4-(2,2,2-trifluoroethyl)piperazin-1-yl]ethyl}indolizine-7-carboxamide

N-[(4-methoxy-6-methyl-2-oxo-1H-pyridin-3-yl)methyl]-6-methyl-1-(6-methylpyridazin-3-yl)-5-[(1R)-1-[4-(2,2,2-trifluoroethyl)piperazin-1-yl]ethyl]indolizine-7-carboxamide
histone N-methyltransferase inhibitor, antineoplastic, Shanghai Haihe Pharmaceutical, HH 2853, (R)-HH2853

Epsametostat is an investigational new drug that is being evaluated for the treatment of peripheral T-cell lymphoma. It is a EZH1/EZH2 inhibitor developed by Shanghai Haihe Pharmaceutical Research & Development Co., Ltd.[1][2][3]

PAT

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018045971&_cid=P22-MGK809-27208-1

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

References

  1.  An R, Li YQ, Lin YL, Xu F, Li MM, Liu Z (February 2023). “EZH1/2 as targets for cancer therapy”. Cancer Gene Therapy30 (2): 221–235. doi:10.1038/s41417-022-00555-1PMID 36369341.
  2.  Wei L, Mei D, Hu S, Du S (August 2024). “Dual-target EZH2 inhibitor: latest advances in medicinal chemistry”Future Medicinal Chemistry16 (15): 1561–1582. doi:10.1080/17568919.2024.2380243PMC 11370917PMID 39082677.
  3.  “Epsametostat”PatSnap.
Clinical data
Other namesHH2853
Identifiers
IUPAC name
CAS Number2202678-06-4
PubChem CID134340937
ChemSpider115010245
UNIIP8U5JF6NBY
Chemical and physical data
FormulaC31H36F3N7O3
Molar mass611.670 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

//////////Epsametostat, histone N-methyltransferase inhibitor, antineoplastic, Shanghai Haihe Pharmaceutical, HH 2853, (R)-HH2853

Enzomenib


Enzomenib

CAS 2412555-70-3

MF C33H43FN6O3 MW 590.7 g/mol

5-fluoro-2-[4-[7-[(1S,3S,4R)-5-methylidene-2-azabicyclo[2.2.2]octane-3-carbonyl]-2,7-diazaspiro[3.5]nonan-2-yl]pyrimidin-5-yl]oxy-N,N-di(propan-2-yl)benzamide

5-fluoro-2-[(4-{7-[(1S,3S,4R)-5-methylidene-2-azabicyclo[2.2.2]octane-3-carbonyl]-2,7-
diazaspiro[3.5]nonan-2-yl}pyrimidin-5-yl)oxy]-N,Ndi(propan-2-yl)benzamide
menin-MLL (mixed-lineage leukemia) protein, interaction inhibitor, antineoplastic, DSP-5336, Fast Track,  Orphan Drug designations

Enzomenib is an investigational new drug that is being evaluated for the treatment of acute leukemia.[1] It is a small molecule inhibitor that targets the interaction between menin and mixed-lineage leukemia (MLL) proteins.[2] Enzomenib particularly in patients with KMT2A (MLL) rearrangements or NPM1 mutations.[3]

The U.S. Food and Drug Administration (FDA) has granted both Fast Track and Orphan Drug designations to Enzomenib.[4]

Enzomenib is an orally bioavailable, small molecule inhibitor of menin, with potential antineoplastic activity. Upon oral administration, enzomenib targets and binds to the nuclear protein menin, thereby preventing the interaction between the two proteins menin and menin-mixed lineage leukemia (MLL; myeloid/lymphoid leukemia; KMT2A) and the formation of the menin-MLL complex. This reduces the expression of downstream target genes and results in an inhibition of the proliferation of MLL-rearranged leukemic cells. The menin-MLL complex plays a key role in the survival, growth, transformation and proliferation of certain kinds of leukemia cells.

PAT

US10815241, Example 6

https://patentscope.wipo.int/search/en/detail.jsf?docId=US295244745&_cid=P21-MGISYZ-31333-1

Example 3 to 19

      The following compounds of Examples 3 to 19 were prepared according to a similar method to Example 1 by using each corresponding starting compound.
      

