New Drug Approvals
Follow New Drug Approvals on WordPress.com

FLAGS AND HITS

Flag Counter
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO

Archives

Categories

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Researchgate

Anthony Melvin Crasto Dr.

  Join me on Facebook FACEBOOK   ...................................................................Join me on twitter Follow amcrasto on Twitter     ..................................................................Join me on google plus Googleplus

MYSELF

DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 36Yrs Exp. in the feld of Organic Chemistry,Working for AFRICURE PHARMA as ADVISOR earlier with GLENMARK PHARMA at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, NO ADVERTISEMENTS , ACADEMIC , NON COMMERCIAL SITE, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution, ........amcrasto@gmail.com..........+91 9323115463, Skype amcrasto64 View Anthony Melvin Crasto Ph.D's profile on LinkedIn Anthony Melvin Crasto Dr.

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Recent Posts

AMG-3969


Image result for amg 3969

AMG-3969

M.Wt: 522.46
Cas : 1361224-53-4 , MF: C21H20F6N4O3S

WO 2012027261 PRODUCT PATENT

Inventors Kate Ashton, Michael David Bartberger, Yunxin Bo, Marian C. Bryan, Michael Croghan, Christopher Harold Fotsch, Clarence Henderson Hale, Roxanne Kay Kunz, Longbin Liu, Nobuko Nishimura, Mark H. Norman, Lewis Dale Pennington, Steve Fong Poon, Markian Myroslaw Stec, Jean David Joseph St., Jr., Nuria A. Tamayo, Christopher Michael Tegley, Kevin Chao Yang
Applicant Amgen Inc.

2-[4-[(2S)-4-[(6-Amino-3-pyridinyl)sulfonyl]-2-(1-propyn-1-yl)-1-piperazinyl]phenyl]-1,1,1,3,3,3-hexafluoro-2-propanol)

(S)-2-(4-(4-((6-Aminopyridin-3-yl)sulfonyl)-2-(prop-1-yn-1-yl)piperazin-1-yl)phenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol,

mp 113–123 °C;
[α]D20 = +75.1 (c = 2.2, MeOH).
Agents for Type 2 Diabetes,  PRECLINICAL

AMG-3969, a novel and stable small-molecule disruptor of glucokinase (GK) and glucokinase regulatory protein (GKRP) interaction by the optimization of initial screening hit and AMG-1694. AMG-3969 potently induced the dissociation of the GK-GKRP complex and promoted GK translocation both in-vitro and in-vivo. In rodent model of diabetes, AMG-3969 reduced blood glucose levels without affecting euglycemic animals. The study represents the first successful discovery of a small molecule that targets the GK-GKRP complex as a novel pathway for managing blood glucose levels with reduced hypoglycemic risk.

Image result for AMGEN

 Kate Ashton

Kate Ashton

Senior Scientist at Amgen, Inc

Amgen
Thousand Oaks, United States
Dr. Kate Ashton received a Masters in Chemistry with Industrial Experience from the University of Edinburgh. She conducted her PhD thesis research on the synthesis and structure elucidation of Reidispongiolide A with Prof. Ian Paterson at the University of Cambridge, and her postdoctoral work on SOMO catalysis with Prof. David W. C. MacMillan at both Caltech and Princeton. She has been at Amgen for 6 years and has worked on indications for cancer, Alzheimer’s and diabetes.Dr Fecke works in the area of industrial early drug discovery since 1996. He is currently Group Leader in the Primary Pharmacology department at UCB Pharma (UK) and is involved in the identification and characterization of NCE and NBE drugs in molecular interaction assays for both immunological and CNS diseases. Prior to joining UCB, he worked for Novartis and Siena Biotech in the areas of transplant rejection, neurodegeneration and oncology. He obtained his PhD at the Heinrich-Heine-University Dusseldorf in Germany in 1994.

Image result for amg 3969

(S)-2-(4-(4-((6-Aminopyridin-3-yl)sulfonyl)-2-(prop-1-yn-1-yl)piperazin-1-yl)phenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol, AMG-3969

Glucokinase (GK) is a member of a family of four hexokinases that are critical in the cellular metabolism of glucose. Specifically GK, also known as hexokinase IV or hexokinase D, facilitates glucose induced insulin secretion from pancreatic β-cells as well as glucose conversion into glycogen in the liver. GK has a unique catalytic activity that enables the enzyme to be active within the physiological range of glucose (from 5mM glucose to lOmM glucose).

Genetically modified mouse models support the role of GK playing an important role in glucose homeostasis. Mice lacking both copies of the GK gene die soon after birth from severe hyperglycemia, whereas mice lacking only one copy of the GK gene present with only mild diabetes. Mice that are made to overexpress the GK gene in their livers are hypoglycemic.

Numerous human mutations in the GK gene have been identified, with the vast majority of them resulting in proteins with impaired or absent enzymatic activity. These loss-of-function mutations are thought to contribute to the hyperglycemia seen with maturity-onset diabetes of the young type II (MODY-2). A small fraction of these mutations result in a GK with increased catalytic function. These individuals present with moderate to severe hypoglycemia.

GK activity in the liver is transiently regulated by glucokinase regulatory protein (GKRP). GK catalytic activity is inhibited when GK is bound to GKRP. This interaction is antagonized by increasing concentrations of both glucose and fructose -1 -phosphate (F1P). The complex of the two proteins is localized primarily to the nuclear compartment of a cell. Post prandially as both glucose and fructose levels rise, GK released from GKRP translocates to the cytoplasm. Cytoplasmic GK is now free of the inhibitory effects of GKRP and able to kinetically respond to glucose. Evidence from the Zucker diabetic fatty rat (ZDF) indicates that their glucose intolerance may be a result of this mechanism failing to function properly.

A compound that acts directly on GKRP to disrupt its interaction with GK and hence elevate levels of cytoplasmic GK is a viable approach to modulate GK activity. Such an approach would avoid the unwanted hypoglycemic effects of over stimulation of GK catalytic activity, which has been seen in the

development of GK activators. A compound having such an effect would be useful in the treatment of diabetes and other diseases and/or conditions in which GKRP and/or GK plays a role.

CLIP

Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors
Nature 2013, 504(7480): 437

Image result for Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors.

Image result for Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors.

SYNTHESIS

Figure

aReagents and conditions: (a) 1-propynylmagnesium bromide, THF, 0 °C, 99%; (b) TFA, DCM, then NaBH(OAc)3 77%; (c) NH4OH, EtOH, 120 °C, 88%; (d) chiral SFC, 38%………..Nature 2013,504, 437440

PATENT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012027261

EXAMPLE 241 : 2-(4-(4-((6-AMINO-3-PYRIDINYL)SULFONYL)-2-(l-PROP YN- 1 – YL)- 1 -PIPERAZINYL)PHENYL)- 1,1,1 ,3 ,3 ,3 -HEXAFLUORO-2-PROPANOL

STEP 1 : 4-BENZYL 1 -TERT-BUTYL 2-0X0-1,4-PIPERAZINEDICARBOXYLATE

A 2-L Erlenmeyer flask was charged with 2-piperazinone (36.5 g, 364 mmol, Sigma- Aldrich, St. Louis, MO), sodium carbonate (116 g, 1093 mmol), 600 mL of dioxane, and 150 mL of water. To this was slowly added benzyl chloroformate (62.1 g, 364 mmol, Sigma-Aldrich, St. Louis, MO) at room temperature over 20 min. After the addition was complete, the mixture was stirred for 2 h and then diluted with water and extracted with EtOAc (2 L). The combined organic extracts were dried (MgS04), filtered, and concentrated to give a white solid. To this solid was added 500 mL of DCM, triethylamine (128 mL, 911 mmol), DMAP (4.45 g, 36.4 mmol), and di-tert-butyl dicarbonate (119 g, 546 mmol, Sigma-Aldrich, St. Louis, MO). After 1 h at room temperature, the mixture was diluted with water and the organics were separated. The organics were dried (MgS04), filtered, and concentrated to give a brown oil. To this oil was added 100 mL of DCM followed by 1 L of hexane. The resulting white solid was collected by filtration to give 4-benzyl 1-tert-butyl 2-oxo-l,4-piperazinedicarboxylate (101 g).

STEP 2: BENZYL (2-((TERT-BUTOXYCARBONYL)AMINO)ETHYL)(2-OXO-3 -PENTYN- 1 -YL)CARBAMATE

A 150-mL round-bottomed flask was charged with 4-benzyl 1-tert-butyl

2- oxo-l,4-piperazinedicarboxylate (1.41 g, 4.22 mmol) and THF (5 mL). 1-Propynylmagnesium bromide (0.5 M in THF, 20.0 mL, 10.0 mmol, Sigma-Aldrich, St. Louis, MO) was added at 0 °C slowly. The mixture was stirred at 0 °C for 2 h. Saturated aqueous NH4C1 (40 mL) was added and the aqueous phase was extracted with EtOAc (200 mL, then 2 x 100 mL). The combined organic phases were dried over sodium sulfate, filtered and concentrated in vacuo. The crude product was purified by column chromatography (50 g of silica, 0 to 50% EtOAc in hexanes) to afford benzyl (2-((tert-butoxycarbonyl)amino)ethyl)(2-oxo- 3- pentyn-l-yl)carbamate (1.55 g) as a clear oil.

STEP 3: BENZYL 3-(l-PROPYN-l-YL)-l-PIPERAZINECARBOXYLATE

A 3-L round-bottomed flask was charged with 2-((tert-butoxycarbonyl)amino)ethyl)(2-oxo-3-pentyn-l-yl)carbamate (82.2 g, 219 mmol) and 300 mL of DCM. After cooling to -10 °C, TFA (169 mL, 2195 mmol) was added and the resulting dark solution was stirred at room temperature for 15 min. Sodium triacetoxyborohydride (186 g, 878 mmol, Sigma-Aldrich, St. Louis, MO) was then added portion- wise over 10 min. After 2 h, the mixture was

concentrated, diluted with EtOAc (1 L), and neutralized with 5 N NaOH. The layers were separated and the organic extracts were washed with brine, dried (MgS04), filtered and concentrated. The resulting orange oil was purified via column chromatography (750 g of silica gel, 0 to 4.5 % MeOH/DCM) to give benzyl 3-(l-propyn-l-yl)-l-piperazinecarboxylate (43.7 g) as a brown foam.

STEP 4: BENZYL 3-(l-PROPYN-l-YL)-4-(4-(2,2,2-TRIFLUORO-l-HYDROXY- 1 -(TRIFLUOROMETHYL)ETHYL)PHENYL)- 1 -PIPERAZINECARBOXYLATE

A 150-mL reaction vessel was charged with benzyl 3-(prop-l-yn-l-yl)piperazine-l-carboxylate (2.88 g, 11.2 mmol), 2-(4-bromophenyl)-l, 1,1, 3,3,3-hexafluoropropan-2-ol (4.36 g, 13.5 mmol, Bioorg. Med. Chem. Lett. 2002, 12, 3009), dicyclohexyl(2′,6′-diisopropoxy-[ 1 , 1 ‘-biphenyl]-2-yl)phosphine, RuPhos (0.530 g, 1.14 mmol, Sigma- Aldrich, St. Louis, MO), RuPhos Palladacycle (0.417 g, 0.572 mmol, Strem Chemical Inc, Newburyport, MA), sodium tert-butoxide (2.73 g, 28.4 mmol, Strem Chemical Inc, Newburyport, MA) and toluene (35 mL). The mixture was degassed by bubbling Ar through the solution for 10 min. The vessel was sealed and heated at 100 °C for 1.5 h. The reaction mixture was cooled to room temerature and water (100 mL) was added. The aqueous phase was extracted with EtOAc (3 x 100 mL) and the combined organic phases were washed with saturated aqueous sodium chloride (150 mL). The organic extracts were dried over sodium sulfate, filtered and concentrated in vacuo. The crude product was purified by column chromatography (100 g of silica, 0 to 50% EtOAc in hexanes) to afford benzyl 3-(l-propyn-l-yl)-4-(4-(2,2,2-trifluoro- 1 -hydroxy- 1 -(trifluoromethyl)ethyl)phenyl)- 1 -piperazinecarboxylate as a yellow solid.

STEP 5: 2-(4-(4-((6-CHLORO-3-PYRIDINYL)SULFONYL)-2-(l-PROPYN-l-YL)- 1 -PIPERAZIN YL)PHENYL)- 1,1,1 ,3 ,3 ,3 -HEXAFLUORO-2-PROPANOL

A 500-mL round-bottomed flask was charged with benzyl 3-(l-propyn-l-yl)-4-(4-(2,2,2-trifluoro- 1 -hydroxy- 1 -(trifluoromethyl)ethyl)phenyl)- 1 -piperazinecarboxylate (3.13 g, 6.25 mmol) and TFA (40 mL).

Trifluoromethanesulfonic acid (1.25 mL, 14.1 mmol, Acros/Fisher Scientific, Waltham, MA) was added dropwise at room temperature. After 5 min, additional TfOH (0.45 mL, 5.1 mmol) was added. After an additional 10 min, solid

NaHC03 was carefully added in potions. Saturated aqueous NaHC03 (250 mL) was added slowly to bring pH to approximately 7. The aqueous phase was extracted with EtOAc (100 mL). At this time, more solid NaHC03 was added to the aqueous phase and extracted again with EtOAc (100 mL). The combined organic phases were washed with water (200 mL) and saturated aqueous sodium chloride (200 mL). The combined organic extracts were dried over sodium sulfate, filtered and concentrated in vacuo to afford 3.10 g of tan solid.

A 500-mL round-bottomed flask was charged with this material, triethylamine (5.00 mL, 35.9 mmol) and CH2CI2 (30 mL). 6-Chloropyridine-3-sulfonyl chloride (1.58 g, 7.43 mmol, Organic Process Research & Development 2009, 13, 875) was added in potions at 0 °C. The brown mixture was stirred at 0 °C for 10 min. The volume of the reaction mixture was reduced to approximately 10 mL in vacuo then the mixture was purified twice by column chromatography (100 g of silica, 0 to 50% EtOAc in hexanes) to afford 2-(4-(4-((6-chloro-3-pyridinyl)sulfonyl)-2-( 1 -propyn- 1 -yl)- 1 -piperazinyl)phenyl)- 1,1,1,3,3,3-hexafluoro-2-propanol (3.46 g) as an off-white solid.

STEP 6: 2-(4-(4-((6-AMINO-3-PYRIDINYL)SULFONYL)-2-(l-PROPYN-l-YL)- 1 -PIPERAZIN YL)PHENYL)- 1,1,1 ,3 ,3 ,3 -HEXAFLUORO-2-PROPANOL

A 20-mL sealed tube was charged with 2-(4-(4-((6-chloro-3-pyridinyl)sulfonyl)-2-( 1 -propyn- 1 -yl)- 1 -piperazinyl)phenyl)- 1,1,1,3,3,3-hexafluoro-2-propanol (0.340 g, 0.627 mmol), concentrated ammonium hydroxide (5.00 mL, 38.5 mmol) and EtOH (5 mL). The reaction mixture was heated in an Initiator (Biotage, AB, Uppsala, Sweden) at 120 °C for 1 h. The reaction mixture was further heated in a heating block at 110 °C for 5 h. The reaction mixture was concentrated and purified by column chromatography (25 g of silica, 30 to 80% EtOAc in hexanes) to afford 2-(4-(4-((6-amino-3-pyridinyl)sulfonyl)-2-( 1 -propyn- 1 -yl)- 1 -piperazinyl)phenyl)- 1,1,1,3,3,3-hexafluoro-2-propanol (0.289 g) as a mixture of two enantiomers.

1H NMR (400 MHz, CDC13) δ ppm 8.49 (br. s., 1 H), 7.80 (dd, J= 2.3, 8.8 Hz, 1 H), 7.59 (d, J= 8.8 Hz, 2 H), 6.97 (d, J= 9.0 Hz, 2 H), 6.55 (d, J= 8.8 Hz, 1 H), 5.05 (s, 2 H), 4.46 (br. s., 1 H), 3.85 – 3.72 (m, 2 H), 3.54 (br. s., 1 H), 3.50 – 3.34 (m, 2 H), 2.83 (dd, J= 3.3, 11.0 Hz, 1 H), 2.69 (dt, J= 3.4, 11.0 Hz, 1 H), 1.80 (s, 3 H). m/z (ESI, +ve ion) 523.1 (M+H)+. GK-GKRP IC50 (Binding) = 0.003 μΜ

The individual enantiomers were isolated using chiral SFC. The method used was as follows: Chiralpak® ADH column (21 x 250 mm, 5 μιη) using 35% methanol in supercritical C02 (total flow was 70 mL/min). This produced the two enantiomers with enantiomeric excesses greater than 98%.

2-(4-((2S)-4-((6-amino-3-pyridinyl)sulfonyl)-2-(l -propyn- 1-yl)- 1 -piperazinyl)phenyl)- 1,1,1 ,3 ,3 ,3 -hexafluoro-2-propanol and 2-(4-((2R)-4-((6-amino-3 -pyridinyl)sulfonyl)-2-( 1 -propyn- 1 -yl)- 1 -piperazinyl)phenyl)- 1,1,1,3,3,3-hexafluoro-2-propanol.

FIRST ELUTING PEAK (PEAK #1)

1H NMR (400 MHz, CDC13) δ 8.48 (d, J= 2.3 Hz, 1 H), 7.77 (dd, J= 2.5, 8.8 Hz, 1 H), 7.57 (d, J= 8.8 Hz, 2 H), 6.95 (d, J= 9.2 Hz, 2 H), 6.52 (d, J= 8.8 Hz, 1 H), 4.94 (s, 2 H), 4.44 (br. s., 1 H), 3.82 – 3.71 (m, 2 H), 3.58 – 3.33 (m, 3 H), 2.81 (dd, J= 3.2, 11.1 Hz, 1 H), 2.67 (dt, J= 3.9, 11.0 Hz, 1 H), 1.78 (d, J = 2.2 Hz, 3 H). m/z (ESI, +ve ion) 523.2 (M+H)+. GK-GKRP IC50 (Binding) = 0.002 μΜ.

SECOND ELUTING PEAK (PEAK #2)

1H NMR (400 MHz, CDC13) δ 8.49 (d, J= 1.8 Hz, 1 H), 7.78 (dd, J= 2.3, 8.8 Hz, 1 H), 7.59 (d, J= 8.6 Hz, 2 H), 6.97 (d, J= 9.0 Hz, 2 H), 6.54 (d, J= 8.8 Hz, 1 H), 4.97 (s, 2 H), 4.46 (br. s., 1 H), 3.77 (t, J= 11.7 Hz, 2 H), 3.67 (br. s., 1 H), 3.51 – 3.33 (m, 2 H), 2.82 (dd, J= 3.3, 11.0 Hz, 1 H), 2.68 (dt, J= 3.9, 11.1 Hz, 1 H), 1.79 (d, J= 2.0 Hz, 3 H). m/z (ESI, +ve ion) 523.2 (M+H)+. GK-GKRP IC50 (Binding) = 0.342 μΜ.

Alternative procedure starting after Step 4.

STEP 5 : 2-(4-(4-((6-AMINO-3-PYRIDINYL)SULFONYL)-2-(l-PROPYN-l-YL)- 1 -PIPERAZIN YL)PHENYL)- 1,1,1 ,3 ,3 ,3 -HEXAFLUORO-2-PROPANOL

Alternatively, 2-(4-(4-((6-amino-3-pyridinyl)sulfonyl)-2-( 1 -propyn- 1 -yl)-l-piperazinyl)phenyl)-l,l,l,3,3,3-hexafluoro-2-propanol was synthesized from benzyl 3-( 1 -propyn- 1 -yl)-4-(4-(2,2,2-trifluoro- 1 -hydroxy- 1 -(trifluoromethyl)ethyl)phenyl)- 1 -piperazinecarboxylate as follows.

A 2-L round-bottomed flask was charged with benzyl 3 -(1 -propyn- 1-yl)-4-(4-(2,2,2-trifluoro- 1 -hydroxy- 1 -(trifluoromethyl)ethyl)phenyl)- 1 -piperazinecarboxylate (21.8 g, 43.5 mmol, step 5) and TFA (130 mL).

Trifluoromethanesulfonic acid (11.6 mL, 131 mmol, Acros/Fisher Scientific, Waltham, MA) was added slowly at rt resulting orange cloudy mixture. After stirring at rt for 10 min, the volume of the reaction mixture was reduced to half in vacuo. Solid NaHC03 was added in potions until the mixture became sludge. Saturated aqueous NaHC03(800 mL) was added slowly until the pH was about

8. The aqueous phase was extracted with EtOAc (3 x 250 mL). The combined organic phases were washed with water (500 mL) and saturated aqueous NaCl (500 mL). The organic phase was dried over sodium sulfate, filtered and concentrated in vacuo. This material was dissolved into DCM (200 mL) and triethylamine (31.0 mL, 222 mmol) was added. Then 6-aminopyridine-3-sulfonyl chloride (9.40 g, 48.8 mmol, published PCT patent application no. WO

2009/140309) was added in potions over 10 min period. The brown mixture was stirred at room temperature for 10 min. The reaction mixture was washed with water (300 mL) and saturated aqueous NaCl (300 mL). The organic phase was dried over sodium sulfate, filtered and concentrated in vacuo. The crude product was purified by column chromatography (780 g of total silica, 30 to 90% EtOAc in hexanes) to afford 2-(4-(4-((6-amino-3-pyridinyl)sulfonyl)-2-(l-propyn-l-yl)-l-piperazinyl)phenyl)-l,l,l,3,3,3-hexafluoro-2-propanol (19.4 g) as a mixture of two enantiomers.

Paper

Nonracemic Synthesis of GK–GKRP Disruptor AMG-3969

Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
Amgen Inc. 360 Binney Street, Cambridge, Massachusetts 02142, United States
J. Org. Chem., 2014, 79 (8), pp 3684–3687

Abstract Image

A nonracemic synthesis of the glucokinase–glucokinase regulatory protein disruptor AMG-3969 (5) is reported. Key features of the synthetic approach are an asymmetric synthesis of the 2-alkynyl piperazine core via a base-promoted isomerization and a revised approach to the synthesis of the aminopyridinesulfonamide with an improved safety profile.

(S)-2-(4-(4-((6-Aminopyridin-3-yl)sulfonyl)-2-(prop-1-yn-1-yl)piperazin-1-yl)phenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol, AMG-3969 (5)

(S)-2-(4-(4-((6-aminopyridin-3-yl)sulfonyl)-2-(prop-1-yn-1-yl)piperazin-1-yl)phenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol (5) (64.0 g, 49% yield) as white solid. The enanatiomeric excess was found to be >99.5% by chiral SFC (see Supporting Information):
1H NMR (400 MHz, CDCl3) δ 8.47 (s, 1 H), 7.79 (d, J = 8.6 Hz, 1 H), 7.59 (d, J = 8.2 Hz, 2 H), 6.97 (d, J = 8.6 Hz, 2 H), 6.55 (d, J = 8.8 Hz, 1 H), 5.06 (br s, 2 H), 4.45 (br s, 1 H), 3.96 (br s, 1 H), 3.77 (t, J = 12.1 Hz, 2 H), 3.50–3.35 (m, 2 H), 2.82 (d, J = 11.0 Hz, 1 H), 2.68 (t, J = 10.9 Hz, 1 H), 1.79 (s, 3 H);
13C NMR (101 MHz, CD3OD) δ 163.8, 152.0, 150.1, 138.2, 129.0, 124.7 (q), 123.9, 121.1, 117.5, 109.3, 82.8, 78.3 (m), 75.5, 52.0, 47.2, 44.9, 3.2;
 
HRMS (ESI-TOF) m/z [M + H]+calcd for C21H21F6N4O3S 523.1239, found 523.1229;
 
mp 113–123 °C;
 
[α]D20 = +75.1 (c = 2.2, MeOH).
 

Clip

AMG-3969 is a disruptor of the glucokinase (GK)–glucokinase regulatory protein (GKRP) protein–protein interaction. Bourbeau and co-workers at Amgen describe their efforts towards an asymmetric synthesis of this compound ( J. Org. Chem. 2014, 79, 3684). The discovery route to this compound involved seven steps (14% overall yield), had certain safety concerns and relied upon SFC separation of the API enantiomers. The new route requires five steps (26% overall yield) and delivers the API in excellent enantiomeric excess (99% ee). A key feature of the synthetic approach was an asymmetric synthesis of the 2-alkynylpiperazine core via a base-promoted isomerization. It was found that the strongly basic conditions employed for the “alkyne-walk” did not erode the previously established stereocenter. Also, safety concerns around a late-stage amination of a 2-chloropyridine intermediate in the discovery route were alleviated by starting with a Boc-protected diaminopyridine instead.
PATENT

INTERMEDIATE A: TERT-EUTYL (5-(CHLOROSULFONYL)-2-PYRIDINYL)CARBAMATE

0,N

STEP 1 : TERT-BUTY (5-NITRO-2-PYRIDINYL)CARBAMATE

A 3-L round-bottomed flask was charged with 5-nitro-2-pyridinamine (75.0 g, 539 mmol, Alfa Aesar, Ward Hill, MA) and 500 mL of DCM. To this was added triethylamine (82 g, 810 mmol), di-tert-butyl dicarbonate (129 g, 593 mmol, Sigma-Aldrich, St. Louis, MO), and N,N-dimethylpyridin-4-amine (32.9 g, 270 mmol, Sigma-Aldrich, St. Louis, MO). After stirring at rt for 18 h, the mixture was diluted with water and the solid was collected by filtration. The yellow solid was washed with MeOH to give tert-butyl (5-nitro-2-pyridinyl)carbamate (94.6 g) as a light yellow solid.

STEP 2: TERT-BUTY (5 – AMINO-2-P YRIDINYL)C ARB AM ATE

A 3-L round-bottomed flask was charged with tert-butyl (5-nitro-2-pyridinyl)carbamate (96.4 g, 403 mmol), 500 mL of MeOH, 500 mL of THF, and 100 mL of sat aq NH4Cl. Zinc (105 g, 1610 mmol, Strem Chemical Inc, Newburyport, MA) was slowly added (over 10 min) to this solution. The mixture was stirred at room temperature for 12 h, then filtered. The filtrate was concentrated and then diluted with EtOAc and washed with water. The organic extracts were dried over MgS04, filtered, and concentrated. The resulting solid was recrystallized from MeOH to give tert-butyl(5-amino-2-pyridinyl)carbamate (38.6 g) as a light-yellow solid.

STEP 3: TERT-BUTYL (5-(CHLOROSULFONYL)-2-PYRIDINYL)CARBAMATE

A 3-L round-bottomed flask was charged with sodium nitrite (15.3 g, 221 mmol, J. T. Baker, Philipsburg, NJ), 100 mL of water and 500 mL of MeCN. After cooling to 0 °C, cone, hydrochloric acid (231 mL, 2770 mmol) was slowly added keeping the internal temperature below 10 °C. After stirring at 0 °C for 10 min, tert-butyl (5-amino-2-pyridinyl)carbamate (38.6 g, 184 mmol) was added as a suspension in MeCN (200 mL). The mixture was stirred for 30 min, then 150 mL of AcOH, copper(ii) chloride (12.4 g, 92.2 mmol, Sigma-Aldrich, St. Louis, MO), and copper(i) chloride (0.183 g, 1.85 mmol, Strem Chemical Inc,

Newburyport, MA) were added. S02 gas (Sigma-Aldrich, St. Louis, MO) was bubbled through the solution for 15 min. The mixture was stirred at 0 °C for 30 min, then about 500 mL of ice-cold water was added. The resulting precipitate was collected by filtration and dried over MgS04 to give tert-butyl (5-(chlorosulfonyl)-2-pyridinyl)carbamate (15.5 g) as a white solid.

1H NMR (400MHz, CDC13) δ ppm 8.93 (br s, 1 H), 8.63 – 8.42 (m, 1 H), 8.35 -7.94 (m, 2 H), 1.58 (s, 9 H).

INTERMEDIATE B: (3S)-l-BENZYL-3-(l-PROPYN-l-YL)PIPERAZINE

STEP 1 : (3S)-l-BENZYL-3-(2-PROPYN-l-YL)-2,5-PIPERAZINEDIONE

A 1-L round-bottoemd flask was charged with (S)-2-((tert-butoxycarbonyl)amino)pent-4-ynoic acid (42.0 g, 197 mmol, AK Scientific, Union City, CA), ethyl 2-(benzylamino)acetate (40.0 g, 207 mmol, Sigma-Aldrich, St. Louis, MO), HATU (90 g, 240 mmol, Oakwood Products, West Columbia, SC) and 200 mL of DMF. To this was added N-ethyl-N-isopropylpropan-2-amine (51.5 ml, 296 mmol, Sigma-Aldrich, St. Louis, MO). After 15 min of stirring at rt, the mixture was diluted with water 300 mL and extracted with 1 L of 20% EtOAc in diethyl ether. The layers were separated and the organic was washed with 2 M HCl, water, sat. aq. NaHC03 and brine. The extracts were dried and concentrated to give an off-white solid. To this was added 200 mL of DCM and TFA (152 ml, 1970 mmol, Sigma-Aldrich, St. Louis, MO). After stirring at rt for 30 min, the mixture was concentrated and then azetroped with 100 mL toluene (twice). To the brown oil obtained was added ammonia (2 M in MeOH, 394 ml, 789 mmol, Sigma-Aldrich, St. Louis, MO). The mixture was stirred at rt for 30 min. The mixture was concentrated, dissolved in EtOAc, and washed with water. The organics were dried (MgS04), filtered, and concentrated to give a white solid that was triturated with diethyl ether to give (S)-l-benzyl-3-(prop-2-yn-l-yl)piperazine-2,5-dione (37.3 g) as a white solid.

STEP 2: (3S)-l-BENZYL-3-(2-PROPYN-l-YL)PIPERAZINE

A 1-L round-bottomed flask was charged with (S)-l-benzyl-3-(prop-2-yn-l-yl)piperazine-2,5-dione (37.3 g, 154 mmol) and 150 mL of THF. To this was slowly added aluminum (III) lithium hydride (1M in THF, 539 ml, 539 mmol, Sigma-Aldrich, St. Louis, MO). After the addition was complete the mixture was heated at 80 °C for 12 h. The mixture was then cooled to 0 °C and solid sodium sulfate decahydrate was added until bubbling ceased. The mixture was filtered and the filtrate was concentrated to give (S)-l-benzyl-3-(prop-2-yn-l-yl)piperazine (18.1 g) as a yellow oil.

STEP 3: (35)-l-BENZYL-3-(l-PROPYN-l-YL)PIPERAZINE

To a solution of (35)-l-benzyl-3-(2-propyn-l-yl)piperazine (2.3 g, 11 mmol) in THF (50 mL) was added potassium t-butoxide (2.41 g, 21.5 mmol, Sigma-Aldrich, St. Louis, MO). The reaction mixture was stirred at rt for 30 min, then quenched with water (200 mL) and EtOAc (300 mL) was added. The organic phase was dried over sodium sulfate, filtered and concentrated under a vacuum to give a solid that was purified by silica gel column chromatography (0 to 10% MeOH in CH2CI2) and then recrystallized from hexanes to afford (35)- 1-benzyl-3-(l-propyn-l-yl)piperazine (2.16 g) as an off-white solid.

1H NMR (400MHz, CD3OD) δ ppm 7.42 – 7.21 (m, 5 H), 3.59 – 3.49 (m, 3 H), 2.93 (td, J= 2.9, 12.4 Hz, 1 H), 2.86 – 2.73 (m, 2 H), 2.68 (d, J= 11.3 Hz, 1 H), 2.22 – 2.04 (m, 2 H), 1.80 (d, J= 2.3 Hz, 3 H).

INTERMEDIATE C: N,N-BIS(4-METHOXYBENZYL)-5-(((35)-3-(l-PROPYN- 1 – YL)- 1 -PIPERAZINYL)SULFONYL)-2-PYRIDIN AMINE

STEP 1 : (35)-l-((6-CHLORO-3-PYRIDINYL)SULFONYL)-3-(l-PROPYN-l-YL)PIPERAZINE

To a stirred solution of benzyl (35)-3-(l-propyn-l-yl)-l-piperazinecarboxylate (2.51 g, 9.71 mmol, Intermediate E) in TFA (20 mL) in 250-mL round-bottomed flask, trifluoromethanesulfonic acid (2.59 mL, 29.1 mmol, Alfa Aesar, Ward Hill, MA) was added slowly at rt. After stirring at room temperature for 3 min, the reaction mixture was concentrated to dryness under a vacuum. DCM (20 mL) was added to the residue followed by triethylamine (13.5 mL, 97 mmol). After the material went into solution, the mixture was cooled to 0 °C and 6-chloro-3-pyridinesulfonyl chloride (2.06 g, 9.73 mmol, Organic Process Research & Development 2009, 13, 875) was added portion-wise. After 5 min of stirring at 0 °C, water (40 mL) was added at that temperature and the layers were separated. The aqueous phase was extracted with DCM (2 x 50 mL). The combined organic phases were washed with saturated aqueous sodium chloride (60 mL). The organic phase was dried over sodium sulfate, filtered and concentrated under a vacuum. The crude product was purified by column chromatography (100 g of silica, 30 to 90% EtOAc in hexanes) to afford (35)- 1-((6-chloro-3-pyridinyl)sulfonyl)-3-(l-propyn-l-yl)piperazine (2.61 g) as an off-white solid.

STEP 2: N,N-BIS(4-METHOXYBENZYL)-5-(((35)-3-(l-PROPYN-l-YL)-l-PIPERAZINYL)SULFONYL)-2-PYRIDIN AMINE

A mixture of (35)-l-((6-chloro-3-pyridinyl)sulfonyl)-3-(l-propyn-l-yl)piperazine (2.6 g, 8.7 mmol), N-(4-methoxybenzyl)-l-(4-methoxyphenyl)methanamine (2.40 g, 9.33 mmol, WO2007/109810A2), and DIPEA (2.4 mL, 14 mmol) in z-BuOH (8.0 mL) was heated at 132 °C using a microwave reactor for 3 h. This reaction was run three times (total starting material amount was 7.2 g). The mixtures from the three runs were combined and partitioned between EtOAc (200 mL) and aqueous NaHC03 (half saturated, 50 mL). The organic layer was washed with aqueous NaHC03 (3 x 50 mL), dried over Na2S04, filtered, and concentrated. The residue was purified (5-times total) by chromatography on silica using MeOH:DCM:EtOAc:hexane

(4:20:20:60) as eluent to give N,N-bis(4-methoxybenzyl)-5-(((3S)-3-(l-propyn-i-yl)-l-piperazinyl)sulfonyl)-2-pyridinamine (6.6 g) as a white foam.

