New Drug Approvals
Follow New Drug Approvals on WordPress.com

FLAGS AND HITS

Flag Counter
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO

Archives

Categories

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Researchgate

Anthony Melvin Crasto Dr.

  Join me on Facebook FACEBOOK   ...................................................................Join me on twitter Follow amcrasto on Twitter     ..................................................................Join me on google plus Googleplus

MYSELF

DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 36Yrs Exp. in the feld of Organic Chemistry,Working for AFRICURE PHARMA as ADVISOR earlier with GLENMARK PHARMA at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, NO ADVERTISEMENTS , ACADEMIC , NON COMMERCIAL SITE, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution, ........amcrasto@gmail.com..........+91 9323115463, Skype amcrasto64 View Anthony Melvin Crasto Ph.D's profile on LinkedIn Anthony Melvin Crasto Dr.

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Recent Posts

FDA clears first 7T magnetic resonance imaging device


FDA clears first 7T magnetic resonance imaging device

Today, the U.S. Food and Drug Administration cleared the first seven tesla (7T) magnetic resonance imaging (MRI) device, more than doubling the static magnetic field strength available for use in the United States. The Magentom Terra is the first 7T MRI system cleared for clinical use in the United States. Continue reading.

 JTV 519, K 201, 


JTV-519.svg

JTV-519

  • Molecular FormulaC25H32N2O2S
  • Average mass424.599 Da
  • 145903-06-6 CAS

ChemSpider 2D Image | JTV-519 hydrochloride salt | C25H33ClN2O2S

JTV-519 hydrochloride salt

  • Molecular FormulaC25H33ClN2O2S
  • Average mass461.060 Da
3-(4-Benzyl-1-piperidinyl)-1-(7-methoxy-2,3-dihydro-1,4-benzothiazepin-4(5H)-yl)-1-propanonhydrochlorid (1:1)
4-[3-(4-benzylpiperidin-1-yl)propanoyl]-7-methoxy-2,3,4,5-tetrahydro-1,4-benzothiazepine hydrochloride
JTV-519 hydrochloride salt
1038410-88-6 [RN]
  1. UNII-0I621Y6R4Q
  2. K201
  3. 1038410-88-6
  4. K 201
  5. SCHEMBL194018
  6. CHEMBL2440857
  7. DTXSID90146108
  8. 0I621Y6R4Q
  9. LS-193564

Image result for Andrew Marks, JAPAN TOBACCO

JAPAN TOBACCO

Acute Myocardial Infarction, Treatment of Cardiovascular Diseases (Not Specified)
Antiarrhythmic Drugs

JTV-519 (K201) is a 1,4-benzothiazepine derivative that interacts with many cellular targets.[1] It has many structural similarities to diltiazem, a Ca2+ channel blocker used for treatment of hypertensionangina pectoris and some types of arrhythmias.[2] JTV-519 acts in the sarcoplasmic reticulum (SR) of cardiac myocytes by binding to and stabilizing the ryanodine receptor (RyR2) in its closed state.[3][4]It can be used in the treatment of cardiac arrhythmias, heart failurecatecholaminergic polymorphic ventricular tachycardia (CPVT) and store overload-induced Ca2+ release (SOICR).[2][3][4] Currently, this drug has only been tested on animals and its side effects are still unknown.[5] As research continues, some studies have also found a dose-dependent response; where there is no improvement seen in failing hearts at 0.3 μM and a decline in response at 1 μM.[4]

K-201 (JTV-519; 1,4-benzothiazepine derivative) is an antiarrhythmic drug, had been in phase II clinical development at Japan Tobacco and Sequel Pharmaceuticals for the intravenous treatment of atrial fibrillation; however no recent developments have been reported and Sequel Pharmaceuticals has ceased operations.

In 2006, NovaCardia acquired rights from Aetas to develop the product in Europe and US for cardiovascular disorders. Sequel acquired the compound, which has a unique multi-ion channel profile, from NovaCardia following its acquisition by Merck & Co.

Treatment with JTV-519 involves stabilization of RyR2 in its closed state, decreasing its open probability during diastole and inhibiting a Ca2+ leak into the cell’s cytosol.[3][4] By decreasing the intracellular Ca2+ leak, it is able to prevent Ca2+ sparks or increases in the resting membrane potential, which can lead to spontaneous depolarization (cardiac arrhythmias), and eventually heart failure, due to the unsynchronized contraction of the atrial and ventricular compartments of the heart.[2][3][4] When Ca2+ sparks occur from the SR, the increase in intracellular Ca2+ contributes to the rising membrane potential which leads to the irregular heart beat associated to cardiac arrhythmias.[3] It can also prevent SOICR in the same manner; preventing opening of the channel due to the increase of Ca2+ inside the SR levels beyond its threshold.[2]

Molecular problem

In the closed state, N-terminal and central domains come into close contact interacting to cause a “zipping” of domains. This leads to conformational constraints that stabilize the channel and maintain the closed state.[1] Most RyR2 mutations are clustered into three regions of the channel, all affecting the same domains that interact to stabilize the channel.[1] Any of these mutations can lead to “unzipping” of the domains and a decrease in the energy barrier required for opening the channel (increasing its open probability).[1]This channel “unzipping” allows for an increase in protein kinase A phosphorylation and calstabin2 dissociation. Phosphorylation of RyR2 increases the channel’s response to Ca2+, which usually binds the RyR2 to open it.[1] If the channel become phosphorylated, this can lead to an increase in Ca2+ sparks due to an increase in Ca2+ sensitivity.

Some researchers believe that the depletion of calstabin2 from the RyR2 causes the calcium leak.[3] The depletion of calstabin2 can occur in both heart failure and CPVT.[3]Calstabin2 is a protein that stabilizes RyR2 in its closed state, preventing Ca2+ leakage during diastole. When calstabin2 is lost, the interdomain interactions of RyR2 become loose, allowing the Ca2+ leak.[3] However, the role of calstabin2 has been controversial, as some studies have found it necessary for the effect of JTV-519,[3] whereas others have found the drug functions without the stabilizing protein.[2]

Molecular mechanism

JTV-519 seems to restore the stable conformation of RyR2 during the closed state.[1][4] It is still controversial whether or not calstabin2 is necessary for this process, however, many studies believe that JTV-519 can act directly on the channel and by binding, prevents conformational changes.[2] This stabilization of the channel decreases its open probability resulting in fewer leaks of Ca2+ into the cytosol and fewer Ca2+ sparks to occur.[3][4] Researchers who believe that calstabin2 is necessary for JTV-519 effect, found that this drug may function by inducing the binding of calstabin2 back to the channel or increasing calstabin2’s affinity for the RyR2 and thus increasing its stability.[2][3]

SYNTHESIS

PATENT

US 20050186640

https://www.google.com/patents/US20050186640

Inventors Andrew MarksDonald LandryShi DengZhen Cheng
Original Assignee Marks Andrew R.Landry Donald W.Deng Shi X.Cheng Zhen Z.

PATENT

WO 9212148

https://www.google.co.in/patents/WO1992012148A1?cl=en

Inventors Noboru KanekoTatsushi OosawaTeruyuki SakaiHideo Oota
Applicant Noboru Kaneko

PATENT

US 2014121368

2,3,4,5-tetrahydrobenzo[f][1,4]thiazepines are important compounds because of their biological activities, as disclosed, for example, in U.S. Pat. Nos. 5,416,066 and 5,580,866 and published US Patent Applications Nos. 2005/0215540, 2007/0049572 and 2007/0173482.

Synthetic procedures exist for the preparation of 2-oxo-, 3-oxo-, 5-oxo- and 3,5-dioxo-1,4-benzothiazepines and for 2,3-dihydro-1,4-benzothiazepines. However, relatively few publications describe the preparation of 2,3,4,5-tetrahydrobenzo-1,4-thiazepines that contain no carbonyl groups, and most of these involve reduction of a carbonyl group or an imine. Many of the routes described in the literature proceed from an ortho-substituted arene and use the ortho substituents as “anchors” for the attachment of the seven-membered ring. Essentially all the preparatively useful syntheses in the literature that do not begin with an ortho-substituted arene employ a modification of the Bischler-Napieralski reaction in which the carbon of the acyl group on the γ-amide becomes the carbon adjacent the bridgehead and the acyl substituent becomes the 5-substituent. Like earlier mentioned syntheses, the Bischler-Napieralski synthesis requires reduction of an iminium intermediate.

It would be useful to have an intramolecular reaction for the direct construction of 2,3,4,5-tetrahydrobenzo[1,4]thiazepines that would allow more flexibility in the 4- and 5-substituents and that would avoid a separate reduction step. The Pictet Spengler reaction, in which a β-arylethylamine such as tryptamine undergoes 6-membered ring closure after condensation (cyclization) with an aldehyde, has been widely used in the synthesis of 6-membered ring systems over the past century and might be contemplated for this purpose. The Pictet Spengler reaction, however, has not been generally useful for 7-membered ring systems such as 1,4-benzothiazepines. A plausible explanation is that the failure of the reaction for typical arenes was due to the unfavorable conformation of the 7-membered ring. There are two isolated examples of an intramolecular Pictet-Spengler-type reaction producing a good yield of a benzothiazepine from the addition of formaldehyde. In one case, the starting material was a highly unusual activated arene (a catechol derivative) [Manini et al. J. Org. Chem. (2000), 65, 4269-4273]. In the other case, the starting material is a bis(benzotriazolylmethyl)amine that cyclizes to a mono(benzotriazolyl)benzothiazole [Katritzky et al. J. Chem. Soc. Pl (2002), 592-598].

PATENT

US 20050186640

WO 2015031914

US 20040229781

US 20090292119

US 7704990

PAPER

Journal of Medicinal Chemistry (2013), 56(21), 8626-8655

http://pubs.acs.org/doi/full/10.1021/jm401090a

PAPER

Synthesis of 2,3,4,5-Tetrahydrobenzo[1,4]thiazepines via N-Acyliminium Cyclization

 ARMGO Pharma, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, United States
 Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, United States
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.7b00260
Publication Date (Web): September 28, 2017
Copyright © 2017 American Chemical Society
*Phone: (914)-425-0000. E-mail: sbelvedere@armgo.com.

Abstract

Abstract Image

We report an efficient and scalable synthesis of 7-methoxy-2,3,4,5-tetrahydrobenzo[1,4]thiazepine, the core structure of biologically active molecules like JTV-519 and S107. This synthetic route, starting with 4-methoxythiophenol and proceeding via acyliminum cyclization, gives the target product in four steps and 68% overall yield and is a substantial improvement over previously published processes. Nine additional examples of tetrahydrobenzo[1,4]thiazepine synthesis via acyliminium ring closure are also presented.

References

  1. Jump up to:a b c d e f Oda, T; Yano, M; Yamamoto, T; Tokuhisa, T; Okuda, S; Doi, M; Ohkusa, T; Ikeda, Y; et al. (2005). “Defective regulation of interdomain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure”. Circulation111 (25): 3400–10. PMID 15967847doi:10.1161/CIRCULATIONAHA.104.507921.
  2. Jump up to:a b c d e f g Hunt, DJ; Jones, PP; Wang, R; Chen, W; Bolstad, J; Chen, K; Shimoni, Y; Chen, SR (2007). “K201 (JTV519) suppresses spontaneous Ca2+ release and 3Hryanodine binding to RyR2 irrespective of FKBP12.6 association”The Biochemical Journal404 (3): 431–8. PMC 1896290Freely accessiblePMID 17313373doi:10.1042/BJ20070135.
  3. Jump up to:a b c d e f g h i j k Wehrens, XH; Lehnart, SE; Reiken, SR; Deng, SX; Vest, JA; Cervantes, D; Coromilas, J; Landry, DW; Marks, AR (2004). “Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2”. Science304 (5668): 292–6. PMID 15073377doi:10.1126/science.1094301.
  4. Jump up to:a b c d e f g Toischer, K; Lehnart, SE; Tenderich, G; Milting, H; Körfer, R; Schmitto, JD; Schöndube, FA; Kaneko, N; et al. (2010). “K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum”Basic research in cardiology105 (2): 279–87. PMC 2807967Freely accessiblePMID 19718543doi:10.1007/s00395-009-0057-8.
  5. Jump up^ Viswanathan, MN; Page, RL (2009). “Pharmacological therapy for atrial fibrillation: Current options and new agents”. Expert Opinion on Investigational Drugs18 (4): 417–31. PMID 19278302doi:10.1517/13543780902773410.
JTV-519
JTV-519.svg
Names
IUPAC name

3-(4-Benzyl-1-piperidinyl)-1-(7-methoxy-2,3-dihydro-1,4-benzothiazepin-4(5H)-yl)-1-propanone
Other names

K201
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
Properties
C25H32N2O2S
Molar mass 424.60 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

//////////////JTV-519K201, JTV 519, K 201, 

Phytomenadione, Phytonadione, фитоменадион ,فيتوميناديون ,


Vitamin K1.png

ChemSpider 2D Image | Phylloquinone | C31H46O2

Phytomenadione,

PHYTONADIONE, Phylloquinone

Molecular Formula: C31H46O2
Molecular Weight: 450.707 g/mol
[R-[R*,R*-(E)]]-2-Methyl-3-(3,7,11,15-tetramethyl-2-hexadecenyl)-1,4-naphthalenedione
1,4-Naphthalenedione, 2-methyl-3-((2E,7R,11R)-3,7,11,15-tetramethyl-2-hexadecenyl)-
2′,3′-trans-Vitamin K1
фитоменадион [Russian] [INN]
فيتوميناديون [Arabic] [INN]
2-methyl-3-[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]naphthalene-1,4-dione
 CAS 84-80-0[RN]
Antihemorrhagic vitamin
Aqua mephyton
AQUAMEPHYTON
Combinal K1
Kativ N
Kephton
Kinadion
K-Ject
KONAKION
Mono-kay
Phyllochinonum
Phylloquinone (8CI)
Optical Rotatory Power -0.28 ° Solv: 1,4-dioxane (123-91-1); Wavlen: 589.3 nm; Temp: 25 °CKarrer, P.; Helvetica Chimica Acta 1944, VOL 27, PG317-19

 

MASS

 

1H NMR

400 MHZ CDCL3

 

13C NMR

  1. Murahashi, Shun-ichi; European Journal of Organic Chemistry 2011, VOL2011(27), P5355-5365 
  2. Huang, Zhihong; Advanced Synthesis & Catalysis 2007, VOL349(4+5), PG539-545 

IR LIQ FILM

 

Phylloquinone is a family of phylloquinones that contains a ring of 2-methyl-1,4-naphthoquinone and an isoprenoid side chain. Members of this group of vitamin K 1 have only one double bond on the proximal isoprene unit. Rich sources of vitamin K 1 include green plants, algae, and photosynthetic bacteria. Vitamin K1 has antihemorrhagic and prothrombogenic activity.

