New Drug Approvals

Home » Uncategorized (Page 10)

Category Archives: Uncategorized

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,812,019 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Bivamelagon


Bivamelagon

CAS 2641595-54-0

NO1Y8WRA8N, 629.3 g/mol, C35H53ClN4O4

MC-4R Agonist 2

  • N-[(3S,5S)-1-[[(3S,4R)-4-(4-Chlorophenyl)-1-(1,1-dimethylethyl)-3-pyrrolidinyl]carbonyl]-5-(4-morpholinylcarbonyl)-3-pyrrolidinyl]-2-methyl-N-(cis-4-methylcyclohexyl)propanamide
  • N-((3S,5S)-1-((3S,4R)-1-(tert-Butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-5-(morpholine-4-carbonyl)pyrrolidin-3-yl)-N-(cis-4-methylcyclohexyl)isobutyramide
  • N-[(3S,5S)-1-[(3S,4R)-1-tert-butyl-4-(4-chlorophenyl)pyrrolidine-3-carbonyl]-5-(morpholine-4-carbonyl)pyrrolidin-3-yl]-2-methyl-N-(4-methylcyclohexyl)propanamide

LB54640; LB-54640; LR-19021; LR19021

MC-4R Agonist 2 (Example 1) is a MC4R agonist. MC-4R Agonist 2 can be used in the study of obesity, diabetes, inflammation, and erectile dysfunction[1].

SCHEME

PATENT

WO2021091283A1.

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021091283&_cid=P21-M9NZN0-90342-1

Step D: Preparation of N -((3 S ,5 S )-1-((3 S ,4 R )-1-( tert -butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-5-(morpholine-4-carbonyl)pyrrolidin-3-yl)- N -((1 s ,4 R )-4-methylcyclohexyl)isobutyramide hydrochloride

[173]

 N -((3  S ,5  S )-1-((3  S ,4  R )-1-(  tert -butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-5-(morpholine-4-carbonyl)pyrrolidin-3-yl)-  N -((1  s ,4  R )-4-methylcyclohexyl)isobutyramide (5.0 g, 7.95 mmol) obtained in Step C was dissolved in ethyl acetate (50 ml), and a 2N hydrochloric acid ethyl acetate solution (3.97 ml, 15.89 mmol) was slowly added. After stirring at room temperature for 30 minutes, the reaction solvent was concentrated under reduced pressure. The resulting crude solid was purified by trituration using hexane and diethyl ether to obtain the title compound (5.23 g, 99%).

[174]

MS [M+H] = 630 (M+1)

[175]

1H NMR (500 MHz, CD 3OD) δ 7.49-7.44 (m, 4H), 4.83 (m, 1H), 4.23-4.20 (m, 1H), 3.95-3.91 (m, 2H), 3.79-3.47 (m, 14H), 3.03-3.00 (m, 1H), 2.86-2.82 (m, 1H), 2.73-2.67 (m, 1H), 2.20-2.14 (m, 1H), 1.97 (m, 1H), 1.80-1.62 (m, 5H), 1.50 (s, 9H), 1.44-1.27 (m, 3H), 1.06-1.04 (m, 9H)

PATENT

WO2022235103

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022235103&_cid=P21-M9NZHZ-87240-1

Preparation of cyclohexyl-3-carbonyl-l)-5-(morpholine-4-carbonyl)pyrrolidin-3-yl)-N-((1s,4R)-4-methylcyclohexyl)isobutyramide (MC70)

[141]

[142]The title compound was obtained through the following steps A, B, and C. 

[143]

Step A: Preparation of methyl (2S,4S)-1-((3S,4R)-1-(tert-butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-4-(N-((1s,4R)-4-methylcyclohexyl)isobutyramido)pyrrolidine-2-carboxylate

[144]Methyl (2S,4S)-4-(N-((1s,4R)-4-methylcyclohexyl)isobutyramido)pyrrolidine-2-carboxylate hydrochloride (28.7 g, 82.73 mmol) obtained in Manufacturing Example 1, (3S,4R)-1-(tert-butyl)-4-(4-chlorophenyl)pyrrolidine-3-carboxylic acid (24.5 g, 86.87 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (22.2 g, 115.83 mmol) and 1-hydroxybenzotriazole hydrate (15.7 g, 115.83 mmol) obtained in Manufacturing Example 2 were dissolved in N,N’-dimethylformamide (400 ml) and N,N’-diisopropylethylamine (72.0 ml, 413.66 mmol) was slowly added. The mixture was stirred at room temperature for 16 hours and the reaction solvent was concentrated under reduced pressure. A 0.5 N aqueous sodium hydroxide solution was added, and extraction was performed twice with ethyl acetate. The organic layer was washed twice with an aqueous sodium chloride solution and water, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography to obtain methyl (2S,4S)-1-((3S,4R)-1-(tert-butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-4-(N-((1s,4R)-4-methylcyclohexyl)isobutyramido)pyrrolidine-2-carboxylate (41.19 g, 87%). 

[145]

MS [M+H] = 575 (M+1)

[146]

Step B: Preparation of (2S,4S)-1-((3S,4R)-1-(tert-butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-4-(N-((1s,4R)-4-methylcyclohexyl)isobutyramido)pyrrolidine-2-carboxylic acid

[147]Methyl (2S,4S)-1-((3S,4R)-1-(tert-butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-4-(N-((1s,4R)-4-methylcyclohexyl)isobutyramido)pyrrolidine-2-carboxylate (39.4 g, 68.62 mmol) obtained in the above step A was dissolved in methanol (450 ml), and 6N sodium hydroxide aqueous solution (57.2 ml, 343.09 mmol) was added. The mixture was stirred at room temperature for 16 hours, and the pH was adjusted to about 5 with 6N hydrochloric acid aqueous solution, and then the reaction solution was concentrated under reduced pressure. The concentrate was dissolved in dichloromethane, and the insoluble solid was filtered through a paper filter. The filtrate was concentrated under reduced pressure to obtain the crude title compound (38.4 g, 99%), which was used in the next step without purification. 