1H NMR (400MHz ,CDC13) δ ppm 8.55 (d, J= 2.3 Hz, 1 H), 7.64 (dd, J= 2.5, 9.0 Hz, 1 H), 7.13 (d, J= 8.6 Hz, 4 H), 6.91 – 6.81 (m, 4 H), 6.47 (d, J= 9.0 Hz, 1 H), 4.75 (s, 4 H), 3.80 (s, 6 H), 3.68 – 3.61 (m, 1 H), 3.57 (d, J= 11.2 Hz, 1 H), 3.41 (d, J= 11.3 Hz, 1 H), 3.07 (td, J= 3.3, 12.1 Hz, 1 H), 2.87 (ddd, J= 2.9, 9.7, 12.2 Hz, 1 H), 2.63 – 2.47 (m, 2 H), 1.80 (d, J= 2.2 Hz, 3 H). One exchangeable proton was not observed, m/z (ESI, +ve ion) 521.2 (M+H)+.

INTERMEDIATE D: rEi?r-BUTYL(5-(((35)-3-(l-PROPYN-l-YL)-4-(4-(2-(TRIFLUOROMETHYL)-2-OXIRANYL)PHENYL)- 1 -PIPERAZINYL)SULFONYL)-2-PYRIDINYL)CARBAMATE

step 1 step 2

STEP 1 : l-BR0M0-4-(l-(TRIFLU0R0METHYL)ETHENYL)BENZENE

To a 1-L round-bottomed flask was added methyl phenylphosphonium bromide (25.4 g, 71.1 mmol, Sigma- Aldrich, St. Louis, MO) and toluene (75 mL). The resulting mixture was stirred for 5 min then concentrated and dried under high vacuum for 30 min. To this residue was added THF (300 mL) followed by n-butyllithium (2.5 M in hexanes, 29.0 mL, 71.1 mmol, Aldrich, St. Louis, MO) dropwise via an addition funnel. After being stirred for 1 h at rt, a solution of l-(4-bromophenyl)-2,2,2-trifluoroethanone (15.0 g, 59.3 mmol, Matrix Scientific, Columbia, SC) in THF (20 mL) was added to the reaction mixture dropwise via an addition funnel. The reaction mixture was stirred at rt for 2 h. The reaction was quenched with saturated aqueous NH4C1 and the mixture was concentrated. The residue was partitioned between diethyl ether (150 mL) and saturated aqueous NH4C1 (80 mL). The organic layer was washed with water and brine, dried over MgS04, filtered, and concentrated. The resulting crude product was purified by column chromatography (330 g of silica gel, 2 to 5% EtOAc in hexanes) to afford l-bromo-4-(l-(trifluoromethyl)ethenyl)benzene (14.0 g) as a brown liquid.

STEP 2: 2-(4-BROMOPHENYL)-3,3,3-TRIFLUORO-l,2-PROPANEDIOL

To a solution of l-bromo-4-(l-(trifluoromethyl)ethenyl)benzene (13.5 g, 53.8 mmol) in acetone (100 mL) and water (100 mL) was added NMO (6.90 g, 59.2 mmol, Sigma- Aldrich, St. Louis, MO) and osmium tetroxide (0.140 mL, 2.70 mmol, Sigma-Aldrich, St. Louis, MO). The resulting mixture was stirred at rt for 6 h. The reaction mixture was filtered and the filtrate was concentrated. The residue was partitioned between EtOAc (100 mL) and water (30 mL). The aqueous layer was extracted with EtOAc (2 x 75 mL). The combined organic layers were dried over MgS04, filtered, and concentrated. The resulting product was purified by column chromatography (330 g of silica gel, 0 to 8% MeOH in DCM) to afford 2-(4-bromophenyl)-3,3,3-trifluoro-l,2-propanediol (14.5 g) as an off-white solid.

STEP 3: 4-(4-BROMOPHENYL)-2,2-DIMETHYL-4-(TRIFLUOROMETHYL)-1,3-DIOXOLANE

To a solution of 2-(4-bromophenyl)-3,3,3-trifluoro-l,2-propanediol (14.5 g, 51.0 mmol) in acetone (200 mL) was added 2,2-dimethoxypropane (19.0 mL, 153 mmol, Sigma-Aldrich, St. Louis, MO) and /?-toluenesulfonic acid (0.485 g, 2.54 mmol, Sigma-Aldrich, St. Louis, MO). The resulting mixture was stirred at rt for 20 h. Additional 2,2-dimethoxypropane (19.0 mL, 153 mmol, Sigma-Aldrich, St. Louis, MO) and /?-toluenesulfonic acid (0.485 g, 2.54 mmol, Sigma-Aldrich, St. Louis, MO) were added and the reaction was stirred for another 20 h. The reaction was quenched with saturated aqueous NaHC03 (10 mL). The reaction mixture was concentrated and the residue was partitioned between

EtOAc (100 mL) and saturated aqueous NaHC03 (60 mL). The aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried over MgS04, filtered, and concentrated. The resulting product was purified by column chromatography (330 g of silica gel, 0 to 8% EtOAc in hexanes) to afford 4-(4-bromophenyl)-2,2-dimethyl-4-(trifluoromethyl)-l,3-dioxolane (15.7 g) as a colorless liquid.

STEP 4: BENZYL (3S)-4-(4-(2,2-DIMETHYL-4-(TRIFLUOROMETHYL)-l,3-DIOXOLAN-4-YL)PHENYL)-3-(l -PROPYN- 1 -YL)- 1 -PIPERAZINECAPvBOXYLATE

To a 20-mL vial was added benzyl (3S)-3-(l -propyn- l-yl)-l-piperazinecarboxylate (1.0 g, 3.87 mmol, Intermediate E), RuPhos Palladacycle (0.250 g, 0.310 mmol, Strem Chemical, Newburyport, MA), 4-(4-bromophenyl)-2,2-dimethyl-4-(trifluoromethyl)-l,3-dioxolane (2.50 g, 7.74 mmol), dioxane (15.0 mL), and sodium t-butoxide (0.740 g, 7.74 mmol, Sigma-Aldrich, St.

Louis, MO). The reaction mixture was degassed by bubbling N2 through the solution for 5 min, then the vial was capped. The reaction mixture was heated at 80 °C for 30 min then allowed to cool to rt and partitioned between EtOAc (70 mL) and water (40 mL). The aqueous layer was extracted with EtOAc (1 x 50 mL). The combined organic layers were dried over MgS04, filtered, and concentrated. The crude product was purified by column chromatography (80 g of silica, 5% to 30% EtOAc in hexanes) to afford benzyl (35)-4-(4-(2,2-dimethyl-4-(trifluoromethyl)- 1 ,3-dioxolan-4-yl)phenyl)-3-(l -propyn- 1 -yl)- 1 -piperazinecarboxylate (1.6 g) as a yellow foam.

STEP 5: rEi?r-BUTYL(5-(((35)-3-(l-PROPYN-l-YL)-4-(4-(2,2,2-TRIFLUORO- 1 -HYDROXY- 1 -(HYDROXYMETH YL)ETHYL)PHENYL)- 1 -PIPERAZINYL)SULFONYL)-2-PYRIDINYL)CARBAMATE

To a 150-mL round-bottomed flask was added benzyl (3S)-4-(4-(2,2-dimethyl-4-(trifluoromethyl)- 1 ,3 -dioxolan-4-yl)phenyl)-3 -( 1 -propyn- 1 -yl)- 1 -piperazinecarboxylate (1.60 g, 3.18 mmol) and TFA (20 mL, Sigma-Aldrich, St. Louis, MO). After the substrate was completely dissolved in TFA,

trifluoromethanesulfonic acid (0.850 mL, 9.55 mmol, Alfa Aesar, Ward Hill,

MA) was added and the resulting mixture was stirred at rt for 1.5 h. The reaction mixture was slowly poured into a 300-mL beaker which contained 100 mL ice water. The resulting mixture was stirred while NaOH pellets (11.0 g) were slowly added to adjust the pH to 7. The solution was extracted with EtOAc (2 x 70 mL) and 10% IPA in CHCI3 (2 x 40 mL). The combined organic layers were dried over MgS04, filtered, and concentrated. The resulting intermediate was redissolved in DCM (60 mL). Triethylamine (2.20 mL, 16.0 mmol, Sigma-Aldrich, St. Louis, MO) and tert-butyl (5-(chlorosulfonyl)-2-pyridinyl)carbamate (1.04 g, 3.60 mmol, Intermediate A) were added. The reaction mixture was stirred at rt for 1 h then partitioned between DCM (70 mL) and water (30 mL). The aqueous layer was extracted with DCM (2 x 40 mL). The combined organic layers were dried over MgS04, filtered, and concentrated. The crude product was purified by column chromatography (120 g of silica, 10% to 40% acetone in hexanes) to afford tert-butyl (5-(((35)-3-(l-propyn-l-yl)-4-(4-(2,2,2-trifiuoro-l-hydroxy- 1 -(hydroxymethyl)ethyl)phenyl)- 1 -piperazinyl)sulfonyl)-2-pyridinyl)carbamate (1.0 g) as a yellow foam.

STEP 6: rEi?r-BUTYL(5-(((35)-3-(l-PROPYN-l-YL)-4-(4-(2-(TRIFLUOROMETHYL)-2-OXIRANYL)PHENYL)- 1 -PIPERAZINYL)SULFONYL)-2-PYRIDINYL)CARBAMATE

To a solution of tert-butyl (5-(((35)-3-(l-propyn-l-yl)-4-(4-(2,2,2-trifiuoro- 1 -hydroxy- 1 -(hydroxymethyl)ethyl)phenyl)- 1 -piperazinyl)sulfonyl)-2-pyridinyl)carbamate (0.300 g, 0.513 mmol) in DCM (5 mL) was added triethylamine (0.400 mL, 2.88 mmol, Sigma-Aldrich, St. Louis, MO) and p-toluenesulfonyl chloride (0.108 g, 0.564 mmol, Sigma-Aldrich, St. Louis, MO). The resulting mixture was heated at reflux (50 °C) under N2 for 2 h. The reaction mixture was cooled to rt and partitioned between sat. NaHCOs (30 mL) and DCM (70 mL). The aqueous layer was extracted with DCM (2 x 40 mL). The combined organic layers were dried over MgS04, filtered, and concentrated. The crude product was purified by column chromatography (40 g of silica, 10 to 40%> acetone in hexanes) to afford tert-butyl (5-(((35)-3-(l-propyn-l-yl)-4-(4-(2-(trifluoromethyl)-2-oxiranyl)phenyl)- 1 -piperazinyl)sulfonyl)-2-pyridinyl)carbamate (0.240 g) as an off-white solid.

1H NMR (400MHz, CDC13) δ ppm 8.66 (dd, J= 0.6, 2.3 Hz, 1 H), 8.20 – 8.10 (m, 1 H), 8.04 (dd, J= 2.2, 8.9 Hz, 1 H), 7.63 (s, 1 H), 7.41 (d, J= 8.6 Hz, 2 H), 6.94 (d, J= 8.8 Hz, 2 H), 4.42 (d, J= 2.2 Hz, 1 H), 3.89 – 3.67 (m, 2 H), 3.38 (d, J = 5.3 Hz, 3 H), 2.97 – 2.83 (m, 2 H), 2.80 – 2.60 (m, 1 H), 1.78 (dd, J= 0.8, 2.0 Hz, 3 H), 1.55 (s, 9 H). m/z (ESI, +ve ion) 567.2 (M+H)+.

ALTERNATIVE ROUTE TO 2-(4-BROMOPHENYL)-3,3,3-TRIFLUORO-l,2-PROPANEDIOL (INTERMEDIATE D STEP 2):

F3

step 1

STEP 1 : 2-(4-BROMOPHENYL)-2-(TRIFLUOROMETHYL)OXIRANE

To a flame-dried, 50-mL, round-bottomed flask was added potassium t-butoxide (0.450 g, 4.01 mmol, Sigma- Aldrich, St. Louis, MO), DMSO (5.0 mL) and trimethylsulfoxonium iodide (1.00 g, 4.54 mmol, Sigma- Aldrich, St. Louis, MO). The resulting mixture was stirred at rt for 40 min. To this reaction mixture was added l-(4-bromophenyl)-2,2,2-trifluoroethanone (1.0 g, 4.0 mmol, Matrix Scientific, Columbia, SC) in DMSO (5.0 mL) dropwise via an addition funnel. The reaction mixture was stirred at rt for 30 min then quenched with water (1 mL) and partitioned between EtOAc (70 mL) and water (30 mL). The organic layer was washed with water (4 x 30 mL), dried over MgS04, filtered, and concentrated. The crude product was purified by column chromatography (40 g of silica, 10 to 20% acetone in hexanes) to afford 2-(4-bromophenyl)-2-(trifluoromethyl)oxirane (0.610 g) as a pale-yellow liquid.

STEP 2: 2-(4-BROMOPHENYL)-3,3,3-TRIFLUORO-l,2-PROPANEDIOL

To a 20-mL vial was added 2-(4-bromophenyl)-2-(trifluoromethyl)oxirane (0.200 g, 0.750 mmol), dioxane (2.0 mL), and water (3.0 mL). The resulting mixture was heated at 85 °C for 24 h. The reaction mixture was cooled to rt and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over MgS04, filtered and concentrated. The crude product was purified by column chromatography (40 g of silica, 10 to 30% acetone in hexanes) to afford 2-(4-bromophenyl)-3,3,3-trifluoro-l,2-propanediol (2.0 g) as a white solid.

INTERMEDIATE E: BENZYL (3S)-3-(l-PROPYN-l-YL)-l-PIPERAZINECARBOXYLATE

-Cbz

STEP 1 : 4-BENZYL 1 – TER Γ-BUT YL 2-0X0-1,4-PIPERAZINEDICARBOXYLATE

A 2-L Erlenmeyer flask was charged with 2-piperazinone (36.5 g, 364 mmol, Sigma-Aldrich, St. Louis, MO), sodium carbonate (116 g, 1090 mmol, J. T. Baker, Philipsburg, NJ), 600 mL of dioxane, and 150 mL of water. To this was slowly added benzyl chloroformate (62.1 g, 364 mmol, Sigma-Aldrich, St. Louis, MO) at rt over 20 min. After the addition was complete, the mixture was stirred for 2 h and then diluted with water and extracted with EtOAc (2 L). The combined organic extracts were dried (MgS04), filtered, and concentrated to give a white solid. To this solid was added 500 mL of DCM, triethylamine (128 mL, 911 mmol, Sigma-Aldrich, St. Louis, MO), DMAP (4.45 g, 36.4 mmol, Sigma-Aldrich, St. Louis, MO), and di-tert-butyl dicarbonate (119 g, 546 mmol, Sigma-Aldrich, St. Louis, MO). After stirring at room temperature for 1 h, the mixture was diluted with water and the organics were separated. The organics were dried (MgS04), filtered, and concentrated to give a brown oil. To this oil was added 100 mL of DCM followed by 1 L of hexane. The resulting white solid was collected by filtration to give 4-benzyl 1-tert-butyl 2-oxo-l,4-piperazinedicarboxylate (101 g).

STEP 2: BENZYL (2-((7¾’i?J,-BUTOXYCARBONYL)AMINO)ETHYL)(2-OXO-3 -PENT YN- 1 – YL)C ARB AMATE

A 150-mL round-bottomed flask was charged with 4-benzyl 1-tert-butyl 2-oxo- 1 ,4-piperazinedicarboxylate (1.41 g, 4.22 mmol) and THF (5 mL). 1-Propynylmagnesium bromide (0.5 M in THF, 20.0 mL, 10.0 mmol, Sigma-Aldrich, St. Louis, MO) was added at 0 °C slowly. The mixture was stirred at 0 °C for 2 h. Saturated aqueous NH4C1 (40 mL) was added and the aqueous phase was extracted with EtOAc (200 mL, then 2 x 100 mL). The combined organic phases were dried over sodium sulfate, filtered and concentrated under a vacuum. The crude product was purified by column chromatography (50 g of silica, 0 to 50% EtOAc in hexanes) to afford benzyl (2- tert-butoxycarbonyl)amino)ethyl)(2-oxo-3-pentyn-l-yl)carbamate (1.55 g) as a clear oil.

STEP 3: BENZYL 3-(l-PROPYN-l-YL)-l-PIPERAZINECARBOXYLATE

A 3-L round-bottomed flask was charged with 2-((tert-butoxycarbonyl)amino)ethyl)(2-oxo-3-pentyn-l-yl)carbamate (82.17 g, 219 mmol) and 300 mL of DCM. After cooling to -10 °C, TFA (169 mL, 2200

mmol) was added and the resulting dark solution was stirred at rt for 15 min.

Sodium triacetoxyborohydride (186 g, 878 mmol, Sigma- Aldrich, St. Louis, MO) was then added portion- wise over 10 min. After 2 h, the mixture was

concentrated, diluted with EtOAc (1 L), and neutralized with 5 N NaOH. The layers were separated and the organic extracts were washed with brine, dried (MgS04), filtered and concentrated. The resulting orange oil was purified via column chromatography (750 g of silica gel, 0 to 4.5 % MeOH/DCM) to give benzyl 3 -(l-propyn-l-yl)-l -piperazmecarboxylate (43.67 g) as a brown foam.

STEP 4: 4-BENZYL 1 – TER Γ-BUT YL 2-(l -PROP YN-l-YL)- 1,4-PIPERAZINEDICARBOXYLATE

A 20-mL vial was charged with benzyl 3-(l-propyn-l-yl)-l-piperazinecarboxylate (0.616 g, 2.38 mmol), di-tert-butyl dicarbonate (0.979 g, 4.49 mmol, Sigma-Aldrich, St. Louis, MO), DMAP (0.0287 g, 0.235 mmol, Sigma-Aldrich, St. Louis, MO), TEA (0.90 mL, 6.5 mmol) and DCM (8 mL). The mixture was stirred at rt for 30 min. The reaction mixture was partitioned between water (20 mL) and EtOAc (20 mL). The aqueous phase was extracted with EtOAc (20 mL). The organic phase was washed with saturated aqueous sodium chloride (40 mL), dried over sodium sulfate, filtered, and concentrated under a vacuum. The crude product was purified by column chromatography (25 g of silica, 0 to 50% EtOAc in hexanes) to afford 4-benzyl 1-tert-butyl 2-(l-propyn-l-yl)-l,4-piperazinedicarboxylate (0.488 g) as a colorless oil.

STEP 5: 4-BENZYL 1 – TER Γ-BUT YL (2S)-2-( 1 -PROP YN-l-YL)- 1,4-PIPERAZINEDICARBOXYLATE

The individual enantiomers of 4-benzyl 1-tert-butyl 2-(l-propyn-l-yl)-1 ,4-piperazinedicarboxylate were isolated using chiral SFC. The method used was as follows: Chiralpak® ADH column (Daicel Inc., Fort Lee, NJ) (30 x 250 mm, 5 μιη) using 12% ethanol in supercritical C02 (total flow was 170 mL/min).

This separated the two enantiomers with enantiomeric excesses greater than 98%. The first eluting peak was subsequently identified as 4-benzyl 1-tert-butyl (2S)-2-(l-propyn-l-yl)-l,4-piperazinedicarboxylate and used in the next step.

STEP 6: BENZYL (3S)-3-(l-PROPY -l-YL)-l-PIPERAZINECAPvBOXYLATE

A 100-mL round-bottomed flask was charged with 4-benzyl 1-tert-butyl (25)-2-(l-propyn-l-yl)-l,4-piperazinedicarboxylate (0.145 g, 0.405 mmol), TFA (1.0 mL, 13 mmol) and DCM (2 mL). The mixture was stirred at rt for 40 min. The mixture was concentrated and solid NaHC03 was added followed by saturated aqueous NaHC03. The aqueous phase was extracted with EtOAc (2 x 20 mL). The combined organic phases were washed with IN NaOH (40 mL), saturated aqueous NaHC03 (40 mL), water (40 mL) and saturated aqueous sodium chloride (40 mL). The organic phase was dried over sodium sulfate, filtered, and concentrated under a vacuum to afford benzyl (35)-3-(l-propyn-l-yl)-l-piperazinecarboxylate (0.100 g) as a pale yellow clear oil which solidified upon standing to give a pale yellow solid.

1H NMR (400MHz, MeOD) δ ppm 7.47 – 7.13 (m, 5 H), 5.27 – 5.00 (m, 2 H), 3.88 – 3.58 (m, 3 H), 3.48 – 3.33 (m, 2 H), 3.22 – 3.02 (m, 1 H), 2.89 – 2.63 (m, 1 H), 1.80 (s, 3 H). m/z (ESI, +ve ion) 259.1 (M+H)+.

XAMPLE 23: 5-(((3S)-3-(l-PROPYN-l-YL)-4-(4-(l,2,2,2-TETRAFLUORO-1 -(TRIFLUOROMETHYL)ETHYL)PHENYL)- 1 -PIPERAZINYL)SULFONYL)-2-PYRIDIN AMINE

STEP 1 : 2-(4-((2S)-4-BENZYL-2-(l-PROPYN-l-YL)-l-PIPERAZINYL)PHENYL)-1 , 1 ,1 ,3,3,3-HEXAFLUORO-2-PROPANOL

A 20-mL vial was charged with (3S)-l-benzyl-3-(l-propyn-l-yl)piperazine (2.143 g, 10 mmol, Intermediate B), 2-(4-bromophenyl)-1,1,1, 3,3, 3-hexafluoropropan-2-ol (3.09 g, 11.5 mmol, Bioorg. Med. Chem. Lett. 2002, 12, 3009), sodium 2-methylpropan-2-olate (1.92 g, 20.0 mmol, Sigma-Aldrich, St. Louis, MO), dioxane (5 mL), RuPhos palladacycle (0.364 g, 0.500 mmol, Strem Chemical Inc., Newburyport, MA), and RuPhos (0.233 g, 0.500 mmol, Strem Chemical Inc., Newburyport, MA). The vial was sealed and heated at 100 °C for 1 h. The mixture was allowed to cool to rt, and diluted with water and extracted with EtOAc. The combined organic phases were dried over sodium sulfate, filtered and concentrated under a vacuum to give a solid that was purified by silica gel column chromatography (0 to 40% EtOAc in hexanes) to afford 2-(4-((2S)-4-benzyl-2-( 1 -propyn- 1 -yl)- 1 -piperazinyl)phenyl)- 1,1,1,3,3,3-hexafluoro-2-propanol (1.75 g) as a slightly yellow oil.

STEP 2: l,l,l,3,3,3-HEXAFLUORO-2-(4-((2S)-2-(l-PROPYN-l-YL)-l-PIPERAZINYL)PHENYL)-2-PROPANOL

A 250 mL round-bottomed flask was charged with 2-(4-((2S)-4-benzyl-2-( 1 -propyn- 1 -yl)- 1 -piperazinyl)phenyl)- 1,1,1 ,3 ,3 ,3-hexafluoro-2-propanol (1.75 g, 4.35 mmol), potassium carbonate (2.40 g, 17.4 mmol, Sigma-Aldrich, St. Louis, MO), CH2CI2 (25 mL), and 1-chloroethyl chlorocarbonate (1.88 mL, 17.4 mmol, Sigma-Aldrich, St. Louis, MO). After 30 min at rt, the reaction was filtered and the filtrate was concentrated. To the resulting oil was added MeOH (25 mL). This mixture was heated at 75 °C for 1.5 h then concentrated. The residue was triturated with diethyl ether to give l,l,l,3,3,3-hexafluoro-2-(4-((2S)-2-(l-propyn-l-yl)-l-piperazinyl)phenyl)-2-propanol (1.44 g) as a white solid.

STEP 3: TERT-BUTYL (5-(((3S)-3-(l-PROPYN-l-YL)-4-(4-(2,2,2-TRIFLUORO- 1 -HYDROXY- 1 -(TRIFLUOROMETHYL)ETHYL)PHENYL)- 1 -PIPERAZINYL)SULFONYL)-2-PYRIDINYL)CARBAMATE

A 250-mL round-bottomed flask was charged with 1,1,1,3,3,3-hexaf uoro-2-(4-((2S)-2-( 1 -propyn- 1 -yl)- 1 -piperazinyl)phenyl)-2-propanol (18.9 g, 51.6 mmol) and DCM (150 mL) and cooled to 0 °C. TEA was added (14.4 mL, 103 mmol, Sigma-Aldrich, St. Louis, MO) followed by tert-butyl (5- (chlorosulfonyl)pyridin-2-yl)carbamate (15.9 g, 54.2 mmol, Intermediate A) portionwise. After 10 min, the reaction mixture was diluted with water (100 mL) and the organic layer was separated, dried over Na2S04, filtered and concentrated under a vacuum to give a solid that was purified by silica gel column

chromatography (0 to 50% EtO Ac in hexanes) to afford tert-butyl (5 -(((3 S)-3 -( 1 -propyn- 1 -yl)-4-(4-(2,2,2-trifluoro- 1 -hydroxy- 1 -(trifluoromethyl)ethyl)phenyl)- 1 -piperazinyl)sulfonyl)-2-pyridinyl)carbamate (19.9 g) as a tan foam.

STEP 4: 5-(((3S)-3-(l-PROPYN-l-YL)-4-(4-(l,2,2,2-TETRAFLUORO-l- (TRIFLUOROMETHYL)ETHYL)PHENYL)- 1 -PIPERAZINYL)SULFONYL)-2-PYRIDIN AMINE

A 500-mL round-bottomed flask was charged with tert-butyl (5-(((3S)-3-(1 -propyn- 1 -yl)-4-(4-(2,2,2-trifluoro- 1 -hydroxy- 1 – (trifluoromethyl)ethyl)phenyl)-l-piperazinyl)sulfonyl)-2-pyridinyl)carbamate (19.7 g, 31.6 mmol) and DCM (300 mL) and cooled to 0 °C.

(Diethylamino)sulfur trifluoride (4.18 mL, 31.6 mmol, Matrix Scientific, Columbia, SC) was added, and after 10 min, the reaction was diluted with water (250 mL) and DCM (200 mL). The organic layer was separated, dried over

Na2S04, filtered and concentrated under a vacuum. The resultant foam was taken up in DCM (200 mL) and cooled to 0 °C. TFA (100 mL, 1298 mmol) was added and the reaction mixture was warmed to rt for 1.5 h. The reaction was then re-cooled to 0 °C and solid sodium bicarbonate was added slowly until gas evolution ceased. The mixture was diluted with water (250 mL) and DCM (300 mL) and the organic layer was separated, dried over Na2S04, filtered and concentrated under a vacuum to give a solid that was purified by silica gel column chromatography (0 to 100% EtOAc in hexanes) to afford 5-(((3S)-3-(l-propyn- 1 -yl)-4-(4-( 1 ,2,2,2-tetrafluoro- 1 -(trifluoromethyl)ethyl)phenyl)- 1 -piperazinyl)sulfonyl)-2-pyridinamine (11.05 g) as a single enantiomer.

1H NMR (400MHz, CD3OD) δ ppm 8.31 (d, J= 2.2 Hz, 1 H), 7.74 (dd, J= 2.4, 8.9 Hz, 1 H), 7.47 (d, J = 8.8 Hz, 2 H), 7.12 (d, J = 9.0 Hz, 2 H), 6.63 (d, J= 8.8 Hz, 1 H), 4.76-4.70 (m, 1 H), 3.76 (dd, J= 1.9, 11.2 Hz, 2 H), 3.66 – 3.52 (m, 1 H), 3.29 – 3.20 (m, 1 H), 2.79 – 2.72 (m, 1 H), 2.66 – 2.53 (m, 1 H), 1.76 (d, J = 2.2 Hz, 3 H). m/z (ESI, +ve ion) 525.2 (M+H)+. GK-GKRP IC50 (Binding) = 0.187 μΜ.

PAPER

Small Molecule Disruptors of the Glucokinase–Glucokinase Regulatory Protein Interaction: 2. Leveraging Structure-Based Drug Design to Identify Analogues with Improved Pharmacokinetic Profiles

Department of Therapeutic Discovery—Medicinal Chemistry, Department of Therapeutic Discovery—Molecular Structure and Characterization, §Department of Metabolic Disorders, Department of Pharmacokinetics and Drug Metabolism, Department of Pathology, #Department of Pharmaceutics Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California, 91320 and 360 Binney Street, Cambridge, Massachusetts, 02142, United States
J. Med. Chem., 2014, 57 (2), pp 325–338
DOI: 10.1021/jm4016747
Abstract Image

In the previous report, we described the discovery and optimization of novel small molecule disruptors of the GK-GKRP interaction culminating in the identification of 1 (AMG-1694). Although this analogue possessed excellent in vitro potency and was a useful tool compound in initial proof-of-concept experiments, high metabolic turnover limited its advancement. Guided by a combination of metabolite identification and structure-based design, we have successfully discovered a potent and metabolically stable GK-GKRP disruptor (27, AMG-3969). When administered to db/db mice, this compound demonstrated a robust pharmacodynamic response (GK translocation) as well as statistically significant dose-dependent reductions in fed blood glucose levels.

2-(4-((2S)-4-((6-Amino-3-pyridinyl)sulfonyl)-2-(1-propyn-1-yl)-1-piperazinyl)phenyl)-1,1,1,3,3,3-hexafluoro-2-propanol (27)

1H NMR (400 MHz, CDCl3) δ 8.48 (d, J = 2.3 Hz, 1 H), 7.77 (dd, J = 2.5, 8.8 Hz, 1 H), 7.57 (d, J = 8.8 Hz, 2 H), 6.95 (d, J = 9.2 Hz, 2 H), 6.52 (d, J = 8.8 Hz, 1 H), 4.94 (s, 2 H), 4.44 (br s, 1 H), 3.82–3.71 (m, 2 H), 3.58–3.33 (m, 3 H), 2.81 (dd, J = 3.2, 11.1 Hz, 1 H), 2.67 (dt, J = 3.9, 11.0 Hz, 1 H), 1.78 (d, J = 2.2 Hz, 3 H).
m/z (ESI, +ve ion) 523.2 (M + H)+.
REFERENCES
St Jean, D.J. Jr.; Ashton, K.; Andrews, K.; et al.
Small molecule disruptors of the glucokinase-glucokinase regulatory protein (GK-GKRP) interaction
34th Natl Med Chem Symp (May 18-21, Charleston) 2014, Abst 4
Small molecule disruptors of the GK-GKRP interaction as potential antidiabetics
247th Am Chem Soc (ACS) Natl Meet (March 16-20, Dallas) 2014, Abst MEDI 214
Use of non-traditional conformational restriction in the design of a novel, potent, and metabolically stable series of GK-GKRP inhibitors
248th Am Chem Soc (ACS) Natl Meet (August 10-14, San Francisco) 2014, Abst MEDI 267
Small molecule inhibitors for glucokinase-glucokinase regulatory protein (GK-GKRP) binding: Optimization for in vivo target assessment of type II diabetes
248th Am Chem Soc (ACS) Natl Meet (August 10-14, San Francisco) 2014, Abst MEDI 268

MAKING CONNECTIONS Aleksandra Baranczak (right), a fourth-year grad student in Gary A. Sulikowski’s lab at Vanderbilt University, discusses her efforts to synthesize the core of the diazo-containing natural product lomaiviticin A with Kate Ashton, a medicinal chemist at Amgen
Dr. Kate Ashton

Mark Norman

Mark Norman

Michael Bartberger

Michael Bartberger

Chris Fotsch

Chris Fotsch

David St. Jean

David St. Jean

Klaus Michelsen

Klaus Michelsen

///////////1361224-53-4, AMGEN, AMG 3969, Type 2 Diabetes,  PRECLINICAL
O=S(=O)(c1ccc(N)nc1)N2C[C@H](C#CC)N(CC2)c3ccc(cc3)C(O)(C(F)(F)F)C(F)(F)F

Hoshinolactam, A new antitrypanosomal lactam


Abstract Image
Tropical diseases caused by parasitic protozoa are a threat to human health, mainly in developing countries. Trypanosomiasis (Chagas disease and sleeping sickness) and leishmaniasis, inter alia, are classified as neglected tropical diseases, and over 400 million people are at risk of contracting these diseases.

In addition, a parasite of the Trypanosoma genus, Trypanosoma brucei brucei, is the causative agent of Nagana disease in wild and domestic animals, and this disease is a major obstacle to the economic development of affected rural areas.

Although some therapeutic agents for these diseases exist, they have limitations, such as serious side effects and the emergence of drug resistance. Thus, new and more effective antiprotozoal medicines are needed

Marine natural products have recently been considered to be good sources for drug leads. In particular, secondary metabolites produced by marine cyanobacteria have unique structures and versatile biological activities, and some of these compounds show antiprotozoal activities. For example, coibacin A isolated from cf. Oscillatoria sp. exhibited potent antileishmanial activity, and viridamide A isolated from Oscillatoria nigro-viridis showed antileishmanial and antitrypanosomal activities.

constituents of marine cyanobacteria and reported an antitrypanosomal cyclodepsipeptide, janadolide.

The marine cyanobacterium was collected at the coast near Hoshino, Okinawa.

Image result for OKINAWA

Image result for OKINAWA

Okinawa
沖縄市
Uchinaa
City
Okinawa City downtown.jpg
Flag of Okinawa
Flag

EARLIER MERCK TEAM HAD REPORTED

CAS 159153-15-8
MF C20 H33 N O5
MW 367.48
2-Pyrrolidinone, 3,4-dihydroxy-5-(hydroxymethyl)-3-[3-(2-nonylcyclopropyl)-1-oxo-2-propenyl]-, [3S-[3α,3[E(1S*,2S*)],4β,5α]]-
Image result for AntitrypanosomalImage result for Antitrypanosomal
Antitrypanosomal
Image result for marine cyanobacterium
Marine cyanobacterium
Image result for human fetal lung fibroblast MRC-5 cells
Human fetal lung fibroblast MRC-5 cells
Majusculoic acid.png
Majusculoic acid
Image result for malyngamide A.
Malyngamide A.