Phytomenadione, also known as vitamin K1 or phylloquinone, is a vitamin found in food and used as a dietary supplement.[1][2] As a supplement it is used to treat certain bleeding disorders.[2] This includes in warfarin overdosevitamin K deficiency, and obstructive jaundice.[2] It is also recommended to prevent and treat hemorrhagic disease of the newborn.[2] Use is typically recommended by mouth or injection under the skin.[2] Use by injection into a vein or muscle is recommended only when other routes are not possible.[2] When given by injection benefits are seen within two hours.[2]

Common side effects when given by injection include pain at the site of injection and altered taste.[2] Severe allergic reactions may occur with injected into a vein or muscle.[2] It is unclear if use during pregnancy is safe; however, use is likely okay during breastfeeding.[3] It works by supplying a required component for making a number of blood clotting factors.[2] Found sources include green vegetables, vegetable oil, and some fruit.[4]

Phytomenadione was first isolated in 1939.[5] It is on the World Health Organization’s List of Essential Medicines, the most effective and safe medicines needed in a health system.[6] The wholesale cost in the developing world is about 0.11 to 1.27 USD for a 10 mg vial.[7]In the United States a course of treatment costs less than 25 USD.[8] In 1943 Edward Doisy and Henrik Dam were given a Nobel Prizefor its discovery.[5]

Terminology

Phytomenadione is often called phylloquinone or vitamin K,[9] phytomenadione or phytonadione. Sometimes a distinction is made between phylloquinone, which is considered to be a natural substance, and phytonadione, which is considered to be a synthetic substance.[10]

stereoisomer of phylloquinone is called vitamin k1 (note the difference in capitalization).

Chemistry

Vitamin K is a fat-soluble vitamin that is stable in air and moisture but decomposes in sunlight. It is a polycyclic aromatic ketone, based on 2-methyl1,4-naphthoquinone, with a 3-phytyl substituent. It is found naturally in a wide variety of green plants, particularly in leaves, since it functions as an electron acceptor during photosynthesis, forming part of the electron transport chain of photosystem I.

Phylloquinone is an electron acceptor during photosynthesis, forming part of the electron transport chain of Photosystem I.

The best-known function of vitamin K in animals is as a cofactor in the formation of coagulation factors II (prothrombin), VII, IX, and X by the liver. It is also required for the formation of anticoagulant factors protein C and S. It is commonly used to treat warfarin toxicity, and as an antidote for coumatetralyl.

Vitamin K is required for bone protein formation.

SYN

e-EROS Encyclopedia of Reagents for Organic Synthesis, 1-2; 2001

WO2016060670

 

PAPERS

Helvetica Chimica Acta (1944), 27, 317-19.

PATENT

US 2683176

CN 105399615

WO 2016060670

References

  1. Jump up^ Watson, Ronald Ross (2014). Diet and Exercise in Cystic Fibrosis. Academic Press. p. 187. ISBN 9780128005880.
  2. Jump up to:a b c d e f g h i j “Phytonadione”. The American Society of Health-System Pharmacists. Retrieved 8 December 2016.
  3. Jump up^ “Phytonadione Use During Pregnancy”Drugs.com. Retrieved 29 December 2016.
  4. Jump up^ “Office of Dietary Supplements – Vitamin K”ods.od.nih.gov. 11 February 2016. Retrieved 30 December 2016.
  5. Jump up to:a b Sneader, Walter (2005). Drug Discovery: A History. John Wiley & Sons. p. 243. ISBN 9780471899792.
  6. Jump up^ “WHO Model List of Essential Medicines (19th List)” (PDF). World Health Organization. April 2015. Retrieved 8 December 2016.
  7. Jump up^ “Vitamin K1”International Drug Price Indicator Guide. Retrieved 8 December 2016.
  8. Jump up^ Hamilton, Richart (2015). Tarascon Pocket Pharmacopoeia 2015 Deluxe Lab-Coat Edition. Jones & Bartlett Learning. p. 229. ISBN 9781284057560.
  9. Jump up^ Haroon, Y.; Shearer, M. J.; Rahim, S.; Gunn, W. G.; McEnery, G.; Barkhan, P. (June 1982). “The content of phylloquinone (vitamin K1) in human milk, cows’ milk, and infant formula foods determined by high-performance liquid chromatography”J. Nutr112 (6): 1105–1117. PMID 7086539.
  10. Jump up^ “Vitamin K”. Retrieved 2009-03-18.
Phytomenadione
Vitamin K1.png
Clinical data
Trade names Mephyton, others
Synonyms Vitamin K1, phytonadione, phylloquinone
AHFS/Drugs.com Monograph
Pregnancy
category
  • US: C (Risk not ruled out)
Routes of
administration
by mouth, subQ, IM, IV
ATC code
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
ChEBI
ChEMBL
ECHA InfoCard 100.001.422
Chemical and physical data
Formula C31H46O2
Molar mass 450.70 g/mol
3D model (JSmol)

/////////////PHYTONADIONE, фитоменадион ,فيتوميناديون PHYTONADIONE, Phylloquinone

PHYSICAL AND CHEMICAL PROPERTIES
MELTING POINT : Yellow viscous oil (Ref. 0001)


REFRACTIVE INDEX : n20D=1.5263(Ref. 0010)

OPTICAL ROTATION : [a]25D=-28deg(Ref. 0001)Optical rotation
[Table ] (Ref. 0010)

SOLUBILITY : Insol in water. Sparingly sol in methanol; sol in ethanol, acetone, benzene, petr ether, hexane, dioxane, chloroform, ether, other fat solvents and in vegetable oils(Ref. 0001)
SPECTRAL DATA
UV SPECTRA : Uv max (petr ether) 242, 248, 260, 269, 325 nm (E1%1cm396, 419, 383, 387, 68) (Ref. 0001). Uv max (ethanol) 243, 248, 262, 270, 330 nm (Ref. 0002).
(UV Ref. 0010)Em at 248 nm (EtOH) =18,900 (Ref. 0002/0006).

IR SPECTRA : (liquid) : 6.05m (CO), 6.21, 6.28m (aromatic nucleus) (Ref. 0008)
(IR Ref. 0010)
[Table 0002] (Ref. 0010)

NMR SPECTRA : at 60 MHz in CDCl3, i nternal standard Si(CH3)4: multiplet at 453-486 Hz (4 aromatic H), triplet at 302 Hz (J=7 Hz) (olefinic H at C2. , doublet at 201 Hz ) (J=7 Hz) (CH2.-1), singlet at 130 Hz (CH3-2), signal at 107 Hz (trans-methyl group at C3. .(Ref. 0008)
( NMR Ref. 0010) Proton magnetic resonance data

MASS SPECTRA : [Spectrum  (Ref. 0005)
REFERENCES

[0001]

AUTHOR : Anonym. (1989) Vitamin K1 in The Merck Index , 11th edition (Budavari, S., O’Neil, M. J., Smith, A., and Heckelman, P.E., eds), pp1580, Merck & Co., Inc., Rahway, N. J.
TITLE :
JOURNAL :
VOL : PAGE : – ()

[0002]

AUTHOR : Dunphy,P.J., and Brodie,A.F.
TITLE : The structure and function of quinones in respiratory metabolism.
JOURNAL : Methods in Enzymology
VOL : 18 PAGE : 407 -461 (1971)

[0005]

AUTHOR : Di Mari, S. J., Supple, J. H., and Rapoport, H.
TITLE : Mass spectra of naphthoquinones. Vitamin K1(20) PubMed ID:5910960
JOURNAL : J Am Chem Soc.
VOL : 88 PAGE : 1226-1232 (1966)

[0006]

AUTHOR : Suttie,W.J. (1991) Vitamin K, in Handbook of Vitamins (2nd ed., Machlin,L.J., ed) , pp145-194, Marcel Dekker, Inc., New York
TITLE :
JOURNAL :
VOL : PAGE : – ()

[0007]

AUTHOR : Kodaka,K., Ujiie,T.,Ueno,T., and Saito,M.
TITLE : Contents of Vitamin K1 and Chlorophyll in Green Vegetables.
JOURNAL : J Jpn Soc Nutr Food Sci
VOL : 39 PAGE : 124 -126 (1986)

[0008]

AUTHOR : Mayer,H., and Isler,O .
TITLE : Synthesis of Vitamin K.
JOURNAL : Methods in Enzymology
VOL : 18 PAGE : 491 -547 (1971)

[0009]

AUTHOR : Naruta,Y., and Maruyama,K.
TITLE : Regio- and sterocontrolled polyprenylation of quinones. A new synthetic method of vitamin K series.
JOURNAL : Chemistry Lett
VOL : PAGE : 881 -884 (1979)

[0010]

AUTHOR : Sommer,P., and Kofler,M.
TITLE : Physicochemical Properties and Methods of Analysis of Phylloquinones, Menaquinones, Ubiquinones, and Related Compounds. PubMed ID:5340867
JOURNAL : Vitamins and Hormones
VOL : 24 PAGE : 349 -399 (1966)

[0011]

AUTHOR : Bristol, J. A., Ratcliffe, J. V., Roth, D. A., Jacobs, M. A., Furie, B. C., and Furie, B.
TITLE : Biosynthesis of prothrombin: intracellular localization of the vitamin K-dependent carboxylase and the sites of gamma-carboxylation PubMed ID:8839851
JOURNAL : Blood.
VOL : 88 PAGE : 2585-2593 (1996)

[0022]

AUTHOR : Usui, Y., Nishimura, N., Kobayashi, N., Okanoue, T., Kimoto, M., and Ozawa, K.
TITLE : Measurement of vitamin K in human liver by gradient elution high-performance liquid chromatography using platinum-black catalyst reduction and fluorimetric detection PubMed ID:2753953
JOURNAL : J Chromatogr.
VOL : 489 PAGE : 291-301 (1989)

 

//////////////

ELAMIPRETIDE


Elamipretide.pngimg

Elamipretide

Elamipretide biologic depiction

H-D-Arg-Tyr(2,6-diMe)-Lys-Phe-NH2

D-arginyl-2,6-dimethyl-L-tyrosyl-L-lysyl-L-phenylalaninamide

(2S)-6-amino-2-[[(2S)-2-[[(2R)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]-3-(4-hydroxy-2,6-dimethylphenyl)propanoyl]amino]-N-[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]hexanamide

CAS 736992-21-5

Chemical Formula: C32H49N9O5

Molecular Weight: 639.8

  • A free radical scavenger and antioxidant that localizes in the inner mitochondrial membrane.
  • Mitochondrial Protective Agent to Improve Cell Viability
  1. Elamipretide
  2. bendavia
  3. UNII-87GWG91S09
  4. 736992-21-5
  5. MTP 131
  6. RX 31
  7. SS 31
  8. 87GWG91S09
  9. L-Phenylalaninamide, D-arginyl-2,6-dimethyl-L-tyrosyl-L-lysyl-
  10. SS-31 peptide
  11. Arg-Dmt-Lys-Phe-NH2
  12. D-Arg-Dmt-Lys-Phe-NH2
  13. SS31 peptide
  14. Elamipretide [USAN:INN]
  15. MTP-131
  16. Elamipretide (USAN/INN)
  17. arginyl-2,’6′-dimethyltyrosyl-lysyl-phenylalaninamide
  18. CHEMBL3833370
  19. SCHEMBL15028020
  20. CTK2H1007

Elamipretide is a cardiolipin peroxidase inhibitor and mitochondria-targeting peptide, Improves Left Ventricular and Mitochondrial Function. In vitro: Elamipretide significantly increases enzymatic activities of both complexes to near normal levels.

Background Information

Elamipretide is a cardiolipin peroxidase inhibitor and mitochondria-targeting peptide, Improves Left Ventricular and Mitochondrial Function. In vitro: Elamipretide significantly increases enzymatic activities of both complexes to near normal levels. long-term therapy with elamipretide reduces ROS formation, attenuated mPTP openings, and significantly decreases the levels of cytosolic cytochrome c and active caspase-3, thus suppressing a major signaling pathway for apoptosis. Elamipretide represents a new class of compounds that can improve the availability of energy to failing heart and reduce the burden of tissue injury caused by excessive ROS production. [1] In vivo: Fourteen dogs with microembolization-induced HF are randomized to 3 months monotherapy with subcutaneous injections of elamipretide (0.5 mg/kg once daily. Elamipretide has been shown to enhance ATP synthesis in multiple organs, including heart, kidney, neurons, and skeletal muscle. [1] ……by MedChemexpress Co., Ltd.

Elamipretide (also known as SS-31 and Bendavia)[1][2] is a small mitochondrially-targeted tetrapeptide (D-Arg-dimethylTyr-Lys-Phe-NH2) that appears to reduce the production of toxic reactive oxygen species and stabilize cardiolipin.[3]

Stealth Peptides, a privately held company, was founded in 2006 to develop intellectual property licensed from several universities including elamipretide; it subsequently changed its name to Stealth BioTherapeutics.[4][5]

Acute coronary syndrome; Age related macular degeneration; Cardiac failure; Corneal dystrophy; Diabetic macular edema; Lebers hereditary optic atrophy

  • Originator Stealth Peptides
  • Developer Stealth BioTherapeutics
  • Class Eye disorder therapies; Ischaemic heart disorder therapies; Oligopeptides; Peptides; Small molecules
  • Mechanism of Action Free radical scavengers; Mitochondrial permeability transition pore inhibitors
  • Phase II/III Barth syndrome
    • Phase II Acute kidney injury; Corneal disorders; Heart failure; Leber’s hereditary optic atrophy; Mitochondrial disorders; Reperfusion injury
    • Phase I/II Diabetic macular oedema; Dry age-related macular degeneration; Mitochondrial myopathies
    • Phase I Age-related macular degeneration
    • No development reported Chronic heart failure; Diabetes mellitus; Eye disorders; Neurodegenerative disorders

    Most Recent Events

    • 29 Jun 2017 Initial efficacy and adverse events data from phase II MMPOWER-2 trial in Mitochondrial-myopathies released by Stealth
    • 02 Jun 2017 Stealth BioTherapeutics completes a phase II trial in Heart failure in Germany and Serbia (SC) (NCT02814097)
    • 01 May 2017 Phase-II/III clinical trials in Barth syndrome (In children, In adolescents, In adults, In the elderly) in USA (SC) (NCT03098797)

Novel crystalline salt (eg hydrochloride, mesylate and tosylate salts) forms of D-Arg-Dmt-Lys-Phe-NH2 (referred to as MTP-131 or elamipretide ) and composition comprising them are claimed. See WO2016190852 , claiming therapeutic compositions including chromanyl compounds, variants and analogues and uses thereof. Stealth BioTherapeutics (formerly known as Stealth Peptides) is developing elamipretide, which targets mitochondria, for the potential iv/sc treatment of cardiac reperfusion injury, acute coronary syndrome, acute kidney injury, mitochondrial myopathy, skeletal muscle disorders and congestive heart failure.