[148]

MS [M+H] = 561 (M+1)

[149]

Step C: Preparation of N-((3S,5S)-1-((3S,4R)-1-(tert-butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-5-(morpholine-4-carbonyl)pyrrolidin-3-yl)-N-((1s,4R)-4-methylcyclohexyl)isobutyramide

[150](2S,4S)-1-((3S,4R)-1-(tert-butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-4-(N-((1s,4R)-4-methylcyclohexyl)isobutyramido)pyrrolidine-2-carboxylic acid (38.4 g, 68.60 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (18.4 g, 96.04 mmol) and 1-hydroxybenzotriazole hydrate (13.0 g, 96.04 mmol) obtained in the above step B were dissolved in N,N’-dimethylformamide (200 ml), and then morpholine (5.9 ml, 68.80 mmol) and N,N’-diisopropylethylamine were sequentially added. (59.7 ml, 343.02 mmol) was slowly added. The mixture was stirred at room temperature for 16 hours and the reaction solution was concentrated under reduced pressure, 0.5 N aqueous sodium hydroxide solution was added, and extraction was performed twice with ethyl acetate. The organic layer was washed twice with aqueous sodium chloride solution and water, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure and purified by column chromatography to obtain N-((3S,5S)-1-((3S,4R)-1-(tert-butyl)-4-(4-chlorophenyl)pyrrolidine-3-carbonyl)-5-(morpholine-4-carbonyl)pyrrolidin-3-yl)-N-((1s,4R)-4-methylcyclohexyl)isobutyramide (37.05 g, 86%,  

MC70  ). 

[151]

MS [M+H] = 630 (M+1)

Bivamelagon (INNTooltip International Nonproprietary Name; developmental code names LB54640LR-19021) is a small-molecule melanocortin MC4 receptor agonist under development by LG Chem Life Sciences for the treatment of hypothalamic obesity, .[1][2] Unlike the older drug with the same mechanism of actionsetmelanotide, it can be taken orally.[3][4][5] As of March 2024, it is in phase 2 clinical trials.[1]

References

  1. Jump up to:a b “Rhythm Pharmaceuticals”AdisInsight. 13 March 2024. Retrieved 25 February 2025.
  2. ^ “Delving into the Latest Updates on Bivamelagon with Synapse”Synapse. 23 January 2025. Retrieved 25 February 2025.
  3. ^ Aronne, Sarah R. Barenbaum, Louis J. (2023). “Antiobesity Medications on the Horizon”. Handbook of Obesity – Volume 2 (5 ed.). CRC Press. pp. 394–401. doi:10.1201/9781003432807-42ISBN 978-1-003-43280-7.
  4. ^ First-in-Human Study of Safety, Pharmacodynamics of LB54640, An Oral Melanocortin-4 Receptor Agonist Mirza, Victoria, MD, MPH; Lee, Jisoo, MD; Gwak, Heemin; Yang, Yunjeong; Kim, Mina.  Obesity; Silver Spring Vol. 30, (Nov 2022): 145-146.
  5. ^ Piper, Noah B.C.; Whitfield, Emily A.; Stewart, Gregory D.; Xu, Xiaomeng; Furness, Sebastian G.B. (August 2022). “Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors”. Biochemical Pharmacology202: 115115. doi:10.1016/j.bcp.2022.115115PMID 35671790S2CID 249452717.
Clinical data
Other namesLB54640; LB-54640; LR-19021; LR19021
Routes of
administration
Oral
Drug classMelanocortin MC4 receptor agonist
Legal status
Legal statusInvestigational
Identifiers
showIUPAC name
CAS Number2641595-54-0
PubChem CID165152355
DrugBankDB18331
ChemSpider129440355
UNIINO1Y8WRA8N
Chemical and physical data
FormulaC35H53ClN4O4
Molar mass629.28 g·mol−1
3D model (JSmol)Interactive image
showSMILES
showInChI

[1]. Seung Wan Kang, et al. Melanocortin-4 receptor agonists. Patent WO2021091283A1.

////////Bivamelagon, LB54640, LB-54640, LR-19021, LR19021, NO1Y8WRA8N

Tisolagiline


Tisolagiline

CAS 1894207-44-3

PCH79KLX33

(2S)-2-[[4-[4-(trifluoromethyl)phenyl]phenyl]methylamino]propanamide

322.32 g/mol

SCHEME

Tisolagiline (INNTooltip International Nonproprietary Name; developmental code names KDS-2010SeReMABI) is a potent, highly selective, and reversible monoamine oxidase B (MAO-B) inhibitor which is under development for the treatment of Alzheimer’s disease and obesity.[1][2][3][4] It is taken by mouth.[1] Tisolagiline is being developed by NEUROBiOGEN and Scilex Bio.[1][2] As of December 2024, it is in phase 2 clinical trials for Alzheimer’s disease and obesity.[1][2]

Parkinson’s disease is a progressive disease that ranks second among degenerative neurological diseases, and the incidence rate is estimated to be about 6.3 million patients worldwide, and about 1 in 1,000 people develop Parkinson’s disease. The incidence rate is usually higher in the elderly, but it is now developing in young people as well. Parkinson’s disease is not easy to distinguish from other diseases because the symptoms progress slowly, and it is difficult to detect in the early stages. Clinical characteristics include tremors, rigidity, bradykinesia, postural instability, stooped posture, freezing of gait, depression, sleep disorders, urination disorders, and dementia. 

[3]Parkinson’s disease has an unknown cause, but it is known to be a disease that occurs when nerve cells that secrete the neurotransmitter dopamine in the brain are destroyed, resulting in a lack of dopamine. The most widely developed and used drug is levodopa therapy, which is generally administered by administering levodopa, which is converted into dopamine in the body. Levodopa is the most effective treatment for Parkinson’s disease, but there are cases where the drug-related effects decrease or various movement disorders occur during the treatment process. Other drugs used include COMT inhibitors and MAO-B inhibitors, which suppress dopamine metabolism and maintain the concentration of dopamine in the brain. 

[4]MAO-B is known to play an important role in dopamine metabolism in the brain and to suppress damage to brain neurons. Although there is no clear evidence that MAO-B inhibitors actually slow down the progression of Parkinson’s disease, it is known that inhibiting MAO-B has an effect of suppressing degeneration or death of dopamine neurons, as it plays an important role in the development of Parkinson’s disease caused by MPTP or similar environmental toxicants. In addition, evidence from animal and clinical trials suggests that MAO-B inhibitors have a brain protective effect, unlike other drugs. 

[5]The most representative MAO-B inhibitor approved is selegiline, which is prescribed as a treatment for Parkinson’s disease, but when taken, it is metabolized into amphetamine in the body, causing liver toxicity, and as an irreversible inhibitor, it has various side effects. Azilect, which contains rasagiline, was first marketed in Israel in 2005 and has recently been released in about 50 countries including Europe and the United States. Azilect does not have amphetamine side effects in the body when taken and is said to be more effective than other dopaminergic drugs. However, rasagiline, like selegiline, is an irreversible MAO-B inhibitor, so although it has an excellent MAO-B inhibition effect, it has the disadvantage of safety issues. Therefore, recently, drugs that are effective and can reversibly inhibit activity are being developed as alternatives to complement these shortcomings, but no notable reversible inhibitors have been prescribed to date. 