PAPER

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.7b00047

Recently, we isolated a new antitrypanosomal lactam, hoshinolactam (1), from a marine cyanobacterium.Structurally, 1 contains a cyclopropane ring and a γ-lactam ring. So far, some metabolites possessing either a cyclopropane ring or a γ-lactam ring have been discovered from marine cyanobacteria, such as majusculoic acid and malyngamide A. To the best of our knowledge, on the other hand, hoshinolactam (1) is the first compound discovered in marine cyanobacteria that possesses both of these ring systems. In addition, we clarified that 1 exhibited potent antitrypanosomal activity without cytotoxicity against human fetal lung fibroblast MRC-5 cells. Here, we report the isolation, structure elucidation, first total synthesis, and preliminary biological characterization of hoshinolactam (1).

Isolation and Total Synthesis of Hoshinolactam, an Antitrypanosomal Lactam from a Marine Cyanobacterium

Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
Research Center for Tropical Diseases, Kitasato Institute for Life Sciences, and §Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
Org. Lett., Article ASAP
DOI: 10.1021/acs.orglett.7b00047

Abstract Image

In the search for new antiprotozoal substances, hoshinolactam, an antitrypanosomal lactam, was isolated from a marine cyanobacterium. The gross structure was elucidated by spectroscopic analyses, and the absolute configuration was determined by the first total synthesis. Hoshinolactam showed potent antitrypanosomal activity with an IC50 value of 3.9 nM without cytotoxicity against human fetal lung fibroblast MRC-5 cells (IC50 > 25 μM).

Table 1. 1H and 13C NMR Data for 1 in C6D6
unit position δCa δHb (J in Hz)
HIMP 1 177.8, C
2 44.1, CH 2.51, dq (5.2, 7.6)
3 80.8, CH 4.94, dd (4.6, 5.2)
4 57.3, CH 3.49, ddd (4.6, 4.7, 9.4)
5a 44.6, CH2 1.21, m
5b 1.36, m
6 25.0, CH 1.61, m
7 21.7, CH3 0.74, d (6.2)
8 23.2, CH3 0.76, d (6.3)
9 15.0, CH3 1.33, d (7.6)
NH 7.65, s
PCPA 1 166.0, C
2 117.4, CH 5.88, d (15.5)
3 155.0, CH 6.59, dd (10.3, 15.5)
4 22.4, CH 0.91, m
5 23.3, CH 0.59, m
6 35.7, CH2 0.96, m
7 22.5, CH2 1.20, tq (7.1, 7.3)
8 14.0, CH3 0.78, t (7.3)
9a 16.1, CH2 0.35, ddd (4.5, 6.0, 8.2)
9b 0.42, ddd (4.5, 4.5, 8.8)
aMeasured at 100 MHz.
bMeasured at 400 MHz.
Positive HRESIMS data (m/z 308.2228, calcd for C18H30NO3 [M + H]+ 308.2225). Table 1 shows the NMR data for 1.
An analysis of the 1H NMR spectrum indicated the presence of four methyl groups (δH 0.74, 0.76, 0.78 and 1.33), four protons of the cyclopropane ring (δH 0.35, 0.42, 0.59 and 0.91), and two olefinic protons (δH 5.88 and 6.59).
The 13C NMR and HMQC spectra revealed the existence of two carbonyl groups (δC 166.0 and 177.8) and two sp2 methines (δC 117.4 and 155.0).
Examination of the COSY and HMBC spectra established the presence of two fragments derived from 4-hydroxy-5-isobutyl-3-methylpyrrolidin-2-one (HIMP) and 3-(2-propylcyclopropyl) acrylic acid (PCPA), respectively. The configuration of the C-2–C-3 olefinic bond in the PCPA was determined to be trans on the basis of the coupling constant (3JH2–H3 = 15.5 Hz). The connectivity of the two partial structures was determined from the HMBC correlation (H-3 of HIMP/C-1 of PCPA).
1H, 13C, COSY, HMQC, HMBC, and NOESY NMR spectra in C6D6 and 1H and 13C NMR spectra in CD3OD for hoshinolactam (1)
1H, 13C, COSY, HMQC, HMBC, and NOESY NMR spectra in C6D6

1H and 13C NMR spectra in CD3OD

1H NMR PREDICT

13 C NMR PREDICT

Image result for OKINAWAImage result for OKINAWA

OKINAWA

///////////Hoshinolactam

CC(C)C[C@@H]2NC(=O)[C@H](C)C2OC(=O)/C=C/[C@H]1C[C@@H]1CCC


Pridopidine.svg

Pridopidine

  • Molecular Formula C15H23NO2S
  • Average mass 281.414 Da
346688-38-8  CAS FREE FORM
882737-42-0 (hydrochloride)
1440284-30-9 HBr
4-[3-(Methylsulfonyl)phenyl]-1-propylpiperidin
4- (3 -Methanesulfonyl-phenyl ) – 1-propyl -piperidine
ACR16
Huntexil
UNII-HD4TW8S2VK;
4-[3-(Methylsulfonyl)phenyl]-1-propylpiperidine
ACR 16
  • ASP 2314
FR 310826

Huntingtons chorea

Dopamine D2 receptor antagonist; Opioid receptor sigma agonist 1

Neurosearch INNOVATORS, In 2012, the product was acquired by Teva

In January 2017, pridopidine was reported to be in phase 3 clinical development,  pridopidine for treating or improving cognitive functions and Alzheimer’s disease.

Teva Pharmaceutical Industries, following an asset acquisition from NeuroSearch, is developing pridopidine, a fast-off dopamine D2 receptor antagonist that strengthens glutamate function, for treating HD.
The drug holds orphan drug designation in the U.S. and the E.U. for the treatment of Huntington’s disease

PRIDOPIDINE.png

About Huntington Disease

HD is a fatal neurodegenerative disease for which there is no known cure or prevention. People who suffer from HD will likely have a variety of steadily-worsening symptoms, including uncoordinated and uncontrolled movements, cognition and memory deterioration and a range of behavioral and psychological problems. HD symptoms typically start in middle age, but the disease may also manifest itself in childhood and in old age. Disease progression is characterized by a gradual decline in motor control, cognition and mental stability, and generally results in death within 15 to 25 years of clinical diagnosis. Current treatment is limited to managing the symptoms of HD, as there are no treatments that have been shown to alter the progression of HD. Studies estimate that HD affects about 13 to 15 people per 100,000 in Caucasians, and for every affected person there are approximately three to five people who may carry the mutation but are not yet ill.

Image result for Pridopidine

Pridopidine, also known as ACR16, is a dopamine stabilizer, which improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. Huntington disease (HD) is a neurodegenerative disorder for which new treatments are urgently needed. Pridopidine is a new dopaminergic stabilizer, recently developed for the treatment of motor symptoms associated with HD.

Figure

Dopamine D2 ligands. Dopamine D2 receptor agonists dopamine (1) and apomorphine (2), classical antagonists haloperidol (3) and olanzapine (4), partial agonists (−)-3-(3-hydroxyphenyl)-Nn-propylpiperidine (5), bifeprunox (6), aripiprazole (7), and 3-(1-benzylpiperidin-4-yl)phenol (9a), and dopaminergic stabilizers S-(−)-OSU6162 (8) and pridopidine (12b).

Dopamine is a neurotransmitter in the brain. Since this discovery, made in the 1950s, the function of dopa-mine in the brain has been intensely explored. To date, it is well established that dopamine is essential in several aspects of brain function including motor, cognitive, sensory, emotional and autonomous (e.g. regulation of appetite, body temperature, sleep) functions. Thus, modulation of dopaminergic function may be beneficial in the treatment of a wide range of disorders affecting brain functions. In fact, both neurologic and psychiatric disorders are treated with medications based on interactions with dopamine systems and dopamine receptors in the brain.
Drugs that act, directly or indirectly, at central dopamine receptors are commonly used in the treatment of neurologic and psychiatric disorders, e.g. Parkinson’s disease and schizophrenia. Currently available dopaminer-gic pharmaceuticals have severe side effects, such as ex-trapyramidal side effects and tardive dyskinesia in dopaminergic antagonists used as antipsychotic agents, and dyskinesias and psychoses in dopaminergic agonists used as anti -Parkinson ‘ s agents. Therapeutic effects are un-satisfactory in many respects. To improve efficacy and reduce side effects of dopaminergic pharmaceuticals, novel dopamine receptor ligands with selectivity at specific dopamine receptor subtypes or regional selectivity are sought for. In this context, also partial dopamine receptor agonists, i.e. dopamine receptor ligands with some but not full intrinsic activity at dopamine receptors, are being developed to achieve an optimal degree of stimulation at dopamine receptors, avoiding excessive do-pamine receptor blockade or excessive stimulation.
Compounds belonging to the class of substituted 4- (phenyl-N-alkyl) -piperazine and substituted 4-(phenyl-N-alkyl) -piperidines have been previously reported. Among these compounds, some are inactive in the CNS, some dis-play serotonergic or mixed serotonergic/dopaminergic pharmacological profiles while some are full or partial dopamine receptor agonists or antagonists with high affinity for dopamine receptors.
A number of 4-phenylpiperazines and 4 -phenyl -piperidine derivatives are known and described, for example Costall et al . European J. Pharm. 31, 94, (1975), Mewshaw et al . Bioorg. Med. Chem. Lett., 8, 295, (1998). The reported compounds are substituted 4 -phenyl -piperazine ‘ s, most of them being 2-, 3- or 4 -OH phenyl substituted and displaying DA autoreceptor agonist properties .
Fuller R. W. et al , J. Pharmacol. Exp . Therapeut . 218, 636, (1981) disclose substituted piperazines (e.g. 1- (m-trifluoro-methylphenyl) piperazine) which reportedly act as serotonin agonists and inhibit serotonin uptake.

Fuller R. W. et al , Res. Commun. Chem. Pathol . Pharmacol. 17, 551, (1977) disclose the comparative effects on the 3 , 4-dihydroxy-phenylacetic acid and Res. Commun. Chem. Pathol. Pharmacol. 29, 201, (1980) disclose the compara-tive effects on the 5-hydroxyindole acetic acid concentration in rat brain by 1- (p-chlorophenol) -piperazine .
Boissier J. et al Chem Abstr. 61:10691c, disclose disubstituted piperazines. The compounds are reportedly adrenolytics, antihypertensives , potentiators of barbitu-rates, and depressants of the central nervous system.
A number of different substituted piperazines have been published as ligands at 5-HT1A receptors, for example Glennon R.A. et al J. Med. Chem., 31, 1968, (1988), van Steen B.J., J. Med. Chem., 36, 2751, (1993), Mokrosz, J. et al, Arch. Pharm. (Weinheim) 328, 143-148 (1995), and Dukat M.-L., J. Med. Chem., 39, 4017, (1996). Glennon R. A. discloses, in international patent applications WO93/00313 and WO 91/09594 various amines, among them substituted piperazines, as sigma receptor ligands. Clinical studies investigating the properties of sigma receptor ligands in schizophrenic patients have not generated evi-dence of antipsychotic activity, or activity in any other CNS disorder. Two of the most extensively studied selective sigma receptor antagonists, BW234U (rimcazole) and BMY14802, have both failed in clinical studies in schizophrenic patients (Borison et al , 1991, Psychopharmacol Bull 27(2): 103-106; Gewirtz et al , 1994, Neuropsycho-pharmacology 10:37-40) .
Further, WO 93/04684 and GB 2027703 also describe specific substituted piperazines useful in the treatment of CNS disorders

Pridopidine (Huntexil, formerly ACR16) is an experimental drug candidate belonging to a class of agents known as dopidines, which act as dopaminergic stabilizers in the central nervous system. These compounds may counteract the effects of excessive or insufficient dopaminergic transmission,[1][2] and are therefore under investigation for application in neurological and psychiatric disorders characterized by altered dopaminergic transmission, such as Huntington’s disease (HD).

Pridopidine is in late-stage development by Teva Pharmaceutical Industries who acquired the rights to the product from its original developer NeuroSearch in 2012. In April 2010, NeuroSearch announced results from the largest European phase 3 study in HD carried out to date (MermaiHD). The MermaiHD study examined the effects of pridopidine in patients with HD and the results showed after six months of treatment, pridopidine improved total motor symptoms, although the primary endpoint of the study was not met. Pridopidine was well tolerated and had an adverse event profile similar to placebo.[3]

The US Food and Drug Administration (FDA) and European Medicines Agency (EMA) have both indicated they will not issue approval for pridopidine to be used in human patients on the basis of the MermaiHD and HART trials, and a further, positive phase 3 trial is required for approval.[4][5]

Image result for Pridopidine

Dopidines

Dopidines, a new class of pharmaceutical compounds, act as dopaminergic stabilizers, enhancing or counteracting dopaminergic effects in the central nervous system.[1][2] They have a dual mechanism of action, displaying functional antagonism of subcortical dopamine type 2 (D2) receptors, as well as strengthening of cortical glutamate and dopamine transmission.[6] Dopidines are, therefore, able to regulate both hypoactive and hyperactive functioning in areas of the brain that receive dopaminergic input (i.e. cortical and subcortical regions). This potential ability to restore the cortical–subcortical circuitry to normal suggests dopidines may have the potential to improve symptoms associated with several neurological and psychiatric disorders, including HD.

SYNTHESIS

Figure

aReagents and conditions: (a) n-butyllithium, 1-Boc-4-piperidone, THF; (b) trifluoroacetic acid, CH2Cl2, Δ; (c) triethylamine, methyl chloroformate, CH2Cl2; (d) m-CPBA, CH2Cl2; (e) Pd/C, H2, MeOH, HCl; (f) HCl, EtOH, Δ; (g) RX, K2CO3, acetonitrile, Δ.

Pharmacology

In vitro studies demonstrate pridopidine exerts its effects by functional antagonism of D2 receptors. However, pridopidine possesses a number of characteristics[1][2][6][7] that differentiate it from traditional D2 receptor antagonists (agents that block receptor responses).

  • Lower affinity for D2 receptors than traditional D2 ligands[8]
  • Preferential binding to activated D2 (D2high) receptors (i.e. dopamine-bound D2 receptors)[8]
  • Rapid dissociation (fast ‘off-rate’) from D2 receptors
  • D2 receptor antagonism that is surmountable by dopamine
  • Rapid recovery of D2-receptor-mediated responses after washout[1][2][6][7]

Pridopidine is less likely to produce extrapyramidal symptoms, such as akinesia (inability to initiate movement) and akathisia (inability to remain motionless), than dopamine antagonists (such as antipsychotics).[9] Furthermore, pridopidine displays no detectable intrinsic activity,[9][10] differentiating it from D2 receptor agonists and partial agonists (agents that stimulate receptor responses). Pridopidine, therefore, differs from D2 receptor antagonists, agonists and partial agonists.[6]

As a dopaminergic stabilizer, pridopidine can be considered to be a dual-acting agent, displaying functional antagonism of subcortical dopaminergic transmission and strengthening of cortical glutamate transmission.

Clinical development

The MermaiHD study

In 2009, NeuroSearch completed the largest European HD trial to date, the Multinational EuRopean Multicentre ACR16 study In Huntington’s Disease (MermaiHD) study.

This six-month, phase 3, randomized, double-blind, placebo-controlled trial recruited patients from Austria, Belgium, France, Germany, Italy, Portugal, Spain and the UK, and compared two different pridopidine dose regimens with placebo. Patients were randomly allocated to receive pridopidine (45 mg once daily or 45 mg twice daily) or placebo. During weeks 1–4, patients received once-daily treatment (as a morning dose). Thereafter, patients took two doses (one morning and one afternoon dose) until the end of the treatment period. The study had a target recruitment of 420 patients; recruitment was finalized in April 2009 with 437 patients enrolled.[14]

The purpose of the study was to assess the effects of pridopidine on a specific subset of HD motor symptoms defined in the modified motor score (mMS).[14] The mMS comprises 10 items relating to voluntary motor function from the Unified Huntington’s Disease Rating Scale Total Motor Score (UHDRS—TMS).[14] Other study endpoints included the UHDRS—TMS, submotor items, cognitive function, behaviour and symptoms of depression and anxiety.

After six months of treatment, patients who received pridopidine 45 mg twice daily showed significant improvements in motor function, as measured by the UHDRS-TMS, compared with placebo. For the mMS, which was the primary endpoint of the study, a strong trend in treatment effect was seen, although statistical significance was not reached. Pridopidine was also very well tolerated, had an adverse event profile similar to placebo and gave no indication of treatment-associated worsening of symptoms.[3]

The MermaiHD study – open-label extension

Patients who completed the six-month, randomized phase of the MermaiHD study could choose to enter the MermaiHD open-label extension study and receive pridopidine 45 mg twice daily for six months. In total, 357 patients were enrolled into the MermaiHD open-label extension study and of these, 305 patients completed the entire 12-month treatment period.[15]

The objective of this study was to evaluate the long-term safety and tolerability profile of pridopidine and to collect efficacy data after a 12-month treatment period to support the safety evaluation. Safety and tolerability assessments included the incidence and severity of adverse events, routine laboratory parameters, vital signs and electrocardiogram measurements.[15]

Results from the MermaiHD open-label extension study showed treatment with pridopidine for up to 12 months (up to 45 mg twice daily for the first six months; 45 mg twice daily for the last six months) was well tolerated and demonstrated a good safety profile.[3][15]

The HART study

In October 2010, NeuroSearch reported results from their three-month, phase 2b, randomized, double-blind, placebo-controlled study carried out in Canada and the USA – Huntington’s disease ACR16 Randomized Trial (HART). This study was conducted in 28 centres and enrolled a total of 227 patients, who were randomly allocated to receive pridopidine 10 mg, 22.5 mg or 45 mg twice daily) or placebo.[14][16] During weeks 1–4, patients received once-daily treatment (as a morning dose). Thereafter, patients took two treatment doses (one morning and one afternoon dose) until the end of the treatment period. Study endpoints were the same as those for the MermaiHD study.

Results from the HART study were consistent with findings from the larger MermaiHD study. After 12 weeks of treatment with pridopidine 45 mg twice daily, total motor function significantly improved, as measured by the UHDRS–TMS. The primary endpoint, improvement in the mMS, was not met.[16]

In both studies, the effects on the UHDRS–TMS and the mMS were driven by significant improvements in motor symptoms such as gait and balance, and hand movements, deemed by the authors to be “clinically relevant”. However, the magnitude of the improvements was small. Pridopdiine demonstrated a favourable tolerability and safety profile, including no observations of treatment-related disadvantages in terms of worsening of other disease signs or symptoms.[15][16]

Compassionate use programme and open-ended, open-label study

To meet requests from patients and healthcare professionals for continued treatment with pridopidine, NeuroSearch has established a compassionate use programme in Europe to ensure continued access to pridopidine for patients who have completed treatment in the MermaiHD open-label extension study. The programme is active in all of the eight European countries where the MermaiHD study was conducted.

NeuroSearch has initiated an open-ended, open-label clinical study in the USA and Canada, called the Open HART study. In this study, all patients who have completed treatment in the HART study are offered the chance to restart treatment with pridopidine until either marketing approval has been obtained in the countries in question, or the drug’s development is discontinued. The first patients were enrolled in March 2011.[3]

Regulatory agency advice

The results of the MermaiHD and HART trials were presented to the American and European regulatory agencies: the FDA in March 2011 and EMA in May, 2011. Both agencies indicated insufficient evidence had been produced to allow approval in human patients, and a further phase 3 trial would be required for approval.[4][5]

PATENT

WO 2001046145

Example 6: 4- (3 -Methanesulfonyl-phenyl ) – 1-propyl -piperidine
m.p. 200°C (HCl) MS m/z (relative intensity, 70 eV) 281 (M+, 5), 252 (bp) , 129 (20), 115 (20), 70 (25.

PAPER

Journal of Medicinal Chemistry (2010), 53(6), 2510-2520.

Synthesis and Evaluation of a Set of 4-Phenylpiperidines and 4-Phenylpiperazines as D2 Receptor Ligands and the Discovery of the Dopaminergic Stabilizer 4-[3-(Methylsulfonyl)phenyl]-1-propylpiperidine (Huntexil, Pridopidine, ACR16)

NeuroSearch Sweden AB, Arvid Wallgrens Backe 20, S-413 46 Göteborg, Sweden
J. Med. Chem., 2010, 53 (6), pp 2510–2520
DOI: 10.1021/jm901689v
*To whom correspondence should be addressed. Phone: +(46) 31 7727710. Fax: +(46) 31 7727701. E-mail: fredrik.pettersson@neurosearch.se.

Abstract

Abstract Image

Modification of the partial dopamine type 2 receptor (D2) agonist 3-(1-benzylpiperidin-4-yl)phenol (9a) generated a series of novel functional D2 antagonists with fast-off kinetic properties. A representative of this series, pridopidine (4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine; ACR16, 12b), bound competitively with low affinity to D2 in vitro, without displaying properties essential for interaction with D2 in the inactive state, thereby allowing receptors to rapidly regain responsiveness. In vivo, neurochemical effects of 12b were similar to those of D2 antagonists, and in a model of locomotor hyperactivity, 12b dose-dependently reduced activity. In contrast to classic D2 antagonists, 12b increased spontaneous locomotor activity in partly habituated animals. The “agonist-like” kinetic profile of 12b, combined with its lack of intrinsic activity, induces a functional state-dependent D2 antagonism that can vary with local, real-time dopamine concentration fluctuations around distinct receptor populations. These properties may contribute to its unique “dopaminergic stabilizer” characteristics, differentiating 12b from D2 antagonists and partial D2agonists.

4-[3-(Methylsulfonyl)phenyl]-1-propylpiperidine (12b)

Purification with flash chromatography using CH2Cl2/MeOH [1:1 (v/v)] as eluent afforded pure 12b (3.28 g, 79%).
MS m/z (relative intensity, 70 eV) 281 (M+, 5), 252 (bp), 129 (20), 115 (20), 70 (25).
1H NMR (300 MHz, CDCl3) δ ppm 0.96 (t, J = 7.3 Hz, 3 H), 1.53−1.64 (m, 2 H), 1.89 (dd, J = 9.6, 3.54 Hz, 4 H), 2.03−2.14 (m, 2 H), 2.31−2.41 (m, 2 H), 2.64 (ddd, J = 15.4, 5.7, 5.5 Hz, 1 H), 3.06−3.15 (m, 5 H), 7.51−7.58 (m, 2 H), 7.78−7.86 (m, 2 H).
13C NMR (75 MHz, CDCl3) δ ppm 11.98, 20.18, 33.29, 42.59, 44.43, 54.06, 60.93, 124.99, 125.74, 129.39, 132.04, 148.28.
The amine was converted to the HCl salt and recrystallized in EtOH/diethyl ether: mp 212−214 °C. Anal. (C15H24ClNO2S) C, H, N.

PATENT

WO-2017015609

Pridopidine (Huntexil®) is a unique compound developed for the treatment of patients with motor symptoms associated with Huntington’s disease. The chemical name of pridopidine is 4-(3-(Methylsulfonyl)phenyl)-l-propylpiperidine, and its Chemical Registry Number is CAS 346688-38-8 (CSED:7971505, 2016). The Chemical Registry number of pridopidine hydrochloride is 882737-42-0 (CSID:25948790 2016). Processes of synthesis of pridopidine and a pharmaceutically acceptable salt thereof are disclosed in U.S. Patent No. 7,923,459. U.S. Patent No. 6,903,120 claims pridopidine for the treatment of Parkinson’s disease, dyskinesias, dystonias, Tourette’s disease, iatrogenic and non-iatrogenic psychoses and hallucinoses, mood and anxiety disorders, sleep disorder, autism spectrum disorder, ADHD, Huntington’s disease, age-related cognitive impairment, and disorders related to alcohol abuse and narcotic substance abuse.

US Patent Application Publication Nos. 20140378508 and 20150202302, describe methods of treatment with high doses of pridopidine and modified release formulations of pridopidine, respectively.

EXAMPLES

Example 1: Pridopidine-HCl synthesis

An initial process for synthesizing pridopidine HC1 shown in Scheme 1 and is a modification of the process disclosed in US Patent No. 7,923,459.

The synthesis of Compound 9 started with the halogen-lithium exchange of 3-bromothioanisole (3BTA) in THF employing n-hexyllithium (HexLi) in hexane as the lithium source. Li-thioanisole (3LTA) intermediate thus formed was coupled with 1 -propyl-4-piperidone (1P4P) forming a Li-Compound 9. These two reactions require low (cryogenic) temperature. The quenching of Li-Compound 9 was done in water HCl/MTBE resulting in precipitation of Compound 9-HCl salt. A cryogenic batch mode process for this step was developed and optimized. The 3BTA and THF were cooled to less than -70°C. A solution of HexLi in n-hexane (33%) was added at a temperature below -70°C and the reaction is stirred for more than 1 hour. An in-process control sample was taken and analyzed for completion of halogen exchange, l-propyl-4-piperidone (1P4P) was then added to the reaction at about -70°C letting the reaction mixture to reach -40°C and further stirred at this temperature for about 1 hour. An in-process sample was analyzed to monitor the conversion according to the acceptance criteria (Compound 9 not less than 83% purity). The reaction mixture was added to a mixture of 5N hydrochloric acid (HC1) and methyl teri-butyl ether (MTBE). The resulting precipitate was filtered and washed with MTBE to give the hydrochloric salt of Compound 9 (Compound 9-HCl) wet.

Batch mode technique for step 1 requires an expensive and high energy-consuming cryogenic system that cools the reactor with a methanol heat exchange, in which the methanol is circulated in counter current liquid nitrogen. This process also brings about additional problems originated from the workup procedure. The work-up starts when the reaction mixture is added into a mixture of MTBE and aqueous HC1. This gives three phases: (1) an organic phase that contains the organic solvents MTBE, THF and hexane along with other organic related materials such as thioanisole (TA), hexyl-bromide,

3-hexylthioanisole and other organic side reaction impurities (2) an aqueous phase containing inorganic salts (LiOH and LiBr), and (3) a solid phase which is mostly Compound 9-HCl but also remainders of 1P4P as an HC1 salt.

The isolation of Compound 9-HCl from the three phase work-up mixture is by filtration followed by MTBE washings. A major problem with this work-up is the difficulty of the filtration which resulted in a long filtration and washing operations. The time it takes to complete a centrifugation and washing cycle is by far beyond the normal duration of such a manufacturing operation. The second problem is the inevitable low and non-reproducible assay (purity of -90% on dry basis) of Compound 9-HCl due to the residues of the other two phases. It should be noted that a high assay is important in the next step in order to control the amount of reagents. The third problem is the existence of THF in the wet Compound 9-HCl salt which is responsible for the Compound 3 impurity that is discussed below.

Example 6.2: Pridopidine crude – work-up development

After the reduction, pridopidine HC1 is precipitated by adding HC1/IPA to the solution of pridopidine free base in ΓΡΑ in the process of Example 1. Prior to that, a solvent swap from toluene to ΓΡΑ is completed by 3 consecutive vacuum distillations. The amount of toluene in the ΓΡΑ solution affects the yield and it was set to be not more than 3% (IPC by GC method). The spontaneous precipitation produces fine crystals with wide PSD. In order to narrow the PSD, Example 1 accomplishes HC1/IPA addition in two cycles with cooling/warming profile.

The updated process is advantageous for crystallizing pridopidine free base over the procedure in Example 1 for two reasons.

First, it simplifies the work-up of the crude because the swap from toluene to PA is not required. The pridopidine free base is crystallized from toluene/n-heptanes system. Only one vacuum distillation of toluene is needed (compared to three in the work-up of Example 1) to remove water and to increase yield.

Second, in order to control pridopidine-HCl physical properties. Pridopidine free base is a much better starting material for the final crystallization step compared to the pridopidine HC1 salt because it is easily dissolved in ΓΡΑ which enables a mild absolute (0.2μ) filtration required in the final step of API manufacturing.

Crystallization of pridopidine free base in toluene/n-heptane system

First, crystallization of pridopidine free base in toluene/n-heptane mixture was tested in order to find the right ratio to maximize the yield. In order to obtain pridopidine free base, pridopidine-HCl in water/toluene system was basified with NaOH(aq) to pH>12. Two more water washes of the toluene phase brought the pH of the aqueous phase to <10. Addition of n-heptane into the toluene solution

resulted in pridopidine free base precipitation. Table 21 shows data from the toluene/n-heptane crystallization experiments.

Example 7: Development of the procedure for the purification of Compound 1 in pridopidine free base.

The present example describes lowering Compound 1 levels in pridopidine free base. This procedure involves dissolving pridopidine FB in 5 Vol of toluene at 20-30°C, 5 Vol of water are added and after the mixing phases are separated and the organic phase is washed three times with 5 Vol water. The toluene mixture is then distilled up to 2.5 Vol in the reactor and 4 Vol of heptane are added for crystallization. Experiment No. 2501 was completed using this procedure. Table 24 summarizes the results.

Example 8: Step 4 in Scheme 2: Pridopidine Hydrochloride process

This example discusses the step used to formulate pridopidine-HCl from pridopidine crude. The corresponding stage in Example 1 was part of the last (third) stage in which pridopidine-HCl was obtained directly from Compound 8 without isolation of pridopidine crude. In order to better control pridopidine-HCl physical properties, it is preferable to start with well-defined pridopidine free base which enables control on the exact amount of HC1 and IPA.

Pridopidine-HCl preparation – present procedure

Pridopidine-HCl was prepared according to the following procedure: Solid pridopidine crude was charged into the first reactor followed by 8 Vol of IPA (not more than (NMT) 0.8% water by KF) and the mixture is heated to Tr =40-45°C (dissolution at Tr = 25-28°C). The mixture was then filtered through a 0.2 μιη filter and transferred into the second (crystallizing) reactor. The first hot reactor was washed with 3.8 Vol of IPA. The wash was transferred through the filter to the second reactor. The temperature was raised to 65-67°C and 1.1 eq of IPA/HCl are added to the mixture (1.1 eq of HC1, from IPA/HCl 5N solution, 0.78 v/w). The addition of EPA HCl into the free base is exothermic; therefore, it was performed slowly, and the temperature maintained at Tr = 60-67°C. After the addition, the mixture was stirred for 15 min and pH is measured (pH<4). If pH adjustment is needed,

0.2 eq of HCl (from IPA/HC1 5 N solution) is optional. At the end of the addition, the mixture was stirred for 1 hour at Tr = 66°C to start sedimentation. If sedimentation does not start, seeding with 0.07% pridopidine hydrochloride crystals is optional at this temperature. Breeding of the crystals was performed by stirring for 2.5 h at Tr =64-67°C. The addition HCl line was washed with 0.4 Vol of ΓΡΑ to give~13 Vol solution. The mixture was cooled to Tr =0°C The solid is filtered and washed with cooled 4.6 Vol ΓΡΑ at LT 5°C. Drying as performed under vacuum (P< ) at 30-60°C to constant weight: Dried pridopidine-HCl was obtained as a white solid.

Purification of Compound 4 during pridopidine-HCl process

A relationship between high temperature in the reduction reaction and high levels of Compound 4 impurity have been observed. A reduction in 50°C leads to 0.25% of Compound 4. For that reason the process of Example 1 limits the reduction reaction temperature to 30±5°C since this is the final step and Compound 4 level should be not more than 0.15%. The present process has another crystallization stage by which Compound 4 can be purified.

PATENT

https://www.google.ch/patents/US20130150406

Pridopidine, i.e. 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine, is a drug substance currently in clinical development for the treatment of Huntington’s disease. The hydrochloride salt of 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine and a method for its synthesis is described in WO 01/46145. In WO 2006/040155 an alternative method for the synthesis of 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine is described. In WO 2008/127188 N-oxide and/or di-N-oxide derivatives of certain dopamine receptor stabilizers/modulators are reported, including the 4-(3-methanesulfonyl-phenyl)-1-propyl-piperidine-1-oxide.

1H NMR PREDICTIONS

ACTUAL VALUES

1H NMR (300 MHz, CDCl3) δ ppm 0.96 (t, J = 7.3 Hz, 3 H), 1.53−1.64 (m, 2 H), 1.89 (dd, J = 9.6, 3.54 Hz, 4 H), 2.03−2.14 (m, 2 H), 2.31−2.41 (m, 2 H), 2.64 (ddd, J = 15.4, 5.7, 5.5 Hz, 1 H), 3.06−3.15 (m, 5 H), 7.51−7.58 (m, 2 H), 7.78−7.86 (m, 2 H).
 
13C NMR (75 MHz, CDCl3) δ ppm 11.98, 20.18, 33.29, 42.59, 44.43, 54.06, 60.93, 124.99, 125.74, 129.39, 132.04, 148.28.