Also, the company is developing an oral formulation of elamipretide , which targets mitochondria and reduces the production of excess reactive oxygen species, for treating chronic heart failure. In January 2015, a phase II trial was ongoing . In July 2016, a phase II trial was initiated in Latvia, Spain and Hungary .

Further, the company is developing an ophthalmic formulation of elamipretide , a mitochondria targeting peptide, for treating ocular diseases including diabetic macular edema, age-related macular degeneration and fuchs’ corneal endothelial dystrophy and Leber’s hereditary optic neuropathy.

In April 2016, a phase II trial was initiated for LHON . Family members of the product case of elamipretide ( WO2007035640 ) hold protection in the EU until 2026 and expires in the US in 2027 with US154 extension.

Acute coronary syndrome; Age related macular degeneration; Cardiac failure; Corneal dystrophy; Diabetic macular edema; Lebers hereditary optic atrophy

SYNTHESIS

NEXT………………………

PATENT 2

ELAMIPRETIDE BY STEALTH

WO-2017156403

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017156403&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription


; MTP-131; D-Arg-Dmt-Lys-Phe-Nth). Compound

1 has been shown to affect the mitochondrial disease process by helping to protect organs from oxidative damage caused by excess ROS production and to restore normal ATP production.

PATENT

US 20110082084

WO 2011091357

WO 2012129427

WO 2013059071

WO 2013126775

US 20140378396

US 20140093897

WO 2015134096

WO 2015100376

WO 2015060462

US 20150010588

PATENNT

WO 2015197723

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2015197723

PROCESS FOR PREPARING

D-ARGINYL-2,6-DIMETHYL-L-TYROSYL-L-LYSYL-L-PHENYLALANINAMIDE

TECHNICAL FIELD

The invention relates to a process for solution-phase synthesis of D- Arginyl-2,6-dimethyl-L-tyrosyl-L-lysyl-L-phenylalaninamide (abbreviated H-D-Arg-(2,6-Dimethyl)Tyr-L-Lys-L-Phe-NH2, development code SS-31 , MTP-131 , X-31) of Formula (I), an active ingredient developed by Stealth BioTherapeutics under the investigational drug brand names Bendavia® and Ocuvia®, for both common and rare diseases including a mitochondrial targeted therapy for ischemia reperfusion injury.

Formula (I)

BACKGROUND

The product belongs to the class of so-called “Szeto-Schiller peptides”. Szeto-Sciller peptides or “SS peptides” are small, aromatic-cationic, water soluble, highly polar peptides, such as disclosed in US 6703483 and US 7576061 , which can readily penetrate cell membranes. The aromatic-cationic peptides include a minimum of two amino acids, and preferably include a minimum of four amino acids, covalently joined by peptide bonds. The maximum number of amino acids is about twenty amino acids covalently joined by peptide bonds. As described by EP 2012/2436390, optimally, the number of amino acids present in the SS peptides is four.

Bendavia® is being tested for the treatment of ischemia reperfusion injury in patients with acute myocardial infarction (AMI), for the treatment of acute kidney injury (AKI) and renal microvascular dysfunction in hypertension, for the treatment of skeletal muscle dysfunction, for the treatment of mitochondrial myopathy and for the treatment of chronic heart failure. Trials are ongoing to assess the Ocuvia’s potential to treat Leber’s Hereditary Optic Neuropathy (LHON) a devastating inherited disease that causes sudden blindness, often in young adults.

Mitochondria are the cell’s powerhouse, responsible for more than 90% of the energy our bodies need to sustain life and support growth. The energetics from mitochondria maintains healthy physiology and prevents disease. In many common and rare diseases, dysfunctional mitochondria are a key component of disease progression.

D-Arginyl-2,6-dimethyl-L-tyrosyl-L-lysyl-L-phenylalaninamide is a cell-permeable and mitochondria-targeted peptide that showed antioxidant activity and was concentrated in the inner mitochondrial membrane. Compound (< 1 nM) significantly reduced intracellular reactive oxygen species, increased mitochondrial potential and prevented tBHP-induced apoptosis in both N2A and SH-SY5Y neuronal cell lines. In rats, intraperitoneal treatment (1 and 3 mg/kg) 1 day prior to unilateral ureteral obstruction and every day thereafter for 14 days significantly decreased tubular damage, macrophage infiltration and interstitial fibrosis. Compound (3 mg/kg i.p. qd for 2 weeks) also prevented apoptosis and insulin reduction in mouse pancreatic islets caused by streptozotocin.

Further studies performed in a G93A mouse model of amyotrophic lateral sclerosis (ALS) demonstrated that the compound (5 mg/kg/day i.p. starting at 30 days of age) led to a significant delay in disease onset.

Potentially useful for the treatment of ALS and may be beneficial in the treatment of aging and diseases associated with oxidative stress.

In the last few years the peptide H-D-Arg-(2,6-Dimethyl)Tyr-L-Lys-L-Phe-NH2, shown in Fig 1 , and its therapeutic activity have been disclosed and

claimed by in several patent applications.

EP 2436390, US 201 10245182 and US 201 10245183 claim topical anesthetic compositions for application to the skin for pain management or anti-skin aging agents, respectively, comprising Szeto-Schiller peptides; SS-31 is specifically claimed as active ingredient. Sequence of solid-phase synthesis is indicated as the preferred preparation process.

US 7718620 claims a process of treating or preventing ischemia-reperfusion injury of the kidney in a mammal by administrating an effective amount of an aromatic-cationic peptide. SS-31 is specifically claimed as active ingredient.

WO2005/001023 discloses a generical process and carrier complexes for delivering molecules to cells comprising a molecule and an aromatic cationic peptide of type D-Arg-Dmt-Lys-Phe-NH2. The tetrapeptide SS-31 is

specifically claimed as product useful for the process at claim 18.

WO2012/1741 17 and WO2014/210056 claim therapeutic compositions based on SS peptides and the aromatic-cationic peptide D-Arg-Dmt-Lys-Phe-NH2 as active agent.

WO 2013/086020, WO 2004/070054 and WO 2005/072295 provide processes for preventing mithochondrial permeability transition and reducing oxidative damage in a mammal, a removed organ, or a cell in need thereof and specifically claims the process wherein the peptide does not have mu-opioid receptor agonist activity, i.e., D-Arg-Dmt-Lys-Phe-NH2.

WO 2009/108695 discloses a process for protecting a kidney from renal injury which may be associated with decreased or blocked blood flow in the subject’s kidney or exposure to a nephrotoxic agent, such as a radiocontrast dye. The processes include administering to the subject an effective amount of an aromatic-cationic peptide to a subject in need thereof and one of the selected peptide is D-Arg-Dmt-Lys-Phe-NH2.

US 6703483 discloses a detailed procedure for the preparation of novel analogs of DALDA [H-Tyr-D-Arg-Phe-Lys-NH2], namely H-Dmt-D-Arg-Phe-Lys-NH2 using the solid-phase techniques and /?-methylbenzhydrylamine

resin and protocols that have been extensively used by inventor’s laboratory.

Most prior art processes for preparing the compound typically comprise conventionally performed peptide solid-phase synthesis with further purification by chromatography in order to obtain the requested purity for therapeutic use.

It is well known that solid-phase synthesis followed by chromatographic purification is time consuming, very expensive and very difficult to be scaled up on industrial scale, so the need of developing a process for large scale production is obvious. The compound is isolated as organic acid salt, as acetate or trifluoro acetate.

eddy et al., Adv. Exp. Med. Biol, 2009, 61 1 , 473 generally describes the liquid-phase synthesis of antioxidant peptides of Figure 1 and similar others (SS-02, SS-20), involving routinely used side chain protecting groups for amino acid building blocks. The guanidine group was protected with NO2 and the ε-ΝΗ2 of Lys was protected by Cbz or 2-Cl-Cbz. These peptides were

synthesized using Boc/Cbz chemistry and BOP reagent coupling. Starting with the C-terminal Lys residue protected as H-Lys(2-Cl-Cbz)-NH2, (prepared

from the commercially available Boc-Lys(2-Cl-Cbz)-OH in two steps by amidation with NH4HCO3 in the presence of DCC/HOBt following a literature procedure [Ueyama et all, Biopolymers, 1992, 32, 1535, PubMed: 1457730], followed by exposure to TFA). Selective removal of the 2-Cl-Cbz in the

presence of the NO2 group was accomplished using catalytic transfer hydrogenolysis (CTH) [Gowda et al., Lett. Pept. Sci., 2002, 9, 153].

A stepwise procedure by standard solution peptide synthesis for preparation of potent μ agonist [DmtJDALDA and its conversion into a potent δ antagonist H-Dmt-Tic-Phe-Lys(Z)-OH by substitution of D-Arg with Tic to enhance the δ opioid agonist activity is described by Balboni et al., J. Med.

Chem., 2005, 48, 5608. A general synthetic procedure for a similar tetrapeptide ([Dmt-D-Arg-Phe-Lys-NH2 is described by Ballet et al., J. Med.

Chem. 2011, 54, 2467.

Similar DALDA analog tetrapeptides were prepared by the manual solid-phase technique using Boc protection for the a-amino group and DIC/HOBt or HBTU/DIEA as coupling agent [Berezowska et al., J. Med. Chem., 2009, 52, 6941 ; Olma et al., Acta Biochim. Polonica, 2001, 48, 4, 1 121 ; Schiller at al., Eur. J. Med. Chem., 2000, 35, 895].

Despite the high overall yield in the solid-phase approach, it has several drawbacks for the scale-up process such as:

a. the application of the highly toxic and corrosive hydrogen fluoride for cleavage of the peptide from the resin,

b. low loading (0.3-0.35 mmol/g of resin) proved necessary for successful end-step, and

c. use of excess amounts of reagents (3-fold of DIC, 2.4-fold of HOBt, etc.) on each step [ yakhovsky et al., Beilstein J. Org. Chem., 2008, 4(39), 1 , doi: 10.376/bjoc.4.39]

SUMMARY

The invention relates to a more efficient process avoiding either solid-phase synthesis or chromatographic purification, more suitable for large scale production. The process of the invention is described in Scheme A.

The following abbreviations are used:

Dmt = 2,6-dimethyl tyrosine; Z= benzyloxycarbonyl; MeSO3H = methane sulphonic acid; Boc = Tert-butyloxycarbonyl; NMM = N-methyl morpholine; TBTU= N,N,N’,N’-Tetramethyl-O-(benzotriazol- l-yl)uronium tetrafluoroborate; DMF = dimethyl formamide; TFA = trifluoroacetic acid

Scheme A shows the process for the solution phase synthesis of peptide

1 for assembly of the tetrapeptide backbone using O-Benzyl (Bzl) group and benzyloxycarbonyl (Z) group respectively, as the temporary protection for amino acids’ N-termini (Scheme Figure 2), followed by a final catalytic hydrogenolysis. The final product is isolated as organic acid salt, for example, acetic acid salt.

H-Phe-NH 2 + Boc-Lys(Z)-OH

Boc-Lys(Z)-Phe-NH 2

(IV)

(V) I MeS03H/CH2CI2

Boc-DMTyr(Bzl)-OH + MeS03H.H-Lys(Z)-Phe-NH 2

(

Boc-DMTyr(Bzl)-Lys(Z)-Phe-NH 2

(VIII)

I MeS03H/CH2CI2

Z-D-Arg-ONa + H-DMTyr(Bzl)-Lys(Z)-Phe-NH 2.MeS03H

(X) (IX)

TBTU/NMM/DMF

Z-D-Arg-DMTyr(Bzl)-Lys(Z)-Phe-NH

(XI)

I H2, Pd/C

X ACOH

H-D-Arg-DMTyr-Lys-Phe-NH

(I)

Scheme A

This process is a notable improvement with respect to the prior art and its advantages can be summarized as follows:

• The synthesis is performed in liquid phase allowing the scale up on industrial scale without need of special equipment; · The selection of the protecting group in the building blocks allows a straightforward synthesis with very simple deprotection at each step and minimize the formation of undesired by-product;

• Each intermediate can be crystallized allowing removal of impurities which are not transferred to the following step;

· The purity of each intermediate is very high and usually close to

99%.

EXAMPLES

Example 1: Preparation of Boc-Lys(Z)-Phe-NH2

Charge 200 mL of DMF, 44 g of Boc-Lys(Z)-OH and 15.6 g of H-Phe-NH2 in a flask. Stir the mixture at room temperature for 10 min. Add 19.2 g of

N-methylmorpholine and 32.1 g of TBTU successively at room temperature. Stir the mixture at room temperature for 1 h. Add 500 mL of water into the reaction mixture to precipitate the product at room temperature. Filter the mixture to isolate the solid product and wash the filter cake with water.

Transfer the filter cake into a flask containing 360 mL of ethyl acetate and heat the mixture at 50°C till all the solid is dissolved. Separate the organic phase of product and discard the small aqueous phase. Concentrate the organic phase at 40~45°C and under vacuum to remove the solvent till lots of solid is formed. Filter the residue to isolate the solid product. Transfer the filter cake into a flask containing 2000 mL of MTBE and heat the mixture at refluxing for 20 min. Then, cool down the mixture to room temperature. Filter the mixture to isolate the solid product. Dry the filter cake at 30 °C and under vacuum to give 35 g of solid product.

Example 2: Preparation of H-Lys(Z)-Phe-NH2.MeSC>3H

Charge 26.3 g of Boc-Lys(Z)-Phe-NH2, 200 mL of methylene chloride

and 9.6 g of methanesulfonic acid. Stir the mixture at 15-20 °C for 18 h. Add 100 mL of MTBE into the mixture and stir at 15-20 °C for 1 h. Filter the mixture to isolate the solid product. Dry the wet cake in air at room temperature to give 26.4 g of white solid product.