[6]Meanwhile, obesity is a medical condition in which excessive fat accumulates in the body to the extent that it has a negative impact on health. Excessive weight can appear in combination with various diseases as the remaining energy is accumulated excessively due to the difference between energy consumed and energy used. 

[7]Previous studies on the hypothalamus in relation to food regulation have focused on neurons that make up a portion of the brain, which has limited our understanding of the brain’s function in controlling food and obesity. Therefore, in order to comprehensively understand brain function, studies on glial cells, which make up the majority, must also be conducted in parallel. In addition, astrocytes, which are the most numerous among glial cells, have recently emerged as cells that can activate or inhibit surrounding neurons by secreting various signaling substances such as GABA (gamma-aminobutyric acid), glutamate, D-serine, and ATP. Astrocytes in the hypothalamus also interact closely with POMC (pro-opiomelanocortin) neurons and express leptin receptors, which can contribute to leptin signaling. 

[8]There are two groups of POMC neurons in the hypothalamus: those that induce appetite reduction and those that induce energy consumption. Under normal circumstances, astrocytes help activate nearby POMC neurons that induce energy consumption. However, in obese states, unlike normal astrocytes, they are transformed into reactive astrocytes due to excessive leptin signals, and putrescine is converted into GABA by MAO-B (mono-aminoxidase B) and secreted. In addition, POMC neurons that induce energy consumption express GABAa receptors outside the synapse containing a4, a5, and a6 subunits due to excessive leptin signals, and are affected by persistent GABA secreted from anti-responsive astrocytes. As a result, POMC neurons are inhibited, energy consumption is reduced, and fat accumulation occurs. 

[9]At this time, if MAOBI, the causal enzyme of GABA production, is inhibited, GABA production and secretion are inhibited, the inhibition of POMC neurons is relieved, and they are reactivated to promote energy consumption. However, POMC neurons that induce appetite reduction do not express GABAa receptors outside the synapse, so they are not continuously affected by GABA. Therefore, MAOBI inhibitors selectively act on POMC neurons that induce energy consumption and exhibit the effect of obesity treatment. However, most of the existing MAOBI inhibitors are irreversible inhibitors, and there is a problem that they are accompanied by various side effects. Accordingly, drugs that can reversibly inhibit MAOBI are being researched and developed, but no notable reversible MAOBI inhibitor that can effectively act on obesity has been prescribed to date.

REF

Regulatory Toxicology and Pharmacology (2020), 117, 104733

Toxicological Research (Cham, Switzerland) (2023), 39(4), 693-709

Combinatorial Chemistry & High Throughput Screening (2020), 23(9), 836-841 

KR2023027416,

WO2023022256

WO2023022256

WO2016052928

PATENT

WO2016052928

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016052928&_cid=P20-M8XX0L-81795-1

Using L-Alaninamide hydrochloride or D-Alaninamide hydrochloride, a reductive amination reaction was performed with the compound of step (a) to obtain an imine compound (step b, reaction scheme 1b), which was then reduced with sodium cyanoborohydride to obtain an amine compound (step c, reaction scheme 1c). 

[112]Add 1.2 equivalents of Glycinamide hydrochloride or L-Alaninamide hydrochloride or D-Alaninamide hydrochloride or L-Valinamide hydrochloride or L-Leucinamide hydrochloride to anhydrous methanol at a concentration of 0.92 molar, and then add 1.5 equivalents of triethylamine. When the solution becomes transparent, add 1.0 equivalent of the aldehyde synthesized in step (a). After two hours, wash with ethyl acetate and distilled water. Dry the organic layer with sodium sulfate and concentrate in vacuo. Dissolve the concentrated reaction solution in anhydrous methanol at a concentration of 1.0 molar, and add 4.0 equivalents of sodium cyanoborohydride at 0 ℃. Then, react at room temperature for 18 hours, and after completion of the reaction, wash the reaction solution with ethyl acetate and distilled water. The organic layer was dried over sodium sulfate, concentrated in vacuo, and separated and purified using silica gel column chromatography.

References

  1. Jump up to:a b c d “KDS 2010”AdisInsight. 6 February 2025. Retrieved 24 February 2025.
  2. Jump up to:a b c “Delving into the Latest Updates on KDS-2010 with Synapse”Synapse. 23 January 2025. Retrieved 24 February 2025.
  3. ^ Nam MH, Sa M, Ju YH, Park MG, Lee CJ (April 2022). “Revisiting the Role of Astrocytic MAOB in Parkinson’s Disease”International Journal of Molecular Sciences23 (8): 4453. doi:10.3390/ijms23084453PMC 9028367PMID 354572724.4. KDS2010 A recently developed KDS2010, which is ~12,500-fold more selective to MAOB than MAOA, differentiates the role of MAOB from MAOA and reports that MAOB does not contribute to DA degradation [39]. KDS2010 is a potent (IC50 = 7.6 nM), and selective MAOB inhibitor named shows no known off-target effect (no other enzymes or channels causing >40% inhibition) or toxicity for 4 weeks of repeated dosing in non-human primates [16,41]. KDS2010 was turned out to be highly effective for alleviating the PD-related motor symptoms and PD-like pathology, including reactive astrogliosis, excessive astrocytic GABA, and nigrostriatal DAergic neuronal loss in multiple rodent models of PD [41]. Its clinical efficacy is still waiting to be tested in future studies.
  4. ^ Duarte P, Cuadrado A, León R (2021). “Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches”. Handbook of Experimental Pharmacology264: 229–259. doi:10.1007/164_2020_384ISBN 978-3-030-68509-6PMID 32852645KDS2010 is a novel compound highly potent and selective reversible MAO-B inhibitor (Fig. 2). It has demonstrated learning and memory improvements, promotion of synaptic transmission, and reduction of astrogliosis and astrocytic GABA levels in APP/presenilin 1 mice (Park et al. 2019).