13C NMR PREDICTIONS

References

  1.  Seeman P, Tokita K, Matsumoto M, Matsuo A, Sasamata M, Miyata K (October 2009). “The dopaminergic stabilizer ASP2314/ACR16 selectively interacts with D2(High) receptors”. Synapse. 63 (10): 930–4. doi:10.1002/syn.20663. PMID 19588469.
  2.  Rung JP, Rung E, Helgeson L, et al. (June 2008). “Effects of (-)-OSU6162 and ACR16 on motor activity in rats, indicating a unique mechanism of dopaminergic stabilization”. Journal of Neural Transmission. 115 (6): 899–908. doi:10.1007/s00702-008-0038-3. PMID 18351286.
  3. “NeuroSearch A/S announces the results of additional assessment and analysis of data from the Phase III MermaiHD study with Huntexil® in Huntington’s disease” (Press release). NeuroSearch. 28 April 2010. Retrieved 2010-04-28.
  4. “NeuroSearch press releases (dated 23.03.2011 and 24.05.2011)”. NeuroSearch “Huntexil update: EMA asks for further trial”. HDBuzz. Retrieved 11 December 2011.
  5.  Ponten, H.; Kullingsjö, J.; Lagerkvist, S.; Martin, P.; Pettersson, F.; Sonesson, C.; Waters, S.; Waters, N. (2003-11-19) [2000-12-22]. “In vivo pharmacology of the dopaminergic stabilizer pridopidine”. European Journal of Pharmacology. 644 (1-3) (1–3): 88–95. doi:10.1016/j.ejphar.2010.07.023. PMID 20667452.
  6. Dyhring T, Nielsen E, Sonesson C, et al. (February 2010). “The dopaminergic stabilizers pridopidine (ACR16) and (-)-OSU6162 display dopamine D(2) receptor antagonism and fast receptor dissociation properties”. European Journal of Pharmacology. 628 (1–3): 19–26. doi:10.1016/j.ejphar.2009.11.025. PMID 19919834.
  7.  Pettersson, F; Pontén, H; Waters N; Waters S; Sonesson C (March 2010). “Synthesis and Evaluation of a Set of 4-Phenylpiperidines and 4-Phenylpiperazines as D2 Receptor Ligands and the Discovery of the Dopaminergic Stabilizer 4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (Pridopidine; ACR16)”. Journal of Medicinal Chemistry. 53 (6): 2510–2520. doi:10.1021/jm901689v. PMID 20155917.
  8.  Natesan S, Svensson KA, Reckless GE, et al. (August 2006). “The dopamine stabilizers (S)-(-)-(3-methanesulfonyl-phenyl)-1-propyl-piperidine [(-)-OSU6162] and 4-(3-methanesulfonylphenyl)-1-propyl-piperidine (ACR16) show high in vivo D2 receptor occupancy, antipsychotic-like efficacy, and low potential for motor side effects in the rat”. The Journal of Pharmacology and Experimental Therapeutics. 318 (2): 810–8. doi:10.1124/jpet.106.102905. PMID 16648369.
  9.  Tadori Y, Forbes RA, McQuade RD, Kikuchi T (November 2008). “Characterization of aripiprazole partial agonist activity at human dopamine D3 receptors”. European Journal of Pharmacology. 597 (1–3): 27–33. doi:10.1016/j.ejphar.2008.09.008. PMID 18831971.
  10.  Rung JP, Carlsson A, Markinhuhta KR, Carlsson ML (June 2005). “The dopaminergic stabilizers (-)-OSU6162 and ACR16 reverse (+)-MK-801-induced social withdrawal in rats”. Progress in Neuro-psychopharmacology & Biological Psychiatry. 29 (5): 833–9. doi:10.1016/j.pnpbp.2005.03.003. PMID 15913873.
  11.  Nilsson M, Carlsson A, Markinhuhta KR, et al. (July 2004). “The dopaminergic stabiliser ACR16 counteracts the behavioural primitivization induced by the NMDA receptor antagonist MK-801 in mice: implications for cognition”. Progress in Neuro-psychopharmacology & Biological Psychiatry. 28 (4): 677–85. doi:10.1016/j.pnpbp.2004.05.004. PMID 15276693.
  12. Pettersson F, Waters N, Waters ES, Carlsson A, Sonesson C (November 7, 2002). The development of a new class of dopamine stabilizers. Society for Neuroscience Annual Conference. Orlando, FL.
  13.  Tedroff, J.; Krogh, P. Lindskov; Buusman, A.; Rembratt, Å. (2010). “Poster 20: Pridopidine (ACR16) in Huntington’s Disease: An Update on the MermaiHD and HART Studies”. Neurotherapeutics. 7: 144. doi:10.1016/j.nurt.2009.10.004.
  14.  “NeuroSearch announces results from an open-label safety extension to the Phase III MermaiHD study of Huntexil® in patients with Huntington’s disease” (Press release). NeuroSearch. 15 September 2010. Retrieved 2010-09-15.
  15.  “The HART study with Huntexil® shows significant effect on total motor function in patients with Huntington’s disease although it did not meet the primary endpoint after 12 weeks of treatment” (Press release). NeuroSearch. 14 October 2010. Retrieved 2010-10-14.

REFERENCES CITED:

U.S. Patent No. 6,903,120

U.S. Patent No. 7,923,459

U.S. Publication No. US-2013-0267552-A1

CSED:25948790, http://w .chemspider.com/Chernical-Stmcture.25948790.

CSID:7971505, http://ww.chemspider.com/Chermcal-Stmcture.7971505.html

Ebenezer et al, Tetrahedron Letters 55 (2014) 5323-5326.

REFERENCES

1: Squitieri F, de Yebenes JG. Profile of pridopidine and its potential in the treatment of Huntington disease: the evidence to date. Drug Des Devel Ther. 2015 Oct 28;9:5827-33. doi: 10.2147/DDDT.S65738. eCollection 2015. PubMed PMID: 26604684; PubMed Central PMCID: PMC4629959.

2: Rabinovich-Guilatt L, Siegler KE, Schultz A, Halabi A, Rembratt A, Spiegelstein O. The effect of mild and moderate renal impairment on the pharmacokinetics of pridopidine, a new drug for Huntington’s disease. Br J Clin Pharmacol. 2016 Feb;81(2):246-55. doi: 10.1111/bcp.12792. Epub 2015 Nov 25. PubMed PMID: 26407011.

3: Shannon KM, Fraint A. Therapeutic advances in Huntington’s Disease. Mov Disord. 2015 Sep 15;30(11):1539-46. doi: 10.1002/mds.26331. Epub 2015 Jul 30. Review. PubMed PMID: 26226924.

4: Sahlholm K, Sijbesma JW, Maas B, Kwizera C, Marcellino D, Ramakrishnan NK, Dierckx RA, Elsinga PH, van Waarde A. Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active doses. Psychopharmacology (Berl). 2015 Sep;232(18):3443-53. doi: 10.1007/s00213-015-3997-8. Epub 2015 Jul 11. PubMed PMID: 26159455; PubMed Central PMCID: PMC4537502.

5: Squitieri F, Di Pardo A, Favellato M, Amico E, Maglione V, Frati L. Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. J Cell Mol Med. 2015 Nov;19(11):2540-8. doi: 10.1111/jcmm.12604. Epub 2015 Jun 22. PubMed PMID: 26094900; PubMed Central PMCID: PMC4627560.

6: Waters S, Ponten H, Klamer D, Waters N. Co-administration of the Dopaminergic Stabilizer Pridopidine and Tetrabenazine in Rats. J Huntingtons Dis. 2014;3(3):285-98. doi: 10.3233/JHD-140108. PubMed PMID: 25300332.

7: Waters S, Ponten H, Edling M, Svanberg B, Klamer D, Waters N. The dopaminergic stabilizers pridopidine and ordopidine enhance cortico-striatal Arc gene expression. J Neural Transm (Vienna). 2014 Nov;121(11):1337-47. doi: 10.1007/s00702-014-1231-1. Epub 2014 May 11. PubMed PMID: 24817271.

8: Reilmann R. The pridopidine paradox in Huntington’s disease. Mov Disord. 2013 Sep;28(10):1321-4. doi: 10.1002/mds.25559. Epub 2013 Jul 11. PubMed PMID: 23847099.

9: Gronier B, Waters S, Ponten H. The dopaminergic stabilizer pridopidine increases neuronal activity of pyramidal neurons in the prefrontal cortex. J Neural Transm (Vienna). 2013 Sep;120(9):1281-94. doi: 10.1007/s00702-013-1002-4. Epub 2013 Mar 7. PubMed PMID: 23468085.

10: Huntington Study Group HART Investigators. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord. 2013 Sep;28(10):1407-15. doi: 10.1002/mds.25362. Epub 2013 Feb 28. PubMed PMID: 23450660.

11: Squitieri F, Landwehrmeyer B, Reilmann R, Rosser A, de Yebenes JG, Prang A, Ivkovic J, Bright J, Rembratt A. One-year safety and tolerability profile of pridopidine in patients with Huntington disease. Neurology. 2013 Mar 19;80(12):1086-94. doi: 10.1212/WNL.0b013e3182886965. Epub 2013 Feb 27. PubMed PMID: 23446684.

12: Ponten H, Kullingsjö J, Sonesson C, Waters S, Waters N, Tedroff J. The dopaminergic stabilizer pridopidine decreases expression of L-DOPA-induced locomotor sensitisation in the rat unilateral 6-OHDA model. Eur J Pharmacol. 2013 Jan 5;698(1-3):278-85. doi: 10.1016/j.ejphar.2012.10.039. Epub 2012 Nov 2. PubMed PMID: 23127496.

13: Lindskov Krog P, Osterberg O, Gundorf Drewes P, Rembratt Å, Schultz A, Timmer W. Pharmacokinetic and tolerability profile of pridopidine in healthy-volunteer poor and extensive CYP2D6 metabolizers, following single and multiple dosing. Eur J Drug Metab Pharmacokinet. 2013 Mar;38(1):43-51. doi: 10.1007/s13318-012-0100-2. Epub 2012 Sep 5. PubMed PMID: 22948856.

14: Ruiz C, Casarejos MJ, Rubio I, Gines S, Puigdellivol M, Alberch J, Mena MA, de Yebenes JG. The dopaminergic stabilizer, (-)-OSU6162, rescues striatal neurons with normal and expanded polyglutamine chains in huntingtin protein from exposure to free radicals and mitochondrial toxins. Brain Res. 2012 Jun 12;1459:100-12. doi: 10.1016/j.brainres.2012.04.021. Epub 2012 Apr 21. PubMed PMID: 22560595.

15: Helldén A, Panagiotidis G, Johansson P, Waters N, Waters S, Tedroff J, Bertilsson L. The dopaminergic stabilizer pridopidine is to a major extent N-depropylated by CYP2D6 in humans. Eur J Clin Pharmacol. 2012 Sep;68(9):1281-6. doi: 10.1007/s00228-012-1248-z. Epub 2012 Mar 8. PubMed PMID: 22399238.

16: Sahlholm K, Århem P, Fuxe K, Marcellino D. The dopamine stabilizers ACR16 and (-)-OSU6162 display nanomolar affinities at the σ-1 receptor. Mol Psychiatry. 2013 Jan;18(1):12-4. doi: 10.1038/mp.2012.3. Epub 2012 Feb 21. PubMed PMID: 22349783.

17: Neurodegenerative disease: Pridopidine for Huntington disease falls short of primary efficacy end point in phase III trial. Nat Rev Neurol. 2011 Dec 26;8(1):4. doi: 10.1038/nrneurol.2011.208. PubMed PMID: 22198402.

18: de Yebenes JG, Landwehrmeyer B, Squitieri F, Reilmann R, Rosser A, Barker RA, Saft C, Magnet MK, Sword A, Rembratt A, Tedroff J; MermaiHD study investigators. Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2011 Dec;10(12):1049-57. doi: 10.1016/S1474-4422(11)70233-2. Epub 2011 Nov 7. PubMed PMID: 22071279.

19: Feigin A. Pridopidine in treatment of Huntington’s disease: beyond chorea? Lancet Neurol. 2011 Dec;10(12):1036-7. doi: 10.1016/S1474-4422(11)70247-2. Epub 2011 Nov 7. PubMed PMID: 22071278.

20: Esmaeilzadeh M, Kullingsjö J, Ullman H, Varrone A, Tedroff J. Regional cerebral glucose metabolism after pridopidine (ACR16) treatment in patients with Huntington disease. Clin Neuropharmacol. 2011 May-Jun;34(3):95-100. doi: 10.1097/WNF.0b013e31821c31d8. PubMed PMID: 21586914.

US6903120 Dec 22, 2000 Jun 7, 2005 A. Carlsson Research Ab Modulators of dopamine neurotransmission
US7417043 Dec 21, 2004 Aug 26, 2008 Neurosearch Sweden Ab Modulators of dopamine neurotransmission
US7923459 Apr 10, 2007 Apr 12, 2011 Nsab, Filial Af Neurosearch Sweden Ab, Sverige Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-N-propyl-piperidine
US20070238879 * Apr 10, 2007 Oct 11, 2007 Gauthier Donald R Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-n-propyl-piperidine
US20100105736 Apr 14, 2008 Apr 29, 2010 Nsab, Filial Af Neurosearch Sweden Ab, Sverige N-oxide and/or di-n-oxide derivatives of dopamine receptor stabilizers/modulators displaying improved cardiovascular side-effects profiles
US20130150406 Dec 7, 2012 Jun 13, 2013 IVAX International GmbH Hydrobromide salt of pridopidine
US20130197031 Aug 31, 2011 Aug 1, 2013 IVAX International GmbH Deuterated analogs of pridopidine useful as dopaminergic stabilizers
US20130267552 Apr 3, 2013 Oct 10, 2013 IVAX International GmbH Pharmaceutical compositions for combination therapy
US20140088140 Sep 27, 2013 Mar 27, 2014 Teva Pharmaceutical Industries, Ltd. Combination of laquinimod and pridopidine for treating neurodegenerative disorders, in particular huntington’s disease
US20140088145 Sep 27, 2013 Mar 27, 2014 Teva Pharmaceutical Industries, Ltd. Combination of rasagiline and pridopidine for treating neurodegenerative disorders, in particular huntington’s disease
CN101056854A Oct 13, 2005 Oct 17, 2007 神经研究瑞典公司 Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-N-propyl-piperidine
WO2001046145A1 Dec 22, 2000 Jun 28, 2001 A. Carlsson Research Ab New modulators of dopamine neurotransmission
WO2006040155A1 Oct 13, 2005 Apr 20, 2006 Neurosearch Sweden Ab Process for the synthesis of 4-(3-methanesulfonylphenyl)-1-n-propyl-piperidine
US9006445 6. Sept. 2012 14. Apr. 2015 IVAX International GmbH Polymorphic form of pridopidine hydrochloride
US9139525 11. Apr. 2008 22. Sept. 2015 Teva Pharmaceuticals International Gmbh N-oxide and/or di-N-oxide derivatives of dopamine receptor stabilizers/modulators displaying improved cardiovascular side-effects profiles
US20100105736 * 14. Apr. 2008 29. Apr. 2010 Nsab, Filial Af Neurosearch Sweden Ab, Sverige N-oxide and/or di-n-oxide derivatives of dopamine receptor stabilizers/modulators displaying improved cardiovascular side-effects profiles
US20160176821 * 18. Dez. 2015 23. Juni 2016 Teva Pharmaceuticals International Gmbh L-tartrate salt of pridopidine
USRE46117 22. Dez. 2000 23. Aug. 2016 Teva Pharmaceuticals International Gmbh Modulators of dopamine neurotransmission
WO2014205229A1 * 19. Juni 2014 24. Dez. 2014 IVAX International GmbH Use of high dose pridopidine for treating huntington’s disease
WO2015112601A1 * 21. Jan. 2015 30. Juli 2015 IVAX International GmbH Modified release formulations of pridopidine
WO2016106142A1 * 18. Dez. 2015 30. Juni 2016 Teva Pharmaceuticals International Gmbh L-tartrate salt of pridopidine
Pridopidine
Pridopidine.svg
Names
IUPAC name

4-(3-(Methylsulfonyl)phenyl)-1-propylpiperidine
Identifiers
346688-38-8 Yes
3D model (Jmol) Interactive image
ChemSpider 7971505 
KEGG D09953 
PubChem 9795739
UNII HD4TW8S2VK Yes
Properties
C15H23NO2S
Molar mass 281.41 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

/////////pridopidine, PHASE 3, TEVA, 346688-38-8, orphan drug designation, Neurosearch, ACR16, Huntexil, ASP 2314, FR 310826, UNII-HD4TW8S2VK

CCCN1CCC(CC1)c2cccc(c2)S(C)(=O)=O

OXIDE

Example 5 – Preparation Of Compound 5 (4-(3-(methylsulfonyl)phenyl)-l-propylpiperidine 1-oxide)

Pridopidine (50.0g, 178mmol, leq) was dissolved in methanol (250mL) and 33% hydrogen peroxide (20mL, 213mmol, 1.2eq). The reaction mixture was heated and kept at 40°C for 20h. The reaction mixture was then concentrated in a rotavapor to give 71g light-yellow oil. Water (400mL) was added and the suspension was extracted with isopropyl acetate (150mL) which after separation contains unreacted pridopidine while water phase contains 91% area of Compound 5 (HPLC). The product was then washed with dichloromethane (400mL) after adjusting the water phase pH to 9 by sodium hydroxide. After phase separation the water phase was washed again with dichloromethane (200mL) to give 100% area of Compound 5 in the water phase (HPLC). The product was then extracted from the water phase into butanol (lx400mL, 3x200ml) and the butanol phases were combined and concentrated in a rotavapor to give 80g yellow oil (HPLC: 100% area of Compound 5). The oil was washed with water (150mL) to remove salts and the water was extracted with butanol. The organic phases were combined and concentrated in a rotavapor to give 43g of white solid which was suspended in MTBE for lhr, filtered and dried to give 33g solid that was melted when standing on air. After high vacuum drying (2mbar, 60°C, 2.5h) 32.23g pure Compound 5 were obtained (HPLC: 99.5% area, 1H-NMR assay: 97.4%).

NMR Identity Analysis of Compound 5

Compound 5:

The following data in Tables 10 and 11 was determined using a sample of 63.06 mg Compound 5, a solvent of 1.2 ml DMSO-D6, 99.9 atom%D, and the instrument was a Bruker Avance ΙΠ 400 MHz.

Table 10: Assignment of ¾ NMRa,c

a The assignment is based on the coupling pattern of the signals, coupling constants and chemical shifts.

b Weak signal.

c Spectra is calibrated by the solvent residual peak (2.5 ppm).

Table 11: Assignment of 13C NMRa,b

a The assignment is based on the chemical shifts and 1H-13C couplings extracted from HSQC and HMBC experiments.

b Spectra is calibrated by a solvent peak (39.54 ppm)

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016003919&recNum=5&docAn=US2015038349&queryString=EN_ALL:nmr%20AND%20PA:(teva%20pharmaceutical)&maxRec=677#H3

PATENT

http://www.google.bg/patents/WO2013086425A1?cl=en&hl=bg

Preparation of pridopidine HBr

In order to prepare 33 g of pridopidine HBr, 28.5 g of free base was dissolved in 150 ml 99% ethanol at room temperature. 1 .5 equivalents of hydrobromic acid 48% were added. Precipitation occurred spontaneously, and the suspension was left in refrigerator for 2.5 hours. Then the crystals were filtered, followed by washing with 99% ethanol and ether. The crystals were dried over night under vacuum at 40°C: m.p. 196°C. The results of a CHN analysis are presented in Table 2, below.

NMR 1 H NMR (DMSO-d6): 0.93 ( 3H, t), 1 .68-1 .80 ( 2H, m), 1 .99-2.10 ( 4H, m) 2.97-3.14 (5H, m), 3.24 ( 3H, s), 3.57-3.65 ( 2H, d), 7.60-7.68 (2H, m), 7.78-7.86 ( 2H, m) and 9.41 ppm (1 H, bs).

Plinabulin


Plinabulin.svg

Plinabulin

  • Molecular FormulaC19H20N4O2
  • Average mass336.388 Da
(3Z,6Z)-3-Benzylidène-6-{[4-(2-méthyl-2-propanyl)-1H-imidazol-5-yl]méthylène}-2,5-pipérazinedione
2,5-Piperazinedione, 3-[[5-(1,1-dimethylethyl)-1H-imidazol-4-yl]methylene]-6-(phenylmethylene)-, (3Z,6Z)-
CAS 714272-27-2
NPI 2358
NPI-2358; NPI 2358
UNII:986FY7F8XR
Phase 3 Clinical

Tubulin antagonist

Cancer; Febrile neutropenia; Non-small-cell lung cancer

Plinabulin (chemical structure, BPI-2358, formerly NPI-2358) is a small molecule under development by BeyondSpring Pharmaceuticals, and is in a world-wide Phase 3 clinical trial for non-small cell lung cancer. [1] Plinabulin blocks the polymerization of tubulin in a unique manner, resulting in multi-factorial effects including an enhanced immune-oncology response, [2] activation of the JNK pathway [3] and disruption of the tumor blood supply. Plinabulin is being investigated for the reduction of chemotherapy-induced neutropenia [4] and for anti-cancer effects in combination with immune checkpoint inhibitors [5] [6] and in KRAS mutated tumors. [7]

ChemSpider 2D Image | Plinabulin | C19H20N4O2

Plinabulin is a synthetic analog of diketopiperazine phenylahistin (halimide) discovered from marine and terrestrial Aspergillus sp. Plinabulin is structurally different from colchicine and its combretastatin-like analogs (eg, fosbretabulin) and binds at or near the colchicine binding site on tubulin monomers. Previous studies showed that plinabulin induced vascular endothelial cell tubulin depolymerization and monolayer permeability at low concentrations compared with colchicine and that it induced apoptosis in Jurkat leukemia cells. Studies of plinabulin as a single agent in patients with advanced malignancies (lung, prostate, and colon cancers) showed a favorable pharmacokinetic, pharmacodynamics, and safety profile.

Beyondspring, under license from Nereus (now Triphase, which licensed the program from the Scripps Institute of Oceanography of the University of California San Diego), is developing plinabulin, the lead in the NPI-2350 halimide series of marine Aspergillus-derived, vascular-targeting antimicrotubule agents, for treating cancer, primarily non-small cell lung cancer.

Image result for BeyondSpring Pharmaceuticals

It is thought that a single, universal cellular mechanism controls the regulation of the eukaryotic cell cycle process. See, e.g., Hartwpll, L.H. et al., Science (1989), 246: 629-34. It is also known that when an abnormality arises in the control mechanism of the cell cycle, cancer or an immune disorder may occur. Accordingly, as is also known, antitumor agents and immune suppressors may be among the substances that regulate the cell cycle. Thus, new methods for producing eukaryotic cell cycle inhibitors are needed as antitumor and immune-enhancing compounds, and should be useful in the treatment of human cancer as chemotherapeutic, anti-tumor agents. See, e.g., Roberge, M. et al., Cancer Res. (1994), 54, 6115-21.

Fungi, especially pathogenic fungi and related infections, represent an increasing clinical challenge. Existing antifungal agents are of limited efficacy and toxicity, and the development and/or discovery of strains of pathogenic fungi that are resistant to drags currently available or under development. By way of example, fungi that are pathogenic in humans include among others Candida spp. including C. albicans, C. tropicalis, C. keƒyr, C. krusei and C. galbrata; Aspergillus spp. including A. fumigatus and A. flavus; Cryptococcus neoƒormans; Blastomyces spp. including Blastomyces dermatitidis; Pneumocystis carinii; Coccidioides immitis; Basidiobolus ranarum; Conidiobolus spp.; Histoplasma capsulatum; Rhizopus spp. including R. oryzae and R. microsporus; Cunninghamella spp.; Rhizomucor spp.; Paracoccidioides brasiliensis; Pseudallescheria boydii; Rhinosporidium seeberi; and Sporothrix schenckii (Kwon-Chung, K.J. & Bennett, J.E. 1992 Medical Mycology, Lea and Febiger, Malvern, PA).

Recently, it has been reported that tryprostatins A and B (which are diketopiperazines consisting of proline and isoprenylated tryptophan residues), and five other structurally-related diketopiperazines, inhibited cell cycle progression in the M phase, see Cui, C. et al., 1996 J Antibiotics 49:527-33; Cui, C. et al. 1996 J Antibiotics 49:534-40, and that these compounds also affect the microtubule assembly, see Usui, T. et al. 1998 Biochem J 333:543-48; Kondon, M. et al. 1998 J Antibiotics 51:801-04. Furthermore, natural and synthetic compounds have been reported to inhibit mitosis, thus inhibit the eukaryotic cell cycle, by binding to the colchicine binding-site (CLC-site) on tubulin, which is a macromolecule that consists of two 50 kDa subunits (α- and β-tubulin) and is the major constituent of microtubules. See, e.g., Iwasaki, S., 1993 Med Res Rev 13:183-198; Hamel, E. 1996 Med Res Rev 16:207-31; Weisenberg, R.C. et al., 1969 Biochemistry 7:4466-79. Microtubules are thought to be involved in several essential cell functions, such as axonal transport, cell motility and determination of cell morphology. Therefore, inhibitors of microtubule function may have broad biological activity, and be applicable to medicinal and agrochemical purposes. It is also possible that colchicine (CLC)-site ligands such as CLC, steganacin, see Kupchan, S.M. et al., 1973 J Am Chem Soc 95:1335-36, podophyllotoxin, see Sackett, D.L., 1993 Pharmacol Ther 59:163-228, and combretastatins, see Pettit, G.R. et al., 1995 J Med Chem 38:166-67, may prove to be valuable as eukaryotic cell cycle inhibitors and, thus, may be useful as chemotherapeutic agents.

Although diketopiperazine-type metabolites have been isolated from various fungi as mycotoxins, see Horak R.M. et al., 1981 JCS Chem Comm 1265-67; Ali M. et al., 1898 Toxicology Letters 48:235-41, or as secondary metabolites, see Smedsgaard J. et al., 1996 J Microbiol Meth 25:5-17, little is known about the specific structure of the diketopiperazine-type metabolites or their derivatives and their antitumor activity, particularly in vivo. Not only have these compounds been isolated as mycotoxins, the chemical synthesis of one type of diketopiperazine-type metabolite, phenylahistin, has been described by Hayashi et al. in J. Org. Chem. (2000) 65, page 8402. In the art, one such diketopiperazine-type metabolite derivative, dehydrophenylahistin, has been prepared by enzymatic dehydrogenation of its parent phenylahistin. With the incidences of cancer on the rise, there exists a particular need for chemically producing a class of substantially purified diketopiperazine-type metabolite-derivatives having animal cell-specific proliferation-inhibiting activity and high antitumor activity and selectivity. There is therefore a particular need for an efficient method of synthetically producing substantially purified, and structurally and biologically characterized, diketopiperazine-type metabolite-derivatives.

Also, PCT Publication WO/0153290 (July 26, 2001) describes a non-synthetic method of producing dehydrophenylahistin by exposing phenylahistin or a particular phenylahistin analog to a dehydrogenase obtained from Streptomyces albulus.

Synthesis

Image result for Plinabulin

Image result for (S)-(-)-phenylahistin

PATENT

WO2001053290,

WO 2004054498

PATENT

WO 2005077940

The imidazolecarboxaldehyde may be prepared, for example, according the procedure disclosed in Hayashi et al., 2000 J Organic Chem 65: 8402 as depicted below:

EXAMPLE 2

Synthesis and Physical Characterization of tBu-dehydrophenylahistin Derivatives

[0207] Structural derivatives of dehydrophenylahistin were synthesized according to the following reaction schemes to produce tBu-dehydrophenylahistin. Synthesis by Route

A (see Figure 1) is similar in certain respects to the synthesis of the dehydrophenylahistin synthesized as in Example 1.

Route A:

[0208] N,N’-diacethyl-2,5-piperazinedione 1 was prepared as in Example 1.

1) 1-Acetyl-3-{(Z)-1-[5-tert-butyl-1H-4-imidazolyl]methylidene}]-2,5-piperazinedione (16)

. [0209] To a solution of 5-tert-butylimidazole-4-carboxaldehyde 15 (3.02 g, 19.8. mmol) in DMF (30 mL) was added compound 1 (5.89 g, 29.72 mmol) and the solution was repeatedly evacuated in a short time to remove oxygen and flushed with Ar, followed by the addition of Cs2CO3 (9.7 g, 29.72 mmol) and the evacuation-flushing process was repeated again. The resultant mixture was stirred for 5 h at room temperature. After the solvent was removed by evaporation, the residue was dissolved in the mixture of EtOAc and 10% Na2CO3, and the organic phase was washed with 10% Na2CO3 again and saturated NaCl for three times, dried over Na2SO4 and concentrated in vacuo. The residual oil was purified by column chromatography on silica using CHCl3-MeOH (100:0 to 50:1) as an eluant to give 1.90 g (33 %) of a pale yellow solid 16. 1H NMR (270 MHz, CDCl3) δ 12.14 (d, br-s, 1H), 9.22 (br-s, 1H), 7.57 (s, 1H), 7.18, (s, 1H), 4.47 (s, 2H), 2.65 (s, 3H), 1.47 (s, 9H).

2) t-Bu-dehydrophenylahistin

[0210] To a solution of 1-Acetyl-3-{(Z)-1-[5-tert-butyl-1H-4-imidazolyl]methylidene}]-2,5-piperazinedione (16) (11 mg, 0.038 mmol) in DMF (1.0 mL) was added benzaldehyde (19 μL, 0.19 mmol, 5 eq) and the solution was repeatedly evacuated in a short time to remove oxygen and flushed with Ar, followed by the addition of Cs2CO3 (43 mg, 0.132 mmol, 3.5 eq) and the evacuation-flushing process was repeated again. The resultant mixture was heated for 2.5 h at 80°C. After the solvent was removed by

evaporation, the residue was dissolved in EtOAc, washed with water for two times and saturated NaCl for three times, dried over Na2SO4 and concentrated in vacuo. The resulting residue was dissolved in 90% MeOH aq and applied to reverse-phase HPLC column (YMC-Pack, ODS-AM, 20 × 250 mm) and eluted using a linear gradient from 70 to 74% MeOH in water over 16 min at a flow rate of 12 mL/min, and the desired fraction was collected and concentrated by evaporation to give a 6.4 mg (50%) of yellow colored tert-butyl-dehydrophenylahistin. 1H NMR (270 MHz, CDCl3) δ 12.34 br-s, 1H), 9.18 (br-s, 1H), 8.09 (s, 1H), 7.59 (s, 1H), 7.31 – 7.49 (m, 5H), 7.01 s, 2H), 1.46 (s, 9H).

[0211] The dehydrophenylahistin reaction to produce tBu-dehydrophenylahistin is identical to Example 1.

[0212] The total yield of the tBu-dehydrophenylahistin recovered was 16.5%. Route B:

[0213] N,N’-diacethyl-2,5-piperazinedione 1 was prepared as in Example 1.

1) 1-Acetyl-3-[(Z)-benzylidenel]-2,5-piperazinedione (17)

[0214] To a solution of benzaldehyde 4 (0.54 g, 5.05. mmol) in DMF (5 mL) was added compound 1 (2.0 g, 10.1 mmol) and the solution was repeatedly evacuated in a short time to remove oxygen and flushed with Ar, followed by the addition of Cs2CO3 (1.65 g, 5.05 mmol) and the evacuation-flushing process was repeated again. The resultant mixture was stirred for 3.5 h at room temperature. After the solvent was removed by evaporation, the residue was dissolved in the mixture of EtOAc and 10% Na2CO3, and the organic phase was washed with 10% Na2CO3 again and saturated NaCl for three times, dried over Na2SO4 and concentrated in vacuo. The residual solid was recrystalized from MeOH-ether to obtain a off-white solid of 17; yield 1.95 g (79%).

2) t-Bu-dehydrophenylahistin

[0215] To a solution of 1-Acetyl-3-[(Z)-benzylidenel]-2,5-piperazinedione (17) (48 mg, 0.197 mmol) in DMF (1.0 mL) was added 5-tert-butylimidazole-4-carboxaldehyde 15 (30 mg, 0.197 mmol) and the solution was repeatedly evacuated in a short time to remove oxygen and flushed with Ar, followed by the addition of Cs2CO3 (96 mg, 0.296 mmol) and the evacuation-flushing process was repeated again. The resultant mixture was heated for 14 h at 80°C. After the solvent was removed by evaporation, the residue was dissolved in EtOAc, washed with water for two times and saturated NaCl for three times, dried over Na2SO4 and concentrated in vacuo. The resulting residue was dissolved in 90% MeOH aq and applied to reverse-phase HPLC column (YMC-Pack, ODS-AM, 20 x 250 mm) and eluted using a linear gradient from 70 to 74% MeOH in water over 16 min at a flow rate of 12 mL/min, and the desired fraction was collected and concentrated by evaporation to give a 0.8 mg (1.2%) of yellow colored tert-butyl-dehydrophenylahistin.

[0216] The total yield of the tBu-dehydrophenylahistin recovered was 0.9%.

[0217] The HPLC profile of the crude synthetic tBu-dehyrophenylahistin from Route A and from Route B is depicted in Figure 4.

[0218] Two other tBu-dehydrophenylahistin derivatives were synthesized according to the method of Route A. In the synthesis of the additional tBu-dehydrophenylahistin derivatives, modifications to the benzaldehyde compound 4 were made.

[0219] Figure 4 illustrates the similarities of the HPLC profiles (Column: YMC-Pack ODS-AM (20 × 250mm); Gradient: 65% to 75% in a methanol-water system for 20 min, then 10 min in a 100% methanol system; Flow rate: 12mL/min; O.D. 230 nm) from the synthesized dehydrophenylahistin of Example 1 (Fig 2) and the above exemplified tBu-dehydrophenylahistin compound produced by Route A.

[0220] The sequence of introduction of the aldehydes is a relevant to the yield and is therefore aspect of the synthesis. An analogue of dehydrophenylahistin was synthesized, as a confrol or model, wherein the dimethylallyl group was changed to the tert-butyl group with a similar steric hindrance at the 5-position of the imidazole ring.

[0221] The synthesis of this “tert-butyl (tBu)-dehydrophenylahistin” using “Route A” was as shown above: Particularly, the sequence of infroduction of the aldehyde exactly follows the dehydrophenylahistin synthesis, and exhibited a total yield of 16.5% tBu-dehydrophenylahistin. This yield was similar to that of dehydrophenylahistin (20%). Using “Route B”, where the sequence of introduction of the aldehydes is opposite that of Route “A” for the dehydrophenylahistin synthesis, only a trace amount of the desired tBu-dehydroPLH was obtained with a total yield of 0.9%, although in the introduction of first benzaldehyde 4 gave a 76% yield of the intermediate compound 17. This result indicated that it may be difficult to introduce the highly bulky imidazole-4-carboxaldehydes 15 with a substituting group having a quaternary-carbon on the adjacent 5-position at the imidazole ring into the intermediate compound 17, suggesting that the sequence for introduction of aldehydes is an important aspect for obtaining a high yield of dehydrophenylahistin or an analog of dehydrophenylahistin employing the synthesis disclosed herein:

[0222] From the HPLC analysis of the final crude products, as shown in Figure 4, a very high content of tBu-dehydrophenylahistin and small amount of by-product formations were observed in the crude sample of Route A (left). However, a relatively smaller amount of the desired tBu-dehydrophenylahistin and several other by-products were observed in the sample obtained using Route B (right).

Synthesis oƒ 3-Z-Benzylidene-6-(5″-tert-butyl-1H-imidazol-4″-Z-ylmethylene)-piperazine-2,5-dione (2)

Reagents: g) SO2Cl2; h) H2NCHO, H2O; I)LiAlH4; j) MnO2; k) 1,4-diacetyl-piperazine-2,5-dione, Cs2CO3; 1) benzaldehyde, Cs2CO3

2-Chloro-4,4-dimethyl-3-oxo-pentanoic acid ethyl ester

[0280] Sulfuryl chloride (14.0 ml, 0.17 mol) was added to a cooled (0°) solution of ethyl pivaloylacetate (27.17 g, 0.16 mol) in chloroform (100 ml). The resulting mixture was allowed to warm to room temperature and was stirred for 30 min, after which it was heated under reflux for 2.5 h. After cooling to room temperature, the reaction mixture was diluted with chloroform, then washed with sodium bicarbonate, water then brine.