Example 3: Preparation of Boc-DMeTyr(Bzl)-Lys(Z)-Phe-NH2

Charge 8.4 g of Boc-DMeTyr(Bzl)-OH, 1 1 g of H-Lys(Z)-Phe-NH2.MeSO3H, 7.4 g of TBTU and 80 mL of THF in a flask. Stir the mixture

at room temperature for 15 min, and then cool down to 10°C. Add 6.36 g of N-methylmorpholine and stir the mixture at 20-25°C for 3 h. Add the reaction mixture into a flask containing 240 mL of water. Add 32 mL of methylene chloride into the mixture obtained in the previous operation of. Stir the resultant mixture at room temperature for 20 min. Filter the mixture to isolate the solid product and wash the filter cake with acetone (300 mL X 2). Dry the filter cake in air at room temperature to give 14.3 g of white solid product.

Example 4: Preparation of H-DMeTyr(Bzl)-Lys(Z)-Phe-NH2.MeS03H

Charge 14 g of Boc-BMeTyr(Bzl)-Lys(Z)-Phe-NH2, 280 mL of methylene chloride and 3.3 g of methanesulfonic acid in a flask. Stir the mixture at 18 ~ 22 °C for 10 h. Add 560 mL of heptanes into the mixture and stir the mixture at room temperature for 30 min. Filter the mixture to isolate the solid product. Dry the wet cake in air at room temperature to give 14 g of white solid product.

Example 5: Preparation of Z-D-Arg-DMeTyr(Bzl)-Lys(Z)-Phe-NH2

Charge 6.34 g of Z-D-Arg-ONa, 100 mL of DMF and 2.0 g of methanesulfonic acid in a flask. Stir the mixture at room temperature till a clear solution was formed. Add 14 g of H-DMeTyr(Bzl)-Lys(Z)-Phe-NH2.MeSO3H and cool down the mixture to 10°C. Add 6.15 g of TBTU and

9.67 g of N-methylmorpholine successively. Stir the mixture at room temperature for 4 h. Add aqueous solution of LiOH prepared by dissolving 2.9 g of LiOH.L O in 8 mL of water. Stir the mixture for 30 min. Add the resultant mixture slowly into a flask containing 420 mL of water under stirring. Add 56 mL of methylene chloride into the mixture. Filter the mixture to isolate the solid product. Transfer the filter cake into a flask containing 150 mL of acetic acid, and heat the mixture at 35-40 °C till most of the solid was dissolved. Add 450 mL of MTBE into the mixture and cool down the mixture under stirring to room temperature. Filter the mixture to isolate the solid product. Dry the filter cake in air at room temperature to give 17.3 g of the white solid product.

Example 6 Preparation of H-D-Arg-DMeTyr-Lys-Phe-NH2.3AcOH

Charge 2.0 g of Z-D-Arg-DMeTyr(Bzl)-Lys(Z)-Phe-NH2, 20 mL of acetic acid and 5% Pd/C catalyst (which is obtained by washing 5.0 g of 5% Pd/C containing 60% of water with 30 mL of acetic acid) in a flask. Change the atmosphere of the flask with hydrogen. Stir the mixture at room temperature and pressure of 1 atm of hydrogen for 2 h. Filter the mixture to remove the Pd/C catalyst and wash the filter cake with 10 mL of acetic acid. Combine the filtrate and washing solution and concentrate the solution at 20°C and under vacuum to remove most the solvent. Add 100 mL of acetonitrile into the residue and stir the mixture at room temperature for 20 min. Filter the mixture to isolate the solid product. Dry the filter cake at room temperature and under vacuum to give 0.7 g of the white product.

PATENT

WO 2016001042

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016001042&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

References

  1. Jump up^ “Recommended INN List 75” (PDF). WHO Drug Information30 (1): 111. 2016.
  2. Jump up^ “Elamipretide”. AdisInsight. Retrieved 24 April 2017.
  3. Jump up^ Kloner, RA; Shi, J; Dai, W (February 2015). “New therapies for reducing post-myocardial left ventricular remodeling.”Annals of translational medicine3 (2): 20. PMC 4322169Freely accessiblePMID 25738140.
  4. Jump up^ Valigra, Lori (April 9, 2012). “Stealth Peptides sees positive results from Bendavia”Boston Business Journal.
  5. Jump up^ Dolgin, Elie (11 February 2016). “New drugs offer hope for mitochondrial disease”STAT.
Patent ID

Patent Title

Submitted Date

Granted Date

US2017152289 PROCESS FOR THE PRODUCTION OF D-ARGINYL-2, 6-DIMETHYL-L-TYROSYL-L-LYSYL-L-PHENYLALANINAMIDE 2015-06-24
Patent ID

Patent Title

Submitted Date

Granted Date

US2014294796 AROMATIC-CATIONIC PEPTIDES AND USES OF SAME 2012-12-05 2014-10-02
US2016264623 TETRAPEPTIDE COMPOUND AND METHOD FOR PRODUCING SAME 2014-10-23 2016-09-15
US2017081363 PHARMACEUTICALLY RELEVANT AROMATIC-CATIONIC PEPTIDES 2014-12-23
US2016340389 PHARMACEUTICALLY RELEVANT AROMATIC-CATIONIC PEPTIDES 2014-12-23
US2017129920 Process for Preparing D-Arginyl-2, 6-Dimethyl-L-Tyrosyl-L-Lysyl-L-Phenylalaninamide 2015-06-24

REFERENCES

1: Alam NM, Mills WC 4th, Wong AA, Douglas RM, Szeto HH, Prusky GT. A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech. 2015 Jul 1;8(7):701-10. doi: 10.1242/dmm.020248. Epub 2015 Apr 23. PubMed PMID: 26035391; PubMed Central PMCID: PMC4486862.

2: Szeto HH, Birk AV. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin Pharmacol Ther. 2014 Dec;96(6):672-83. doi: 10.1038/clpt.2014.174. Epub 2014 Sep 4. Review. PubMed PMID: 25188726; PubMed Central PMCID: PMC4267688.

3: Dai W, Shi J, Gupta RC, Sabbah HN, Hale SL, Kloner RA. Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J Cardiovasc Pharmacol. 2014 Dec;64(6):543-53. PubMed PMID: 25165999.

4: Eirin A, Ebrahimi B, Zhang X, Zhu XY, Woollard JR, He Q, Textor SC, Lerman A, Lerman LO. Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovasc Res. 2014 Sep 1;103(4):461-72. doi: 10.1093/cvr/cvu157. Epub 2014 Jun 19. PubMed PMID: 24947415; PubMed Central PMCID: PMC4155472.

5: Liu S, Soong Y, Seshan SV, Szeto HH. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am J Physiol Renal Physiol. 2014 May 1;306(9):F970-80. doi: 10.1152/ajprenal.00697.2013. Epub 2014 Feb 19. PubMed PMID: 24553434.

6: Brown DA, Hale SL, Baines CP, del Rio CL, Hamlin RL, Yueyama Y, Kijtawornrat A, Yeh ST, Frasier CR, Stewart LM, Moukdar F, Shaikh SR, Fisher-Wellman KH, Neufer PD, Kloner RA. Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia. J Cardiovasc Pharmacol Ther. 2014 Jan;19(1):121-32. doi: 10.1177/1074248413508003. Epub 2013 Nov 28. PubMed PMID: 24288396; PubMed Central PMCID: PMC4103197.

7: Birk AV, Chao WM, Bracken C, Warren JD, Szeto HH. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br J Pharmacol. 2014 Apr;171(8):2017-28. doi: 10.1111/bph.12468. PubMed PMID: 24134698; PubMed Central PMCID: PMC3976619.

8: Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014 Apr;171(8):2029-50. doi: 10.1111/bph.12461. Review. PubMed PMID: 24117165; PubMed Central PMCID: PMC3976620.

9: Zhao WY, Han S, Zhang L, Zhu YH, Wang LM, Zeng L. Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Cell Physiol Biochem. 2013;32(3):591-600. doi: 10.1159/000354463. Epub 2013 Sep 6. PubMed PMID: 24021885.

10: Dai DF, Hsieh EJ, Chen T, Menendez LG, Basisty NB, Tsai L, Beyer RP, Crispin DA, Shulman NJ, Szeto HH, Tian R, MacCoss MJ, Rabinovitch PS. Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ Heart Fail. 2013 Sep 1;6(5):1067-76. doi: 10.1161/CIRCHEARTFAILURE.113.000406. Epub 2013 Aug 9. PubMed PMID: 23935006; PubMed Central PMCID: PMC3856238.

/////////////////////Elamipretide,  SS-31,  Bendavia, PEPTIDE

CC1=CC(=CC(=C1CC(C(=O)NC(CCCCN)C(=O)NC(CC2=CC=CC=C2)C(=O)N)NC(=O)C(CCCN=C(N)N)N)C)O

FDA approves implantable device to treat moderate to severe central sleep apnea


 

 

 

FDA approves implantable device to treat moderate to severe central sleep apnea

The U.S. Food and Drug Administration today approved a new treatment option for patients who have been diagnosed with moderate to severe central sleep apnea. The Remedē System is an implantable device that stimulates a nerve located in the chest that is responsible for sending signals to the diaphragm to stimulate breathing. Continue reading.

A highly efficient Suzuki-Miyaura methylation of pyridines leading to the drug pirfenidone and its CD3 version (SD-560)


A highly efficient Suzuki-Miyaura methylation of pyridines leading to the drug pirfenidone and its CD3 version (SD-560)

Green Chem., 2017, Advance Article
DOI: 10.1039/C7GC01740E, Communication
Eliezer Falb, Konstantin Ulanenko, Andrey Tor, Ronen Gottesfeld, Michal Weitman, Michal Afri, Hugo Gottlieb, Alfred Hassner
The first methylation/deuteromethylation in green and nearly quantitative Suzuki-Miyaura routes to pirfenidone and its d3 analog SD-560, at 99% isotopic purity.

A highly efficient Suzuki–Miyaura methylation of pyridines leading to the drug pirfenidone and its CD3version (SD-560)

 Author affiliations

Abstract

Efficient introduction of methyl or methyl-d3 into aromatic and heteroaromatic systems still presents a synthetic challenge. In particular, we were in search of a non-cryogenic synthesis of the 5-CD3 version of pirfenidone (4d, also known as Pirespa®, Esbriet® or Pirfenex®), one of the two drugs approved to date for retarding idiopathic pulmonary fibrosis (IPF), a serious, rare and fatal lung disease, with a life expectancy of 3–5 years. The methyl-deuterated version of pirfenidone (4e, also known as SD-560) was designed with the objective of attenuating the rate of drug metabolism, and our goal was to find a green methylation route to avoid the environmental and economic impact of employing alkyllithium at cryogenic temperatures. The examination of several cross-coupling strategies for the introduction of methyl or methyl-d3 into methoxypyridine and pyridone systems culminated in two green and nearly quantitative Suzuki–Miyaura cross-coupling routes in the presence of RuPhos ligand: the first, using commercially available methyl boronic acid or its CD3 analog and the second, employing potassium methyl trifluoroborate or CD3BF3K, the latter obtained by a new route in 88% yield. This led, on a scale of tens of grams, to the synthesis of pirfenidone (4d) and its d3 analog, SD-560 (4e), at 99% isotopic purity.

//////////pirfenidone, CD3 version, SD-560,

WO 2017163257, NEW PATENT, IBRUTINIB, IND-SWIFT LABORATORIES LIMITED


WO 2017163257, NEW PATENT, IBRUTINIB, IND-SWIFT LABORATORIES LIMITED

WO2017163257) PROCESS FOR PREPARING PURE LH-PYRAZOLO[3,4-D] PYRIMIDINE DERIVATIVE

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017163257&recNum=1&maxRec=145&office=&prevFilter=&sortOption=Pub+Date+Desc&queryString=FP%3A%28IND+SWIFT%29&tab=PCTDescription

IND-SWIFT LABORATORIES LIMITED

ARUL, Ramakrishnan; (IN).
SARIN, Gurdeep Singh; (IN).
WAS, Sandeep; (IN).
KUMAR, Vishal; (IN)

The present invention relates to an efficient and industrially advantageous process for the preparation of pure lH-pyrazolo[3,4-d] pyrimidine derivative. In particular the present invention provides a process for the preparation of pure 4-amino-3-(4- phenoxyphenyl)-lH-pyrazolo[3,4-d] pyrimidine, a key intermediate of ibrutinib. Particularly, the present invention provides a process for the preparation of 3-amino-4-cyano-5-(4-phenoxy phenyl)pyrazole, wherein none of the intermediates have been isolated, an important precursor for the preparation of 4-amino-3-(4-phenoxyphenyl)- lH-pyrazolo[3,4-d] pyrimidine.

The present invention relates to an efficient and industrially advantageous process for the preparation of pure lH-pyrazolo[3,4-d] pyrimidine derivative. In particular the present invention provides a process for the preparation of pure 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d] pyrimidine, a key intermediate of ibrutinib, wherein none of the intermediates have been isolated to prepare 3-amino-4-cyano-5-(4-phenoxy phenyl)pyrazole, an important precursor.

Ibrutinib (IMBRUVICA), chemically known as l-[(3R)-3-[4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d]pyrimidin- 1 -yl]piperidin- 1 -yl] prop-2-en- 1 -one is an orally administered drug that targets Bruton’s tyrosine kinase (BTK). Ibrutinib may be used for treating both B cell-related hematological cancers/ B cell chronic lymphocytic leukemia, and autoimmune diseases such as rheumatoid arthritis, Sjogrens syndrome, lupus and asthma and is represented by following chemical formula:

Ibrutinib and its pharmaceutically acceptable salts were first disclosed in US patent US7,514,444. This patent discloses a process for the preparation of Ibrutinib by involving use of 4-amino-3-(4-phenoxyphenyl)- lH-pyrazolo[3,4-d]pyrimidine, as intermediate as shown below:

4-Amino-3-(4-phenoxyphenyl)- l H-pyrazolo[3,4-d]pyrimidine, a key intermediate of ibrutinib, and its preparation from 3-amino-4-cyano-5-(4-phenoxyphenyl) pyrazole was first disclosed in a PCT patent publication WO2001/019829 A2 as shown in below scheme.

Various other publications like US patents US7,514,444; US7.718,662; US8,883,803 and PCT publications WO2012/158843 A2; WO2013/010136A2 follow the same process for the preparation of 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d]pyrimidine as described above.

The process comprises the conversion of 4-phenoxybenzoic acid to the corresponding acid chloride, which is then taken up in mixture of toluene and tetrahydrofuran and further reacted with malononitrile in the presence of diisopropylethylethylamine in toluene. The reaction mixture is stirred overnight and after completion of reaction, followed by work up 1 , 1 -dicyano-2-hydroxy-2-(4-phenoxyphenyl)ethene is isolated as a residue and which is further purified.