Clinical data
Other namesKDS-2010; KDS2010; SeReMABI
Drug classReversible monoamine oxidase B (MAO-B) inhibitor
Identifiers
showIUPAC name
CAS Number1894207-44-3
PubChem CID132023446
ChemSpider128942408
UNIIPCH79KLX33
ChEMBLChEMBL5314546
Chemical and physical data
FormulaC17H17F3N2O
Molar mass322.331 g·mol−1
3D model (JSmol)Interactive image
showSMILES
showInChI

///////////Tisolagiline, PCH79KLX33

Bemfivastatin, PPD 10558, RBx 10558


Bemfivastatin, PPD 10558, RBx 10558

cas 805241-79-6

Molecular Weight588.67
FormulaC34H37FN2O6
  • PPD-10558 calcium salt
  • Ppd-10558(calcium salt)
  • 805241-64-9
  • ppd-10558 calcium
  • 3I8G750MW3
  • calcium;(3R,5R)-7-[2-(4-fluorophenyl)-4-[[4-(hydroxymethyl)phenyl]carbamoyl]-3-phenyl-5-propan-2-ylpyrrol-1-yl]-3,5-dihydroxyheptanoate
  • C68H72CaF2N4O12

Bemfivastatin (PPD 10558) is an orally active, HMG-CoA Reductase (HMGCR) inhibitor, also known as Statin. Bemfivastatin enhances the activity of liver extraction. Bemfivastatin exhibits little developmental toxicity effects in pregnant rats and rabbits via daily oral doses during organogenesis period. The no observed adverse effect level (NOAEL) are ≥320 mg/kg/day for rats developmental toxicity, 12.5 mg/kg/day for rabbits maternal toxicity, and 25 mg/kg/day for rabbits developmental toxicity, respectively. Bemfivastatin can be used for research on Statin-related hypercholesterolemic myalgia with inability to tolerate statins.

Korean Patent No. 10-1329113 describes a method for preparing (3R,5R)-7-[2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-[(4-hydroxymethylphenylamino)carbonyl]-pyrrol-1-yl]-3,5-dihydroxy-heptanoic acid hemicalcium salt, as shown in the following reaction scheme.

SCHEME

MAIN

PATENT

WO2020040614

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020040614&_cid=P11-M8VDBE-14315-1

Step 3: Preparation of tert-butyl (3R,5R)-7-(2-(4-fluorophenyl)-4-((4-(hydroxymethyl)phenyl)carbamoyl)-5-isopropyl-3-phenyl-1H-pyrrol-1-yl)-3,5-dihydroxyheptanoate

[499]In step 2, tert-butyl 2-((4R,6R)-6-(2-(3-((4-(((tert-butyldimethylsilyl)oxy)methyl)phenyl)carbamoyl)-5-(4-fluorophenyl)-2-isopropyl-4-phenyl-1H-pyrrol-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate (5 g) was dissolved in methanol (37 ml) and THF (37 ml), 1 N HCl aqueous solution (37 ml) was added, and the mixture was stirred at room temperature for 2 hours. EA was added to the reaction solution, diluted, and washed several times with distilled water and brine. The extracted organic layer was dried over Na 

2 SO 

4 and filtered under reduced pressure. The filtrate was concentrated under reduced pressure, EA and hexane were added, and the mixture was purified by recrystallization to obtain the title compound. 

[500]White solid 4.6 g (yield quantitative); 

[501]

1H NMR (500 MHz, CDCl 3): 7.24-7.14 (m, 9H), 7.06 (d, J = 8.5 Hz, 2H), 6.99 (t, J = 8.5 Hz, 2H), 6.87 (br s, 1H), 4.57 (s, 2H), 4.45-4.08 (m, 2H), 3.96-3.90 (m, 1H), 3.75-3.71 (m, 1H), 3.58 (sep, J = 7.0 Hz, 1H), 2.32 (d, J = 6.5 Hz, 2H), 1.73-1.65 (m, 1H), 1.64-1.58 (m, 1H), 1.54 (d, J = 7.0 Hz, 6H), 1.45 (s, 9H), 1.27-1.22 (m, 2H), MH+ 645.

Step 4: Preparation of (3R,5R)-7-(2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-((4-hydroxymethylphenylamino)carbonyl)-pyrrol-1-yl)-3,5-dihydroxyheptanoic acid hemicalcium salt

[503]In step 3, tert-butyl (3R,5R)-7-(2-(4-fluorophenyl)-4-((4-(hydroxymethyl)phenyl)carbamoyl)-5-isopropyl-3-phenyl-1H-pyrrol-1-yl)-3,5-dihydroxyheptanoate (4.19 g) obtained was dissolved in MeOH (65 ml) and THF (65 ml), and stirred in an ice bath. NaOH pellets (5 eq, 1.3 g) were added, and the mixture was stirred for 1 more hour at room temperature. After concentrating the reaction solution under reduced pressure, distilled water (44 ml) was added until the formed solid was completely dissolved. After concentrating the reaction solution under reduced pressure, distilled water (430 ml) was added until the solid was completely dissolved. 1 M Ca(OAc) 

2 aqueous solution (3.6 ml) was slowly added dropwise, and the mixture was stirred for 15.5 hours at room temperature. After the generated solid was filtered under reduced pressure, it was washed several times with distilled water and the filtered solid was dried in an oven. 

[504]2.98 g of white solid (yield 76%); 

[505]

1H NMR (500 MHz, DMSO-d 6) δ 9.78 (br s, 1H), 7.46 (d, J = 8.5 Hz, 2H), 7.26-7.23 (m, 2H), 7.19 (t, J = 9.0 Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 7.09-7.05 (m, 4H), 7.02-6.98 (m, 1H), 6.41 (br s, 1H), 5.04 (t, J = 5.5 Hz, 1H), 4.75 (br s, 1H), 4.39 (d, J = 5.5 Hz, 2H), 3.98-3.91 (m, 1H), 3.79-3.69 (m, 2H), 3.55-3.50 (m, 1H), 3.22 (sep, J = 7.0 Hz, 1H), 2.03 (dd, J = 15.0 Hz, 4.0 Hz, 1H), 1.90 (dd, J = 15.0 Hz, 8.0 Hz, 1H), 1.63-1.57 (m, 1H), 1.54-1.47 (m, 1H), 1.41-1.36 (m, 1H), 1.37 (d, J = 7.0 Hz, 6H), 1.23-1.16 (m, 1H), MH+ (acid+1) 589.

Step 5: Preparation of (3R,5R)-7-(2-(4-fluorophenyl)-5-isopropyl-3-phenyl-4-((4-hydroxymethylphenylamino)carbonyl)-pyrrol-1-yl)-3,5-dihydroxyheptanoic acid hemicalcium salt

[540]The title compound was prepared in the same manner as in step 4 of Example 15. 