PAT

Optically active azabicyclo derivatives

Publication Number: JP-7614262-B2

Priority Date: 2018-08-27

Grant Date: 2025-01-15

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

References

  1.  “Enzomenib – Sumitomo Pharma”AdisInsight. Springer Nature Switzerland AG.
  2.  Dempke WC, Desole M, Chiusolo P, Sica S, Schmidt-Hieber M (September 2023). “Targeting the undruggable: menin inhibitors ante portas”Journal of Cancer Research and Clinical Oncology149 (11): 9451–9459. doi:10.1007/s00432-023-04752-9PMC 11798168PMID 37103568.
  3.  “Sumitomo Pharma Presents New Clinical Data on DSP-5336 at the European Hematology Association 2024 Congress”Sumitomo Pharma Co., Ltd. 14 June 2024.
  4.  Flaherty C (15 July 2024). “FDA Grants Fast Track Designation to DSP-5336 in KMT2A/NMP1+ AML”OncLive.
Clinical data
Other namesDSP-5336
Identifiers
IUPAC name
CAS Number2412555-70-3
PubChem CID146430058
DrugBankDB18514
ChemSpider129534736
UNIIVW83Y2JLZ5
ChEMBLChEMBL5314915
Chemical and physical data
FormulaC33H43FN6O3
Molar mass590.744 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

//////////enzomenib, Interaction inhibitor, antineoplastic, DSP 5336, Fast Track,  Orphan Drug designations

Envudeucitinib


Envudeucitinib

CAS 2417135-66-9

MF C22H18[2]H6N6O3 MW426.5 g/mol

N-[4-{2-methoxy-3-[1-(2H3)methyl-1H-1,2,4-triazol-3-yl]anilino}-5-(3,3,3-2H3)propanoylpyridin-2-yl] cyclopropanecarboxamide

N-(4-(2-methoxy-3-(1-(trideuteriomethyl)-1,2,4-triazol-3-yl)anilino)-5-(3,3,3-trideuteriopropanoyl)pyridin-2-yl)cyclopropanecarboxamide

N-[4-[2-methoxy-3-[1-(trideuteriomethyl)-1,2,4-triazol-3-yl]anilino]-5-(3,3,3-trideuteriopropanoyl)pyridin-2-yl]cyclopropanecarboxamide
Janus kinase inhibitor, anti-inflammatory, Fronthera U.S. Pharmaceuticals, psoriasis, FTP 637

Envudeucitinib is an investigational new drug that is being evaluated for the treatment of psoriasis. It is a selective tyrosine kinase 2 (TYK2) inhibitor developed by Fronthera U.S. Pharmaceuticals LLC and now owned by Alumis, Inc. for the treatment of autoimmune diseases. Envudeucitinib targets the TYK2 signaling pathway, which plays a crucial role in regulating multiple pro-inflammatory cytokines such as IL-12IL-23, and type I interferons.[1][2]

PAT

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2024081603&_cid=P11-MGGDZU-88200-1

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2023227946&_cid=P11-MGGE36-91523-1

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesFTP-637
Identifiers
IUPAC name
CAS Number2417135-66-9
PubChem CID158715582
IUPHAR/BPS13205
UNIIKD2MDJ4GAB
KEGGD13123
Chemical and physical data
FormulaC22H18D6N6O3
Molar mass426.506 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  Deng L, Wan L, Liao T, Wang L, Wang J, Wu X, et al. (August 2023). “Recent progress on tyrosine kinase 2 JH2 inhibitors”. International Immunopharmacology121 110434. doi:10.1016/j.intimp.2023.110434PMID 37315371.
  2.  Loo WJ, Turchin I, Prajapati VH, Gooderham MJ, Grewal P, Hong CH, et al. (2023). “Clinical Implications of Targeting the JAK-STAT Pathway in Psoriatic Disease: Emphasis on the TYK2 Pathway”. Journal of Cutaneous Medicine and Surgery27 (1_suppl): 3S – 24S. doi:10.1177/12034754221141680PMID 36519621.

////////Envudeucitinib, Janus kinase inhibitor, anti-inflammatory, Fronthera U.S. Pharmaceuticals, psoriasis, FTP 637

Darbinurad


Darbinurad

CAS 1877347-38-0

MF C18H16N2O2S MW 324.4 g/mol

[1-({[3-(4-cyanophenyl)pyridin-4-yl]sulfanyl}methyl)cyclopropyl]acetic
acid

2-[1-[[3-(4-cyanophenyl)-4-pyridinyl]sulfanylmethyl]cyclopropyl]acetic acid
urate transporter inhibitor, AYFFM7L5F0