The resulting l, l-dicyano-2-hydroxy-2-(4-phenoxyphenyl)ethene is reacted with trimethylsilyldiazomethane in a mixture of acetonitrile and methanol in the presence of diisopropylethylamine as a base. The resulting reaction mixture is stirred for 2 days to give l, l-dicyano-2-methoxy-2-(4-phenoxyphenyl)ethene (O-methylated product) as an oil, which is purified by flash chromatography.

The O-methylated product is treated with hydrazine hydrate to give 3-amino-4-cyano- 5-(4-phenoxyphenyl)pyrazole, which is further reacted with formamide at a temperature of 180°C to give 4-amino-3-(4-phenoxyphenyl)- lH-pyrazolo[3,4- d]pyrimidine as pale brown-grey solid.

Since, the above process involves the isolation of intermediates and takes long time during reaction completion. Therefore, it is lengthy, not efficient. Further publication is silent about the purity of 4-amino-3-(4-phenoxyphenyl)- lH-pyrazolo[3,4-d]pyrimidine. Acetonitrile solvent has been used in methylation reaction, which is carcinogenic.

The cyclization reaction has been carried out at 180°C and it is observed that the cyclization reaction at high temperature of 180°C, results in grey brown solid colour of 4-amino-3-(4-phenoxyphenyl)- lH-pyrazolo[3,4-d]pyrimidine, may be due to presence of inorganic impurities.

The said process also requires the use of expensive (trimethylsilyl)diazomethane to obtain O-methylated product, which is sensitive to air and water, and hence, the methylation reaction has to be carried out in the absence of water, under anaerobic conditions; silica and flash chromatography are also used for purifying O-methylated product. Since the above process involves complicated operation processes, which leads to high production cost and therefore is not an attractive option at industrially scale.

PCT publication WO2014/173289A1 discloses a process for preparation of 3-amino-4-cyano-5-(4-phenoxyphenyl)pyrazole as shown below and its conversion into 4- amino-3-(4-phenoxy phenyl)- lH-pyrazolo[3,4-d]pyrimidine has not been disclosed.

The process involves conversion of 4-phenoxybenzoic acid to the corresponding acid chloride, followed by reaction with malononitrile in the presence of diisopropylethylethylamine in tetrahydrofuran. The reaction mixture has been stirred for 16 hours and thereafter l, l -dicyano-2-hydroxy-2-(4-phenoxyphenyl) ethene is isolated from reaction mixture. A solution of l, l-dicyano-2-hydroxy-2-(4- phenoxyphenyl)ethene in trimethoxymethane has been heated for 16 hours to give l, l-dicyano-2-methoxy-2-(4-phenoxyphenyl)ethene (O-methylated product), which is then reacted with hydrazine hydrate to give 3-amino-4-cyano-5-(4-phenoxy phenyl)pyrazole.

The above process is inefficient, since it involves isolation of intermediates and takes long time to complete the reactions and purity of 3-amino-4-cyano-5-(4- phenoxypheny pyrazole has not been disclosed.

A similar approach has been described in a PCT publication WO2014/082598 A 1 for preparation of 3-amino-4-cyano-5-(4-phenoxyphenyl)pyrazole and is presented as below:

The process involves conversion of 4-phenoxybenzoic acid to the corresponding acyl chloride by using sulfurous dichloride, followed by reaction with malononitrile in the presence of sodium hydride to obtain l, l-dicyano-2-hydroxy-2-(4-phenoxy phenyl)ethene, which is recrystallized from 1,4-dioxane. The hydroxy moiety is then methylated using dimethyl sulphate to give l, l-dicyano-2-methoxy-2-(4-phenoxy phenyl)ethene (O-methylated product) which is recrystallized from a mixture of hexane and ethylactetate. The solution of resulting O-methylated product in ethanol was treated with hydrazine hydrate at reflux temperature to give 3-amino-4-cyano-5- (4-phenoxy phenyl)pyrazole, followed by its recrystallization in hexane and further, its conversion into 4-amino-3-(4-phenoxyphenyl)- lH-pyrazolo[3,4-d]pyrimidine was not disclosed.

The above process also involves isolation of intermediates; their purification which leads to longer time in reaction completion, and it does not disclose the purity of 3- amino-4-cyano-5-(4-phenoxyphenyl)pyrazole. Further the above process involves use of sodium hydride, which is a hazardous reagent and can ignite in air during scale up. Several alternative methods have been reported in literature, wherein process for the preparation of 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d]pyrimidine has been disclosed and are discussed herein.

A Chinese patent application CN103121999A discloses a process of preparation of 4- amino-3 -(4-phenoxy phenyl)- 1 H-pyrazolo[3 ,4-d] pyrimidine, as below :

The process involves reaction of 3-bromo-lH-pyrazolo[3,4-d]pyrimidin-4-amine with (4-phenoxyphenyl)boronic acid in the presence of alkali agents and aprotic solvents to give 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d]pyrimidine.

The said Chinese application is also silent about the purity of target compound and even starts with the advance intermediates, which are expensive and make the process unattractive from industrial point of view.

A similar approach has been described in US patent US8,940,893; PCT publication WO2013/1 13097A1 and WO2015/018333 A 1 for preparing 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d]pyrimidine .

In US patent US8,940,893 and PCT publication WO2013/1 13097A1, 4-amino-3-(4-phenoxyphenyl)- lH-pyrazolo[3,4-d]pyrimidine is purified by using Combi-flash chromatography on silica gel. In PCT publication WO2015/018333A1, 4-amino-3-(4-phenoxyphenyl)- lH-pyrazolo[3,4-d]pyrimidine is purified by recrystallization in ethyl acetate.

The purity of 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d]pyrimidine has not been reported in above publications too. Further two of the above processes involve tedious step of chromatographic purification, which is not industrial viable.

Another Chinese patent application CN 103965201 A discloses a process for the preparation of 4-amino-3-(4-phenoxyphenyl)- lH-pyrazolo[3,4-d]pyrimidine, wherein 3-bromo-lH-pyrazolo[3,4-d]pyrimidin-4-amine was reacted with trimethyl tin (4- phenoxy phenyl) to give 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4- d]pyrimidine and followed by its recrystallization in isopropanol, as shown below:

The said Chinese application is also silent about the purity of 4-amino-3-(4- phenoxyphenyl)- lH-pyrazolo[3,4-d]pyrimidine and is not cost-effective because it starts with advance intermediates, which are expensive. Therefore, said route of synthesis is not industrially applicable.

Purity of an API as well as intermediates is of great importance in the field of pharmaceutical chemistry. It is well documented in the art that direct product of a chemical reaction is rarely a single compound with sufficient purity to comply with pharmaceutical standards. The impurities that can be present in pharmaceutical compounds are starting materials, by-products of the reaction, products of side reactions, or degradation products.

According to ICH guidelines, process impurities should be maintained below set limits by specifying the quality of raw materials, their stoichiometric ratios, controlling process parameters, such as temperature, pressure, time and including purification steps, such as crystallization, distillation and liquid-liquid extraction etc., in the manufacturing process. Typically, these limits should less than about 0.15 % by weight of each identified impurity. Limits for unidentified and/or uncharacterized impurities are obviously lower, typically less than 0.10 % by weight. The limits for genotoxic impurities could be much lower depending upon the daily dose of the drug and duration of the treatment. Therefore, in the manufacture of a drug substance, the purity of the starting materials is also important, as impurities may carry forward to the active pharmaceutical ingredient such as ibrutinib.

In view of the above, most of the prior art processes involve isolation of intermediates, additional purification steps and silent about the purity or the assay of 4-amino-3-(4-phenoxy phenyl)- lH-pyrazolo[3,4-d]pyrimidine.

Thus, there is an urgent need for the development of a synthetic process which produces pure 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d]pyrimidine or its acid addition salts.

The present invention fulfills the need in the art and provides an improved, industrially advantageous process for the synthesis of pure 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d] pyrimidine, a key intermediate in the preparation of ibrutinib, through preparation of 3-amino-4-cyano-5-(4-phenoxyphenyl)pyrazole from 4-phenoxy benzoic acid using same organic solvent and none of the intermediates have been isolated.

Examples:

Example 1: Preparation of 3-amino-4-cyano-5-(4-phenoxyphenyl)pyrazole

4-Phenoxybenzoic acid (200g) was slowly added to thionyl chloride (400ml) at a temperature of 25-30°C and resulting reaction mixture was heated under stirring to a temperature of 60-65°C for 5 hours. Thionyl chloride was distilled off under vacuum at temperature below 60°C. Toluene (2x400ml) was added to the resulting oily residue and thereafter distilled out completely under vacuum below 60°C to remove traces of thionyl chloride to obtain 4-phenoxybenzoyl chloride as a viscous oil. The resulting viscous oil of 4-phenoxybenzoyl chloride was dissolved in toluene (2000ml). Malononitile (80g) and diisopropylethylamine (320ml) were sucessively added to the reuslting solution at a temperature of 25-30°C slowly, maintaining reaction temperature 50-55°C. The reaction mass was further stirred for 30 minutes. After completion of the reaction, the reaction mass was cooled to 25-30°C and a solution of sulfuric acid ( 1.25 M) was added. The reaction mixture was then stirred at a temperature of 25-30°C for 30 minutes, and the layers were separated. The organic layer was washed with a solution of sodium chloride ( 10%) and the resulting organic layer was used directly in next reaction.

Dimethyl sulfate (200ml) and sodium bicarbonate (200g) were added to the resulting organic layer at a temperature of 25-30°C. Thereafter, temperature of reaction mass was raised to 80-90°C and reaction mass was stirred for 1-2 hours. After completion of reaction, the reaction mass was cooled to a temperature of 25-30°C, demineralized water (2000ml) was added and stirred for 10-15 minutes. The layers were separated and the aqueous layer was extracted with toluene (1000ml). All the organic layers were combined and washed with sodium chloride solution ( 10%). Activated carbon (20g) was added and reaction mixture was stirred for 30 minutes. The solution was filtered through hyflo bed and to the resulting organic layer hydrazine hydrate ( 120ml) was added at a temperature of 25-30°C. During the addition exothermicity was observed, and temperature of the reaction mass was rose up to 40-50°C. Thereafter, the reaction mass was stirred at a temperature of 25-30°C for 1 -2 hours. The resulting precipitated solid was filtered, slurry washed with dichloromethane (400ml) and finally, dried to obtain title compound of formula V ( 140g) purity 93.28% measured by HPLC.

Example 2: Preparation of 3-amino-4-cyano-5-(4-phenoxyphenyl)pyrazole

4-Phenoxybenzoic acid (lOOg) was slowly added to thionyl chloride (200ml) at a temperature of 25-30°C and resulting reaction mixture was heated under stirring to a temperature of 50-55°C for 5 hours. Thionyl chloride was distilled off under vacuum at temperature below 50°C. Toluene (250ml) was added to the resulting oily residue and thereafter distilled out completely under vacuum below 50°C to remove traces of thionyl chloride to obtain 4-phenoxybenzoyl chloride as a viscous oil. The resulting viscous oil of 4-phenoxybenzoyl chloride was dissolved in toluene (500ml). Malononitile (35.58ml) and diisopropylethylamine (160ml) were sucessively added to the reuslting solution at a temperature of 25-30°C slowly, maintaining reaction temperature around 50-55°C. The reaction mass was further stirred for 10 minutes. After completion of the reaction, the reaction mass was cooled to 25-30°C and a solution of sulfuric acid (70 ml in 1000 ml water) was added. The reaction mixture was then stirred at a temperature of 25-30°C for 30 minutes, and the layers were separated. The organic layer was washed with a solution of sodium chloride (10%) and the resulting organic layer was used directly in next reaction.

Dimethyl sulfate (95.1 1ml) and sodium bicarbonate (96.16g) were added to the resulting organic layer at a temperature of 25-30°C. Thereafter, temperature of reaction mass was raised to 80-90°C and reaction mass was stirred for 1-2 hours. After completion of reaction, the reaction mass was cooled to a temperature of 55- 60°C, demineralized water ( 1000ml) was added. The reaction mass was cooled to a temperature of 25-30°C and stirred for 10- 15 minutes. The layers were separated and the aqueous layer was extracted with toluene (500ml). All the organic layers were combined and washed with sodium chloride solution ( 10%). To the resulting organic layer hydrazine hydrate (50ml) was added at a temperature of 25-30°C. During the addition exothermicity was observed, and temperature of the reaction mass was rose up to 40-45°C. Thereafter, the reaction mass was stirred at a temperature of 25-30°C for 1-2 hours. The resulting precipitated solid was filtered, suck dried to obtain 3- amino-4-cyano-5-(4-phenoxyphenyl)pyrazole compound of formula V ( 123g) purity 86.96% measured by HPLC.

Example 3: Purification of 3-amino-4-cyano-5-(4-phenoxyphenyl)pyrazole

3-Amino-4-cyano-5-(4-phenoxyphenyl)pyrazole (36g) was suspended in isopropanol (350ml) and temperature of the reaction mixture was raised and allowed to reflux to dissolve the solid completely to provide a clear solution. Then, solvent was distilled off under vacuum to obtain a residue and isopropanol (50ml) was added and after stirring for hours the solid was filtered and dried to afford 3-amino-4-cyano-5-(4-phenoxyphenyl)pyrazole compound of formula V (26g) and having purity of 97.54 % by HPLC .

Example 4: Purification of 3-amino-4-cyano-5-(4-phenoxyphenyl)pyrazole

3-Amino-4-cyano-5-(4-phenoxyphenyl)pyrazole (36g) was suspended in isopropanol (350ml) and temperature of the reaction mixture was raised upto reflux to dissolve the solid completely upto clear solution. Water (1050ml) was added to the solution and the reaction mixture was gradually cooled to crystallize the product. The resulting solid was filtered, washed with two volumes of isopropanol, dried in vacuum oven at a temperature of 40-45 °C to afford 3-amino-4-cyano-5-(4-phenoxyphenyl)pyrazole compound of formula V (20g) and having a HPLC purity of 97.23% .