[0281] The organic phase was dried and evaporated to afford, as a clear oil, 2-chloro-4,4-dimethyl-3-oxo-pentanoic acid ethyl ester (33.1 g, 102%). (Durant et al., “Aminoalkylimidazoles and Process for their Production.” Patent No. GB1341375 (Great Britain, 1973)).

[0282] HPLC (214nm) tR = 8.80 (92.9%) min.

[0283] 1H NMR (400 MHz, CDCl3) δ 1.27 (s, 9H); 1.29 (t, J= 7.2 Hz, 3H); 4.27

(q, J= 7.2 Hz, 2H); 5.22 (s, 1H).

[0284] 13C NMR (100 MHz, CDCl3) δ 13.8, 26.3, 45.1, 54.5, 62.9, 165.1, 203.6.

5-tert-Butyl-3H-imidazole-4-carboxylic acid ethyl ester

[0285] A solution of 2-chloro-4,4-dimethyl-3-oxo-pentanoic acid ethyl ester (25.0 g, 0.12 mol) in formamide (47.5 ml) and water (2.5 ml) was shaken, then dispensed into 15 x 8 ml vials. All vials were sealed and then heated at 150° for 3.5 h. The vials were allowed to cool to room temperature, then water (20 ml) was added and the mixture was exhaustively extracted with chloroform. The chloroform was removed to give a concentrated formamide solution (22.2 g) which was added to a flash silica column (6 cm diameter, 12 cm height) packed in 1% MeOH/1% Et3N in chloroform. Elution of the column with 2.5 L of this mixture followed by 1 L of 2% MeOH/1% Et3N in chloroform gave, in the early fractions, a product suspected of being 5-tert-butyl-oxazole-4-carboxylic acid ethyl ester (6.3 g, 26%).

[0286] HPLC (214nm) tR = 8.77 min.

[0287] 1H NMR (400 MHz, CDCl3) δ 1.41 (t, J= 7.2 Hz, 3H); 1.43 (s, 9H); 4.40

(q, J= 7.2 Hz, 2H); 7.81 (s, 1H).

[0288] 13C NMR (100 MHz, CDCl3) δ 14.1, 28.8, 32.5, 61.3, 136.9, 149.9, 156.4,

158.3.

[0289] ESMS m/z 198.3 [M+H]+, 239.3 [M+CH4CN]+.

[0290] LC/MS tR = 7.97 (198.1 [M+H]+) min.

[0291] Recovered from later fractions was 5-tert-butyl-3H-imidazole-4-carboxylic acid ethyl ester (6.20 g, 26%). (Durant et al., “Aminoalkylimidazoles and Process for their Production.” Patent No. GB 1341375 (Great Britain, 1973)).

[0292] HPLC (214nm) tR = 5.41 (93.7%) min.

[0293] 1H NMR (400 MHz, CDCl3) δ 1.38 (t, J = 7.0 Hz, 3H); 1.47 (s, 9H); 4.36

(q, J= 7.2 Hz, 2H); 7.54 (s, 1H).

[0294] 13C NMR (100 MHz, CDCl3) δ 13 7, 28.8, 32.0, 59.8, 124.2, 133.3, 149.2,

162.6.

[0295] ESMS m/z 197.3 [M+H]+, 238.3 [M+CH4CN]+.

[0296] Further elution of the column with 1L of 5% MeOh/1% Et3N gave a compound suspected of being 5-tert-butyl-3H-imidazole-4-carboxylic acid (0.50 g, 2%).

[0297] HPLC (245nm) tR = 4.68 (83.1%) min.

[0298] 1H NMR (400 MHz, CD3OD) δ 1.36 (s, 9H); 7.69 (s, 1H).

[0299] 1H NMR (400 MHz, CDCl3) δ 1.37 (s, 9H); 7.74 (s, 1H).

[0300] 1H NMR (400 MHz, CD3SO) δ 1.28 (s, 9H); 7.68 (s, 1H).

[0301] ESMS m/z 169.2 [M+H]+, 210.4 [M+CH4CN]+.

(5-tert-Butyl-3H-imidazol-4-yl)-methanol

[0302] A solution of 5-tert-butyl-3-imidazole-4-carboxylic acid ethyl ester (3.30 g, 16.8 mmol) in THF (60 ml) was added dropwise to a suspension of lithium aluminium hydride (95% suspension, 0.89 g, 22.2 mmol) in THF (40 ml) and the mixture was stirred at room temperature for 3 h. Water was added until the evolution of gas ceased, the mixture was stirred for 10 min, then was filtered through a sintered funnel. The precipitate was washed with THF, then with methanol, the filtrate and washings were combined and evaporated. The residue was freeze-dried overnight to afford, as a white solid (5-tert-butyl- 3H-imidazol-4-yl)-methanol (2.71 g, 105%). (Durant et al., “Aminoalkylimidazoles and Process for their Production.” Patent No. GB1341375 (Great Britain, 1973)).

[0303] HPLC (240nm) tR = 3.70 (67.4%) min.

[0304] 1H NMR (400 MHz, CD3OD) δ 1 36 (s, 9H). 4 62 (s, 2H); 7.43 (s, 1H).

[0305] 13C NMR (100 MHz, CD3OD) δ 31.1, 33.0, 57.9, 131.4, 133.9, 140.8.

[0306] LC/MS tR = 3.41 (155.2 [M+H]+) min.

[0307] This material was used without further purification.

5-tert-Butyl-3H-imidazole-4-carbaldehyde

[0308] Manganese dioxide (30 g, 0.35 mol) was added to a heterogeneous solution of (5-tert-butyl-3H-imidazol-4-yl)-methanol (4.97 g, 0.03 mol) in acetone (700 ml) and the resulting mixture was stirred at room temperature for 4 h. The mixture was filtered through a pad of Celite and the pad was washed with acetone. The filfrate and washings were combined and evaporated. The residue was triturated with ether to afford, as a colorless solid, 5-tert-butyl-3H-imidazole-4-carbaldehyde (2.50 g, 51%). (Hayashi, Personal Communication (2000)).

[0309] HPLC (240nm) tR = 3.71 (89.3%) min.

[0310] 1H NMR (400 MHz, CDCl3) δ 1.48 (s, 9H); 7.67 (s, 1H); 10.06 (s, 1H).

[0311] LC/MS tR = 3.38 (153.2 [M+H]+) min.

[0312] Evaporation of the filtrate from the trituration gave additional 5-tert-butyl-3H-imidazole-4-carbaldehyde (1.88 g, 38%).

1-Acetyl-3-(5′-tert-butyl-1H-imdazol-4′-Z-ylmethylene)-piperazine-2,5-dione

[0313] To a solution of 5-tert-butyl-3H-imidazole-4-carbaldehyde (2.50 g, 164.4 mmol) in DMF (50 ml) was added 1,4-diacetyl-piperazine-2,5-dione (6.50 g, 32.8 mmol) and the solution was evacuated, then flushed with argon. The evacuation-flushing process was repeated a further two times, then cesium carbonate (5.35 g, 16.4 mmol) was added. The evacuation-flushing process was repeated a further three times, then the resultant mixture was stirred at room temperature for 5 h. The reaction mixture was partially evaporated (heat and high vacuum) until a small volume remained and the resultant solution was added dropwise to water (100 ml). The yellow precipitate was collected, then freeze-dried to afford 1-acetyl-3-(5′-tert-butyl-1Η-imidazol-4′-Z-ylmethylene)-piperazine-2,5-dione (2.24 g, 47%). (Hayashi, Personal Communication (2000)).

[0314] HPLC (214nm) tR = 5.54 (94.4%) min.

[0315] 1H NMR (400 MHz, CDCl3) δ 1.47 (s, 9H); 2.65 (s, 3H), 4.47 (s, 2H);

7.19 (s, 1H); 7.57 (s, 1H), 9.26 (s, 1H), 12.14 (s, 1H).

[0316] 13C NMR (100 MHz, CDCI3+CD3OD) δ 27.3, 30.8, 32.1, 46.5, 110.0,

123.2, 131.4, 133.2, 141.7, 160.7, 162.8, 173.0

[0317] LC/MS tR = 5.16 (291.2 [M+H]+, 581.6 [2M+H]+) min.

3-Z-Benzylidene-6-(5″-tert-butyl-lH-imidazol-4″-Z-ylmethylene)-piperazine-2,5-dione

[0318] To a solution of 1-acetyl-3-(5′-tert-butyl-1H-imidazol-4′-Z-ylmethylene)-piperazine-2,5-dione (2.43 g, 8.37 mmol) in DMF (55 ml) was added benzaldehyde (4.26 ml, 41.9 mmol) and the solution was evacuated, then flushed with nitrogen. The evacuation-

flushing process was repeated a further two times, then cesium carbonate (4.09 g, 12.6 mmol) was added. The evacuation-flushing process was repeated a further three times, then the resultant mixture was heated under the temperature gradient as shown below. After a total time of 5 h the reaction was allowed to cool to room temperature and the mixture was added to ice-cold water (400 ml). The precipitate was collected, washed with water, then freeze-dried to afford a yellow solid (2.57 g, HPLC (214nm) tR = 6.83 (83.1%) min.). This material was dissolved in chloroform (100 ml) and evaporated to azeofrope remaining water, resulting in a brown oil. This was dissolved in chloroform (20 ml) and cooled in ice. After 90 min the yellow precipitate was collected and air-dried to afford 3-Z-benzylidene-6-(5″-tert-butyl-1H-imidazol-4″-Z-ylmethylene)-piperazine-2,5-dione (1.59 g, 56%). (Hayashi, Personal Communication (2000)).

[0319] HPLC (214nm) tR = 6.38 (2.1%), 6.80 (95.2) min.

[0320] 1H NMR (400 MHz, CDCl3) δ 1.46 (s, pH). 7 01 (s, 1H, -C-C=CH); 7.03

(s, 1H, -C-C=CH); 7.30-7.50 (m, 5H, Ar); 7.60 (s, 1H); 8.09 (bs, NH); 9.51 (bs, NH); 12.40 (bs, NH).

[0321] LC/MS tR = 5.84 (337.4 [M+H]+, E isomer), 6.25 (337.4 [M+H]+, 673.4 [2M+H]+, Z isomer) min.

[0322] ESMS m/z 337.3 [M+H]+, 378.1 [M+OLGNT.

[0323] Evaporation of the chloroform solution gave additional 3-Z-benzylidene-6-(5″-tert-butyl-1H-imidazol-4″-Z-ylmethylene)-piperazine-2,5-dione (0.82 g, 29%). ΗPLC (214nm) tR = 6.82 (70.6%) min.

PAPER

Journal of Medicinal Chemistry (2012), 55(3), 1056-1071

Abstract Image

Plinabulin (11, NPI-2358) is a potent microtubule-targeting agent derived from the natural diketopiperazine “phenylahistin” (1) with a colchicine-like tubulin depolymerization activity. Compound 11 was recently developed as VDA and is now under phase II clinical trials as an anticancer drug. To develop more potent antimicrotubule and cytotoxic derivatives based on the didehydro-DKP skeleton, we performed further modification on the tert-butyl or phenyl groups of 11, and evaluated their cytotoxic and tubulin-binding activities. In the SAR study, we developed more potent derivatives 33 with 2,5-difluorophenyl and 50 with a benzophenone in place of the phenyl group. The anti-HuVEC activity of 33 and 50 exhibited a lowest effective concentration of 2 and 1 nM for microtubule depolymerization, respectively. The values of 33 and 50 were 5 and 10 times more potent than that of CA-4, respectively. These derivatives could be a valuable second-generation derivative with both vascular disrupting and cytotoxic activities.

Synthesis and Structure–Activity Relationship Study of Antimicrotubule Agents Phenylahistin Derivatives with a Didehydropiperazine-2,5-dione Structure

Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
§Nereus Pharmaceuticals, San Diego, California 92121, United States
Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
Laboratory of Comparative Agricultural Science, Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
# Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
Marine Biotechnology Institute Co., Ltd., Kamaishi, Iwate 026-0001, Japan
J. Med. Chem., 2012, 55 (3), pp 1056–1071
DOI: 10.1021/jm2009088
*Tel/fax: +81-42-676-3275. E-mail: yhayashi@toyaku.ac.jp.
3-{(Z)-1-[5-(tert-Butyl)-1H-4-imidazolyl]methylidene}-6-[(Z)-1-phenylmethylidene]-2,5-piperazinedione
Compound 11 as a yellow solid: yield 81%;
mp 160–162 °C (dec);
IR (KBr, cm–1) 3500, 3459, 3390, 3117, 3078, 2963, 2904, 1673, 1636, 1601, 1413, 1371, 1345;
1H NMR (300 MHz, DMSO-d6) δ 12.26 (s, 2H), 10.16 (br s, 1H), 7.86 (s, 1H), 7.53 (d, J = 7.4 Hz, 2H), 7.42 (t, J = 7.5 Hz 2H), 7.32 (t, J = 7.4 Hz, 1H), 6.86 (s, 1H), 6.75 (s, 1H), 1.38 (s, 9H);
13C NMR (150 MHz, DMSO-d6) 157.2, 156.4, 145.3, 137.4, 134.5, 133.1, 129.1, 128.6, 127.9, 126.4, 113.9, 112.0, 104.5, 37.4, 27.7;
HRMS (EI) m/z 336.1591 (M+) (calcd for C19H20N4O2 336.1586).
Anal. (C19H20N4O2·0.25H2O·CF3COOH) C, H, N. HPLC (method 1) 99.4% (tR = 18.87 min).
str1 str2

PAPER

Chemistry – A European Journal (2011), 17(45), 12587-12590, S12587/1-S12587/13

Abstract

original image

Click for improved solubility: A water-soluble prodrug of plinabulin was designed and synthesized efficiently by using click chemistry in three steps (see scheme). The product was highly water-soluble, and the parent compound could be regenerated by esterase hydrolysis.

PATENT

WO2017011399,  PLINABULIN COMPOSITIONS

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017011399&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

References

  1.  “Assessment of Docetaxel + Plinabulin Compared to Docetaxel + Placebo in Patients With Advanced NSCLC With at Least One Measurable Lung Lesion (DUBLIN-3)”.
  2.  Lloyd, G.K.; Muller, Ph.; Kashyap, A.; Zippelius, A.; Huang, L. (January 7–9, 2016), Plinabulin: Evidence for an Immune Mediated Mechanism of Action (Philadelphia (PA) AACR 2016 Abstract nr A07), San Diego CA
  3.  Singh, A.V.; Bandi, M.; Raje, N.; Richardson, P.; Palladino, M.A.; Chauhan, D.; Anderson, K. (2011). “A Novel Vascular Disrupting Agent Plinabulin Triggers JNK-Mediated Apoptosis and Inhibits Angiogenesis in Multiple Myeloma Cells”. Blood. 117 (21): 5692–5700.
  4.  Heist, R.S.; Aren, O.R.; Mita, A.C.; Polikoff, J.; Bazhenova, L.; Lloyd, G.K.; Mikrut, W.; Reich, W.; Spear, M.A.; Huang, L. (2014), Randomized Phase 2 Trial of Plinabulin (NPI-2358) Plus Docetaxel in Patients with Advanced Non-Small Lung Cancer (NSCLC) (abstr 8054)
  5.  “Nivolumab and Plinabulin in Treating Patients With Stage IIIB-IV, Recurrent, or Metastatic Non-small Cell Lung Cancer”.
  6.  “Nivolumab in Combination With Plinabulin in Patients With Metastatic Non-Small Cell Lung Cancer (NSCLC)”.
  7.  Lloyd, G.K.; Du, L.; Lee, G.; Dalsing-Hernandez, J.; Kotlarczyk, K.; Gonzalez, K.; Nawrocki, S.; Carew, J.; Huang, L. (October 5–9, 2015), Activity of Plinabulin in Tumor Models with Kras Mutations (Philadelphia (PA) AACR 2015 Abstract nr. 184), Boston MA
Plinabulin
Plinabulin.svg
Names
IUPAC name

(3Z,6Z)-3-Benzylidene-6-{[5-(2-methyl-2-propanyl)-1H-imidazol-4-yl]methylene}-2,5-piperazinedione
Identifiers
714272-27-2 Yes
3D model (Jmol) Interactive image
ChemSpider 8125252
PubChem 9949641
Properties
C19H20N4O2
Molar mass 336.40 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

////////////Plinabulin, Phase 3,  Clinical, 714272-27-2, NPI 2358, Nereus,  (S)-(-)-phenylahistin,  NPI-2350,  (-)-phenylahistin,  KPU-2, KPU-02, KPU-35

O=C3N\C(=C/c1ncnc1C(C)(C)C)C(=O)N/C3=C\c2ccccc2

BMS-960


Figure imgf000099_0001

str1

BMS-960

PRECLINICAL

(S)-1-((S)-2-Hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-1,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylic Acid

3-Piperidinecarboxylic acid, 1-[(2S)-2-hydroxy-2-[4-[5-[3-phenyl-4-(trifluoromethyl)-5-isoxazolyl]-1,2,4-oxadiazol-3-yl]phenyl]ethyl]-, (3S)-

(S)-1-((S)-2-Hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-1,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylic Acid

CAS 1265321-86-5 FREE FORM

FREE FORM 528.48, C26 H23 F3 N4 O5

CAS 1265323-40-7 HCL SALT

BASIC PATENT WO201117578, 2011, (US Patent 8399451)

Inventors John L. Gilmore, James E. Sheppeck
Applicant Bristol-Myers Squibb Company

Image result for Bristol-Myers Squibb Company

Sphingosine-1-phosphate (S1P) is the endogenous ligand for the sphingosine-1-phophate receptors (S1P1–5) and triggers a number of cellular responses through their stimulation. S1P and its interaction with the S1P receptors play a significant role in a variety of biological processes including vascular stabilization, heart development, lymphocyte homing, and cancer angiogenesis. Agonism of S1P1, especially, has been shown to play an important role in lymphocyte trafficking from the thymus and secondary lymphoid organs, inducing immunosuppression, which has been established as a novel mechanism of treatment for immune diseases and vascular diseases

Sphingosine-1 -phosphate (SlP) has been demonstrated to induce many cellular effects, including those that result in platelet aggregation, cell proliferation, cell morphology, tumor cell invasion, endothelial cell and leukocyte chemotaxis, endothelial cell in vitro angiogenesis, and lymphocyte trafficking. SlP receptors are therefore good targets for a wide variety of therapeutic applications such as tumor growth inhibition, vascular disease, and autoimmune diseases. SlP signals cells in part via a set of G protein-coupled receptors named SlPi or SlPl, SlP2 or S1P2, SlP3 or S1P3, SlP4 Or S1P4, and SlP5 or S1P5 (formerly called EDG-I, EDG-5, EDG-3, EDG-6, and EDG-8, respectively).

SlP is important in the entire human body as it is also a major regulator of the vascular and immune systems. In the vascular system, SlP regulates angiogenesis, vascular stability, and permeability. In the immune system, SlP is recognized as a major regulator of trafficking of T- and B-cells. SlP interaction with its receptor SlPi is needed for the egress of immune cells from the lymphoid organs (such as thymus and lymph nodes) into the lymphatic vessels. Therefore, modulation of SlP receptors was shown to be critical for immunomodulation, and SlP receptor modulators are novel immunosuppressive agents.

The SlPi receptor is expressed in a number of tissues. It is the predominant family member expressed on lymphocytes and plays an important role in lymphocyte trafficking. Downregulation of the SlPi receptor disrupts lymphocyte migration and homing to various tissues. This results in sequestration of the lymphocytes in lymph organs thereby decreasing the number of circulating lymphocytes that are capable of migration to the affected tissues. Thus, development of an SlPi receptor agent that suppresses lymphocyte migration to the target sites associated with autoimmune and aberrant inflammatory processes could be efficacious in a number of autoimmune

Among the five SlP receptors, SlPi has a widespread distribution and is highly abundant on endothelial cells where it works in concert with SIP3 to regulate cell migration, differentiation, and barrier function. Inhibition of lymphocyte recirculation by non-selective SlP receptor modulation produces clinical immunosuppression preventing transplant rejection, but such modulation also results in transient bradycardia. Studies have shown that SlPi activity is significantly correlated with depletion of circulating lymphocytes. In contrast, Sl P3 receptor agonism is not required for efficacy. Instead, SIP3 activity plays a significant role in the observed acute toxicity of nonselective SlP receptor agonists, resulting in the undesirable cardiovascular effects, such as bradycardia and hypertension. (See, e.g., Hale et al, Bioorg. Med. Chem. Lett., 14:3501 (2004); Sanna et al., J. Biol. Chem., 279: 13839 (2004); Anliker et al., J. Biol. Chem., 279:20555 (2004); Mandala et al., J. Pharmacol. Exp. Ther., 309:758 (2004).)

An example of an SlPi agonist is FTY720. This immunosuppressive compound FTY720 (JPI 1080026-A) has been shown to reduce circulating lymphocytes in animals and humans, and to have disease modulating activity in animal models of organ rejection and immune disorders. The use of FTY720 in humans has been effective in reducing the rate of organ rejection in human renal transplantation and increasing the remission rates in relapsing remitting multiple sclerosis (see Brinkman et al., J. Biol. Chem., 277:21453 (2002); Mandala et al., Science, 296:346 (2002); Fujino et al., J.

Pharmacol. Exp. Ther., 305:45658 (2003); Brinkman et al, Am. J. Transplant., 4: 1019 (2004); Webb et al., J. Neuroimmunol, 153: 108 (2004); Morris et al., Eur. J. Immunol, 35:3570 (2005); Chiba, Pharmacology & Therapeutics, 108:308 (2005); Kahan et al., Transplantation, 76: 1079 (2003); and Kappos et al., N. Engl. J. Med., 335: 1124 (2006)). Subsequent to its discovery, it has been established that FTY720 is a prodrug, which is phosphorylated in vivo by sphingosine kinases to a more biologically active agent that has agonist activity at the SlPi, SIP3, SlP4, and SIP5 receptors. It is this activity on the SlP family of receptors that is largely responsible for the pharmacological effects of FTY720 in animals and humans. [0007] Clinical studies have demonstrated that treatment with FTY720 results in bradycardia in the first 24 hours of treatment (Kappos et al, N. Engl. J. Med., 335: 1124 (2006)). The observed bradycardia is commonly thought to be due to agonism at the SIP3 receptor. This conclusion is based on a number of cell based and animal experiments. These include the use of SIP3 knockout animals which, unlike wild type mice, do not demonstrate bradycardia following FTY720 administration and the use of SlPi selective compounds. (Hale et al., Bioorg. Med. Chem. Lett., 14:3501 (2004); Sanna et al., J. Biol. Chem., 279: 13839 (2004); and Koyrakh et al., Am. J. Transplant, 5:529 (2005)).

The following applications have described compounds as SlPi agonists: WO 03/061567 (U.S. Patent Publication No. 2005/0070506), WO 03/062248 (U.S. Patent No. 7,351,725), WO 03/062252 (U.S. Patent No. 7,479,504), WO 03/073986 (U.S. Patent No. 7,309,721), WO 03/105771, WO 05/058848, WO 05/000833, WO 05/082089 (U.S. Patent Publication No. 2007/0203100), WO 06/047195, WO 06/100633, WO 06/115188, WO 06/131336, WO 2007/024922, WO 07/109330, WO 07/116866, WO 08/023783 (U.S. Patent Publication No. 2008/0200535), WO 08/029370, WO 08/114157, WO 08/074820, WO 09/043889, WO 09/057079, and U.S. Patent No. 6,069,143. Also see Hale et al., J. Med. Chem., 47:6662 (2004).

There still remains a need for compounds useful as SlPi agonists and yet having selectivity over Sl P3.

Applicants have found potent compounds that have activity as SlPi agonists. Further, applicants have found compounds that have activity as SlPi agonists and are selective over SIP3. These compounds are provided to be useful as pharmaceuticals with desirable stability, bioavailability, therapeutic index, and toxicity values that are important to their drugability.

SYNTHESIS

Figure

(S)-1-((S)-2-Hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-1,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylic acid, HCl (BMS-960). CAS 1265323-40-7

(S)-1-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-1,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylic acid, HCl (BMS-960)

1H NMR (400 MHz, DMSO-d6) δ 12.88 (br. s, 1H), 10.5 (br. s, 1H), 8.14 (d, J = 8.6 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.69–7.57 (m, 5H), 6.43 (br. s., 1H), 5.37 (d, J = 10.8 Hz, 1H), 3.89–3.60 (m, 2H), 3.50–2.82 (m, 6H), 2.14–1.99 (m, 1H), 1.97–1.75 (m, 1H), 1.63–1.35 (m, 1H);

13C NMR (101 MHz, CDCl3) δ 172.8, 168.5, 164.0, 161.6, 155.4, 156.2, 131.2, 129.0, 128.9, 127.4, 127.2, 125.5, 124.3, 122.2, 111.6, 66.6. 63.0, 52.9, 52.2, 38.8, 25.0, 21.7;

19F NMR (376 MHz, DMSO-d6) δ −54.16;

Anal. calcd for C26H23F3N4O5·HCl: C, 54.71; H, 4.36; N, 9.80. Found: C, 54.76; H, 3.94; N, 9.76;

HRMS (ESI) m/e 529.17040 [(M + H)+, calcd for C26 H24 N4 O5 F3 529.16933].

PATENT

WO 2011017578

Example 14

(S)-l-((S)-2-Hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-l,2,4- oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylic acid

Figure imgf000099_0001

Preparation 14A: (3S)-Ethyl l-(2-(4-cyanophenyl)-2-hydroxyethyl)piperidine-3- carboxylate

Figure imgf000099_0002

(14A)-isomer A (14A)-isomer B [00210] To a mixture of (S)-ethyl piperidine-3-carboxylate (1.3 g, 8.27 mmol) in toluene (50 mL) was added 4-(2-bromoacetyl)benzonitrile (2.4 g, 10.71 mmol). The reaction mixture was stirred overnight. LCMS indicated completion of reaction. MeOH (10 mL) was added to the mixture, followed by the portionwise addition of sodium borohydride (0.313 g, 8.27 mmol). After 1 hour, LCMS show complete reduction to the desired alcohol. The reaction was quenched with water. The reaction mixture was diluted with ethyl acetate and washed with saturated NaCl. The organic layer was dried with MgSO4, filtered, concentrated, and purified on a silica gel cartridge using an EtOAc/hexanes gradient to yield 2.0 g of solid product. The product was separated by chiral HPLC (Berger SFC MGIII instrument equipped with a CHIRALCEL® OJ (25 x 3 cm, 5 μM). Temp: 30 0C; Flow rate: 130 mL/min; Mobile phase: C(V(MeOH +

0.1%DEA) in 9: 1 ratio isocratic:

[00211] Peak 1 (Isomer A): RT = 2.9 min. for (S)-ethyl l-((S)-2-(4-cyanophenyl)-2- hydroxyethyl)piperidine-3-carboxylate (>99% d.e.). The absolute and relative stereochemistry of compound 14A-isomer A was assigned (S,S) by X-ray crystal structure (see Alternative Route data). 1H NMR (400 MHz, CDCl3) δ ppm 7.63 (2 H, m, J=8.35 Hz), 7.49 (2 H, m, J=8.35 Hz), 4.77 (1 H, dd, J=10.55, 3.52 Hz), 4.17 (2 H, q, J=7.03 Hz), 3.13 (1 H, d, J=9.23 Hz), 2.53-2.67 (3 H, m), 2.44 (2 H, dd, J=18.68, 9.89 Hz), 2.35 (1 H, dd, J=12.74, 10.55 Hz), 1.87-2.01 (1 H, m), 1.71-1.82 (1 H, m), 1.52-1.70 (2 H, m), 1.28 (3 H, t, J=7.03 Hz).

[00212] Peak 2 (Isomer B): RT = 3.8 min for (S)-ethyl l-((R)-2-(4-cyanophenyl)-2- hydroxyethyl)piperidine-3-carboxylate (>99% d.e.). The absolute and relative stereochemistry of 14A-isomer B was assigned (S,R) based on the crystal structure of 14A-isomer A. 1H NMR (400 MHz, CDCl3) δ ppm 7.63 (2 H, m, J=8.35 Hz), 7.49 (2 H, m, J=8.35 Hz), 4.79 (1 H, dd, J=10.55, 3.52 Hz), 4.16 (2 H, q, J=7.03 Hz), 2.69-2.91 (3 H, m), 2.60-2.68 (1 H, m), 2.56 (1 H, dd, J=12.30, 3.52 Hz), 2.36 (1 H, dd, J=12.52, 10.77 Hz), 2.25 (1 H, t, J=8.79 Hz), 1.65-1.90 (3 H, m), 1.52-1.64 (1 H, m, J=12.69, 8.49, 8.49, 4.17 Hz), 1.27 (3 H, t, J=7.25 Hz).

[00213] (S)-Ethyl l-((S)-2-(4-cyanophenyl)-2-hydroxyethyl)piperidine-3-carboxylate (14A-isomer A) was carried forward to make Example 14 and (S)-ethyl l-((R)-2-(4- cyanophenyl)-2-hydroxyethyl)piperidine-3-carboxylate (14A-isomer B) was carried forward to make Example 15.

Preparation 14B: (S)-Ethyl l-((S)-2-hydroxy-2-(4-((Z)-N’-hydroxycarbamimidoyl) phenyl)ethyl)piperidine-3 -carboxylate

Figure imgf000100_0001

[00214] To a mixture of ((S)-ethyl l-((S)-2-hydroxy-2-(4-((Z)-N’- hydroxycarbamimidoyl) phenyl)ethyl)piperidine-3 -carboxylate (14A-Isomer A) (58 mg, 0.192 mmol) and hydroxylamine hydrochloride (26.7 mg, 0.384 mmol) in 2-propanol (10 mL) was added sodium bicarbonate (64.5 mg, 0.767 mmol). The reaction mixture was heated at 85 0C. The reaction mixture was diluted with ethyl acetate and washed with sat NaCl. The organic layer was dried with MgSO4, filtered, and concentrated to yield 56 mg. MS (M+l) = 464. HPLC Peak RT = 1.50 minutes.

Preparation 14C: (S)-Ethyl l-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl) isoxazol-5-yl)-l,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylate

Figure imgf000101_0001

[00215] 3-Phenyl-4-(trifluoromethyl)isoxazole-5-carbonyl fluoride, InM-G (214 mg, 0.78 mmol) was dissolved in acetonitrile (5.00 mL). DIEA (0.272 mL, 1.555 mmol) and (S)-ethyl- 1 -((S)-2-hydroxy-2-(4-((Z)-N’-hydroxycarbamimidoyl) phenyl)ethyl)- piperidine-3-carboxylate (261 mg, 0.778 mmol) were added. The reaction mixture was stirred for 2 hours, then IM TBAF in THF (0.778 mL, 0.778 mmol) was added. The reaction mixture was stirred overnight at room temperature. The reaction mixture was filtered and purified by HPLC in three batches. HPLC conditions: PHENOMENEX® Luna C18 5 micron column (250 x 30mm); 25-100% CH3CN/water (0.1% TFA); 25 minute gradient; 30 mL/min. Isolated fractions with correct mass were partitioned between EtOAc and saturated NaHCO3 with back extracting aqueous layer once. The organic layer was dried with MgSO4, filtered, and concentrated to give 155mg of (S)- ethyl l-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-l,2,4- oxadiazol-3-yl)phenyl)ethyl) piperidine-3-carboxylate. 1H NMR (400 MHz, MeOH-d3) δ ppm 8.04 (2 H, d, J=8.13 Hz), 7.55-7.60 (2 H, m), 7.41-7.54 (5 H, m), 4.81 (1 H, ddd, J=8.35, 4.06, 3.84 Hz), 3.96-4.10 (2 H, m), 2.82-3.08 (1 H, m), 2.67-2.82 (1 H, m), 2.36- 2.61 (3 H, m), 2.08-2.33 (2 H, m), 1.73-1.87 (1 H, m, J=8.54, 8.54, 4.45, 4.17 Hz), 1.32- 1.70 (3 H, m), 1.09-1.19 (3 H, m). MS (m+l) = 557. HPLC Peak RT = 3.36 minutes. Purity = 99%.

Example 14: [00216] (S)-Ethyl l-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5- yl)-l,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylate (89 mg, 0.16 mmol) was heated at 50 0C in 6N HCl (5 mL) in acetonitrile (5 mL). The reaction mixture was stirred overnight and then filtered and purified by HPLC. HPLC conditions:

PHENOMENEX® Luna C 18 5 micron column (250 x 30mm); 25-100% CH3CN/water (0.1% TFA); 25 minute gradient; 30 mL/min. Isolated fractions with correct mass were freeze-dried overnight to yield 36 mg of (S)-l-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4- (trifluoromethyl)isoxazol-5-yl)-l,2,4-oxadiazol-3-yl)phenyl)ethyl) piperidine-3- carboxylic acid as a TFA salt. 1H NMR (400 MHz, MeOH-d3) δ ppm 8.23 (2 H, d, J=8.35 Hz), 7.65-7.74 (4 H, m), 7.54-7.65 (3 H, m), 5.29 (1 H, t, J=7.03 Hz), 4.00 (1 H, br. s.), 3.43-3.75 (1 H, m), 3.34-3.41 (2 H, m), 2.82-3.24 (2 H, m), 2.26 (1 H, d, J=I 1.86 Hz), 1.84-2.14 (2 H, m), 1.52-1.75 (1 H, m). MS (m+1) = 529. HPLC Peak RT = 3.24 minutes. Purity = 98%. Example 14-Alternate Synthesis Route 1

Preparation 14D (Alternate Synthesis Route 1): (S)-4-(Oxiran-2-yl)benzonitrile

Figure imgf000102_0001

[00217] To 800 mL of 0.2M, pH 6.0 sodium phosphate buffer in a 2 L flask equipped with an overhead stirrer was added D-glucose (38.6 g, 1.2 eq), β-nicotinamide adenine dinucleotide, free acid (1.6 g, mmol), glucose dehydrogenase (36 mg, 3.2 kU,

CODEXIS® GDH- 102, 90 U/mg), and enzyme KRED-NADH-110 (200 mg,

CODEXIS®, 25 U/mg). The vessels containing the reagents above were rinsed with 200 mL of fresh sodium phosphate buffer and added to the reaction which was stirred to dissolution and then heated to 40 0C. To this mixture was added a solution of 2-bromo- 4′-cyanoacetophenone (40 g, 178.5 mmol) in 100 mL DMSO through an addition funnel in about 30 min. The container was rinsed with 20 mL DMSO and the rinse was added to the reactor. A pH of 5.5-6.0 was maintained by adding 1 M NaOH through a fresh addition funnel (total volume of 200 mL over 6h) after which HPLC showed complete consumption of the starting material. The reaction mixture was extracted with 800 mL MTBE x 2 and the combined extracts were washed with 300 mL of 25% brine. The crude alcohol was transferred to a 3L 3-neck flask and treated with solid NaOtBu (34.3 g, 357 mmol) stirring for 1 h and then additional NaOtBu (6.9 g, 357 mmol) and stirring for 30 min. The reaction mixture was filtered and the solution was washed with 300 mL 0.2 M pH 6.0 sodium phosphate buffer, brine, and then the solvent was removed in vacuo and the resulting white solid was dried in a vacuum oven to give (S)-4-(oxiran-2- yl)benzonitrile (23 g, 90% yield, 100% e.e.). 1H NMR (400 MHz, CDCl3) δ ppm 7.62 (2 H, d), 7.35 (2 H, d), 3.88 (1 H, dd), 3.18 (1 H, app t), 2.73 (1 H, dd) Purity = 99%.