[541]

1H NMR (500 MHz, DMSO-d 6) δ 9.78 (br s, 1H), 7.46 (d, J = 8.5 Hz, 2H), 7.26-7.23 (m, 2H), 7.19 (t, J = 9.0 Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 7.09-7.05 (m, 4H), 7.02-6.98 (m, 1H), 6.41 (br s, 1H), 5.04 (t, J = 5.5 Hz, 1H), 4.75 (br s, 1H), 4.39 (d, J = 5.5 Hz, 2H), 3.98-3.91 (m, 1H), 3.79-3.69 (m, 2H), 3.55-3.50 (m, 1H), 3.22 (sep, J = 7.0 Hz, 1H), 2.03 (dd, J = 15.0 Hz, 4.0 Hz, 1H), 1.90 (dd, J = 15.0 Hz, 8.0 Hz, 1H), 1.63-1.57 (m, 1H), 1.54-1.47 (m, 1H), 1.41-1.36 (m, 1H), 1.37 (d, J = 7.0 Hz, 6H), 1.23-1.16 (m, 1H), MH+ (acid+1) 589.

KR2001835  63%

KR2016103248

/////////Bemfivastatin, PPD 10558,  PPD-10558, RBx-10558; PPD10558, RBx10558, PPD 10558, RBx 10558, bemfivastatin CA, RBx 10558

Umifoxolaner, ML 878


Umifoxolaner, ML 878

CAS 2021230-37-3

Molecular Weight643.86
FormulaC26H16ClF10N3O3
  • 4-[(5S)-5-[3-Chloro-4-fluoro-5-(trifluoromethyl)phenyl]-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-N-[2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl]-1-naphthalenecarboxamide (ACI)
  • 4-{(5S)-5-[3-chloro-4-fluoro-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-yl}-N-{2-oxo-2-[(2,2,2-trifluoroethyl)amino]ethyl}naphthalene-1-carboxamide
  • ML 878
  • 4-[(5S)-5-[3-chloro-4-fluoro-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-4H-1,2-oxazol-3-yl]-N-[2-oxo-2-(2,2,2-trifluoroethylamino)ethyl]naphthalene-1-carboxamide
  • WHO 11642

umifoxolaner (ML-878) is a γ-aminobutyric acid (GABA) regulated chloride channels antagonist. Umifoxolaner is an anti-parasitic agent

Animals such as mammals and birds are often susceptible to parasite infestations/infections. These parasites may be ectoparasites, such as insects, and endoparasites such as filariae and other worms. Domesticated animals, such as cats and dogs, are often infested with one or more of the following ectoparasites:

– fleas (e.g. Ctenocephalides spp., such as Ctenocephalides felis and the like);

– ticks (e.g. Rhipicephalus spp., Ixodes spp., Dermacentor spp., Amblyomma spp., and the like);

– mites (e.g. Demodex spp., Sarcoptes spp., Otodectes spp., and the like);

– lice (e.g. Trichodectes spp., Cheyletiella spp., Linognathus spp. and the like);

– mosquitoes (Aedes spp., Culex spp., Anopheles spp. and the like); and

– flies (Haematobia spp., Musca spp., Stomoxys spp., Dermatobia spp., Cochliomyia spp. and the like).

Fleas are a particular problem because not only do they adversely affect the health of the animal or human, but they also cause a great deal of psychological stress. Moreover, fleas are also vectors of pathogenic agents in animals and humans, such as dog tapeworm {Dipylidium caninum).

Similarly, ticks are also harmful to the physical and psychological health of the animal or human. However, the most serious problem associated with ticks is that they are the vector of pathogenic agents in both humans and animals. Major diseases which are caused by ticks include borreliosis (Lyme disease caused by Borrelia burgdorferi), babesiosis (or piroplasmosis caused by Babesia spp.) and rickettsioses (also known as Rocky Mountain spotted fever). Ticks also release toxins which cause inflammation or paralysis in the host. Occasionally, these toxins are fatal to the host.

Likewise, farm animals are also susceptible to parasite infestations. For example, cattle are affected by a large number of parasites. A parasite which is very prevalent among farm animals is the tick genus Rhipicephalus {Boophilus), especially those of the species microplus (cattle tick), decolor atus and annulatus. Ticks, such as Rhipicephalus {Boophilus) microplus, are particularly difficult to control because they live in the pasture where farm animals graze.

Animals and humans also suffer from endoparasitic infections including, for example, helminthiasis which is most frequently caused by a group of parasitic worms categorized as cestodes (tapeworm), nematodes (roundworm) and trematodes (flatworm or flukes). These parasites adversely affect the nutrition of the animal and cause severe economic losses in pigs, sheep, horses, and cattle as well as affecting domestic animals and poultry. Other parasites which occur in the gastrointestinal tract of animals and humans include Ancylostoma, Necator, Ascaris, Strongyloides, Trichinella, Capillaria, Toxocara, Toxascaris, Trichuris, Enterobius and parasites which are found in the blood or other tissues and organs such as filarial worms and the extra intestinal stages of Strongyloides, Toxocara and Trichinella.

SCHEME

Patents

WO2017176948

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017176948&_cid=P12-M8S60W-88110-1

Cinchonanium, 9-hydroxy-6′-methoxy-1-[[3,4,5-tris(phenylmethoxy)phenyl]methyl]-, chloride (1:1), (8α,9R)- 2138407-51-7,  HYDROXYL AMINE, NAOH, MDC , WATER]

Example 5: Synthesis of (R)-IA-3 using chiral phase transfer catalyst (IIIb-13-1)

Step 1 : Synthesis of intermediate 4-2.

1) The substituted iodobenzene starting material (SM) (200.0 g, 1.0 eq.) and THF (400 ml, 10 volumes) were placed into a 1 L reactor and the mixture was cooled to -10 to -5° C.

2) /-PrMgCl (340 ml, 1.1 eq.) added dropwise over 1.5 hours at -10 to -5°C to the mixture. 3) After the addition was complete, the mixture was stirred for 1 h at -10 to -5°C.

4) TLC analysis showed the complete consumption of SM (quenching sample with 1 M HCl).

5) CF3COOMe (94.7 g, 1.2 eq.) was added over an hour at -10~-5°C to the reaction mixture.

6) The mixture was stirred for another 12 hours -10~-5°C.

7) TLC analysis showed the almost complete consumption of intermediate 4-1 (quench with 1M HCl).