Example 5: Preparation of pure 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4- d] pyrimidine compound of formula I

3-Amino-4-cyano-5-(4-phenoxyphenyl)pyrazole (20g) was suspended in formamide (100 ml) and heated at a temperature of 130°C, after completion of reaction, the reaction mixture was cooled to a temperature of 30-35°C and demineralized water (500ml) was added and the reaction mixture was stirred at a temperature of 25-30°C for 45 minutes. The resulting solid was filtered and acetone (200ml) was added stirred the reaction mixture for 30-45 minutes. The resulting solid was filtered, washed, dried to afford pure 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d]pyrimidine compound of formula 1 (12g) having purity 99.6% measured by HPLC.

Example 6: Preparation of pure 4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4- d] pyrimidine compound of formula I

3-Amino-4-cyano-5-(4-phenoxyphenyl)pyrazole (lOOg) was suspended in formamide (500ml) and heated at a temperature of 135-140°C, after completion of reaction, the reaction mixture was cooled to a temperature of 30-35°C and demineralized water (1000ml) was added and the reaction mixture was stirred at a temperature of 20-25°C for 1 hour. The resulting solid was filtered, washed with water (500ml) then successively slurry washed with toluene (2 x 500ml) and dried to afford pure 4- amino-3-(4-phenoxyphenyl)-lH-pyrazolo[3,4-d] pyrimidine compound of formula I

(70g) having purity 99.8% measured by HPLC; assay > 98%; residue on ignition 0.05%; heavy metals < 20ppm.

Example 7: Preparation of (lS)-l-[(3R)-3-piperidyl]-3-(p-phenoxyphenyl)-l,2,5,7-tetraza-lH-inden-4-ylamine

Diisopropyl diazodicarboxylate (DAID, 1.2 ml,) was added to a solution of 1-tert-butyloxycarbonyl-3-(S)-hydroxypiperidine ( l .Og,) and triphenylphosphine (2.59g) in tetrahydrofuran (50.0ml). To the resulting yellow solution, 3-(p-phenoxyphenyl)-l ,2,5,7-tetraza- lH-inden-4-ylamine (l .Og). was added and warmed till dissolution, and stirred overnight at room temperature. The reaction mixture was filtered and the solvent was distilled under vacuum to get an oily residue, which was further purified by flash chromatography (30-50 % ethyl acetate/ hexane) on silicagel to give 0.3 g (0.3 w/w) of tert-butyloxycarbonyl-( l S)- l-[(3R)-3-piperidyl]-3-(p-phenoxyphenyl)- l,2,5,7-tetraza- lH-inden-4-ylamine as a light brown solid. The resulting solid was dissolved in dichloromethane (5 ml) and trifluoroacetic acid (0.6 ml) was added to it. After completion of reaction, water was added to reaction mass, followed by addition of methyl tert-butyl ether (20.0 ml). The layers were separated and the aqueous layer was basified with potassium carbonate and extracted with dichloromethane (15.0 ml x 2). The organic layer dried over sodium sulfate, filtered and evaporated to yield 0.2 g (0.6 w/w) of title compound as light yellow oil.

Example 8: Preparation of l-(3-(4-amino-3-(4-phenoxyphenyl)-lH-pyrazolo [3,4- d]pyrimidin-l-yl)piperidin-l-yI)prop-2-en-l-one (Ibrutinib)

To a solution of acryloyl chloride (0.06g) in tetrahydrofuran (15.0 ml), a mixture of triethylamine (O. lg) and (lS)-l-[(3R)-3-piperidyl]-3-(p-phenoxyphenyl)-l,2,5,7- tetraza- lH-inden-4-ylamine (0.2g) in tetrahydrofuran (7.8 ml) was added. The reaction mixture was stirred at 25-30°C for 18 hous and filtered. The solvent was removed under vacuum to obtain crude ibrutinib, which was further purified by column chromatography on silica gel to obtain pure ibrutinib as crystalline solid.

Formula VI

Formula VII

Formula I

Formula II

 

Formula III

 

Formula IV

 

Formula V

///////WO 2017163257, NEW PATENT, IBRUTINIB, IND-SWIFT LABORATORIES LIMITED

FDA approves new treatment for certain advanced or metastatic breast cancers


FDA approves new treatment for certain advanced or metastatic breast cancers

The U.S. Food and Drug Administration today approved Verzenio (abemaciclib) to treat adult patients who have hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer that has progressed after taking therapy that alters a patient’s hormones (endocrine therapy). Verzenio is approved to be given in combination with an endocrine therapy, called fulvestrant, after the cancer had grown on endocrine therapy. It is also approved to be given on its own, if patients were previously treated with endocrine therapy and chemotherapy after the cancer had spread (metastasized). Continue reading

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm578071.htm

Abemaciclib.svg

(abemaciclib)

September 28, 2017

Release

The U.S. Food and Drug Administration today approved Verzenio (abemaciclib) to treat adult patients who have hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer that has progressed after taking therapy that alters a patient’s hormones (endocrine therapy). Verzenio is approved to be given in combination with an endocrine therapy, called fulvestrant, after the cancer had grown on endocrine therapy. It is also approved to be given on its own, if patients were previously treated with endocrine therapy and chemotherapy after the cancer had spread (metastasized).

“Verzenio provides a new targeted treatment option for certain patients with breast cancer who are not responding to treatment, and unlike other drugs in the class, it can be given as a stand-alone treatment to patients who were previously treated with endocrine therapy and chemotherapy,” said Richard Pazdur, M.D., director of the FDA’s Oncology Center of Excellence and acting director of the Office of Hematology and Oncology Products in the FDA’s Center for Drug Evaluation and Research.

Verzenio works by blocking certain molecules (known as cyclin-dependent kinases 4 and 6), involved in promoting the growth of cancer cells. There are two other drugs in this class that are approved for certain patients with breast cancer, palbociclib approved in February 2015 and ribociclib approved in March 2017.

Breast cancer is the most common form of cancer in the United States. The National Cancer Institute at the National Institutes of Health estimates approximately 252,710 women will be diagnosed with breast cancer this year, and 40,610 will die of the disease. Approximately 72 percent of patients with breast cancer have tumors that are HR-positive and HER2-negative.

The safety and efficacy of Verzenio in combination with fulvestrant were studied in a randomized trial of 669 patients with HR-positive, HER2-negative breast cancer that had progressed after treatment with endocrine therapy and who had not received chemotherapy once the cancer had metastasized. The study measured the length of time tumors did not grow after treatment (progression-free survival). The median progression-free survival for patients taking Verzenio with fulvestrant was 16.4 months compared to 9.3 months for patients taking a placebo with fulvestrant.

The safety and efficacy of Verzenio as a stand-alone treatment were studied in a single-arm trial of 132 patients with HR-positive, HER2-negative breast cancer that had progressed after treatment with endocrine therapy and chemotherapy after the cancer metastasized. The study measured the percent of patients whose tumors completely or partially shrank after treatment (objective response rate). In the study, 19.7 percent of patients taking Verzenio experienced complete or partial shrinkage of their tumors for a median 8.6 months.

Common side effects of Verzenio include diarrhea, low levels of certain white blood cells (neutropenia and leukopenia), nausea, abdominal pain, infections, fatigue, low levels of red blood cells (anemia), decreased appetite, vomiting and headache.

Serious side effects of Verzenio include diarrhea, neutropenia, elevated liver blood tests and blood clots (deep venous thrombosis/pulmonary embolism). Women who are pregnant should not take Verzenio because it may cause harm to a developing fetus.

The FDA granted this application Priority Review and Breakthrough Therapydesignations.

The FDA granted the approval of Verzenio to Eli Lilly and Company.

//////////Verzenio, abemaciclib, fda 2017, metastatic breast cancers, Eli Lilly ,  Priority Review,  Breakthrough Therapy designations, antibodies

Xanomeline (LY-246,708; Lumeron, Memcor) ксаномелин , كسانوميلين , 诺美林 ,


Xanomeline.png

Xanomeline (LY-246,708LumeronMemcor)

CAS 131986-45-3

  • Molecular FormulaC14H23N3OS
  • Average mass281.417 Da

FDA 2024 APPROVED

ксаномелин كسانوميلين 诺美林 
Hexyloxy-TZTP
5-[4-(Hexyloxy)-1,2,5-thiadiazol-3-yl]-1-méthyl-1,2,3,6-tétrahydropyridine
Xanomeline(LY246708) is a selective M1 muscarinic receptor agonist.
Pyridine, 3-[4-(hexyloxy)-1,2,5-thiadiazol-3-yl]-1,2,5,6-tetrahydro-1-methyl-
Xanomeline(LY246708) is a selective M1 muscarinic receptor agonist. in vitro: Xanomeline had high affinity for muscarinic receptors in brain homogenates, but had substantially less or no affinity for a number of other neurotransmitter receptors and uptake sites. In cells stably expressing genetic m1 receptors, xanomeline increased phospholipid hydrolysis in CHO, BHK and A9 L cells to 100, 72 and 55% of the nonselective agonist carbachol. In isolated tissues, xanomeline had high affinity for M1 receptors in the rabbit vas deferens (IC50 = 0.006 nM), low affinity for M2 receptors in guinea pig atria (EC50 = 3 microM), was a weak partial agonist in guinea pig ileum and was neither an agonist nor antagonist in guinea pig bladder. Xanomeline produced small increases in striatal acetylcholine levels and did not antagonize the large increases in acetylcholine produced by the nonselective muscarinic agonist oxotremorine, indicating that xanomeline did not block M2 autoreceptors. in vivo: Xanomeline increased striatal levels of dopamine metabolites, presumably by acting at M1 heteroreceptors on dopamine neurons to increase dopamine release. In contrast, xanomeline had only a relatively small effect on acetylcholine levels in brain, indicating that it is devoid of actions at muscarinic autoreceptors. The effects of xanomeline on ex vivo binding and DOPAC levels lasted for about 3 hr and were evident after oral administration. An analog of xanomeline with similar in vivo effects did not inhibit acetylcholinesterase or choline acetyltransferase and inhibited choline uptake only at concentrations much higher than those required to inhibit binding. These data indicate xanomeline is selective agonist for M1 over M2 and M3 receptors in vivo in rat.
Xanomeline (LY-246,708LumeronMemcor) is a muscarinic acetylcholine receptor agonist with reasonable selectivity for the M1 and M4 subtypes,[1][2][3][4] though it is also known to act as a M5 receptor antagonist.[5] It has been studied for the treatment of both Alzheimer’s disease and schizophrenia, particularly the cognitive and negative symptoms,[6] although gastrointestinal side effects led to a high drop-out rate in clinical trials.[7][8] Despite this, xanomeline has been shown to have reasonable efficacy for the treatment of schizophrenia symptoms, and one recent human study found robust improvements in verbal learning and short-term memoryassociated with xanomeline treatment.[9]
Image result for Xanomeline

Xanomeline oxalate

CAS No.:141064-23-5,

Molecular Weight, :371.45,

Molecular Formula, :C16H25N3O5S

5‐[4‐(hexyloxy)‐1,2,5‐thiadiazol‐3‐yl]‐1‐methyl‐1,2,3,6‐tetrahydropyridine; oxalic acid

SEE………..

Title: Xanomeline

CAS Registry Number: 131986-45-3

CAS Name: 3-[4-(Hexyloxy)-1,2,5-thiadiazol-3-yl]-1,2,5,6-tetrahydro-1-methylpyridine

Molecular Formula: C14H23N3OS

Molecular Weight: 281.42

Percent Composition: C 59.75%, H 8.24%, N 14.93%, O 5.69%, S 11.39%

Literature References: Selective muscarinic M1-receptor agonist.

Prepn: P. Sauerberg, P. H. Olesen, EP384288 (1990 to Ferrosan); eidem,US5043345 (1991 to Novo Nordisk); eidemet al.,J. Med. Chem.35, 2274 (1992).

Prepn of crystalline tartrate: L. M. Osborne et al.,WO9429303 (1994 to Novo Nordisk).

Muscarinic receptor binding study: H. E. Shannon et al.,J. Pharmacol. Exp. Ther.269, 271 (1994). Pharmacology: F. P. Bymaster et al.,ibid. 282.

HPLC determn in plasma: C. L. Hamilton et al.,J. Chromatogr.613, 365 (1993).

Derivative Type: Oxalate

CAS Registry Number: 141064-23-5

Molecular Formula: C14H23N3OS.C2H2O4

Molecular Weight: 371.45

Percent Composition: C 51.74%, H 6.78%, N 11.31%, O 21.54%, S 8.63%

Properties: Crystals from acetone, mp 148°.

Melting point: mp 148°

Derivative Type: (+)-L-Hydrogen tartrate

CAS Registry Number: 152854-19-8

Additional Names: Xanomeline tartrate

Manufacturers’ Codes: LY-246708; NNC-11-0232

Trademarks: Lomeron (Lilly); Memcor (Lilly)

Molecular Formula: C14H23N3OS.C4H6O6

Molecular Weight: 431.50

Percent Composition: C 50.10%, H 6.77%, N 9.74%, O 25.95%, S 7.43%

Properties: Crystals from 2-propanol, mp 95.5°.

Melting point: mp 95.5°

Therap-Cat: Cholinergic; nootropic.

Keywords: Cholinergic; Nootropic.

SYNTHESIS WILL BE UPDATED

Image result for Xanomeline

Image result for Xanomeline

EP 0384288; US 5260311; US 5264444; US 5328925, US 5834495; WO 9429303, EP 0687265; JP 1996507298; WO 9420495
The reaction of pyridine-3-carbaldehyde (I) with KCN in acetic acid, followed by a treatment with NH4Cl in aqueous NH4OH yields 2-amino-2-(3-pyridyl)acetonitrile (II), which is cyclized to 3-chloro-4-(3-pyridyl)-1,2,5-thiadiazole (III) by a treatment with S2Cl2 in DMF. The reaction of (III) with sodium hexyloxide in hexanol yields 3-(hexyloxy)-4-(3-pyridyl)-1,2,5-thiadiazole (IV), which is treated with methyl iodide in acetone to afford the corresponding N-methylpyridinium salt (V). Finally, this compound is hydrogenated with NaBH4 in ethanol and salified with oxalic or L-tartaric acid in acetone or isopropanol.

Figure

PAPER

Image result for Xanomeline nmr

http://www.mdpi.com/1420-3049/6/3/142/htm

Xanomeline (39) has emerged as one of the most potent unbridged arecoline derivatives. It has higher potency and efficacy for m1 and m4 than for m2, m3 and m5 receptor subtypes [73], binds to the m1receptor subtype uniquely tightly [74,75] and stimulates phosphoinositide hydrolysis in the brain. In cells containing human m1 receptors which are stably expressing amyloid precursor protein (APP), xanomeline (39) stimulates APP release with a potency 1000 greater than carbachol and reduces the secretion of Aβ by 46% [76] (cf 2.6 Central nervous system). In patients with Alzheimer’s disease, it halted cognitive decline and reduced behavioural symptoms such as hallucinations, delusions and vocal outbursts [77,78]. As might be expected there have been numerous attempts to prepare analogues with comparable potency and efficacy. Transplanting the thiadiazole ring of xanomeline to a range of bicyclic amines reduced selectivity [79,80] as did the use of pyrazine analogues (40) [81].