[00218] Chiral HPLC was done on a CHIRALP AK® AD-RH 4.6x150mm (Daicel Chemical Industries Ltd.) column using gradient of solvent A (10 mM NH4OAc in water/acetonitrile, 90: 10) and solvent B (10 mM NH4OAc in water/acetonitrile, 10:90) with 70% to 90% in 40 min at a flow rate of 0.5 ml/min at ambient temperature. The detection employed UV at 235 nm. The retention times are as follows:

[00219] Peak 1 (Isomer A): RT = 16.7 min. for (S)-4-(oxiran-2-yl)benzonitrile

[00220] Peak 2 (Isomer B): RT = 14.0 min. for (R)-4-(oxiran-2-yl)benzonitrile Preparation of 14A-isomer A (Alternate Synthesis Route 1): (S)-Ethyl l-((S)-2-(4- cyanophenyl)-2 -hydroxy ethyl)piperidine-3-carboxylate

Figure imgf000103_0001

(14A)-isomer A

[00221] (S)-4-(Oxiran-2-yl)benzonitrile (10.00 g, 68.9 mmol), (S)-ethyl piperidine-3- carboxylate (10.83 g, 68.9 mmol) and iPrOH (100 mL) was charged into a round bottom flask under N2. After heating at 55 0C for 4 hours, 4-dimethylaminopyridine (1.683 g, 13.78 mmol) was then added. The reaction mixture was then heated to 50 0C for an additional 12 hours. At this time HPLC indicated the starting material was completely converted to the desired product. The reaction mixture was then cooled to room temperature. EtOAc (120 ml) was added, followed by 100 ml of water. The organic layer was separated, extracted with EtOAc (2x 100 mL) and concentrated under vacuo to give a crude product. The crude product was recrystallized from EtOH/EtOAc/H2O (3/2/2) (8ml/lg) to give a crystalline off-white solid 14A-alt (15 g, 72% yield, 99.6% e.e.). The absolute and relative stereochemistry was determined by single X-ray crystallography employing a wavelength of 1.54184 A. The crystalline material had an orthorhombic crystal system and unit cell parameters approximately equal to the following:

a = 5.57 A α = 90.0°

b = 9.7l A β = 90.0°

c = 30.04 A γ = 90.0°

Space group: P212121

Molecules/asymmetric unit: 2

Volume/Number of molecules in the unit cell = 1625 A3

Density (calculated) = 1.236 g/cm3

Temperature 298 K.

Preparation 14E (Alternate Route 1): (S)-Ethyl l-((S)-2-(tert-butyldimethylsilyloxy)-2- (4-cyanophenyl)ethyl)piperidine-3-carboxylate

Figure imgf000104_0001

[00222] To a mixture of (S)-ethyl 1 -((S)-2-(4-cyanophenyl)-2-hydroxy ethyl) piperidine-3-carboxylate (17.0 g, 56.2 mmol) and DIPEA (17.68 ml, 101 mmol) in CH2Cl2 (187 mL) was added tert-butyldimethylsilyl trifluoromethanesulfonate (16 ml, 69.6 mmol) slowly. The reaction was monitored with HPLC. The reaction completed in 2 hours. The reaction mixture (a light brown solution) was quenched with water, the aqueous layer was extracted with DCM. The organic phase was combined and dried with Na2SO4. After concentration, the crude material was further purified on a silica gel cartridge (33Og silica, 10-30% EtOAc/hexanes gradient) to afford a purified product (S)- ethyl 1 -((S)-2-(tert-butyldimethylsilyloxy)-2-(4-cyanophenyl)ethyl) piperidine-3 – carboxylate (22.25 g, 53.4 mmol, 95 % yield). 1H NMR (400 MHz, CDCl3) δ ppm 7.61 (2 H, d), 7.45 (2 H, d), 4.79 (1 H, m), 4.15 (2 H, m), 2.88 (1 H, m), 2.75 (1 H, m), 2.60 (1 H, dd), 2.48 (1 H, m), 2.40 (1 H, dd), 2.33 (1 H, tt), 2.12 (1 H, tt), 1.90 (1 H, m), 1.68 (1 H, dt), 1.52 (1 H, m), 1.48 (1 H, m), 1.27 (3 H, t), 0.89 (9 H, s), 0.08 (3 H, s), -0.07 (3 H, s).

Preparation 14F (Alternate Route 1): (S)-Ethyl l-((S)-2-(tert-butyldimethylsilyloxy)-2- (4-((Z)-N’-hydroxycarbamimidoyl)phenyl)ethyl)piperidine-3-carboxylate

Figure imgf000105_0001

[00223] (S)-Ethyl- 1 -((S)-2-(tert-butyldimethylsilyloxy)-2-(4-cyanophenyl)ethyl) piperidine-3-carboxylate (31.0 g, 74.4 mmol) was dissolved in EtOH (248 mL).

Hydroxylamine (50% aq) (6.84 ml, 112 mmol) was added and stirred at room temperature overnight. Then all volatiles were removed with ROTA VAPOR®. The residue was purified with on a silica gel cartridge (33Og silica, 0-50% EtOAc/hexanes gradient) to give (S)-ethyl l-((S)-2-(tert-butyldimethylsilyloxy)-2-(4-((Z)-N’- hydroxycarbamimidoyl)phenyl)ethyl)piperidine-3-carboxylate (31 g, 68.9 mmol, 93 % yield) as a white foam. 1H NMR (400 MHz, CDCl3) δ ppm 8.38 (1 H, br s), 7.58 (2 H, d), 7.37 (2 H, d), 4.88 (2 H, br s), 4.81 (1 H, m), 4.13 (2 H, m), 2.96 (1 H, m), 2.82 (1 H, m), 2.61 (1 H, dd), 2.51 (1 H, m), 2.42 (1 H, dd), 2.32 (1 H, tt), 2.13 (1 H, dt), 1.91 (1 H, m), 1.66 (1 H, dt), 1.58 (1 H, m), 1.48 (1 H, m), 1.27 (3 H, t), 0.89 (9 H, s), 0.08 (3 H, s), -0.09 (3 H, s). Preparation 14G (Alternate Route 1): (S)-Ethyl l-((S)-2-(tert-butyldimethylsilyloxy)-2- (4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-l,2,4-oxadiazol-3- yl)phenyl)ethyl)piperidine-3-carboxylate

Figure imgf000105_0002

[00224] (S)-Ethyl- 1 -((S)-2-(tert-butyldimethylsilyloxy)-2-(4-((Z)-N’- hydroxycarbamimidoyl)phenyl)ethyl)piperidine-3-carboxylate (32.6g, 72.5 mmol) was dissolved in acetonitrile (145 ml) (anhydrous) and cooled to ~3 0C with ice-bath. 3- phenyl-4-(trifluoromethyl)isoxazole-5-carbonyl chloride (19.98 g, 72.5 mmol) was dissolved in 5OmL anhydrous acetonitrile and added dropwise. The internal temperature was kept below 10 0C during addition. After addition, the reaction mixture was allowed to warm to room temperature. At 30 minutes, HPLC showed completion of the first reaction step. The reaction mixture was re-cooled to below 10 0C. DIEA (18.99 ml, 109 mmol) was added slowly. After the addition, the reaction mixture was heated up to 55 0C for 17 hr s. HPLC/LCMS showed completion of the reaction. The solvents were removed by ROTA VAPOR®. The residue was stirred in 25OmL 20% EtOAc/hexanes and the DIPEA HCl salt precipitated from solution and was removed via filtration. The filtrate was concentrated and purified using a silica gel cartridge (3X33Og silica, 0-50%

EtOAc/hexanes gradient). (S)-ethyl l-((S)-2-(tert-butyldimethylsilyloxy)-2-(4-(5-(3- phenyl-4-(trifluoromethyl)isoxazol-5-yl)-l,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3- carboxylate (43g, 64.1 mmol, 88 % yield) was obtained a light yellow oil. 1H NMR (400 MHz, CDCl3) δ ppm 8.16 (2 H, d), 7.68 (2 H, d), 7.57 (5 H, m), 4.85 (1 H, m), 4.14 (2 H, m), 2.95 (1 H, m), 2.82 (1 H, m), 2.64 (1 H, dd), 2.51 (1 H, m), 2.49 (1 H, dd), 2.35 (1 H, tt), 2.14 (1 H, dt), 1.91 (1 H, m), 1.66 (1 H, dt), 1.57 (1 H, m), 1.48 (1 H, m), 1.27 (3 H, t), 0.92 (9 H, s), 0.11 (3 H, s), -0.05 (3 H, s).

Example 14 (Alternate Route 1): (S)-l-((S)-2-Hydroxy-2-(4-(5-(3-phenyl-4- (trifluoromethyl)isoxazol-5-yl)-l,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3- carboxylic acid

Figure imgf000106_0001

[00225] (S)-Ethyl l-((S)-2-(tert-butyldimethylsilyloxy)-2-(4-(5-(3-phenyl-4- (trifluoromethyl)isoxazol-5-yl)-l,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3- carboxylate (42g, 62.6 mmol) was dissolved in dioxane (150 ml) and treated with 6M HCl (150 ml). The reaction mixture was heated to 65 0C for 6 hours (the reaction was monitored with HPLC, EtOH was distilled out to push the equilibrium forward). Dioxane was removed and the residue was redissolved in ACN/water and lyophilized separately to give crude (S)-l-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl) isoxazol-5-yl)- l,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylic acid, HCl, (37g crude foamy solid). The crude solid (36 g, 63.7 mmol) was suspended in acetonitrile (720 mL) and heated to 60 0C and water (14.4 mL) was added dropwise. A clear solution was obtained, which was cooled to room temperature and concentrated to a viscous oil, treated with ethyl acetate (1.44 L) with vigorously stirring, heated to 60 0C, and cooled to room temperature. (S)-l-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)- l,2,4-oxadiazol-3-yl)phenyl)ethyl) piperidine-3-carboxylic acid, HCl (28g, 49.3 mmol, 77 % yield) was collected and vacuum dried. Characterization of product by 1H NMR and chiral HPLC matched Example 14 prepared in previous synthesis.

Preparation of Intermediate (14A)-isomer A-Alternate Route 2; 2-Steps: (S)-Ethyl 1- ((S)-2-(4-cyanophenyl)-2-hydroxyethyl)piperidine-3-carboxylate

Figure imgf000107_0001

(14A)-isomer A

Step 1 : Preparation (14D) (Alternate Route 2): (S)-Ethyl l-(2-(4-cyanophenyl)-2- oxoethyl)piperidine-3-carboxylate hydrobromide

Figure imgf000107_0002

(14D)-isomer A

[00226] To a solution of commercially available (S)-ethyl piperidine-3-carboxylate (10 g, 63.6 mmol) in 200 mL toluene was added 4-(2-bromoacetyl)benzonitrile (17g, 76 mmol). The reaction mixture was stirred overnight. The next day, the precipitated solid was collected by filtration and washed with ethyl acetate (x3) and dried under vacuum to give 15.2g of (S)-ethyl l-(2-(4-cyanophenyl)-2-oxoethyl)piperidine-3-carboxylate hydrobromide. MS (M+ 1) = 301. HPLC Peak RT = 1.51 minutes.

Step 2: Preparation of 14 A-isomer A (Alternate Route 2): (S)-Ethyl l-((S)-2-(4- cyanophenyl)-2-hydroxyethyl)piperidine-3 -carboxylate

[00227] Phosphate buffer (1100 mL, BF045, pH 7.0, 0. IM) was added into two liter jacketed glass reactor. The temperature of the reactor was adjusted to 20 0C with the help of a circulator and the reaction mixture was stirred with a magnetic stirrer. Dithiothretol (185.2 mg, 1 mM), magnesium sulfate (288.9 mg, 2 mM), and D-glucose (11.343 g, 62.95 m moles) were added into the reactor. (5*)-Ethyl l-(2-(4-cyanophenyl)-2-oxoethyl) piperidine-3 -carboxylate HBr salt (12 g, 31.47 m moles dissolved in 60 mL DMSO) was added into the reactor slowly with continuous stirring, β-nicotinamide adenine dinucleotide phosphate sodium salt (NADP), 918.47 mg, glucose dehydrogenase, 240 mg (total 18360 U, 76.5 U/mg, ~ 15U/mL, Amano Lot. GDHY1050601) and KRED-114, 1.2 g (CODEXIS® assay 7.8 U/mg of solid), were dissolved in 2.0 mL, 2.0 mL and 10 ml of the same buffer, respectively. Next, NADP, GDH and KRED-114 were added to the reactor in that order. The remaining 26 mL of same buffer was used to wash the NADP, GDH and KRED-114 containers and buffer was added into the same reactor. The starting pH of the reaction was 7.0 which decreased with the progress of the reaction and was maintained at pH 6.5 during the course of the reaction (used pH stat, maintained with IM NaOH). The reaction was run for 4.5 hours and immediately stopped and extracted with ethyl acetate. The ethyl acetate solution was evaporated under reduced pressure and weight of the dark brown residue was 12.14 g. The product was precipitated with dichloromethane and heptane to give 9 g of crude product which was further purified by dissolving it in minimum amount of dichloromethane and re-precipitating by the addition of excess amount of heptane to give 5.22 g. The process was repeated to give an additional 2.82 g of highly pure product for a total of 8.02 g of de > 99.5%.

[00228] Chiral HPLC was done on a CHIRALP AK® AD-RH 4.6x150mm (Daicel Chemical Industries Ltd.) column using gradient of solvent A (10 mM NH4OAc in water/acetonitrile, 90: 10) and solvent B (IO mM NH4OAc in water/acetonitrile, 10:90) with 70% to 90% in 40 min at a flow rate of 0.5 ml/min at ambient temperature. The detection was done by UV at 235 nm. The retention times are as follows: [00229] Peak 1 (14A-isomer A): RT = 20.7 min. for (S)-ethyl l-((S)-2-(4- cyanophenyl)-2-hydroxyethyl)piperidine-3-carboxylate.

[00230] Peak 2 (14B-isomer B): RT = 30.4 min. for (S)-ethyl l-((R)-2-(4- cyanophenyl)-2-hydroxyethyl)piperidine-3-carboxylate.

[00231] Compound 14A-isomer A prepared using this asymmetric method was unambiguously assigned since it was identical to the 14A-isomer A (by 1H NMR and chiral HPLC retention time) that was prepared above and determined by X-ray crystallography. Synthesis of Example 14 from this material followed the same route as described above.

paper

Regioselective Epoxide Ring Opening for the Stereospecific Scale-Up Synthesis of BMS-960, A Potent and Selective Isoxazole-Containing S1P1Receptor Agonist

Discovery Chemistry, Bristol-Myers Squibb, Princeton, New Jersey 08540, United States
Chemical & Synthetic Development, Bristol-Myers Squibb, New Brunswick, New Jersey 08903, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00366
Abstract Image

This article presents a stereospecific scale-up synthesis of (S)-1-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-1,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylic acid (BMS-960), a potent and selective isoxazole-containing S1P1 receptor agonist. The process highlights an enzymatic reduction of α-bromoketone toward the preparation of (S)-bromo alcohol, a key precursor of (S)-4-(oxiran-2-yl)benzonitrile. A regioselective and stereospecific epoxide ring-opening reaction was also optimized along with improvements to 1,2,4-oxadiazole formation, hydrolysis, and crystallization. The improved process was utilized to synthesize batches of BMS-960 for Ames testing and other toxicological studies.

PAPER

Journal of Medicinal Chemistry (2016), 59(13), 6248-6264.

Discovery and Structure–Activity Relationship (SAR) of a Series of Ethanolamine-Based Direct-Acting Agonists of Sphingosine-1-phosphate (S1P1)

Abstract

Abstract Image

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates a multitude of physiological processes such as lymphocyte trafficking, cardiac function, vascular development, and inflammation. Because of the ability of S1P1 receptor agonists to suppress lymphocyte egress, they have great potential as therapeutic agents in a variety of autoimmune diseases. In this article, the discovery of selective, direct acting S1P1 agonists utilizing an ethanolamine scaffold containing a terminal carboxylic acid is described. Potent S1P1 agonists such as compounds 18a and 19a which have greater than 1000-fold selectivity over S1P3 are described. These compounds efficiently reduce blood lymphocyte counts in rats through 24 h after single doses of 1 and 0.3 mpk, respectively. Pharmacodynamic properties of both compounds are discussed. Compound 19a was further studied in two preclinical models of disease, exhibiting good efficacy in both the rat adjuvant arthritis model (AA) and the mouse experimental autoimmune encephalomyelitis model (EAE).

BASE

(S)-1-((S)-2-Hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl) isoxazol-5-yl)-1,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylic Acid (18a)

(S)-ethyl 1-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-1,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylate (36%).

1H NMR (400 MHz, MeOH-d3) δ ppm 8.04 (2 H, d, J = 8.13 Hz), 7.55–7.60 (2 H, m), 7.41–7.54 (5 H, m), 4.81 (1 H, ddd, J = 8.35, 4.06, 3.84 Hz), 3.96–4.10 (2 H, m), 2.82–3.08 (1 H, m), 2.67–2.82 (1 H, m), 2.36–2.61 (3 H, m), 2.08–2.33 (2 H, m), 1.73–1.87 (1 H, m, J = 8.54, 8.54, 4.45, 4.17 Hz), 1.32–1.70 (3 H, m), 1.09–1.19 (3 H, m).

MS (M + H)+ at m/z 557. HPLC purity: 99%, tr = 3.36 min (method B).

TFA salt

(S)-1-((S)-2-hydroxy-2-(4-(5-(3-phenyl-4-(trifluoromethyl)isoxazol-5-yl)-1,2,4-oxadiazol-3-yl)phenyl)ethyl)piperidine-3-carboxylic acid, TFA salt (18a, 61%) as a white solid.

1H NMR (400 MHz, MeOH-d3) δ ppm 8.23 (2 H, d, J = 8.35 Hz), 7.65–7.74 (4 H, m), 7.54–7.65 (3 H, m), 5.29 (1 H, t, J = 7.03 Hz), 4.00 (1 H, br s), 3.43–3.75 (1 H, m), 3.34–3.41 (2 H, m), 2.82–3.24 (2 H, m), 2.26 (1 H, d, J = 11.86 Hz), 1.84–2.14 (2 H, m), 1.52–1.75 (1 H, m).

MS (M + H)+ at m/z 529.

HPLC tr = 3.27 min (method B). HPLC purity: 99.4%, tr = 8.78 min (method E); 99.0%, tr = 7.29 min (method F).

HCL SALT

This material was converted to the HCl salt for the following analyses: mp: 219.2 °C. Anal. Calcd for C26H23N4O5F3·HCl: 0.14% water: C, 55.2; H, 4.31; N, 9.87; Cl, 6.25. Found: C, 55.39; H, 4.10; N, 9.88; Cl, 6.34. [α]D20 + 30.47 (c 0.336, MeOH). HPLC with chiral stationary phase (A linear gradient using CO2 (solvent A) and IPA with 0.1% DEA (solvent B); t = 0 min, 30% B, t = 10 min, 55% B was employed on a Chiralcel AD-H 250 mm × 4.6 mm ID, 5 μm column; flow rate was 2.0 mL/min): tr = 5.38 min with >99% ee.

References

Gilmore, J. L.; Sheppeck, J. E.; Watterson, S. H.; Haque, L.; Mukhopadhyay, P.; Tebben, A. J.; Galella, M. A.; Shen, D. R.; Yarde, M.; Cvijic, M. E.; Borowski, V.; Gillooly, K.; Taylor, T.; McIntyre, K. W.; Warrack, B.; Levesque, P. C.; Li, J. P.; Cornelius, G.; D’Arienzo, C.; Marino, A.; Balimane, P.; Salter-Cid, L.; Barrish, J. C.; Pitts, W. J.; Carter, P. H.; Xie, J.; Dyckman, A. J.Discovery and Structure Activity Relationship (SAR) of a Series of Ethanolamine-Based Direct-Acting Agonists of Sphingosine-1-Phosphate (S1P1) J. Med. Chem. 2016, 59, 62486264, DOI: 10.1021/acs.jmedchem.6b00373
Gilmore, J. L.; Sheppeck, J. E. Preparation of 3-(4-(1-hydroxyethyl)phenyl)-1,2,4-oxadiazole derivatives as sphingosine-1-phosphate receptor agonists for the treatment of autoimmune disease and inflammation. PCT Int. Appl. 2011, WO 2011017578.

//////BMS-960, PRECLINICAL, BMS 960

Cl.O=C(O)[C@H]1CCCN(C1)C[C@@H](O)c2ccc(cc2)c3nc(on3)c5onc(c4ccccc4)c5C(F)(F)F

Telcagepant Revisited


Telcagepant structure.svg

Telcagepant, MK-0974

  • Molecular FormulaC26H27F5N6O3
  • Average mass566.523 Da
1-piperidinecarboxamide, N-[(3R,6S)-6-(2,3-difluorophenyl)hexahydro-2-oxo-1-(2,2,2-trifluoroethyl)-1H-azepin-3-yl]-4-(2,3-dihydro-2-oxo-1H-imidazo[4,5-b]pyridin-1-yl)-
 CAS 781649-09-0

ChemSpider 2D Image | Telcagepant | C26H27F5N6O3

  • OriginatorMerck & Co
  • ClassAntimigraines; Piperidines
  • Mechanism of ActionCalcitonin gene-related peptide receptor antagonists

Migraine is a neurovascular disorder characterized by severe, debilitating, and throbbing unilateral headache. Though a leading cause of disability, it is a highly prevalent disease with a clear unmet medical need. With the significant progress achieved in the field of pathophysiology in the past decades, to date, it is well recognized that the neuropeptide calcitonin gene-related peptide (CGRP), which is expressed mainly in the central and peripheral nervous system, plays a crucial role in migraine. Antagonism of CGRP receptors, as a potential new therapy for the treatment of migraine, could offer the advantage of avoiding the cardiovascular liabilities associated with other existing antimigraine therapies.

Image result for Telcagepant

Telcagepant (INN) (code name MK-0974) is a calcitonin gene-related peptide receptor antagonist which was an investigational drug for the acute treatment and prevention of migraine, developed by Merck & Co. In the acute treatment of migraine, it was found to have equal potency to rizatriptan[1] and zolmitriptan[2] in two Phase III clinical trials. The company has now terminated development of the drug.

Mechanism of action

The calcitonin gene-related peptide (CGRP) is a strong vasodilator primarily found in nervous tissue. Since vasodilation in the brain is thought to be involved in the development of migraine and CGRP levels are increased during migraine attacks, this peptide may be an important target for potential new antimigraine drugs.

Telcagepant acts as a calcitonin gene-related peptide receptor (CRLR) antagonist and blocks this peptide. It is believed to constrict dilated blood vessels within the brain.[3]

Termination of a clinical trial

A Phase IIa clinical trial studying telcagepant for the prophylaxis of episodic migraine was stopped on March 26, 2009 after the “identification of two patients with significant elevations in serum transaminases”.[4] A memo to study locations stated that telcagepant had preliminarily been reported to increase the hepatic liver enzyme alanine transaminase (ALT) levels in “11 out of 660 randomized (double-blinded) study participants.” All study participants were told to stop taking the medication.[5]

On July 29, 2011, it was reported that Merck & Co. were discontinuing the clinical development program for telcagepant. According to Merck, “[t]he decision is based on an assessment of data across the clinical program, including findings from a recently completed six-month Phase III study”.[6]

CLIP

Image result for telcagepant

CLIP

Image result for telcagepant

Image result for telcagepant

CLIP

Asymmetric Synthesis of Telcagepant

http://pubs.acs.org/doi/abs/10.1021/jo101704b

Abstract Image

As part of the process of bringing a new API to market, it is often required to use an alternative synthetic strategy to the initial medicinal chemistry approach. Here Xu et al. of Merck Rahway disclose their efforts towards an improved multikilogram synthesis of telcagepant, a CGRP receptor antagonist for the treatment of migraines ( J. Org. Chem. 2010, 75, 7829−7841). The route described in the report is an example of a synthetic target driving the discovery of new chemistries.

Of note are the challenges they faced and overcame in particular the asymmetric Michael addition of nitromethane to a cinnamyl aldehyde. Initial attempts under Hayashi’s conditions gave promising results (50−75% yield) and moreover confirmed a high enantioselectivity could be achieved using the Jorgensen−Hayashi catalyst. However, the use of benzoic acid as the acidic cocatalyst gave rise to undesired byproducts. After performing a comprehensive screen of conditions Xu showed that the combination of the weak acids t-BuCO2H (5 mol %) and B(OH)3(50 mol %) minimized the level of impurities. Of specific note is that this is the first reported application of iminium organocatalysis on industrial scale.

The second milestone achieved in the strategy was the prevention of the protodefluorination under hydrogenative conditions. During the initial studies between 1.06−2.5% of the desfluoro compounds were formed by using Pd(OH)2/C in 100% conversion. To suppress the by product formation Xu screened a range of inorganic additives and found that 0.3 eq of LiCl gave a reproducible reaction where less than 0.2% of the desfluoro compounds were generated.
telcagepant as its crystalline potassium salt ethanol solvate in 92% yield with >99.9% purity and >99.9% ee.
1H NMR (400 MHz, d4-MeOH): δ 7.75 (dd, J = 5.3, 1.4 Hz, 1 H), 7.38 (dd, J = 7.6, 1.4 Hz, 1 H), 7.15 (m, 3 H), 6.70 (dd, J = 7.6, 5.3 Hz, 1 H), 4.85 (d, J = 11.4 Hz, 1 H), 4.55 (m, 1 H), 4.45 (dq, J = 15.4, 9.5 Hz, 1 H), 4.27 (m, 3 H), 4.05 (dq, J = 15.4, 9.0 Hz, 1 H), 3.61 (q, J = 7.1 Hz, 2 H), 3.46 (d, J = 15.4 Hz, 1 H), 3.16 (m, 1 H), 3.0 (m, 2 H), 2.42 (dq, J = 12.7, 4.4 Hz, 1 H), 2.27 (dq, J = 12.7, 4.4 Hz, 1 H), 2.16 (m, 3 H), 1.81 (m, 3 H). 1.18 (t, J = 7.1 Hz, 3 H).
13C NMR (100 MHz, d4-MeOH): δ 176.8, 166.1, 159.3, 157.4, 152.1 (dd, J = 246.8, 13.6 Hz), 149.4 (dd, J = 245.1, 13.1 Hz), 139.2, 134.7 (d, J = 11.9 Hz), 127.7, 126.3 (q, J = 279.7 Hz), 126.2 (dd, J = 7.1, 4.8 Hz), 124.3 (t, J = 3.4 Hz), 116.8 (d, J = 17.1 Hz), 114.5, 113.8, 58.5, 55.3, 55.2, 51.6, 49.9 (q, J = 33.6 Hz), 45.4, 45.3, 39.8, 35.9, 32.7, 30.74, 30.72, 18.5.
STR1 STR2

References

  1. Jump up^ Ho, Tw; Mannix, Lk; Fan, X; Assaid, C; Furtek, C; Jones, Cj; Lines, Cr; Rapoport, Am; Mk-0974, Protocol, 004, Study, Group (Apr 2008). “Randomized controlled trial of an oral CGRP receptor antagonist, MK-0974, in acute treatment of migraine”. Neurology. 70 (16): 1304–12. doi:10.1212/01.WNL.0000286940.29755.61. PMID 17914062.
  2. Jump up^ Ho TW, Ferrari MD, Dodick DW, et al. (December 2008). “Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial”. Lancet. 372 (9656): 2115–23. doi:10.1016/S0140-6736(08)61626-8. PMID 19036425.
  3. Jump up^ Molecule of the Month February 2009
  4. Jump up^ Clinical trial number NCT00797667 for “MK0974 for Migraine Prophylaxis in Patients With Episodic Migraine” at ClinicalTrials.gov
  5. Jump up^ Merck & Co.: Memo to all US study locations involved in protocol MK0974-049
  6. Jump up^ Merck Announces Second Quarter 2011 Financial Results
Telcagepant
Telcagepant structure.svg
Telcagepant-3D-balls.png
Clinical data
Routes of
administration
Oral
ATC code none
Legal status
Legal status
  • Development terminated
Pharmacokinetic data
Biological half-life 5–8 hours
Identifiers
CAS Number 781649-09-0 
PubChem (CID) 11319053
IUPHAR/BPS 703
ChemSpider 9494017 Yes
UNII D42O649ALL Yes
KEGG D09391 Yes
ChEMBL CHEMBL236593 Yes
Chemical and physical data
Formula C26H27F5N6O3
Molar mass 566.5283 g/mol
3D model (Jmol) Interactive image

1 to 10 of 14
Patent ID Patent Title Submitted Date Granted Date
US7534784 CGRP receptor antagonists 2008-11-13 2009-05-19
US7452903 CGRP receptor antagonists 2007-09-27 2008-11-18
US7235545 CGRP receptor antagonists 2005-11-17 2007-06-26
US6953790 CGRP receptor antagonists 2004-11-18 2005-10-11
Patent ID Patent Title Submitted Date Granted Date
US8394767 Methods of treating cancer using the calcitonin-gene related peptide (â??CGRPâ??) receptor antagonist CGRP8-37 2011-01-10 2013-03-12
US8080544 PRODRUGS OF CGRP RECEPTOR ANTAGONISTS 2010-11-25 2011-12-20
US7893052 CGRP RECEPTOR ANTAGONISTS 2010-11-25 2011-02-22
US2010286122 CGRP Antagonist Salt 2010-11-11
US7829699 Process for the Preparation of Cgrp Antagonist 2009-11-12 2010-11-09
US7772224 CGRP RECEPTOR ANTAGONISTS 2009-07-30 2010-08-10
US7745427 Cgrp Receptor Antagonists 2008-04-17 2010-06-29
US7718796 Process for the preparation of Caprolactam Cgrp Antagonist 2009-05-14 2010-05-18
US2010009967 SOLID DOSAGE FORMULATIONS OF TELCAGEPANT POTASSIUM 2010-01-14
US2009176986 Process for the Preparation of Pyridine Heterocycle Cgrp Antagonist Intermediate 2009-07-09

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This article is a compilation for educational purposes only.

P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

///////////Telcagepant, MK-0974

C1CC(C(=O)N(CC1C2=C(C(=CC=C2)F)F)CC(F)(F)F)NC(=O)N3CCC(CC3)N4C5=C(NC4=O)N=CC=C5

Nonsteroidal antiandrogens, (S)-N-(2-bromo-6-methoxypyridin-4-yl)-2-hydroxy-2,4-dimethylpentanamide


 str1
C12 H17 Br N2 O3, 317.18
Butanamide, N-(2-bromo-6-methoxy-4-pyridinyl)-2-hydroxy-2,3-dimethyl-, (2S)-

(S)-N-(2-bromo-6-methoxypyridin-4-yl)-2-hydroxy-2,4-dimethylpentanamide

(S)-N-(2-Bromo-6-methoxypyridin-4-yl)-2-hydroxy-2,4-dimethylpentanamide

CAS 1433905-44-2

Figure

Nonsteroidal antiandrogens

HPLC (Daicel Chiralpak IC 250 × 4.6 mm, 5 μm, n-heptane/IPA/TFA 930:70:1, 1 mL·min–1, 25 °C, UV 210 nm): tr (minor) = 5.1 min, tr (major) = 5.9 min.

NMR 1H (400 MHz, DMSO-d6): 10.0 (sl, 1H); 7.73 (s, 1H); 7.33 (s, 1H); 5.70 (sl, 1H); 3.80 (s, 3H); 1.79–1.67 (m, 2H); 1.49 (dd, J = 13.6 and 5.2 Hz, 1H); 1.32 (s, 3H); 0.89 (d, J = 6.4 Hz, 3H); 0.78 (d, J = 6.4 Hz, 3H).

NMR 13C (100 MHz, DMSO-d6): 176.7, 164.0, 149.5, 138.1, 111.1, 74.9, 53.9, 48.6, 27.5, 24.3, 23.6, 23.2.

ESI-HRMS(m/z) calcd for C13H20BrN2O3+ [M+H]+ 331.0652 found 331.0654.

PATENT

WO 2013064681

str1

Synthesis 71

(R)-2-Hydroxy-2,4-dimethyl-pentanoic acid (2-bromo-6-methoxy-pyridin-4-yl)-amide

(Compound 71A)

(S)-2-Hydroxy-2,4-dimethyl-pentanoic acid (2-bromo-6-methoxy-pyridin-4-yl)-amide

(Compound 71 B)

The two enantiomers of the racemic mixture prepared in Synthesis 41 were separated by HPLC (high pressure liquid chromatography) on a chiral stationary phase Chiralpak type la, Chiral Technologies, diameter 2 cm, length 25 cm, eluting with 93/7 (v/v) heptane / isopropanol containing 0.1 % (v/v) trifluoroacetic acid. The flow rate was 18 mL/minute. The injection volume was 1 mL of a solution of 20 mg of the racemic mixture dissolved in a 1 /1 (v/v) mixture of heptane / isopropanol. The retention times of the two enantiomers were 8.38 minutes and 9.70 minutes. After 6 injections, 40 mg of the two enantiomers were obtained as oils after solvent evaporation.