8) 1 M HCl 1000 ml was added dropwise to the reaction mixture slowly at 0~5°C over 2 hours.

9) The reaction mixture was extracted with hexane twice (1000 ml, 500 ml).

10) Add ^-toluenesulfonic acid 1.0 g to the organic layer and then the mixture was refluxed for 30 min.

11) The resulting mixture was then concentrated under vacuum at 20~25°C to remove the hexane.

12) Sodium bicarbonate (NaHC03, 300mg) was added and the mixture distilled in vacuum to afford compound 4-2 at 80~82°C, as a red liquid (85.0 grams, purity was 92.5% by HPLC, and the yield was 47.0%).

Step 2: Preparation of the compound of Formula (IIA-3):

4-1 IIA-3

1) Compound 4-2 (70.0 g, 1.0 eq.) and acetonitrile (ACN, 350ml, 5 volumes) were placed into a 1 L reactor. The solid was dissolved completely.

2) Compound 4-1 (70.2 g, 1.2 eq.) was then added to the mixture, and the mixture was heated to 90-95° C.

3) The ACN/water azeotrope was removed by distillation (b.p. 79°C).

4) K2C03 (2.0 g, 0.1 eq.) was then added to the mixture.

5) Distillation was continued to remove ACN/water at 90~95°C for about 6 hours.

6) After this time, about 28% Compound 4-2 remained by HPLC.

7) The mixture was cooled to 15~20°C over 1.5 hours and solid precipitated.

8) Water (50 ml) was added and then the mixture was cooled further to 0° C over 40 min.

9) The mixture was then held at 0° C for 40 minutes.

10) The mixture was filtered and the cake was washed with 100 ml of cold ACN/water (ACN/water, 25:6v/v) to yield 75.0 g of a yellow solid after drying (purity: 95.1%, yield: 50.0%).

Step 3 : Preparation of (R)-IA-3 using chiral phase transfer catalyst IIIb-13-1

1) The Compound of Formula IIA-3 (40.0 g, 1.0 eq.) and DCM (1.2 L, 30 volumes) were placed into a 2 L reactor; the solid was dissolved completely.

2) The mixture was cooled to 0° C and some starting material precipitated out.

3) The catalyst of formula IIIb-13-1 (1.47g, 3% mol) was added to the mixture and the mixture was cooled to -10° C.

4) Hydroxylamine (21. Og, 5.0 eq., 50% in water) was added to a solution of NaOH (15.3 g, 6.0 eq., in 5 volumes of water) in another reactor and stirred for 30 minutes.

5) The hydroxylamine/NaOH solution was then added dropwise to the 2 L reactor over about 4 hours.

6) The resulting reaction mixture was stirred for 16 h at -10°C.

7) In-process samples were taken and analyzed by HPLC until the content of starting material was < 1.0%.

8) When the reaction was complete, the mixture was warmed to 10°C and 200 ml of water was added. The mixture was stirred for 10 minutes.

9) After mixing, the mixture was allowed to stand to separate the aqueous and organic layers and the organic layer was collected.

10) The organic layer was washed with 200 ml of 5% KH2PO4.

11) The two layers were allowed to separate and organic layer was collected.

12) The organic layer was then washed with 200 ml brine, the two layers allowed to separate and the organic layer was again collected.

13) The resulting organic layer was concentrated under vacuum at 25-30°C to about 2 volumes.

14) Toluene (400 ml, 10 volumes) was charged to the vessel and concentration under vacuum was continued at 40~45°C to about 3 volumes. The solvent exchange was repeated twice more using the same procedure.

15) When the solvent exchange was complete, the solution was heated to 55-60°C.

16) The mixture was then cooled to 40° C over 1.5 hours and stirred at 40°C for 3 hours.

17) The mixture was then cooled to 25°C over 2 hours and stirred at 25°C for 3hours.

18) The mixture was finally cooled to 5-10°C over 1 hour and stirred at 8° C for 12 hours.

19) After this time, the mixture was filtered and the filter cake was washed with cold toluene (80 ml, 2 volumes).

20) The product was dried under vacuum at 70~75°C for 12h to yield a white solid (22.0 g, chiral purity: 98.0% by area using the chiral HPLC method described in Example 3, chemical purity: 97.1% by area (HPLC), yield: 48.8%). The 1H MR and LCMS spectra are consistent with the structure of the product.

Example 6: Preparation of (S)-IA-3 using chiral phase transfer catalyst IIIa-13-1

) The compound of Formula IIA-3 (11.6 g, 1.0 eq.) and DCM 360 ml, 30 volumes) were placed into a 1 L reactor; the solid was dissolved completely.

) The mixture was cooled to 0°C and some starting material was precipitated out.

) The catalyst (0.43 g, 3% mol) was added to the resulting mixture, and the mixture was cooled to -10° C.

) Hydroxylamine (6.1 g, 5.0 eq., 50% in water) was added to a solution of NaOH (4.4 g, 6.0 eq., in 5 volumes of water) in another reactor, and the mixture was stirred for 30 minutes.

) The hydroxylamine and NaOH solution was added dropwise to the 1 L reactor over about 2 hours, after which the mixture was stirred for 16 h at -10° C.

) Samples were taken and analyzed by HPLC to monitor the extent of reaction until the content of starting material was < 1.0%.

) When the reaction was complete, the mixture was warmed to 10°C and 50 ml of water was added. The mixture was stirred for 10 minutes.

) The mixture was allowed to settle to separate the aqueous and organic layers and the organic layer was collected.

) The organic layer was washed with 50 ml of 5% KH2PO4.

0) The mixture was allowed to separate and the organic layer was collected.

1) The organic layer was washed with 50 ml brine and the organic layer was again collected. 2) The organic layer was concentrated under vacuum at 25-30°C to about 2 volumes.

3) Toluene (230 ml, 10 volumes) was charged and concentration under vacuum was continued at 40~45°C to about 3 volumes. The solvent exchange was repeated twice more using the same procedure.

14) After the solvent exchange was complete, the solution was heated to 55-60°C.

15) The mixture was then cooled to 40° C over 1.5 hours and stirred at 40° C for 3 hours.

16) The mixture was cooled to 25° C over 2 hours and stirred at 25° C for 3 hours.

17) Finally, the mixture was cooled to 5-10° C over 1 hour and stirred at 8° C for 12 hours, after which the mixture was filtered.

18) The filter cake was washed with cold toluene (25 ml, 2 volumes).