Paper

J Med Chem 1992,35(12),2274-83

see http://pubs.acs.org/doi/pdf/10.1021/jm00090a019

PAPER

Classics in Chemical Neuroscience: Xanomeline

 Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
 Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
§ Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
ACS Chem. Neurosci.20178 (3), pp 435–443
DOI: 10.1021/acschemneuro.7b00001
Publication Date (Web): January 31, 2017
Copyright © 2017 American Chemical Society

Abstract

Abstract Image

Xanomeline (1) is an orthosteric muscarinic acetylcholine receptor (mAChR) agonist, often referred to as M1/M4-preferring, that received widespread attention for its clinical efficacy in schizophrenia and Alzheimer’s disease (AD) patients. Despite the compound’s promising initial clinical results, dose-limiting side effects limited further clinical development. While xanomeline, and related orthosteric muscarinic agonists, have yet to receive approval from the FDA for the treatment of these CNS disorders, interest in the compound’s unique M1/M4-preferring mechanism of action is ongoing in the field of chemical neuroscience. Specifically, the promising cognitive and behavioral effects of xanomeline in both schizophrenia and AD have spurred a renewed interest in the development of safer muscarinic ligands with improved subtype selectivity for either M1 or M4. This Review will address xanomeline’s overall importance in the field of neuroscience, with a specific focus on its chemical structure and synthesis, pharmacology, drug metabolism and pharmacokinetics (DMPK), and adverse effects.

PAPER

References

  1. Jump up^ Farde L, Suhara T, Halldin C, et al. (1996). “PET study of the M1-agonists [11C]xanomeline and [11C]butylthio-TZTP in monkey and man”. Dementia (Basel, Switzerland)7 (4): 187–95. PMID 8835881.
  2. Jump up^ Jakubík J, Michal P, Machová E, Dolezal V (2008). “Importance and prospects for design of selective muscarinic agonists” (PDF). Physiological Research / Academia Scientiarum Bohemoslovaca. 57 Suppl 3: S39–47. PMID 18481916.
  3. Jump up^ Woolley ML, Carter HJ, Gartlon JE, Watson JM, Dawson LA (January 2009). “Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice”European Journal of Pharmacology603 (1-3): 147–9. PMID 19111716doi:10.1016/j.ejphar.2008.12.020.
  4. Jump up^ Heinrich JN, Butera JA, Carrick T, et al. (March 2009). “Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists”European Journal of Pharmacology605 (1-3): 53–6. PMID 19168056doi:10.1016/j.ejphar.2008.12.044.
  5. Jump up^ Grant MK, El-Fakahany EE (October 2005). “Persistent binding and functional antagonism by xanomeline at the muscarinic M5 receptor”The Journal of Pharmacology and Experimental Therapeutics315 (1): 313–9. PMID 16002459doi:10.1124/jpet.105.090134.
  6. Jump up^ Lieberman JA, Javitch JA, Moore H (August 2008). “Cholinergic agonists as novel treatments for schizophrenia: the promise of rational drug development for psychiatry”The American Journal of Psychiatry165 (8): 931–6. PMID 18676593doi:10.1176/appi.ajp.2008.08050769.
  7. Jump up^ Messer WS (2002). “The utility of muscarinic agonists in the treatment of Alzheimer’s disease”. Journal of Molecular Neuroscience : MN19 (1-2): 187–93. PMID 12212779doi:10.1007/s12031-002-0031-5.
  8. Jump up^ Mirza NR, Peters D, Sparks RG (2003). “Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists”. CNS Drug Reviews9 (2): 159–86. PMID 12847557doi:10.1111/j.1527-3458.2003.tb00247.x.
  9. Jump up^ Shekhar A, Potter WZ, Lightfoot J, et al. (August 2008). “Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia”The American Journal of Psychiatry165 (8): 1033–9. PMID 18593778doi:10.1176/appi.ajp.2008.06091591.
Xanomeline
Xanomeline.png
Clinical data
ATC code
  • None
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
KEGG
ChEMBL
ECHA InfoCard 100.208.938
Chemical and physical data
Formula C14H23N3OS
Molar mass 281.42 g/mol
3D model (JSmol)

///////XanomelineLY 246708, LumeronMemcor, ксаномелин كسانوميلين 诺美林 allosteric modulation, Alzheimer’s disease, antipsychotic,  muscarinic acetylcholine receptors, schizophrenia, 

CARMUSTINE


Skeletal formula of carmustinecarmustine.pngChemSpider 2D Image | Carmustine | C5H9Cl2N3O2

CARMUSTINE

Molecular Formula: C5H9Cl2N3O2
Molecular Weight: 214.046 g/mol

CAS 154-93-8

Brain tumor; Hodgkins disease; Multiple myeloma; Non-Hodgkin lymphoma

1,3-bis(2-chloroethyl)-3-nitrosourea

  • Urea, 1,3-bis(2-chloroethyl)-1-nitroso- (8CI)
  • N,N’-Bis(2-chloroethyl)-N-nitrosourea
  • 1,3-Bis(2-chlorethyl)-1-nitrosourea
  • 1,3-Bis(2-chloroethyl)-1-nitrosourea
  • 1,3-Bis(2-chloroethyl)nitrosourea
  • 1,3-Bis(β-chloroethyl)-1-nitrosourea
  • BCNU
  • Becenun
  • BiCNU
  • Carmubris
  • Carmustin
  • Carmustine
  • DTI 015
  • FDA 0345
  • Gliadel
  • Gliadel Wafer
  • NSC 409962
  • Nitrumon
  • SK 27702
  • SRI 1720
  • Title: Carmustine
    CAS Registry Number: 154-93-8
    CAS Name: N,N¢-Bis(2-chloroethyl)-N-nitrosourea
    Additional Names: BCNU
    Manufacturers’ Codes: NSC-409962
    Trademarks: Becenun (BMS); Bicnu (BMS); Carmubris (BMS)
    Molecular Formula: C5H9Cl2N3O2
    Molecular Weight: 214.05
    Percent Composition: C 28.06%, H 4.24%, Cl 33.13%, N 19.63%, O 14.95%
    Literature References: Chloroethylnitrosourea derivative with antitumor activity. Similar to chlorozotocin, lomustine, nimustine, ranimustine, q.q.v. Synthesis: Johnston et al., J. Med. Chem. 6, 669 (1963). Properties: Loo et al., J. Pharm. Sci. 55, 492 (1966). Decompn studies as related to antileukemic activity: Montgomery et al., J. Med. Chem. 10, 668 (1967). Antifungal action: Hunt, Pittilo, Antimicrob. Agents Chemother. 1965, 710. Toxicology studies: Thompson, Larson, Toxicol. Appl. Pharmacol. 21, 405 (1972). Review of pulmonary toxicity: A. C. Smith, Pharmacol. Ther. 41, 443-460 (1989).
    Properties: Light yellow powder that melts to an oily liquid; mp 30-32°. Both powder and liquid are stable. Dec rapidly in acid and in soln above pH 7. Most stable in petroleum ether or aqueous soln at pH 4. Non-ionized at pH 7 with consequent high lipid solubility. Sol in water up to 4 mg/ml and in 50% ethanol up to 150 mg/ml: DeVita et al., Cancer Res. 25, 1876 (1965). LD50 in mice (mg/kg): 19-25 orally, 26 i.p., 24 s.c.; in rats (mg/kg): 30-34 orally (Thompson, Larson).
    Melting point: mp 30-32°
    Toxicity data: LD50 in mice (mg/kg): 19-25 orally, 26 i.p., 24 s.c.; in rats (mg/kg): 30-34 orally (Thompson, Larson)
    CAUTION: This substance is reasonably anticipated to be a human carcinogen: Report on Carcinogens, Eleventh Edition(PB2005-104914, 2004) p III-53.
    Therap-Cat: Antineoplastic.
    Keywords: Antineoplastic; Alkylating Agents; Nitrosoureas.

 

A cell-cycle phase nonspecific alkylating antineoplastic agent. It is used in the treatment of brain tumors and various other malignant neoplasms. (From Martindale, The Extra Pharmacopoeia, 30th ed, p462) This substance may reasonably be anticipated to be a carcinogen according to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (From Merck Index, 11th ed)
It has the appearance of an orange-yellow solid.Carmustine (bis-chloroethylnitrosoureaBCNUBiCNU) is a medication used mainly for chemotherapy and sometimes for immunosuppression before organ transplantation. It is a nitrogen mustard β-chloro-nitrosourea compound used as an alkylating agent. As a dialkylating agent, BCNU is able to form interstrand crosslinks in DNA, which prevents DNA replication and DNA transcription.

Carmustine for injection was earlier marketed under the name BiCNU by Bristol-Myers Squibb[2] and now by Emcure Pharmaceuticals.[3] In India it is sold under various brand names, including Consium.

It is disclosed that carmustine is useful for treating brain tumor, multiple myolema, Hodgkin’s disease and non-Hodgkin’s lymphomas. In September 2017, Newport Premium™ reports that MSN laboratories is potentially interested in carmustine and holds an active US DMF for the drug. Represents new area of patenting to be seen from MSN lab on Carmustine . Supratek was investigating SP-1009C , carmustine formulated in the company’s Biotransport carrier technology, for the potential treatment of glioblastoma. However, no further development has been reported since 2000 , and as of February 2004, SP-1009C was no longer listed on Supratek’s pipeline.

Uses

It is used in the treatment of several types of brain cancer (including gliomaglioblastoma multiformemedulloblastoma and astrocytoma), multiple myeloma and lymphoma (Hodgkin’s and non-Hodgkin). BCNU is sometimes used in conjunction with alkyl guanine transferase (AGT) inhibitors, such as O6-benzylguanine. The AGT-inhibitors increase the efficacy of BCNU by inhibiting the direct reversal pathway of DNA repair, which will prevent formation of the interstrand crosslinkbetween the N1 of guanine and the N3 of cytosine.

It is also used as part of a chemotherapeutic protocol in preparation for hematological stem cell transplantation, a type of bone marrow transplant, in order to reduce the white blood cell count in the recipient (patient). Use under this protocol, usually with Fludarabine and Melphalan, was coined by oncologists at the University of Texas MD Anderson Cancer Center.

Implants

In the treatment of brain tumours, the U.S. Food and Drug Administration (FDA) approved biodegradable discs infused with carmustine (Gliadel).[4] They are implanted under the skull during a surgery called a craniotomy. The disc allows for controlled release of carmustine in the extracellular fluid of the brain, thus eliminating the need for the encapsulated drug to cross the blood-brain barrier.[5]

Image result for synthesis of carmustine

Image result for synthesis of carmustine

Image result for synthesis of carmustine

Image result for synthesis of carmustine

Reference:

Synthesis, , # 11 p. 1027 – 1029

Celaries, Benoit; Parkanyi, Cyril Synthesis, 2006 , # 14 p. 2371 – 2375

PAPER

Pharmaceutical Chemistry Journal, 2001, vol. 35, vol 2, pg. 108 – 111

10.1023/A:1010485224267

PATENT

EP 3214075

EP 902015

CA1082223

US 523334

SYNTHESIS

PATENT

http://www.google.co.in/patents/US4028410

The Urea. This material is used in good grades, preferably CP, and the amount of urea utilized is the base on which the amounts of nitrosating agent are calculated. The starting material 1,3-bis(2-chloroethyl)urea is commercially available and also may be prepared readily from phosgene and ethyleneimine.

Dinitrogen trioxide (N2 O3). Efficacy of reaction has been observed where this nitrosation agent was utilized in preference to the prior use of aqueous NaNO2. It has also been found for stoichiometric reasons that an excess of the nitrosating agent ranging from 10-200% and preferably 10-20% based on urea is necessary to force the reaction to the right and obtain satisfactory completion. Furthermore, it is known from the literature art, Cotton, Advanced Inorganic Chemistry, Interscience, 1972, page 357, that this oxide exists in a pure state only at low temperatures and, therefore, reaction is conducted at nitrosation temperatures of about 0° C. to -20° C.

The Solvent. In contrast to prior art methods, the present reaction is conducted in an organic milieu. The preferred non-aqueous solvent is of the chlorinated variety; i.e., methylene dichloride. Other preferred compounds include related halogenated compounds such as ethylene dichloride, nitro-compounds such as nitromethane, acetonitrile, and simple ethers such as ethyl ether. Other less preferred but operable compounds include esters such as ethyl acetate, simple ketones such as acetone, and chloroform. Solvents to be avoided are olefins, unsaturated ethers and other unsaturated compounds, amines, malonate esters, acid anhydrides, and solvents which would interact with the reactant N2 O3 and the urea as well as the product nitrosourea. In general, the solvent should be low boiling (b.p. less than 120° C. and preferably less than 100° C.).

BCNU 1,3-bis(2-chloroethyl)-1-nitrosourea is one of a group of relatively recent drugs used against cancer and since 1972 has been charted by the National Cancer Institute for utilization against brain tumors, colon cancer, Hodgkins disease, lung cancer, and multiple myeloma. The modus of action of BCNU (NSC 409962) is as an alkylating agent. Such an alkylating agent is injurious to rapidly proliferating cells such as are present in many tumors and this action is known as antineoplastic activity.

EXAMPLE 1 1,3-Bis(2-chloroethyl)-1-nitrosourea

A suspension of 1.11 mmole (0.205 g) of 1,3-bis(2-chloroethyl)urea in 8 ml methylene dichloride at -10° C. was saturated with dinitrogen trioxide in 20% excess of theoretical. The heterogeneous mixture gradually changed to a green homogeneous solution. The methylene dichloride was evaporated, and the residue was extracted with 3× 10 ml hexane. Evaporation of the hexane gave 0.1773 g of oil which was the crude BCNU (NSC 409962). The hexane insoluble portion, 0.0649 g, when treated with benzene, gave 0.020 g of 1,3-bis(2-chloroethyl)urea which was benzene insoluble. The benzene solubles were processed through a silica column (1× 10 cm) and 0.0245 g of crude BCNU was obtained. The combined fractions of crude product amounted to 0.2018 g (85.1%).