Darbinurad is a investigational new drug that is being evaluated for the treatment of gout. It is a selective urate transporter 1 (URAT1) inhibitor that blocks the reabsorption of uric acid within the renal proximal tubule, thereby reducing serum uric acid concentrations.[1][2]

Uric acid is the final metabolite of diet and purine in human body. In vivo environment (pH 7.4, 37 degrees), uric acid is present in blood mainly in the form of sodium salt of uric acid, the serum uric acid value of normal people is generally lower than 6 mg/dL. When uric acid in serum exceeds 7 mg/dL (Shi, et al., Nature 2003, 425: 516-523), sodium salt of uric acid will crystallize out and precipitate on joints and other parts of the body, and result in disorders such as gout, urinary stones, kidney stones, etc. Patients with gout are often accompanied with other complications, including hypertension, diabetes, hyperlipidemia, dyslipidemia, atherosclerosis, obesity, metabolic disease, nephropathy, cardiovascular disease, and respiratory disease, etc. (Rock, Et al., Nature Reviews Rheumatology 2013, 9: 13-23). In 2002, Japanese scientists Endou group reported that anion transport channel protein URAT1 is a major protein responsible for reabsorption of uric acid in kidney, they also found that the blood uric acid in people with URAT1 gene mutation (causing the synthesis of such protein being interrupted, inducing nonfunctional proteins) is only one-tenth of that in normal people (Enomoto et. al., Nature 2002 417: 447-452). These findings in human genetics demonstrate that URAT1 anion transport protein in kidney plays very important role in concentration of uric acid in blood, and indicates that URAT1 is a very good and specific target of a drug for reducing blood uric acid.
      The main objective in the treatment of gout and its complications caused by higher level of blood uric acid is to reduce blood uric acid to lower than 6 mg/dL, the main methods are as follows: 1) to inhibit the generation of uric acid, such as allopurinol, febuxostat, which are drugs for inhibiting Xanthine oxidase; 2) to inhibit the reabsorption of uric acid, such as benzbromarone and probenecid, and lesinurad which is currently in clinical research, all of which are drugs for inhibiting kidney URAT1 anion transport channel protein.
      In addition to URAT1, there are other cation transport channel proteins in kidney, such as Glut9 and OAT1 etc., which are also found to be able to reabsorb uric acid back to blood from renal tubules. Kidney is a major excretion pathway of uric acid in human body (70%), intestinal system (via ABCG2 etc.,) is responsible for excreting approximate 30% of uric acid (Sakurai, et. al., Current Opinion in Nephology and Hypertension 2013, 22: 545-550).
      Human urate anion transporter 1, hURAT1, a member of anion transporter family, is located at luminal surface side of epithelial cells of renal proximal convoluted tubules, mainly participates in the reabsorption of uric acid in renal proximal convoluted tubules. URAT1 accomplishes reabsorption of uric acid and excretion of small amount of uric acid by exchanging univalent anions within cells with uric acid in lumens. Anion transport channel proteins located in renal proximal convoluted tubules also comprise anion transport channel protein OAT4, which has 42% of similarity with URAT1 (amino acids of protein). Therefore, generally, a potent URAT1 inhibitor will also inhibit OAT4 and some other anion transport channel proteins.
      At present, all the clinical drugs for reducing blood uric acid have some side effects, for example, allopurinol will cause life-threatening hypersensitivity in some populations, febuxostat has cardiovascular side effects, and benzbromarone has liver toxicity and has been taken back by Sanofi from some markets. Therefore, it is urgent to search for novel, efficient and low-toxic drugs for reducing blood uric acid, and this will have great clinical significance and application prospects.
      Thioacetate compounds have been reported in the prior art, e.g., a class of phenylthioacetate compounds were reported in CN102939279A, a class of thioacetate compounds were reported in CN103068801A, wherein thioacetate compounds in CN103068801A are obtained from the compounds in CN102939279A by essentially replacing carbons of benzene groups in skeletons of the compounds in CN102939279A with 1 to 4 N atoms.

PAT

US9856239,

https://patentscope.wipo.int/search/en/detail.jsf?docId=US209029213&_cid=P21-MGDFSK-15618-1

Example 12: Synthesis of Compound 20

Step 1: Synthesis of 4-(4-chloropyridin-3-yl)benzonitrile (20-b)

      3-bromo-4-chloropyridine (573 mg, 3 mmol), aqueous solution of sodium carbonate (6 mL, 12 mmol, 2 M), 4-cyanophenylboronic acid (441 mg, 3 mmol) and tetrakis(triphenylphosphine)palladium (0) (173 mg, 0.15 mmol) were added to dioxane (18 mL) in a single-necked flask (50 mL), and then purged with nitrogen 3 times, the mixture was heated to 80° C. and reacted for 5 hours. The reaction solution was cooled, added with ethyl acetate (100 mL), and washed with water (100 mL) and brine (100 mL). The organic phase was dried, filtered, concentrated, and purified by preparative silica gel plate (ethyl acetate/petroleum ether: 1/4) to yield a yellow solid product.