19) The product was dried under vacuum at 85~90°C for 24h, resulting in the product as a white solid (6.8 g, chiral purity: 98.7% by area using the chiral FTPLC method described in Example 3, chemical purity: 99.3% by area (FTPLC), yield: 52.1%).

SEE ALSO US20170239218 

[1]. Cady, Susan Mancini; Cheifetz, Peter; Galeska, Izabela; Le Hir de Fallois, Loic.Long-acting injectable formulations comprising isoxazoline for prevention and treatment of parasitic infections.WO2016164487A1.

//////////Umifoxolaner, ML 878, ML878, CS072E2C38, ML-878, WHO 11642

Bavtavirine


Bavtavirine, CAS 1956373-71-9

  • KAJ2CK6ZYE
  • 4-((4-Amino-8-(4-((1E)-2-cyanoethenyl)-2,6-dimethylphenyl)-2-quinazolinyl)amino)benzonitrile
  • Benzonitrile, 4-((4-amino-8-(4-((1E)-2-cyanoethenyl)-2,6-dimethylphenyl)-2-quinazolinyl)amino)-

C26H20N6 416.48

Benzonitrile, 4-[[4-amino-8-[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]-2-quinazolinyl]amino]-

Gilead Sciences, Inc.; Institute of Organic Chemistry and Biochemistry of the AS CR, v.v.i.

Bavtavirine is a potent non-nucleoside reverse transcriptase inhibitors (NNRTIs). Bavtavirine is part of highly active antitiretroviral therapy (HAART) treatment regimen. Bavtavirine can be used for HIV disease research.

SCHEME

PATENT

WO2016105564

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016105564&_cid=P11-M8QXHF-67832-1

A mixture of compound 2a (100 mg, 0.30 mmol), 4-cyanoaniline (46 mg, 0.388 mmol, Sigma-Aldrich) and hydrogen chloride solution in 1,4-dioxane (4M, 7 μL, 0.03 mmol) in dry N-methyl-2-pyrrolidone (2 mL) was heated at 120 °C for 2 hours. The reaction mixture was cooled down to room temperature and triethylamine (0.1 mL, 0.72 mmol) was added. After 15 minutes, water (5 mL) was added and the solid product was filtered off and washed with water. The crude residue was taken up in a mixture of dichloromethane and diethyl ether (1:1,5 mL) and then treated in a sonic bath for 3 minutes. The solid compound was filtered off and washed with diethyl ether (5 mL) to afford the title compound 2. 1H NMR (400 MHz, DMSO-d6) δ 9.44 (s, 1H), 8.18 (dd, J = 8.2, 1.5 Hz, 1H), 7.74 (d, J = 16.7 Hz, 1H), 7.70 (d, J = 8.9 Hz, 2H), 7.51 (s, 2H), 7.48 (dd, J = 7.1, 1.3 Hz, 1H), 7.34 (dd, J = 8.2, 7.1 Hz, 1H), 7.26 (d, J = 8.9 Hz, 2H), 6.54 (d, J = 16.7 Hz, 1H), 1.91 (s, 6H). HRMS: (ESI+) calculated for C26H2,N6 [M+H] 417.1822, found 417.1820. LCMS (m/z) 417.2 [M+H], Tr = 4.68 min (LCMS method 1).

[1]. Jansa P, et al. Quinazoline derivatives used to treat hiv. The United States, WO2016105564 A1. 2016-06-30.

////////////Bavtavirine

Uplarafenib


Uplarafenib

1425485-87-5

494.5 g/mol

Molecular FormulaC22H21F3N4O4S
Molecular Weight494.487
  • B-Raf IN 10
  • TQU3V7CXC3
  • N-[2,4,5-trifluoro-3-(3-morpholin-4-ylquinoxaline-6-carbonyl)phenyl]propane-1-sulfonamide
  • B-Raf IN 10; B-Raf IN-10; B-Raf-IN-10

UPLARAFENIB is a small molecule drug with a maximum clinical trial phase of II and has 1 investigational indication. Neupharma, Inc.

 There are at least 400 enzymes identified as protein kinases. These enzymes catalyze the phosphorylation of target protein substrates. The phosphorylation is usually a transfer reaction of a phosphate group from ATP to the protein substrate. The specific structure in the target substrate to which the phosphate is transferred is a tyrosine, serine or threonine residue. Since these amino acid residues are the target structures for the phosphoryl transfer, these protein kinase enzymes are commonly referred to as tyrosine kinases or serine/threonine kinases.

The phosphorylation reactions, and counteracting phosphatase reactions, at the tyrosine, serine and threonine residues are involved in countless cellular processes that underlie responses to diverse intracellular signals (typically mediated through cellular receptors), regulation of cellular functions, and activation or deactivation of cellular processes. A cascade of protein kinases often participate in intracellular signal transduction and are necessary for the realization of these cellular processes. Because of their ubiquity in these processes, the protein kinases can be found as an integral part of the plasma membrane or as cytoplasmic enzymes or localized in the nucleus, often as components of enzyme complexes. In many instances, these protein kinases are an essential element of enzyme and structural protein complexes that determine where and when a cellular process occurs within a cell.

The identification of effective small compounds which specifically inhibit signal transduction and cellular proliferation by modulating the activity of tyrosine and serine/threonine kinases to regulate and modulate abnormal or inappropriate cell proliferation, differentiation, or metabolism is therefore desirable. In particular, the identification of compounds that specifically inhibit the function of a kinase which is essential for processes leading to cancer would be beneficial

SCHEME

Patent

Compound A [WO2022119905A2]

WO2022119905 69%

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022119905&_cid=P20-M8O7NY-07177-1

Example 1: Preparation of N-(2,4,5-trifluoro-3-(3-morpholinoquinoxaline-6-carbonyl)phenyl)propane-l-sulfonamide (Compound A)

[181] Step l : To a solution of quinoxalin-2(lH)-one (54.64 g, 374 mmol, 1.0 eq.) in HO Ac (1000 mL) was added a solution of Bn (19.18 mL, 374 mmol, 1.0 eq.) in HOAc (200 mL) dropwise. The resulting mixture was stirred at rt for 12 h, then poured into ice-water. The precipitate was collected by filtration and dried to afford 7-bromoquinoxalin-2(lH)-one as an off-white solid (74 g, 88%).