Analysis 71

Further analysis was performed using chiral HPLC (Chiralpak type la, Chiral

Technologies, 250 x 4, 6 mm, eluent 93/7 (v/v) heptane / isopropanol containing 0.1 % (v/v) trifluoroacetic acid with a flow rate of 1 mL/minute for 20 minutes. Compound 71 A had a retention time of 6.77 minutes, and Compound 71 B had a retention time of 8.71 minutes.

The absolute configuration of Compound 71 B was determined using X-ray diffraction (XRD), and found to be the (S) configuration. Accordingly, Compound 71 A was determined to be in the (R) configuration.

Figure

a(a) H2O2, TFA, 80%. (b) H2SO4, HNO3, 73%. (c) Fe, NH4Cl, EtOH, 51%. (d) MeOH, NaOH, MW 120 °C, 7 bar, 84%. (e) DCC, pyruvic acid, NMP, 29%. (f) i-BuMgCl, THF, 34%. (g) Chiral HPLC separation, 45%.

PAPER

http://pubs.acs.org/doi/abs/10.1021/acs.oprd.6b00392

Process Development and Crystallization in Oiling-Out System of a Novel Topical Antiandrogen

Nestlé Skin Health R&D Les Templiers, 2400 Route des colles BP 87, 06902 Sophia-Antipolis CEDEX, France
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.6b00392
*Telephone: +33 4 92 95 29 48; E-mail: Jean-Guy.Boiteau@galderma.com.

ACS Editors’ Choice – This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Abstract Image

An efficient route to (S)-N-(2-bromo-6-methoxypyridin-4-yl)-2-hydroxy-2,4-dimethylpentanamide 1, a new topical antiandrogen, is described. The target compound has been manufactured on kilogram scale with an overall yield of 25% (HPLC purity 98.8% and >99% ee) from citrazinic acid. The key amide coupling between aminopyridine 4 and α-hydroxy-acid 6 was performed using a temporary protecting group to facilitate the acyl chloride formation. Aminopyridine 4 was manufactured from commercially available citrazinic acid via dibromide formation using phosphorus(V) oxybromide followed by mono SNAr reaction with sodium methoxide and a final Hofmann rearrangement. Enantiopure α-hydroxy-acid 6 was obtained using an enantioselective cyanosilylation followed by salt resolution with (S)-α-methyl benzylamine. The absolute configuration of compound 1 was determined with anomalous scattering and the final crystallization of API was performed after seeding a liquid–liquid mixture below the monotectic temperature and afforded a crystalline powder presenting a “desert rose” shape clusters.

“ALL FOR DRUGS” CATERS TO EDUCATION GLOBALLY, No commercial exploits are done or advertisements added by me. This article is a compilation for educational purposes only.

P.S. : The views expressed are my personal and in no-way suggest the views of the professional body or the company that I represent

///////Nonsteroidal antiandrogens,

Brc1cc(NC(=O)[C@@](C)(O)C(C)C)cc(OC)n1

FOTAGLIPTIN


str1

SCHEMBL2020371.png

str1

Fotagliptin

FOTAGLIPTIN

CAS 1312954-58-7

342.37, C17 H19 F N6 O

Benzonitrile, 2-[[3-[(3R)-3-amino-1-piperidinyl]-6-methyl-5-oxo-1,2,4-triazin-4(5H)-yl]methyl]-4-fluoro-

(R)-2-((3-(3-amino-piperidin-1-yl)-6-methyl-5-oxo-1,2,4-piperazine-4(5H)-yl)methyl)-4-fluorobenzonitrile,

BENZOATE cas 1403496-40-1 [china 2024, approvals 2024 ]

(R) 2- Methyl-5-oxo-1,2,4-triazin-4 (5H) -yl) methyl) -4-fluorobenzonitrile (3- benzoate (compound benzoate A), of the formula: the C . 17 the H 19 the FN . 6 O · the C . 7 the H . 6 O 2 , molecular weight: 464.49.

useful as a dipeptidyl peptidase IV (DPPIV) inhibitor for treating diabetes, particularly type 2 diabetes

Dipeptidyl peptidase IV inhibitor,

a DPPIV inhibitor, being developed by Chongqing Fochon, with licensee Shenzhen Salubris Pharmaceuticals, for treating type 2 diabetes mellitus. In January 2017, fotagliptin benzoate was reported to be in phase 1 clinical development. The compound of the present invention was first disclosed in WO2011079778. See WO2015110078 and WO2015110077, claiming crystalline polymorphic form of the DPPIV inhibitor.

  • Originator Chongqing Fochon Pharmaceutical
  • Class Antihyperglycaemics
  • Mechanism of Action CD26 antigen inhibitors
  • Shanghai Fosun Pharma Transfers Development Rights in New Diabetes & Cancer Therapies to Swiss-Greek Firm
     

Fotagliptin (SAL067) is a DPP-4 inhibitor under development for the treatment of type 2 diabetes. Like other DPP-4 inhibitors, it works by increasing endogenously produced GLP-1 and GIP.[1][2][3] In a phase 3 trial it showed similar results as alogliptin.[4]

Shanghai Fosun Pharma Transfers Development Rights in New Diabetes & Cancer Therapies to Swiss-Greek Firm
On 23 October 2013, leading Chinese healthcare company Shanghai Fosun Pharmaceutical Group Co., Ltd. signed an agreement with Sellas Life Science Group, a Switzerland based Greek pharmaceutical R&D company. According to the agreement, Fosun Pharma transfers to Sellas the global rights (excluding China) in development, commercialisation, marketing and distribution of Fotagliptin Benzoate and Pan-HER Inhibitors, two novel compounds owned by Fosun Pharma’s subsidiary Chongqing Fochon Pharmaceutical Co. Ltd.
 
Fotagliptin Benzoate is developed by Chongqing Fochon independently and has a prospect of developing into type 2 diabetes medicines, whereas Pan-HER Inhibitors, a receptor inhibitor of which Chongqing Fochon owns the proprietary IP rights, is a potential therapy for curing lung, breast and other cancers. Chongqing Fochon has filed application for international patent under the Patent Cooperation Treaty in respect of the two compounds.
 
The estimated total consideration for the transaction of approximately RMB3.248 billion will be paid by installment. In addition, upon the compounds obtaining relevant approvals in the US and/or Europe, Chongqing Fochon will be entitled to a 10% royalty in these regions on net revenue sales for eight years.
 
SYNTHESIS
 
PAPER
Research Article

Development and validation of a UPLC–MS/MS method for simultaneous determination of fotagliptin and its two major metabolites in human plasma and urine

Zhenlei Wang1, Ji Jiang1, Pei Hu1 & Qian Zhao*,1

*Author for correspondence:

Aim: Fotagliptin is a novel dipeptidyl peptidase IV inhibitor under clinical development for the treatment of Type II diabetes mellitus. The objective of this study was to develop and validate a specific and sensitive ultra-performance liquid chromatography (UPLC)–MS/MS method for simultaneous determination of fotagliptin and its two major metabolites in human plasma and urine. Methodology & results: After being pretreated using an automatized procedure, the plasma and urine samples were separated and detected using a UPLC-ESI–MS/MS method, which was validated following the international guidelines. Conclusion: A selective and sensitive UPLC–MS/MS method was first developed and validated for quantifying fotagliptin and its metabolite in human plasma and urine. The method was successfully applied to support the clinical study of fotagliptin in Chinese healthy subjects.

PATENT

WO2011079778

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2011079778&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

PATENT

WO2015110078

compound A can be prepared according to the method disclosed in PCT / CN2010 / 080370, the specific synthesis route and the main reaction conditions are as follows:
 
Example 1 Preparation of 1-bromo-4-fluoro-2- (isothiocyanatomethyl) benzene (2)
 
To a DMF solution (20 ml) of 1-bromo-2- (bromomethyl) -4-fluorobenzene (1,5.36 g, 20.0 mmol) was added sodium iodide (1.20 g, 8.00 mmol) and potassium thiocyanate (3.88 g, 40.0 mmol). After the mixture was heated to 80C under nitrogen atmosphere for 12 hours, it was cooled to room temperature, 100 ml of water was added thereto, and extracted with ethyl acetate (50 mL x 2). The combined organic layers were washed with saturated brine, dried over anhydrous magnesium sulfate, The concentrate was concentrated by suction to give a crude product, and the residue was purified by silica gel column chromatography (eluent: petroleum ether) to give 1-bromo-4-fluoro-2- (isothiocyanatomethyl) benzene (2).
 
Example 2 Preparation of N- (2-bromo-5-fluorobenzyl) hydrazinocarbothioamide (3)
A solution of hydrazine hydrate (80%, 2.22 g, 35.5 mmol) in 1,4-dioxane (20 mL) was cooled to 0 ° C and 1-bromo-4-fluoro-2- (isothiocyanate Yl) benzene (2,3.16 g, 12.8 mmol) in 1,4-dioxane (5 ml). The mixture was stirred at room temperature for 2 h, to which was added 100 ml of ice water, solid precipitated, filtered, washed with water and dried over phosphorus pentoxide overnight to give N- (2-bromo-5-fluorobenzyl) hydrazinothiocarb Amide (3).
 
MS: m / z, 278 (100%, M + 1), 280 (100%), 300 (10%, M + 23), 302 (10%).
Example 3 Preparation of methyl 2- (2- (2-bromo-5-fluorobenzylaminothioformamide) hydrazino) propionate (4)
N- (2-bromo-5-fluorobenzyl) hydrazinocarbothioamide (3, 1.12 g, 4.00 mmol) was added successively to a solution of pyruvic acid (352 mg, 4.00 mmol) in methanol And the residue was extracted with ethyl acetate (150 ml). The organic layer was washed successively with water, saturated sodium bicarbonate solution and saturated brine, and dried over anhydrous magnesium sulphate (MgSO4). The organic layer was washed with water, Dried, and concentrated by suction filtration to give methyl 2- (2- (2-bromo-5-fluorobenzylaminothioformamide) hydrazino) propionate (4).
MS: m / z, 362 (100%, M + 1), 364 (100%), 384 (60%, M + 23), 386 (60%).
 
Example 4 4- (2-Bromo-5-fluorobenzyl) -6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin- (5)
 
Sodium methoxide (0.4 M), freshly prepared from sodium (273 mg, 11.88 mmol) and dry methanol (30 ml), was dissolved in 30 ml of methanol, and methyl 2- (2- (2-bromo-5-fluorobenzylamino sulfide The mixture was heated to reflux for 22 h. Most of the solvent was distilled off. The residue was diluted with 100 ml of water, adjusted to pH = 1-2 with 2N concentrated hydrochloric acid, and the residue was extracted with ethyl acetate. The extract was washed with brine, dried over anhydrous sodium sulfate and concentrated by suction to give a crude product which was purified by silica gel column chromatography (eluent: ethyl acetate / petroleum ether = 20% -30%) to give 4- (2-bromo-5-fluorobenzyl) -6-methyl-3-thioxo-3,4-dihydro- ) -one (5).
MS: m / z, 330 (65%, M + 1), 332 (60%, M + 23).
 
Example 5 Preparation of 4- (2-bromo-5-fluorobenzyl) -6-methyl-3- (methylthio) -1,2,4-triazin-5 (4H) preparation
 
A mixture of 4- (2-bromo-5-fluorobenzyl) -6-methyl-3-thioxo-3,4-dihydro- , 914 mg, 2.77 mmol) was suspended in ethanol (15 ml), followed by addition of sodium hydroxide (111 mg, 2.77 mmol) and methyl iodide (787 mg, 5.54 mmol). The reaction mixture was diluted with 100 ml of water and extracted with ethyl acetate (30 ml x 2). The combined layers were washed with saturated brine, dried over anhydrous magnesium sulfate, concentrated by suction, and the residue was recrystallized from the residue. Silica gel column chromatography (eluent: ethyl acetate / petroleum ether = 20-25%) afforded 4- (2-bromo-5-fluorobenzyl) -6-methyl-3- (methylthio) -l, 2,4-triazin-5 (4H) -one (6).
 
1 the H NMR (400MHz, of DMSO, ppm by): [delta] 7.73 (m, IH), 7.16 (br, IH), 7.05 (D, IH), 5.09 (S, 2H), 2.56 (S, 3H), 2.32 ( S, 3H).
 
MS: m / z, 344 (100%, M + l), 346 (100%).
 
Example 6 (R) -tert-Butyl 1- (4- (2-bromo-5-fluorobenzyl) -6-methyl-5-oxo-4,5-dihydro- -triazin-3-yl) piperidine-3-carbamate (8)
 
A solution of 4- (2-bromo-5-fluorobenzyl) -6-methyl-3- (methylthio) -1,2,4-triazin-5 (4H) Mmol) and (R) -tert-butylpiperidine-3carbamate (7,208 mg, 1.04 mmol) for 5 min and heated to 135 ° C for 13 h under nitrogen. The reaction mixture was purified by column chromatography on silica gel (R) -tert-Butyl 1- (4- (2-bromo-5-fluorobenzyl) -6-methyl-5- Oxo-4,5-dihydro-1,2,4-triazin-3-yl) piperidine-3-carbamate (8).
 
MS: m / z, 496 (100%, M + l), 498 (100%).
 
Example 7 (R) -tert-Butyl 1- (4- (2-cyano-5-fluorobenzyl) -6-methyl-5-oxo-4,5-dihydro- Triazin-3-yl) piperidine-3-carbamate (9)
 
To a mixture of sodium carbonate (53 mg, 0.50 mmol), palladium acetate (3 mg, 0.013 mmol) and N-methylpyrrolidone 0.5 ml was added 3 drops of isopropanol and 2 drops of water, and the mixture was stirred at room temperature for 5 minutes, (R) -tert-Butyl 1- (4- (2-bromo-5-fluorobenzyl) -6-methyl-5-oxo-4,5-dihydro- – triazin-3-yl) piperidine-3-carbamate (8,246mg, 0.496mmol) in NMP (1.0mL), and heated to 140 ℃, then add the K 4 [of Fe (the CN) . 6 ] 3H · 2 O (209mg, 0.496 mmol), was heated at 140 ℃ 12h, cooled to room temperature, water was added 10ml, extracted with ethyl acetate (20mL × 2), the combined organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, (R) -tert-Butyl l- (4- (2-cyano-5- (2-fluoro-4-methoxyphenyl) Fluoro-benzyl) -6-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl) piperidine-3-carbamate (9).
 
MS: m / z, 418 (20%), 443 (100%, M + 1), 465 (95%, M + 23).
 
Example 5 Preparation of compound A (R) -2 – ((3- (3-aminopiperidin- 1 -yl) -6-methyl- -yl) methyl) -4-fluorobenzonitrile (10)
To a solution of (R) -tert-Butyl 1- (4- (2-cyano-5-fluorobenzyl) -6-methyl-5-oxo-4,5-dihydro- Yl) piperidine-3-carbamate (9,37 mg) in 1 ml of methylene chloride was added 0.5 ml of trifluoroacetic acid and the mixture was stirred at room temperature for 1 hour, neutralized with a saturated sodium hydrogencarbonate solution, (Eluent: dichloromethane / methanol / aqueous ammonia = 92: 6: 2), in order to obtain (10ml × 3), the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo to give the crude product, which was purified by silica gel column chromatography Methyl) -5-oxo-1,2,4-triazin-4 (5H) -yl) methyl) -4-fluorobenzonitrile (10), i.e. Compound A.
1 the H NMR (400MHz, of DMSO, ppm by): [delta] 7.96 (m, IH), 7.36 (br, IH), 7.29 (D, IH), 5.23 (S, 2H), 3.15 (m, 3H), 2.72 ( 2H), 2.23 (s, 3H), 1.78 (d, 1H), 1.64 (d, 1H), 1.47 (m, 1H), 1.12 (m, 1H).
 
MS: m / z, 343 (100%, M + l).
 
Methyl-5-oxo-1,2,4-triazin-4 (5H) -yl) -2-oxoquinoline-3- Methyl) -4-fluorobenzonitrile benzoate (Compound A benzoate)
 
Configuration 95% ethanol solution: 500mL beaker by adding 228mL ethanol, add 12mL of water, stir well, spare.
 
60g of 95% ethanol, 120mL of 95% ethanol, stirring, dissolving, filtering, washing with 95% ethanol 18ml; to make the 500mL reaction flask, The ethanolic solution of benzoic acid was added dropwise at an internal temperature of 15 ° C. After completion of the dropwise addition, 95% ethanol was washed and dried under reduced pressure to constant weight to give 42.4 g of (R) -2- (3- (3-aminopiperidin-1-yl) -6-methyl- 1,2,4-triazin-4 (5H) -yl) methyl) -4-fluorobenzonitrile benzoate (the product).
 
Melting point determination: Instrument: Tianjin University Precision Instrument Factory YRT-3 melting point instrument.
 
Detection method: Take appropriate amount of this product, small study, 60 ° C, 2 hours of vacuum drying, according to the Chinese Pharmacopoeia 2010 edition two appendix Ⅵ C determination of the product melting point of 95 ℃ -115 ℃.
 
(5H) -benzoic acid was isolated from (R) -2- (3- (3-aminopiperidin-l- yl) -6-methyl- Methyl) -4-fluorobenzonitrile benzoate 0.1g, according to the Chinese Pharmacopoeia 2010 edition of two Appendix Ⅲ “General Identification Test” under the “benzoate” test method for testing, set 10ml volumetric flask, Add water and dilute the solvent to the mark, shake, the precise amount of 5ml to 10ml beaker, adjust the solution of phenolphthalein was neutral, drop of ferric chloride solution, were observed ocher precipitation. At the same time do blank control test, the results: multiple batches of samples of benzoic acid identification test results were positive, reagent blank does not interfere with the determination of specificity.
 
Identification HPLC: chromatographic conditions for the introduction of the Eclipse Plus C the Agilent 18 column (5μm, 4.6х250mm), detection wavelength of 229nm, mobile phase of acetonitrile: 0.1% phosphoric acid = 7: 3, a flow rate of 1.0ml / min, The injection volume was 20μl.
 
The compound A (7.5 mg) of Example 8 was dissolved in a 50 mL volumetric flask, diluted with 70% aqueous acetonitrile and diluted to the mark, shaken as a solution of the compound A reference substance; and 12.5 mg of benzoic acid in a 25 mL volumetric flask, With a volume ratio of 70% acetonitrile aqueous solution and diluted to the mark, take 1mL in 25mL volumetric flask, with volume ratio of 70% acetonitrile aqueous solution and diluted to the mark, shake, as benzoic acid reference substance solution; take this product 10mg In a 50mL volumetric flask, with a volume ratio of 70% acetonitrile aqueous solution dissolved and diluted to the mark, shake, as the product A benzoic acid salt of the test solution. Respectively, the precise amount of the reference solution and the test solution 20μl, according to high performance liquid chromatography (Chinese Pharmacopoeia 2010 edition two Appendix VD), according to the chromatographic conditions of injection, chromatogram shown in Figure 1, Method.
 
The results showed that the retention time of the main peak was the same as the retention time of the reference substance, and the content of compound A and benzoic acid was calculated by the peak area. The molar ratio of compound A and benzoic acid was 1: 1.
 
Infrared absorption spectrum identification: the United States NICOLET AVATAR 330FT-IR infrared spectrometer, in accordance with the Chinese Pharmacopoeia 2010 edition two Appendix IVC correction, take the amount of goods, using KBr tablet method for determination of the product of the infrared diffraction pattern (Figure 2 shown) to wave number cm & lt -1 , he said in 3419.75cm -1 , 2936.46cm -1 , 2230.38cm -1 , 1683.28cm -1 , 1609.47cm -1 , 1511.65cm -1 , 1419.44cm -1 , 829.18cm -1 , 722.67cm -1 characteristic absorption peak, 0.2cm error is ± -1 .

NEW PATENT

WO-2017008684

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017008684&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=FullText

Shenzhen Salubris Pharmaceuticals Co Ltd, α-Crystal form of compound A, preparation method thereof, and pharmaceutical composition comprising same

Dipeptidyl peptidase IV (DPP-IV) is a serine protease that specifically hydrolyzes the N-terminal Xaa-Pro or Xaa-Ala dipeptide of a polypeptide or protein. DPP-IV is an atypical serine protease whose Ser-Asp-His catalytic triad at the C-terminal region is different from a typical serine protease in reverse order.
 
DPP-IV has a variety of physiologically relevant substrates, such as inflammatory chemokines, normal T-cell expressed and secreted (RANTES), eotaxin and macrophage Cell-derived chemokines, neuropeptides such as neuropeptide Y (NPY) and P5 substances, vasoactive peptides, incretin such as glucagon-like peptide-1 (GLP-1) And glucose-dependent insulinotropic polypeptide (GIP).
 
Inhibition of DPP-IV in vivo resulted in increased levels of endogenous GLP-1 (7-36) and decreased production of its antagonist GLP-1 (9-36). Thus, DPP-IV inhibitors may be effective in diseases associated with DPP-IV activity such as type 2 diabetes, diabetic dyslipidemia, impaired Glucose Tolerance (IGT), impaired Fasting Plasma Glucose (IFG ), Metabolic acidosis, ketosis, appetite regulation and obesity.
 
DPP-IV inhibitor Alogliptin (Alogliptin) clinically for type 2 diabetes showed good therapeutic effect, approved in the United States market. Therefore, DPP-IV inhibitors are currently considered to be novel therapeutic approaches for the treatment of type 2 diabetes
 
PCT / CN2010 / 080370 describes a series of DPP-IV inhibitors with neo-nuclear structure. (R) -2 – ((3- (3-aminopiperidin- 1 -yl) -6-methyl-5-oxo-l, 2,4- tris piperazine -4 (5H) – yl) methyl) -4-fluorobenzonitrile (using the prior art process to obtain the product as a yellow oil), molecular formula: the C . 17 the H 19 the FN . 6 O, molecular weight: 342 chemical formula The following formula (I)
 
 
In order to improve the medicinal properties of the compound, studies with favorable stability properties can be effectively used in the treatment of patients with pathological conditions by inhibiting DPP-IV in pharmaceutical compositions.
 
Summary of the Invention
 
It is an object of the present invention to provide a stable crystalline form of a stable competitive inhibitor compound D of a reversible dipeptidyl peptidase-IV (DPP-IV).
 
The chemical name of compound A is: (R) -2 – ((3- (3-aminopiperidin- 1 -yl) -6-methyl-5-oxo-1,2,4-triazin- 5H) – yl) methyl) -4-fluorobenzonitrile, molecular formula: the C . 17 the H 19 the FN . 6 O, molecular weight: 342, the chemical structure of formula a compound of the following formula (the I),
compound A can be prepared according to the method disclosed in PCT / CN2010 / 080370, the specific synthesis route and the main reaction conditions are as follows:
 
EXAMPLE 1 Preparation of Compound A.
 
Compounds A were prepared according to the procedures of PCT / CN2010 / 080370 Examples 2 and 3 using the following synthetic route:
 
The resulting compound of the A, 1 the H-NMR (400MHz, of DMSO, ppm by): [delta] 7.96 (m, IH), 7.36 (br, IH), 7.29 (D, IH), 5.23 (S, 2H), 3.15 (m, 3H), 2.72 (m, 2H), 2.23 (s, 3H), 1.78 (d, 1H), 1.64 (d, , 343 (100%, M + l).
 
 
Specific preparation steps are as follows:
 
Step A. 1-bromo-4-fluoro-2- (isothiocyanatomethyl) benzene (2)
 
To a DMF solution (20 mL) of 1-bromo-2- (bromomethyl) -4-fluorobenzene (1,5.36 g, 20.0 mmol) was added sodium iodide (1.20 g, 8.00 mmol) and potassium thiocyanate (3.88 g, 40.0 mmol). The mixture was heated to 80 ° C under nitrogen atmosphere for 12 hours, cooled to room temperature, and 100 mL of water was added thereto. The mixture was extracted with ethyl acetate (50 mL × 2). The combined organic layers were washed with saturated brine, dried over anhydrous magnesium sulfate, The concentrate was concentrated by suction to give a crude product, and the residue was purified by silica gel column chromatography (eluent: petroleum ether) to give 1-bromo-4-fluoro-2- (isothiocyanatomethyl) benzene (2).

Step BN- (2-Bromo-5-fluorobenzyl) hydrazinocarbothioamide (3)

 
Dioxane solution (20 mL) of hydrazine hydrate (80%, 2.22 g, 35.5 mmol) was cooled to 0 ° C, and thereto was added 1-bromo-4-fluoro-2- (isothiocyanate Yl) benzene (2,3.16 g, 12.8 mmol) in 1,4-dioxane (5 mL). The mixture was stirred at room temperature for 2 h, and 100 mL of ice water was added thereto. The solid was precipitated, filtered, washed with water and dried over phosphorus pentoxide overnight to give N- (2-bromo-5-fluorobenzyl) hydrazinothiazepine Amide (3). MS: m / z, 278 (100%, M + 1), 280 (100%), 300 (10%, M + 23), 302 (10%).
 
Step C. Methyl 2- (2- (2-bromo-5-fluorobenzylaminothiocarboxamide) hydrazino) propanoate (4)
 
N- (2-bromo-5-fluorobenzyl) hydrazinocarbothioamide (3, 1.12 g, 4.00 mmol) was added successively to a solution of pyruvic acid (352 mg, 4.00 mmol) in methanol And the residue was extracted with ethyl acetate (150 mL). The organic layer was washed successively with water, saturated sodium hydrogencarbonate solution and saturated brine, and dried over anhydrous magnesium sulphate (MgSO4). The organic layer was washed with water, Dried and concentrated by suction filtration to give methyl 2- (2- (2-bromo-5-fluorobenzylaminothioformamide) hydrazino) propionate (4). MS: m / z, 362 (100%, M + 1), 364 (100%), 384 (60%, M + 23), 386 (60%).
 
Step D. 4- (2-Bromo-5-fluorobenzyl) -6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin- (4)
 
Sodium methoxide (0.4 M), freshly prepared from sodium (273 mg, 11.88 mmol) and dry methanol (30 mL), was dissolved in 30 mL of methanol and methyl 2- (2- (2-bromo-5-fluorobenzylamino sulfide The mixture was heated to reflux for 22 h. Most of the solvent was distilled off. The residue was diluted with 100 mL of water and the pH was adjusted to 1 to 2 with concentrated hydrochloric acid (2N). The solvent was evaporated under reduced pressure. The extract was washed with brine, dried over anhydrous sodium sulfate and concentrated by suction to give a crude product which was purified by silica gel column chromatography (eluent: ethyl acetate / petroleum ether = 20% 4- (2-bromo-5-fluorobenzyl) -6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5 (2H ) -one (5), MS: m / z, 330 (65%, M + 1), 332 (60%, M + 23).
 
(4H) -one (6) & lt; EMI ID = 36.1 & gt; [0161] Step 4. 4- (2-Bromo-5-fluorobenzyl) -6 -methyl-
 
Methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5 (2H) -one (5,914 (111 mg, 2.77 mmol) and methyl iodide (787 mg, 5.54 mmol) were added successively to 15 mL of ethanol. The reaction mixture was diluted with 100 mL of water and extracted with ethyl acetate (30 mL × 2). The combined layers were washed with saturated brine, dried over anhydrous magnesium sulfate, concentrated by suction filtration, and the residue was recrystallized from the residue. (2-bromo-5-fluorobenzyl) -6-methyl-3- (methylthio) – (2-bromo-5-fluorobenzyl) -2-methylbenzene was purified by silica gel column chromatography (eluent: ethyl acetate / petroleum ether = 20-25% 1,2,4-triazine -5 (4H) – one (. 6). 1 the H NMR (400MHz, of DMSO, ppm by): [delta] 7.73 (m, IH), 7.16 (br, IH), 7.05 (D, 1H), 5.09 (s, 2H), 2.56 (s, 3H), 2.32 (s, 3H). MS: m / z, 344 (100%, M + 1), 346 (100%).
 
Step F. Preparation of (R) -tert-Butyl 1- (4- (2-bromo-5-fluorobenzyl) -6-methyl-5-oxo-4,5-dihydro- – three -3-yl) piperidin-3-ylcarbamate (8)
 
A solution of 4- (2-bromo-5-fluorobenzyl) -6-methyl-3- (methylthio) -1,2,4-triazin-5 (4H) -one (6,180 mg, 0.523 mmol ) And (R) -tert-butylpiperidine-3-carbamate (7, 208 mg, 1.04 mmol) for 5 min and heated to 135 ° C under nitrogen for 13 h. The reaction mixture was purified by silica gel column chromatography (R) -tert-Butyl 1- (4- (2-bromo-5-fluorobenzyl) -6-methyl-5-oxo-propan-1- (8). MS: m / z, 496 (100%, M + l), 498 (M + l) (100%).
 
Step G. Preparation of (R) -tert-Butyl 1- (4- (2-cyano-5-fluorobenzyl) -6-methyl-5-oxo-4,5-dihydro- – three -3-yl) piperidine-3-carbamate (9)
 
To a mixture of sodium carbonate (53 mg, 0.50 mmol), palladium acetate (3 mg, 0.013 mmol) and 0.5 mL of N-methylpyrrolidone was added 3 drops of isopropanol and 2 drops of water, and the mixture was stirred at room temperature for 5 minutes, (R) -tert-Butyl 1- (4- (2-bromo-5-fluorobenzyl) -6-methyl-5-oxo-4,5-dihydro- 3-yl) piperidine-3-carbamate (8,246mg, 0.496mmol) in NMP (1.0mL), and heated to 140 ℃, then add the K 4 [of Fe (the CN) . 6 ] .3H 2 O (209 mg, 0.496 mmol), heated at 140 ° C for 12 h, cooled to room temperature, and 10 mL of water was added thereto. The mixture was extracted with ethyl acetate (20 mL × 2). The combined organic layers were washed with saturated brine, dried over anhydrous magnesium sulfate and concentrated by suction filtration to give (R) -tert-Butyl 1- (4- (2-cyano-5-fluorobenzyl) – (2-cyano-5-fluorophenyl) -carbamic acid ethyl ester 6-methyl-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl) piperidine-3- carbamate (9). MS: m / z, 418 (20%), 443 (100%, M + 1), 465 (95%, M + 23).
 
Methyl-5-oxo-1,2,4-triazin-4 (5H) -ylidene-2-methyl- ) methyl ) -4-fluorobenzonitrile (10, compound A)
 
To a solution of (R) -tert-Butyl 1- (4- (2-cyano-5-fluorobenzyl) -6-methyl-5-oxo-4,5-dihydro- Yl) piperidine-3-carbamate (9,37 mg) in dichloromethane was added 0.5 mL of trifluoroacetic acid and the mixture was stirred at room temperature for 1 hour, neutralized with saturated sodium hydrogencarbonate solution, (Eluent: dichloromethane / methanol / aqueous ammonia = 92: 6: 2) to obtain (R (10mL × 3), the combined organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo to give a crude product, which was purified by silica gel column chromatography Methyl-5-oxo-1,2,4-triazin-4 (5H) -yl) methyl) – 2- Fluorobenzonitrile (10 as a yellow oil).
 
1 the H NMR (400MHz, of DMSO, ppm by): [delta] 7.96 (m, IH), 7.36 (br, IH), 7.29 (D, IH), 5.23 (S, 2H), 3.15 (m, 3H), 2.72 ( (M, 2H), 2.23 (s, 3H), 1.78 (d, 1H), 1.64 (d, 1H), 1.47 , M + 1).
 
Patent
CN 104803972
 
 
REFERENCES
CN 104803972
CN 104803971
US 20110160212
 

//////////FOTAGLIPTIN BENZOATE, FOTAGLIPTIN , PHASE 1, 1403496-40-1, 1312954-58-7

N[C@@H]1CCCN(C1)C3=NN=C(C)C(=O)N3Cc2cc(F)ccc2C#N

more………….

European Journal of Medicinal Chemistry 291 (2025) 117643

Fotagliptin, developed by Shenzhen Salubris Pharmaceuticals Co., Ltd., belongs to DPP-4 inhibitors, which enhances glycemic manage ment in adult patients suffering from T2DM. This drug is commercially available under the brand name Xinliting. In 2024, the NMPA gave the
green light to Fotagliptin benzoate tablets for the therapeutic application in treating T2DM [63]. Fotagliptin exerts its action through the inhibition of DPP-4. Through the prevention of the degradation of these hormones, Fotagliptin augments their biological activity [64]. This augmentation results in a glucose-dependent increase in insulin secretion and a decrease in glucagon release. Ultimately, this series of events contributes to the improvement of glycemic control. The clinical efficacy of
Fotagliptin was demonstrated in a Phase III randomized, double-blind, placebo-controlled trial involving 458 patients with T2DM (NCT04212345) [64]. Participants were randomized to receive Fotagliptin (12 mg/day), alogliptin (25 mg/day), or placebo for 24 weeks.
The study reported that Fotagliptin significantly reduced HbA1c levels compared to placebo, with a mean decrease of 0.70 % versus 0.26 %, respectively [64]. In the realm of drug-related research and development, Fotagliptin has shown distinct characteristics. In terms of glycemic control, Fotagliptin manifested non-inferiority in reducing HbA1c levels when compared to alogliptin. From a toxicity perspective, it exhibited good tolerability. The frequency of adverse events was found to be on a par among the Fotagliptin group, the alogliptin group, and the placebo group. Significantly, the incidence of hypoglycemia was low and similar across these groups, suggesting that Fotagliptin does not
elevate the risk of hypoglycemic episodes. Given its properties, the approval of Fotagliptin represents a novel therapeutic alternative for patients with T2DM. It enables effective management of blood glucose
levels while maintaining a favorable safety profile, thereby meeting an important clinical need in the treatment of T2DM patients [65]. The synthesis of Fotagliptin, depicted in Scheme 15, initiates with
nucleophilic substitution of Fota-001, affording Fota-002 [66]. Sequential nucleophilic addition and imine condensation convert Fota-002 to Fota-004, which undergoes sodium methoxide-promoted
intramolecular amidation constructing Fota-005. Subsequent addition yields Fota-006, followed by thermally driven nucleophilic substitution with Fota-007 assembling Fota-008. While cyanidation of Fota-008 produces Fota-009, strategic TFA-mediated deprotection directly delivers Fotagliptin.