In order to evaluate the product, the above crude was recrystallized from hexane to yield a first crop and from this first crop the ir spectrum was identical to that of known BCNU. A tlc (benzene on sillica) gave a single spot Rf 0.35 (blue, 254 mμ).

EXAMPLE 2 Comparative

A cold solution of 0.2346 g (3.4 mmole) sodium nitrite in 2 ml water was slowly added to a stirred solution of 0.2727 g (1.47 mmole) 1,3-bis(2-chloroethyl)urea in 2 ml 88% formic acid at 0°. After 2 hours at 0°, 0.1449 g (46.0%) of an oil solid phase was removed. The ir spectrum of this fraction failed to agree with that of BCNU. After 2 days a small amount of crystalline BCNU slowly formed in this oil phase. A methylene dichloride extract of the aqueous phase yielded 0.0943 g (30.0%) of an amber oil whose ir spectrum agreed with that of a known sample of BCNU. Treatment of this oil with 5 ml hexane and cooling to 0° gave crystalline BCNU which formed an oil on warming to ambient temperature.

EXAMPLE 3

A cold slurry at -15° C. of the 1,3-bis(2-chloroethyl)urea (2.0 mmole) in 8 ml methylene dichloride was treated with a small excess of N2 O3. The 1,3-bis(2-chloroethyl)urea is almost insoluble in the cold methylene dichloride, whereas the BCNU product is quite soluble. Thus, treatment of the urea with the N2 O3 changed the slurry to a homogeneous solution. Evaporation of the methylene dichloride gave a quantitative yield of crude BCNU. Purification by silica column chromatography gave 93.4% yield and recrystallization from benzene-heptane gave 85.2% yield of pure BCNU.

PAPER

Journal of Medicinal Chemistry (1963), 6(6), 669-81.

SPECTROSCOPY

Chloroform-d, Nitrogen-15 NMR Spectrum,  Lown, J. William; Journal of Organic Chemistry 1981, V46(26), P5309-21

1H NMR

Open Babel bond-line chemical structure with annotated hydrogens.<br>Click to toggle size.

<sup>1</sup>H NMR spectrum of C<sub>5</sub>H<sub>9</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>2</sub> in CDCL3 at 400 MHz.<br>Click to toggle size.

WO-2017154019

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=103D413664C194D84095110F1084E521.wapp2nA?docId=WO2017154019&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

Process for preparing 1,3-bis(2-chloroethyl)-1- nitrosourea (also known as carmustine) and its intermediate 1,3-bis(2-chloroethyl)urea is claimed. Also claimed are composition comprising them and novel crystalline polymorphic form of carmustine.

,3-bis(2-chloroethyl)-l -nitrosourea is known as Carmustine and is approved in USA under the brand names of BICNU for the treatment of chemotherapy of certain neoplastic diseases such as brain tumor, multiple myolema, Hodgkin’s disease and non-Hodgkin’s lymphomas & Gliadel for the treatment of newly-diagnosed high-grade-malignant glioma as an adjunct to surgery and radiation, recurrent glioblastoma multiforme as an adjunct to surgery.

Journal of Medicinal Chemistry 1963, 6, 669-681 firstly disclosed process for the preparation of l,3-bis(2-chloroethyl)-l-nitrosourea.

US2288178 patent disclosed the process for the preparation of the compound of formula-2 from aziridine and phosgene. J. Med. Chem., 1979, 22 (10), pp 1193-1198 disclosed the process for the preparation of the compound of formula-2 using 2-chloroethanamine and 2-chloroisocyanoethane.

Prior disclosed processes for the preparation of the compound of formula-2 are used hazardous reagents which were difficult to handle in the laboratory. The present inventors have developed an improved process for the preparation of the compound of formula-2 by using easily available raw materials and usage of that compound in the preparation of the compound of formula- 1 to get good yield and having high purity.

he present invention is schematically represented in the scheme- 1.

Scheme-1

Examples:

Example-1: Preparation of l,3-bis(2-chloroethyl)urea compound of formula-2

2-chloroethanamine hydrochloride (429.19 gm) was added to the mixture of carbonyldiimidazole (200 gm) and tetrahydrofuran (1000 ml) at 25-30°C and stirred the reaction mixture for 5 minutes. Heated the reaction mixture to 65-70°C and stirred for 14 hours at the same temperature. Cooled the reaction mixture to 25-30°C and water was added to the reaction mixture. Both the organic and aqueous layers were separated and the aqueous layer was extracted with ethyl acetate. Combined the organic layers and washed with aqueous sodium chloride solution. Distilled off the solvent from the organic layer completely under reduced pressure and co-distilled with isopropanol. Isopropanol (100 ml) was added to the obtained compound and stirred the reaction mixture at 25-30°C. Heated the reaction mixture to 80-85°C and stirred the reaction mixture for 10 minutes at the same temperature.

Cooled the reaction mixture to 25-30°C and stirred for 2 hours at the same temperature. Filtered the precipitated solid, washed with isopropanol and dried to get the title compound. Yield: 1 10 gm; M.P: 121-125°C.

Example-2: Preparation of l,3-bis(2-chloroethyl)-l-nitrosourea compound of formula-1 l,3-bis(2-chloroethyl)urea (50 gm) was added to the mixture of dilute hydrochloric acid (16 ml) and acetic acid (205 ml) at 25-30°C. Cooled the reaction mixture to 0-5°C and stirred for 1 hour at the same temperature. Sodium nitrite (46.6 gm) was added to the reaction mixture in lot-wise over the period of 3 hours at 0-5 °C and stirred the reaction mixture for 1 hour at the same temperature. The reaction mixture was quenched into pre-cooled water at 0-5°C and stirred it for 30 minutes at the same temperature. Filtered the precipitated solid and washed with water. Dissolved the obtained compound in dichloromethane (100 ml) at 0-5°C. The reaction mixture was added to pre-cooled n-heptane (250 ml) at 0-5°C and stirred for 1 ½ hour at the same temperature. Filtered the precipitated solid, washed with n-heptane and dried to get the title compound.

Yield: 28 gm.

Example-3: Preparation of l,3-bis(2-chloroethyl)urea compound of formuIa-2

Carbonyldiimidazole (8 kg) was slowly added to the pre-cooled mixture of 2-chloroethanamine hydrochloride (14.31 kg) and tetrahydrofuran (40 lit) at 0-5°C in lot-wise under nitrogen atmosphere and stirred the reaction mixture for 5 minutes. Raised the temperature of the reaction mixture to 25-30°C and stirred the reaction mixture for 36 hours at the same temperature. Distilled off the solvent completely from the reaction mixture under reduced pressure. Water was added to the obtained compound at 25-30°C and stirred it for I hour at the same temperature. Filtered the precipitated solid and washed with water. The obtained compound was slurried in water at 25-30°C, filtered and washed with water. Methanol was added to the obtained compound at 25-30°C and stirred it for 1 hour at the same temperature. Filtered the solid, washed with methanol and dried to get the title compound. Yield: 6 kg; PXRD of the obtained compound is shown in figure-3.

Example-4: Preparation of l,3-bis(2-ch!oroethyl)-l-nitrosourea compound of formula-1 l,3-bis(2-chloroethyl)urea (6 kg) was added to the mixture of dilute hydrochloric acid (1.9 lit) and acetic acid (24.5 lit) at 25-30°C. Cooled the reaction mixture to 0-5°C, sodium nitrite (5.59 kg) was slowly added to the reaction mixture in lot-wise at 0-5°C and stirred the reaction mixture for 1 hour at the same temperature. The reaction mixture was quenched with pre-cooled water at 0-5°C. Cooled the reaction mixture to -15 to -10°C and stirred it for 1 hour at the same temperature. Filtered the precipitated solid and washed with water. Dissolved the obtained compound in dichloromethane (24 lit) at 5-10°C and stirred for 15 minutes at the same temperature. Both the organic and aqueous layers were separated. Silicagel (3 kg) was added to the organic layer at 5-10°C and stirred for 25 minutes at the same temperature. Filtered the reaction mixture through hyflow bed and washed with dichloromethane. Distilled off the solvent completely from the filtrate under reduced pressure and co-distilled with methyl tertiary butyl ether. Pre-cooled Methyl tertiary butyl ether (12 lit) was added to the obtained compound and stirred it for at 0-5°C. This reaction mixture was added to pre-cooled n-heptane (60 lit) at -15 to -10°C and stirred the reaction mixture for 1 hour at the same temperature. Filtered the precipitated solid and washed with chilled n-heptane. Dried the compound at 0-10°C under reduced pressure.

Yield: 4.5 kg; MR: 30-32°C;

Purity by HPLC: 99.97%; Impurity at RRT -0.08: 0.01%, Impurity at RRT -0.13: Not detected; l,3-bis(2-chloroethyl)urea: 0.02%

PXRD of the obtained compound is shown in figure- 1 and IR shown in figure-2.

Example-5: Preparation of l,3-bis(2-chloroethyl)-l-nitrosourea compound of formula-1 l,3-bis(2-chloroethyl)urea (150 gm) was added to the mixture of dilute hydrochloric acid (48 ml) and acetic acid (612 ml) at 25-30°C. Cooled the reaction mixture to 0-5°C, sodium nitrite (139.8 gm) was slowly added to the reaction mixture in lot-wise at 0-5°C and stirred the reaction mixture for 1 hour at the same temperature. The reaction mixture was quenched with pre-cooled water at 0-5°C. Cooled the reaction mixture to -15 to -10°C and stirred it for 1 hour at the same temperature. Filtered the precipitated solid and washed with water.

Purity by HPLC: 95.1 1%, Impurity at RRT -0.08: 4.17%, Impurity at RRT -0.13: 0.63%.

Example 6: Purification of l,3-bis(2-chloroethyl)-l-nitrosourea compound of formula-1

Dissolved the compound of formula 1 obtained in example-5 in dichloromethane (600 ml) at 5-10°C and stirred for 15 minutes at the same temperature. Both the organic and aqueous layers were separated. Silicagel (75 gm) was added to the organic layer at 5-10°C and stirred for 25 minutes at the same temperature. Filtered the reaction mixture through hyflow bed and washed with dichloromethane. Distilled off the solvent completely from the filtrate under reduced pressure and co-distilled with methyl tertiary butyl ether. Pre-cooled Methyl tertiary butyl ether (300 ml) was added to the obtained compound and stirred it for 10-15 min at 0-5°C. This reaction mixture was added to pre-cooled n-heptane (1500 ml) at -15 to -10°C and stirred the reaction mixture for 1 hour at the same temperature. Filtered the precipitated solid and washed with chilled n-heptane. Dried the compound at 0-10°C under reduced pressure. Yield: HO gm; MR: 30-32°C;

Purity by HPLC: 99.96%, Impurity at RRT -0.08: 0.02%, Impurity at RRT -0.13: Not detected; l,3-bis(2-chloroethyl)urea: 0.02%

References

External links

  1.  Lown, J. William; Journal of Organic Chemistry 1981, V46(26), P5309-21 
  2.  Barcelo, Gerard; Synthesis 1987, (11), P1027-9 
  3.  Barcelo, Gerard; FR 2589860 A1 1987 
  4.  “Drugs – Synonyms and Properties” data were obtained from Ashgate Publishing Co. (US) 
  5.  Xu, Longji; International Journal of Pharmaceutics 2008, V355(1-2), P249-258 
  6.  Xu, Xiuling; Journal of Controlled Release 2006, V114(3), P307-316 
  7.  Lown, J. William; Journal of Organic Chemistry 1982, V47(5), P851-6 
  8. “PhysProp” data were obtained from Syracuse Research Corporation of Syracuse, New York (US)
US3465025 * 17 Nov 1966 2 Sep 1969 Allied Chem Process for the preparation of isocyanates
Reference
1 * Johnston et al., J. Med. Chem., vol, 18, No. 1, 1975, pp. 104-106.
2 * Montero et al., C. R. Acad. Sc. Paris, t. 279, Series C, 1974, pp. 809-811.
3 * Ryan et al., CA 17: 1792-1793 (1923).
Citing Patent Filing date Publication date Applicant Title
US4335247 * 23 Feb 1981 15 Jun 1982 Kowa Co., Ltd. Novel nitrosourea derivatives and process for their production
US4452814 * 12 Jan 1982 5 Jun 1984 Suami T Nitrosourea derivatives
US6096923 * 11 Sep 1998 1 Aug 2000 Johnson Matthey Public Limited Company Process for the preparation of nitrosourea compounds
US20040072889 * 16 Apr 2003 15 Apr 2004 Pharmacia Corporation Method of using a COX-2 inhibitor and an alkylating-type antineoplastic agent as a combination therapy in the treatment of neoplasia
US20070196277 * 22 Jan 2007 23 Aug 2007 Levin Victor A Compositions and Methods for the Direct Therapy of Tumors
EP0902015A1 * 13 Aug 1998 17 Mar 1999 Johnson Matthey Public Limited Company Process for the preparation of nitrosourea compounds
Carmustine
Skeletal formula of carmustine
Ball-and-stick model of carmustine molecule
Names
IUPAC name

1,3-Bis(2-chloroethyl)-1-nitrosourea[1]
Other names

N,N’-Bis(2-chloroethyl)-N-nitrosourea
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.005.309
EC Number 205-838-2
KEGG
MeSH Carmustine
PubChem CID
RTECS number YS2625000
UNII
UN number 2811
Properties
C5H9Cl2N3O2
Molar mass 214.05 g·mol−1
Appearance Orange crystals
Odor Odourless
Melting point 30 °C (86 °F; 303 K)
log P 1.375
Acidity (pKa) 10.194
Basicity (pKb) 3.803
Pharmacology
L01AD01 (WHO)
Hazards
GHS pictograms The skull-and-crossbones pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The health hazard pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word DANGER
H300H350H360
P301+310P308+313
Lethal dose or concentration (LDLC):
LD50 (median dose)
20 mg kg−1 (oral, rat)
Related compounds
Related ureas
Dimethylurea
Related compounds
Except where otherwise noted, data are given for materials in their standa

/////////////

ClCCNC(=O)N(CCCl)N=O

Follow New Drug Approvals on WordPress.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

DISCLAIMER

I , Dr A.M.Crasto is writing this blog to share the knowledge/views, after reading Scientific Journals/Articles/News Articles/Wikipedia. My views/comments are based on the results /conclusions by the authors(researchers). I do mention either the link or reference of the article(s) in my blog and hope those interested can read for details. I am briefly summarising the remarks or conclusions of the authors (researchers). If one believe that their intellectual property right /copyright is infringed by any content on this blog, please contact or leave message at below email address amcrasto@gmail.com. It will be removed ASAP