Step 2: Synthesis of methyl 2-(1-(((3-(4-cyanophenyl)pyridin-4-yl)thio) methyl)cyclopropyl)acetate (20-c)

      Methyl 2-(1-(mercaptomethyl)cyclopropyl)acetate (840 mg, 5.25 mmol), potassium carbonate (1.45 g, 10.5 mmol) and 4-(4-chloropyridin-3-yl) benzonitrile (450 mg, 2.1 mmol) were dissolved in dimethyl formamide (20 mL) in a single-necked flask (50 mL), the mixture was heated to 130° C. and reacted for 0.5 hour. The reaction solution was cooled, added with ethyl acetate (100 ml), and washed with water (100 ml) and brine (100×3 mL). The organic phase was dried, filtered, concentrated, and purified by preparative silica gel plate (ethyl acetate/petroleum ether: 1/2) to yield a yellow oily product.

Step 3: Synthesis of 2-(1-(((3-(4-cyanophenyl)pyridin-4-yl)thio)methyl) cyclopropyl)acetic acid (20)

      Methyl 2-(1-(((3-(4-cyanophenyl)pyridin-4-yl)thio)methyl)cyclopropyl) acetate (67 mg, 0.2 mmol) and aqueous solution of sodium hydroxide (0.5 mL, 0.5 mmol, 1 M) were added to methanol (3 mL) in a single-necked flask (50 mL), and the mixture was reacted at room temperature for 5 hours. The reaction solution was adjusted to pH=3 with concentrated hydrochloric acid, concentrated and purified by preparative reverse-phase chromatography to yield a white solid product.
      LC-MS (ES, m/z): 325 [M+H] +; H-NMR (400 MHz, CDCl 3, ppm): δ 8.42 (s, 1H), 8.24 (s, 1H), 7.75 (d, J=8.4 Hz, 2H), 7.53 (d, J=8.4 Hz, 2H), 7.35-7.33 (m, 1H), 3.19 (s, 2H), 2.38 (s, 2H), 0.62-0.60 (m, 4H).

PAT

Carboxylic acid compound, method for preparation thereof, and use thereof

Publication Number: KR-102474640-B1, Priority Date: 2014-08-13, Grant Date: 2022-12-05

str1

AS ON JUNE2025 4.45 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

Clinical data
Other namesD-0120
Identifiers
IUPAC name
CAS Number1877347-38-0
PubChem CID118902135
ChemSpider128992995
UNIIAYFFM7L5F0
Chemical and physical data
FormulaC18H16N2O2S
Molar mass324.40 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

References

  1.  Kaufmann D, Chaiyakunapruk N, Schlesinger N (November 2024). “Optimizing gout treatment: A comprehensive review of current and emerging uricosurics”. Joint Bone Spine92 (2) 105826. doi:10.1016/j.jbspin.2024.105826PMID 39622367.
  2.  “Darbinurad”PatSnap.

/////////Darbinurad

PharmmaEx Mumbai INDIA 3-4 October 2025


Congratulations Pharmmaexians,
We have signed as our Chief Guest Dr Anthony Melvin Crasto Advisor AfricurePharma Row2Tech Glenmark IPCA AdvectProc Niper-G Dept Pharma Min Chem and Fert Govt of India .
Thanks and Regards
Shivam Sharma
PharmmaEx Mumbai
3rd and 4th October 2025
Bombay Exhibition Centre Nesco Goregaon, .Mumbai India

Follow New Drug Approvals on WordPress.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

DISCLAIMER

I , Dr A.M.Crasto is writing this blog to share the knowledge/views, after reading Scientific Journals/Articles/News Articles/Wikipedia. My views/comments are based on the results /conclusions by the authors(researchers). I do mention either the link or reference of the article(s) in my blog and hope those interested can read for details. I am briefly summarising the remarks or conclusions of the authors (researchers). If one believe that their intellectual property right /copyright is infringed by any content on this blog, please contact or leave message at below email address amcrasto@gmail.com. It will be removed ASAP