[63] M. Wu, Q.Q. Li, H. Zhang, X.X. Zhu, X.J. Li, Y. Li, H.G. Sun, Y.H. Ding, Safety,
pharmacokinetics, and pharmacodynamics of a dipeptidyl Peptidase-4 inhibitor: a
randomized, double-blinded, placebo-controlled daily administration of fotagliptin
benzoate for 14 days for type 2 diabetes mellitus, Clin Pharmacol Drug Dev 10
(2021) 660–668.
[64] M. Xu, K. Sun, W. Xu, C. Wang, D. Yan, S. Li, L. Cong, Y. Pi, W. Song, Q. Sun,
R. Xiao, W. Peng, J. Wang, H. Peng, Y. Zhang, P. Duan, M. Zhang, J. Liu, Q. Huang,
X. Li, Y. Bao, T. Zeng, K. Wang, L. Qin, C. Wu, C. Deng, C. Huang, S. Yan, W. Zhang,
M. Li, L. Sun, Y. Wang, H. Li, G. Wang, S. Pang, X. Zheng, H. Wang, F. Wang, X. Su,
Y. Ma, W. Zhang, Z. Li, Z. Xie, N. Xu, L. Ni, L. Zhang, X. Deng, T. Pan, Q. Dong,
X. Wu, X. Shen, X. Zhang, Q. Zou, C. Jiang, J. Xi, J. Ma, J. Sun, L. Yan, Fotagliptin
monotherapy with alogliptin as an active comparator in patients with uncontrolled type 2 diabetes mellitus: a randomized, multicenter, double-blind, placebo-
controlled, phase 3 trial, BMC Med. 21 (2023) 388.
[65] Y. Ding, H. Zhang, C. Li, W. Zheng, M. Wang, Y. Li, H. Sun, M. Wu, Safety and
pharmacokinetic interaction between fotagliptin, a dipeptidyl peptidase-4
inhibitor, and metformin in healthy subjects, Expert Opin Drug Metab Toxicol 17
(2021) 725–731.
[66] S. Tan, F. Xie, Z. Cai, J. Zhi, S. Chen, W. Wang, T. Li, Preparation of 3-(3-
aminopiperidine-1-yl)-5-oxo-1,2,4-triazine Benzoate and Pharmaceutical
Composition Thereof, 2015. CN104803972A.

Brigatinib, Бригатиниб, بريغاتينيب , 布格替尼 ,


ChemSpider 2D Image | Brigatinib | C29H39ClN7O2PImage result for BrigatinibFigure imgf000127_0001

Brigatinib, AP26113
Molecular Formula: C29H39ClN7O2P
Molecular Weight: 584.102 g/mol
CAS 1197953-54-0
2,4-Pyrimidinediamine, 5-chloro-N4-[2-(dimethylphosphinyl)phenyl]-N2-[2-methoxy-4-[4-(4-methyl-1-piperazinyl)-1-piperidinyl]phenyl]-
Бригатиниб[Russian][INN]
بريغاتينيب[Arabic][INN]
布格替尼[Chinese][INN]
5-chloro-N4-[2-(dimethylphosphinyl)phenyl]-N2-[2-methoxy-4-[4-(4-methyl-1-piperazinyl)-1-piperidinyl]phenyl]-2,4-pyrimidinediamine
AP-26113
MFCD29472221
UNII:HYW8DB273J
In 2016, orphan drug designation was assigned to the compound in the U.S. for the treatment of ALK, ROS1 or EGFR-positive non-small cell lung cancer (NSCLC).
fda 2017 approved

BRIGATINIB

Figure imgf000127_0001

TAKEDA

Image result for BRIGATINIBImage result for BRIGATINIB

Alunbrig FDA

4/28/2017

To treat patients with anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib
Drug Trials Snapshot

L

Inventors Yihan Wang, Wei-Sheng Huang, Shuangying Liu, William C. Shakespeare, R. Mathew Thomas, Jiwei Qi, Feng Li, Xiaotian Zhu, Anna Kohlmann, David C. Dalgarno, Jan Antoinette C. Romero, Dong Zou
Applicant Ariad Pharmaceuticals, Inc.

Image result for Yihan Wang ARIAD

Yihan Wang

Dr. Wang founded Shenzhen TargetRx, Inc., in Aug 2014 and is now the  President/CEO. He  was the Associate Director of Chemistry at ARIAD  Pharmaceuticals, Inc., until April 2013.  Yihan Wang received his B.Sc. in  chemistry from University of Science and Technology of  China, and Ph.D.  in chemistry from New York University. Yihan’s research has focused    primarily on medicinal chemistry in the area of signal transduction drug  discovery,  integrating structure-based drug design, combinatorial  chemistry, and both biological and  pharmacological assays to identify  small-molecule clinical candidates. His career at ARIAD  includes innovative research in therapeutic areas involving bone diseases and cancer, and has  been a key contributor to the discovery of several clinical drugs, including Ponatinib (iClusigTM) (approved by the FDA for resistant CML in Dec 2012), Brigatinib (AP26113, Phase II for NSCLC), Ridoforolimus (Phase III for Sarcoma and multiple Phase II), and several pre-clinical compounds. Yihan is the primary author of approximately 90 peer-reviewed publications, patents, and invited meeting talks. Yihan is the editor of “Chemical Biology and Drug Design” and a reviewer for many professional journals.

Yihan is one of the co-founders of Chinese-American BioMedical Association (CABA) and currently on the Board of Directors.

EXAMPLE 19:

5-chloro-Λ’4-[4-(dimethylphosphoryl)phenyl]-Λr2-{2-methoxy-4-[4-(4-methylpiperazin-l- yl)piperidin-l-yI]phenyl}pyrimidine-2,4-diamine:

Figure imgf000127_0001

2,5-dichloro-N-[4-(dimethylphosphoryl)plienyl]pyrimiclin-4-amine: To a solution of 2,4,5- trichloropyrimindine (0.15ml, 1.31 mmol) in 1 mL of DMF was added 4- (dimethylphosphoryl)aniline (0.22 Ig, 1.31 mmol) and potassium carbonate (0.217g, 1.57mmol). The mixture was heated at 110 0C for 4h. It was basified with saturated sodium bicarbonate solution. The suspension was filtered and washed with ethyl acetate to give the final product (0.15g, 36% yield). MS/ES+: m/z=316.

l-[l-(3-methoxy-4-nitrophenyl)piperidin-4-yl]-4-methylpiperazine: To a solution of 5- fluoro-2-nitroanisooIe (0.5g, 2.92 mmol) in 3 mL of DMF was added l-methyl-4- (piperidin)piperazine (0.536g, 2.92 mmol) and potassium carbonate (0.808, 5.84 mmol). The mixture was heated at 120 0C for 18h. The mixture was basified with saturated sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was purified by chromatography to give final product as yellow solid (0.95g, 95% yield). MS/ES+: m/z=334.

2-methoxy-4-[4-(4-methylpiperazin-l-yl)piperidin-l-yl]aniline: The a solution of 1 -[I -(3- methoxy-4-nitrophenyl)piperidin-4-yl]-4-methylpiperazine (0.3g, 0.90 mmol) in 10 mL of ethanol purged with argon was added 10% Palladium on carbon (0.06Og). The hydrogenation was finished under 30psi after 4h. The mixture was passed through Celite to a flask containing HCl in ethanol. Concentration of the filtrate gave the final product (0.15g, 88% yield). MS/ES+: m/z=334.

S-chloro-JSP-ft-ζdimethylphosphorytyphenyll-rf-ft-methoxy^-ft-ø-methylpiperazin-l- yl)piperidin-l-yl]phenyl}pyrimidine-2,4-diamine: To the compound 2,5-dichloro-N-[4-

(dimethylphosphoryl)phenyl]pyrimidin-4-amine (0.005g, O.lόmmol) in ImL of 2-methoxyethanol was added 2-methoxy-4-[4-(4-methylpiperazin-l-yl)piperidin-l-yl]aniline (0.7 Ig, 0.16 mmol). The mixture was stirred at 1100C for 18h. The mixture was basified with saturated sodium bicarbonate solution and extracted with limited amount of ethyl acetate. The aqueous layer was purified by chromatography to give the final product (0.015g, 20% yield). MS/ES+: m/z=583.

Image result for Brigatinib
SYNTHESIS
WILL BE ADDED WATCH OUT………….
CONTD………..

SOME COLOUR

 
Dual ALK EGFR Inhibitor AP26113 is an orally available inhibitor of receptor tyrosine kinases anaplastic lymphoma kinase (ALK) and the epidermal growth factor receptor (EGFR) with potential antineoplastic activity. Brigatinib binds to and inhibits ALK kinase and ALK fusion proteins as well as EGFR and mutant forms. This leads to the inhibition of ALK kinase and EGFR kinase, disrupts their signaling pathways and eventually inhibits tumor cell growth in susceptible tumor cells. In addition, AP26113 appears to overcome mutation-based resistance. ALK belongs to the insulin receptor superfamily and plays an important role in nervous system development; ALK dysregulation and gene rearrangements are associated with a series of tumors. EGFR is overexpressed in a variety of cancer cell types.
Figure
Structures of select ALK inhibitors.

Brigatinib (previously known as AP26113) is an investigational small-molecule targeted cancer therapy being developed by ARIAD Pharmaceuticals, Inc.[1] Brigatinib has exhibited activity as a potent dual inhibitor of anaplastic lymphoma kinase (ALK) and epidermal growth factor receptor (EGFR).

ARIAD has begun a Phase 1/2 clinical trial of brigatinib based on cancer patients’ molecular diagnoses in September 2011.

ALK was first identified as a chromosomal rearrangement in anaplastic large cell lymphoma (ALCL). Genetic studies indicate that abnormal expression of ALK is a key driver of certain types of non-small cell lung cancer (NSCLC) and neuroblastomas, as well as ALCL. Since ALK is generally not expressed in normal adult tissues, it represents a highly promising molecular target for cancer therapy.

Epidermal growth factor receptor (EGFR) is another validated target in NSCLC. Additionally, the T790M “gatekeeper” mutation is linked in approximately 50 percent of patients who grow resistant to first-generation EGFR inhibitors.[2] While second-generation EGFR inhibitors are in development, clinical efficacy has been limited due to toxicity thought to be associated with inhibiting the native (endogenous or unmutated) EGFR. A therapy designed to target EGFR, the T790M mutation but avoiding inhibition of native EGFR is another promising molecular target for cancer therapy.

Pre-clinical results

In 2010, ARIAD announced results of preclinical studies on brigatinib showing potent inhibition of the target protein and of mutant forms that are resistant to the first-generation ALK inhibitor, which currently is in clinical trials in patients with cancer. ARIAD scientists presented these data at the annual meeting of the American Association for Cancer Research (AACR) in Washington, D.C. in April.[3]

In 2011, ARIAD announced preclinical studies showing that brigatinib potently inhibited activated EGFR or its T790M mutant, both in cell culture and in mouse tumor models following once daily oral dosing. Importantly, the effective oral doses in these preclinical models were similar to those previously shown to be effective in resistant ALK models. When tested against the native form of EGFR, brigatinib lacked activity, indicating a favorable selectivity for activated EGFR. These data were presented at the International Association for the Study of Lung Cancer (IASLC) 14th World Conference on Lung Cancer.[4]

Brigatinib

Phase 3 ALTA 1L trial of brigatinib

In April 2015, ARIAD announced the initiation of a randomized, first-line Phase 3 clinical trial of brigatinib in adult patients with ALK-positive locally advanced or metastatic non-small cell lung cancer (NSCLC) who have not previously been treated with an ALK inhibitor. The ALTA 1L (ALK in Lung Cancer Trial of BrigAtinib in 1st Line) trial is designed to assess the efficacy of brigatinib in comparison to crizotinib based on evaluation of the primary endpoint of progression free survival (PFS).  Read Full Press Release

Phase 2 ALTA trial of brigatinib (AP26113)

In March 2014, ARIAD announced the initiation of its global Phase 2 ALTA (ALK in Lung Cancer Trial of brigatinib (AP26113) in patients with locally advanced or metastatic NSCLC who test positive for the ALK oncogene and were previously treated with crizotinib. This trial has reached full enrollment of approximately 220 patients and explores two different dose levels. Read Full Press Release

Phase 1/2 study of oral ALK inhibitor brigatinib (AP26113)

The international Phase 1/2 clinical trial of brigatinib (AP26113) is being conducted in patients with advanced malignancies, including anaplastic lymphoma kinase positive (ALK+) non-small cell lung cancer (NSCLC). Patient enrollment in the trial is complete, with the last patient enrolled in July 2014. The primary endpoint in the Phase 2 portion of the trial is overall response rate. In April 2016, ARIAD announced updated clinical data from the trial. Read Full Press Release

Expanded Access Study of brigatinib

The purpose of this Expanded Access Program (EAP) is to provide brigatinib for those patients with locally advanced and/or metastatic patients with ALK+ NSCLC on an expanded access basis due to their inability to meet eligibility criteria for on-going recruiting trials, inability to participate in other clinical trials (e.g., poor performance status, lack of geographic proximity), or because other medical interventions are not considered appropriate or acceptable.

About Brigatinib

Brigatinib (AP26113) is an investigational, targeted cancer medicine discovered internally at ARIAD Pharmaceuticals, Inc. It is in development for the treatment of patients with anaplastic lymphoma kinase positive (ALK+) non-small cell cancer (NSCLC) whose disease is resistant to crizotinib. Brigatinib is currently being evaluated in the global Phase 2 ALTA (ALK in Lung Cancer Trial of AP26113) trial that is anticipated to form the basis for its initial regulatory review. ARIAD has also initiated the Phase 3 ALTA 1L trial to assess the efficacy of brigatinib in comparison to crizotinib. In June 2016, an Expanded Access Study of brigatinib will begin. More information on brigatinib clinical trials, including the expanded access program (EAP) for ALK+ NSCLC can be found here.

Brigatinib was granted orphan drug designation by the U.S. Food and Drug Administration (FDA) in May 2016 for the treatment of certain subtypes of non-small cell lung cancer (NSCLC). The designation is for anaplastic lymphoma kinase-positive (ALK+), c-ros 1 oncogene positive (ROS1+), or epidermal growth factor receptor positive (EGFR+) non-small cell lung cancer (NSCLC). Brigatinib received breakthrough therapy designation from the FDA in October 2014 for the treatment of patients with ALK+ NSCLC whose disease is resistant to crizotinib. Both designations were based on results from an ongoing Phase 1/2 trial that showed anti-tumor activity of brigatinib in patients with ALK+ NSCLC, including patients with active brain metastases.

We are on track to file for approval of brigatinib in the U.S. in the third quarter of 2016.

Brigatinib.png

PATENT

WO 2016065028

https://google.com/patents/WO2016065028A1?cl=ru

Brigatinib has the chemical formula C29H39QN7G2P which, corresponds to a formula weight of 584.09 g/moL Its chemical structure is shown below:

Brigatinib is a multi-targeted tyrosine-kinase inhibitor useful for the treatment of non-small cell lung cancer (NSCLC) and other diseases, it is a potent inhibitor of ALK (anaplastic lymphoma kinase} and is in clinical development for the treatment of adult patients with ALK-driven NSCLC. Crizotinib (XALKOR!®) is an FDA approved drug for first-line treatment of ALK-positive NSCLC. “Despite initial responses to crizotinib, the majority of patients have a relapse within 12 months, owing to the development of resistance.” Shaw et al., New Eng. J. Med. 370:1 189-97 2014. Thus, a growing population of cancer patients are in need of new and effective therapies for ALK-positive cancers.

Brigatinib is also potentially useful for treating other diseases or conditions in which ALK or other protein kinases inhibited by brigatinib are implicated. Such kinases and their associated disorders or conditions are disclosed in WO 2009/143389, both of which are hereby incorporated herein by reference for all purposes.

FIG. 1 is a synthetic scheme for brigatinib,

FIG. 6 is an 1H-Niv1R spectrum obtained for a sample of brigatinib dissolved in CD3OD. Normalised intensity is shown on the vertical axis and chemical shift (ppm) is shown on the horizontal axis.

FIG. 7 is a 13C-NMR spectrum obtained for a sample of brigatinib dissolved in CDCi3. Normalized intensity is shown on the vertical axis and chemical shift (ppm) is shown on the horizontal axis.

FIG. 8 is a mass spectral fragmentation pattern of a sample of brigatinib Form A. Relative abundance is shown on the vertical axis and atomic weight (m/z) is shown on the horizontal axis.

Table 2 summarizes the relevant chemical shift data of Form A obtained from

the Ή, and 13C-N R experiments. The number of signals and their relative intensity (integrals) confinri the number of protons and carbons in the structure of Form A of brigatinib. The 31P-NMR chemical shift for the single phosphorous atom in brigatinib was 43.6 ppm. These 1H and 13C-NMR chemical shift data are reported according to the atom numbering scheme shown immediately below:

1H-N R Assignments – 13C~N R Assignments

Table 2: 1H and 3C Chemical Shift Data (in ppm) of Form A of Brigatinib

[00118] With reference to Figure 8, mass spectral experiments of Form A were carried out using an Agilsent eiectrospray time of fisght mass spectrometer (Model 6210} operating in positive son mode using flow injection sampie introduction. Samples of Form A were dissolved in methanol/water and were analyzed and the mass observed was m/ 584.263 ( +f-T) with the calculated exact mass being 584.2684 ( +H+). The observed moiecuiar mass is consistent with the elemental composition calculated from the molecular formula of brigatinib.

PAPER

Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase

Abstract

Abstract Image

In the treatment of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC), secondary mutations within the ALK kinase domain have emerged as a major resistance mechanism to both first- and second-generation ALK inhibitors. This report describes the design and synthesis of a series of 2,4-diarylaminopyrimidine-based potent and selective ALK inhibitors culminating in identification of the investigational clinical candidate brigatinib. A unique structural feature of brigatinib is a phosphine oxide, an overlooked but novel hydrogen-bond acceptor that drives potency and selectivity in addition to favorable ADME properties. Brigatinib displayed low nanomolar IC50s against native ALK and all tested clinically relevant ALK mutants in both enzyme-based biochemical and cell-based viability assays and demonstrated efficacy in multiple ALK+ xenografts in mice, including Karpas-299 (anaplastic large-cell lymphomas [ALCL]) and H3122 (NSCLC). Brigatinib represents the most clinically advanced phosphine oxide-containing drug candidate to date and is currently being evaluated in a global phase 2 registration trial.

(2-((5-Chloro-2-((2-methoxy-4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)-pyrimidin-4-yl)amino)phenyl)dimethylphosphine Oxide (11q)

Mp 215 °C.
1H NMR (400 MHz, CD3OD) δ 8.33 (dd, J = 4.52, 8.03 Hz, 1H), 8.02 (s, 1H), 7.66 (d, J = 8.78 Hz, 1H), 7.59 (ddd, J = 1.51, 7.78, 14.05 Hz, 1H), 7.47–7.54 (m, 1H), 7.25 (ddt, J = 1.00, 2.26, 7.53 Hz, 1H), 6.65 (d, J = 2.51 Hz, 1H), 6.45 (dd, J = 2.51, 8.78 Hz, 1H), 3.84 (s, 3H), 3.69 (d, J = 12.30 Hz, 2H), 2.62–2.86 (m, 6H), 2.43–2.62 (m, 4H), 2.33–2.42 (m, 1H), 2.29 (s, 3H), 1.97–2.08 (m, 2H), 1.83 (d, J = 13.30 Hz, 6H), 1.66 (dq, J = 3.89, 12.09 Hz, 2H).
13C NMR (151 MHz, CDCl3) δ 18.57 (d, J = 71.53 Hz), 28.28 (s), 46.02 (s), 49.01 (s), 50.52 (s), 55.46 (s), 55.65 (s), 61.79 (s), 101.07 (s), 106.01 (s), 108.41 (s), 120.25 (d, J = 95.73 Hz), 120.68 (s), 122.09 (s), 122.41 (d, J = 12.10 Hz), 123.13 (br d, J = 6.60 Hz), 129.48 (d, J = 11.00 Hz), 132.36 (s), 143.91 (d, J = 2.20 Hz), 147.59 (s), 149.38 (s), 154.97 (s), 155.91 (s), 157.82 (s).
31P NMR (162 MHz, CDCl3) δ 43.55.
MS/ES+: m/z = 584.3 [M + H]+.
Anal. Calcd for C29H39ClN7O2P: C, 59.63; H, 6.73; Cl, 6.07; N, 16.79; O, 5.48; P, 5.30. Found: C, 59.26; H, 6.52; Cl, 6.58; N, 16.80.
PATENT
WO 2016089208

str1

New Patent, Suzhou MiracPharma Technology Co Ltd, Brigatinib, WO 2017016410

WO-2017016410

Preparation method for antitumor drug AP26113

Suzhou MiracPharma Technology Co Ltd

SUZHOU MIRACPHARMA TECHNOLOGY CO., LTD [CN/CN]; Room 1305, Building 1,Lianfeng Commercial Plaza, Industrial District Suzhou, Jiangsu 215000 (CN)
XU, Xuenong; (CN)

Improved process for preparing brigatinib, useful for treating cancer eg non-small cell lung cancer (NSCLC). The present filing represents the first PCT patenting to be seen from Suzhou MiracPharma that focuses on brigatinib;  In February 2017, brigatinib was reported to be in pre-registration phase.

Disclosed is a preparation method for an antitumor drug AP26113 (I). The method comprises the following preparation steps: cyclizing N-[2-methoxyl-4-[4-(dimethyl amino)piperid-1-yl]aniline]guanidine and N,N-dimethylamino acrylate, condensing N-[2-methoxyl-4-[4-(dimethyl amino)piperid-1-yl]aniline]guanidine and 4-(dimethyl phosphitylate)aniline, and chlorinating N-[2-methoxyl-4-[4-(dimethyl amino)piperid-1-yl]aniline]guanidine by means of a chlorinating agent, sequentially, so as to prepare AP26113 (I). The preparation method adopts easily-obtained raw materials, causes few side reactions, and is economical, environmentally-friendly, and suitable for industrial production.

front page image

AP26113 is an experimental drug developed by Ariad Pharmaceuticals to target small molecule tyrosine kinase inhibitors for the treatment of anaplastic lymphoma kinase-positive (ALK) metastases resistant to crizotinib Non-small cell lung cancer (NSCLC) patients. The drug was approved by the US Food and Drug Administration in August 2014 for breakthrough drug treatment. The current clinical data show that AP26113 on ALK-positive non-small cell lung cancer patients, including patients with brain metastases, have a sustained anti-tumor activity. And the inhibitory activity against ALK is about 10 times that of zolotriptan, which can inhibit all 9 kinds of identified mutations of kotatinib resistant ALK.
The chemical name of AP26113 is 5-chloro-N- [4- [4- (dimethylamino) -1-piperidinyl] -2-methoxyphenyl] -N4- [2- Phosphono) phenyl] -2,4-pyrimidinediamine (I) having the structural formula:
Methods for the preparation of AP26113 have been reported. AP26113 and its starting materials A and B are prepared by PCT Patent WO2009143389 of Ariad and U.S. Patent No. 20130225527, US20130225528 and US20140066406 of Ariad. The target compound AP26113 is prepared by substituting 2,4,5-trichloropyrimidine with the pyrimidine ring of starting materials A and B in turn.
Although the synthetic procedure is simple, the nucleophilic activity of the three chlorine atoms on 2,4,5-trichloropyrimidine is limited. When the same or similar aniline group is faced, its position Selectivity will inevitably produce interference, resulting in unnecessary side effects, thus affecting the quality of the product. At the same time, the reaction process for the use of precious metal palladium reagent also increased the cost of production is not conducive to the realization of its industrialization.
Therefore, how to use modern synthesis technology, the use of readily available raw materials, design and development of simple and quick, economical and environmentally friendly and easy to industrialization of the new synthesis route, especially customer service location on the pyrimidine ring side effects of selectivity, for the drug Economic and technological development is of great significance
The synthesis step comprises the following steps: N- [2-methoxy-4- [4- (dimethylamino) piperidin-1-yl] aniline] guanidine (II) and N, N-dimethylaminoacrylates Amino-4 (1H) -pyrimidinone (III) in the presence of a base such as N, N-dimethylformamide, N, N-dimethylformamide, (III) was reacted with 4- (dimethyl (dimethylamino) -1-piperidinyl) -2-methoxyphenyl] (A) is condensed under the action of a condensing agent and a base accelerator to obtain N2- [4- [4- (dimethylamino) -1-piperidinyl] -2-methoxybenzene (IV); the N2- [4- [4- (dimethylamino) -l- (4-fluorophenyl) (IV) with a chlorinating agent in the presence of a base such as sodium hydride, sodium hydride, sodium hydride, potassium hydride, AP26113 (I).
Example 1:
A solution of 2-methoxy-4- [4- (dimethylamino) piperidin-1-yl] aniline (24.9 g, 0.1 mol) and 250 mL of methanol was added to the reaction flask and the temperature was lowered to 0C (15 mL, 0.15 mol) and a 50% solution of cyanamide (10 mL, 0.15 mol) were added successively. The reaction was stirred for 12 to 14 hours and the reaction was complete by TLC. After cooling to 0-5 ° C, 250 mL of methyl tert-butyl ether was added to the reaction mixture. A solid precipitated and was filtered, washed successively with water and cold acetonitrile, and dried to give N- [2-methoxy- 16.3 g, yield 56.0%, FAB-MS m / z: 292 [M + H] + . [4- (Dimethylamino) piperidin-1-yl] aniline] guanidine (II)
Example 2:
A solution of N- [2-methoxy-4- [4- (dimethylamino) piperidin-1-yl] aniline] guanidine (II) (2.9 g, 10 mmol), N, Methyl methacrylate (1.8 g, 13.7 mmol) and toluene (50 mL). The mixture was heated to reflux and stirred for 24-26 hours. The reaction was complete by TLC. After cooling to room temperature, a solid precipitated. The filter cake was washed with cold methanol and dried in vacuo to give an off-white solid of N2- [4- [4- (dimethylamino) -1-piperidinyl] -2-methoxyphenyl] 1H) -pyrimidinone (III), yield 77.3%, FAB-MS m / z: 344 [M + H] + .
Example 3:
A solution of N- [2-methoxy-4- [4- (dimethylamino) piperidin-1-yl] aniline] guanidine (II) (2.9 g, 10 mmol), N, (2.0 g, 14.0 mmol) and N, N-dimethylformamide (30 mL) was added and the temperature was raised to 115-125 ° C. The reaction was stirred for 22-24 hours and the reaction was complete by TLC. The mixture was concentrated under reduced pressure, and 50 mL of ethanol was added to the resulting residue. The mixture was cooled to room temperature while stirring to precipitate a solid. The filter cake was washed with cold ethanol and dried in vacuo to give an off-white solid of N2- [4- [4- (dimethylamino) -1-piperidinyl] -2-methoxyphenyl] 1H) -pyrimidinone (III) in 79.6% yield, FAB-MS m / z: 344 [M + H] + .
Example 4:
A mixture of N2- [4- [4- (dimethylamino) -1-piperidinyl] -2-methoxyphenyl] amino-4 (1H) -pyrimidinone III) (3.43 g, 10 mmol), benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate (6.63 g, 15 mmol) and acetonitrile 100 mL. Diazabicyclo [5.4.0] -undec-7-ene (DBU) (2.28 g, 15 mmol) was added dropwise at room temperature for 12 hours. The temperature was raised to 60 ° C and the reaction was continued for 12 hours. The solvent was evaporated under reduced pressure, 100 mL of ethyl acetate was dissolved, and the mixture was washed with 20 mL of 2M sodium hydroxide and 20 mL of water. The organic layer was dried over anhydrous sodium sulfate, and 50 mL of tetrahydrofuran-dissolved 4- (dimethylphosphoranylidene) A) (2.2 g, 13 mmol) and sodium hydride (0.31 g, 13 mmol) was added and the temperature was raised to 50-55 ° C. The reaction was stirred for 6-8 hours and monitored by TLC. The reaction was quenched with saturated brine, the organic phase was separated, dried and the solvent was distilled off under reduced pressure. The crude product was recrystallized from ethanol to give an off-white solid of N2- [4- [4- (dimethylamino) -1-piperidine Yl] -2-methoxyphenyl] -N4- [2- (dimethylphosphono) phenyl] -2,4-pyrimidinediamine (IV) in a yield of 83.2%. FAB-MS m / z: 495 [M + H] + .
Example 5:
A mixture of N2- [4- [4- (dimethylamino) -1-piperidinyl] -2-methoxyphenyl] amino-4 (1H) -pyrimidinone (Dimethylamino) phosphonium hexafluorophosphate (BOP) (6.63 g, 15 mmol), 4- (dimethylsulfamoyl) phosphonium hexafluorophosphate Phosphoryl) aniline (A) (2.2 g, 13 mmol) and N, N-dimethylformamide. Diazabicyclo [5.4.0] undec-7-ene (DBU) (2.28 g, 15 mmol) was added dropwise and reacted at room temperature for 12 hours. The temperature was raised to 60 ° C and the reaction was continued for 12 hours. The solvent was distilled off under reduced pressure, 100 mL of ethyl acetate was added to dissolve, and the mixture was washed with 2 M sodium hydroxide 20 mL. The organic phase was separated, dried and concentrated under reduced pressure. The residue was recrystallized from ethanol to give an off-white solid of N2- [4- [4- (dimethylamino) -1-piperidinyl] -2-methoxyphenyl] -N4- [2- Phenylidene] -2,4-pyrimidinediamine (IV) was obtained in a yield of 48.6%. FAB-MS m / z: 495 [M + H] + .
Example 6:
A solution of N2- [4- [4- (dimethylamino) -1-piperidinyl] -2-methoxyphenyl] -N4- [2- (dimethylphosphono) Phenyl] -2,4-pyrimidinediamine (IV) (4.9 g, 10 mmol) and 100 mL of acetonitrile were added and stirred at room temperature. N-Chlorosuccinimide (1.6 g, 12 mmol) was added in three portions, The reaction was allowed to proceed at room temperature for 4-6 hours, and the reaction was terminated by TLC. The reaction solution was poured into 50 mL of water to quench the reaction. Dichloromethane, and the combined organic layers were washed successively with saturated sodium bicarbonate solution, saturated brine and water. Dried over anhydrous sodium sulfate and concentrated. The resulting crude oil was recrystallized from ethyl acetate / n-hexane to give 3.5 g of a white solid AP26113 (I) in 66.3% yield, FAB-MS m / z: 529 [M + the H] + , 1 the H NMR (CDCl 3 ) 1.67 (m, 2H), 1.81 (S, 3H), 1.85 (S, 3H), 1.93 (m, 2H), 1.96 (m, 2H), 2.10 (m, 2H), 3.86 (s, 3H), 6.50 (m, 1H), 6.57 (m, 1H), 7.12 (m, 1H) ), 7.31 (m, 1H), 7.50 (m, 1H), 8.13 (m, 2H), 8.64 (m, 1H).

////////////New Patent, Suzhou MiracPharma Technology Co Ltd, Brigatinib, WO 2017016410

References

1 to 6 of 6
Patent ID Patent Title Submitted Date Granted Date
US2015225436 PHOSPHOROUS DERIVATIVES AS KINASE INHIBITORS 2015-04-20 2015-08-13
US2014066406 Phosphorus Derivatives as Kinase Inhibitors 2013-03-15 2014-03-06
US2014024620 Methods for Inhibiting Cell Proliferation in EGFR-Driven Cancers 2011-10-14 2014-01-23
US2013225527 Phosphorus Derivatives as Kinase Inhibitors 2013-03-15 2013-08-29
US2013225528 Phosphorus Derivatives as Kinase Inhibitors 2013-03-15 2013-08-29
US2012202776 PHOSPHORUS DERIVATIVES AS KINASE INHIBITORS 2009-05-21 2012-08-09
Brigatinib
Brigatinib.svg
Names
IUPAC name

(2-((5-Chloro-2-((2-methoxy-4-(4-(4-methylpiperazin-1-yl)piperidin-1-yl)phenyl)amino)pyrimidin-4-yl)amino)phenyl)dimethylphosphine oxide
Other names

AP26113
Identifiers
1197953-54-0
3D model (Jmol) Interactive image
ChemSpider 34982928
PubChem 68165256
Properties
C29H39ClN7O2P
Molar mass 584.10 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
//////////Бригатиниб, بريغاتينيب  , 布格替尼 , Brigatinib,  AP26113, PHASE 2, ORPHAN DRUG, 1197953-54-0
CN1CCN(CC1)C2CCN(CC2)C3=CC(=C(C=C3)NC4=NC=C(C(=N4)NC5=CC=CC=C5P(=O)(C)C)Cl)OC

EMA publishes Q&A on Health Based Exposure Limits – Does the 1/1000 dose criterion come again into play in Cleaning Validation?


DR ANTHONY MELVIN CRASTO Ph.D's avatarDRUG REGULATORY AFFAIRS INTERNATIONAL

STR1

In 2014 the European Medicines Agency (EMA) issued the Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities. This publication triggered a discussion about the Permitted Daily Exposure (PDE) values in the Pharmaceutical and even in the API Industry, especially regarding crosscontamination and cleaning validation. Now a draft of a Q&A paper from the EMA provides some concretisation.

Image result for Cleaning Validationhttp://www.gmp-compliance.org/enews_05736_EMA-publishes-Q-A-on-Health-Based-Exposure-Limits—Does-the-1-1000-dose-criterion-come-again-into-play-in-Cleaning-Validation_15560,15661,15963,Z-VM_n.html

In 2014 the European Medicines Agency (EMA) issued the Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities. As mentioned in the publication itself, this document triggered a discussion about the Permitted Daily Exposure (PDE) values in the Pharmaceutical and even in the API Industry, especially regarding crosscontamination and cleaning validation. Now, the draft of a question & answer paper from the European Medicines Agency provides some…

View original post 336 more words

Follow New Drug Approvals on WordPress.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

DISCLAIMER

I , Dr A.M.Crasto is writing this blog to share the knowledge/views, after reading Scientific Journals/Articles/News Articles/Wikipedia. My views/comments are based on the results /conclusions by the authors(researchers). I do mention either the link or reference of the article(s) in my blog and hope those interested can read for details. I am briefly summarising the remarks or conclusions of the authors (researchers). If one believe that their intellectual property right /copyright is infringed by any content on this blog, please contact or leave message at below email address amcrasto@gmail.com. It will be removed ASAP