[182] Step l : To a suspension of 7-bromoquinoxalin-2(lH)-one (224 g, 1 mol, 1.0 eq.) in POCl3 (1000 mL) was added DMF (3.65 g, 0.05 mol, 0.05 eq.). The resulting mixture was stirred at 120 °C for 2 h, then cooled to rt and slowly poured into ice-water with vigorous stirring. The precipitate was collected by filtration and dried to afford 7-bromo-2-chloroquinoxaline as brown solid (180 g, 75%).

[183] Step 3 : To a solution of 7-bromo-2-chloroquinoxaline (50 g, 0.2mol, 1.0 eq.) in CH3CN (200 mL) were added morpholine (89 g, 1.02 mol, 5.0 eq.) and K2CO3 (85 g, 0.61mol, 3.0 eq). The resulting mixture was stirred at 90 °C for 2 h, then cooled and filtered. The filtrate was concentrated and the residue was re-crystallized from EA to afford 4-(7-bromoquinoxalin-2-yl)morpholine (59 g, 98.3%).

[184] Step 4 : To a solution of 4-(7-bromoquinoxalin-2-yl)morpholine (59 g, 0.2 mol, 1.0 eq.) in DMF (500 mL) was added TEA (139 mL, 1.0 mol, 5.0 eq.), EtsSiH (127 mL, 0.8 mol, 4.0 eq) and Pd(dppf)C12.CH2C12 (8.16 g, 0.01 mol, 0.05 eq.). The resulting mixture was stirred at 90 °C for 12h in an autoclave under CO (1 MPa), then cooled and concentrated. The resulting residue was purified by flash column chromatography(EA/PE=l/l) to afford 3-morpholinoquinoxaline-6-carbaldehyde as a yellow solid (40 g, 82.3%).

[185] Step 5 : To a solution of N-(2,4,5-trifluorophenyl)pivalamide (550 mg, 2.4 mmol, E2 eq.) in THF (30 mL) cooled at -78 °C was added LDA (4.1 mL, 4.8mmol, 2.4 eq.) dropwise. The resulting mixture was stirred at -78 °C for 1 h, then a solution of 3-morpholinoquinoxaline-6-carbaldehyde (486 mg, 2.0 mol, 1.0 eq.) in THF (20 mL) was added dropwise. The resulting mixture was stirred at -78 °C for 1 h, then quenched by the addition of NH4CI solution. The mixture was extracted with EA (20 mL X 3) and the combined organic layers were dried over Na2SO4 and concentrated. The resulting residue was purified by flash column chromatography (MeOH/DCM=l/50, v/v) to afford N-(2,4,5-trifluoro-3-(hydroxy(3-morpholinoquinoxalin-6-yl)methyl)phenyl)pivalamide (620 mg, 65.2%).

[186] Step 6 : The solution of N-(2,4,5-trifluoro-3-(hydroxy(3-morpholinoquinoxalin-6-yl)methyl)phenyl)pivalamide (620 mg, 1.3 mmol, 1.0 eq.) in DCM (10 mL) was added MnCb (358 mg, 6.5 mmol, 5.0 eq.). The resulting mixture was stirred at 50 °C overnight, then cooled and filtered. The filtrate was concentrated and the residue was purified by flash column chromatography (PE/EA=l/2,v/v) to afford N-(2,4,5-trifluoro-3-(3-morpholinoquinoxaline-6-carbonyl)phenyl)pivalamide (560 mg, 90%).

[187] Step 7 : To a solution of N-(2,4,5-trifluoro-3-(3-morpholinoquinoxaline-6-carbonyl)phenyl)pivalamide (560 mg , 1.2 mmol, 1.0 eq. ) in HO Ac (10 mL) was added cone. HC1 (50 mL). The mixture was stirred at 110 °C for 4h, then poured onto ice. The mixture was adjusted to pH 10 by the addition of IN NaOH solution, then extracted with DCM (100 mL X 3). The combined organic layers were dried over Na2SO4 and concentrated. The resulting residue was purified by flash column chromatography (PE/EA=l/4,v/v) to afford (3-amino-2,5,6-trifluorophenyl)(3-morpholinoquinoxalin-6-yl)methanone as brown solid (410 mg, 88 % yield).

[188] Step 8 : To a solution of (3-amino-2,5,6-trifluorophenyl)(3-morpholinoquinoxalin-6-yl)methanone (40 mg, 0.1 mmol, 1.0 eq.) in DCM (10 mL) was added TEA (101 mg, 1 mol, 10 eq.) and propane- 1 -sulfonyl chloride (0.5 mL, 0.5 mmol, 5.0 eq.). The resulting mixture was stirred at rt for 1 h, then washed with water and extracted with DCM (lOmL X 3). The combined organic layers were dried over Na2SO4, filtered and concentrated. The resulting residue was purified by flash column chromatography (PE/EA=2/1, v/v) to afford N-(propylsulfonyl)-N-(2,4,5-trifluoro-3-(3-morpholinoquinoxaline-6-carbonyl)phenyl)propane-l-sulfonamide (41 mg, 62.2%).

[189] Step 9 : To a solution of N-(propylsulfonyl)-N-(2,4,5-trifluoro-3-(3-morpholinoquinoxaline-6-carbonyl)phenyl)propane-l -sulfonamide (41 mg, 0.068 mmol, 1.0 eq.) in MeOH/THF (10 mL /10 mL) was added 1 N NaOH (0.15 mmol, 2.2 eq.). The resulting mixture was stirred at rt for 1 h, then concentrated. The resulting residue was purified by flash column chromatography (PE/EA=l/l,v/v) to afford N-(2,4,5-trifluoro-3-(3-morpholinoquinoxaline-6-carbonyl)phenyl)propane-l -sulfonamide (Compound A) (23 mg, 68.9%). LRMS (M+H+) m/z calculated 495.1, found 495.1. XH NMR (CDCh, 400 MHz) 8 8.67 (s, 1 H), 7.98-8.03 (m, 3 H), 7.66-7.73 (m, 1 H), 6.72 (s, 1 H), 3.78-3.88 (m, 8H), 3.12-3.16 (t, 2 H), 1.87-1.92 (q, 2 H), 1.05-1.09 (t, 3 H).

Example 2. Preparation of Crystalline Form I of Compound A

[190] N-(2,4,5-trifluoro-3-(3-morpholinoquinoxaline-6-carbonyl)phenyl)propane-l-sulfonamide (2.53 kg) and ethyl acetate (EA) (9.1 kg) were added to the reactor. The mixture was stirred under refluxing for 2h. The solution was cooled to room temperature. The resulting precipitate was filtered, washed with EA (1 kg), and dried under vacuum at 45 °C to afford Crystalline Form I of N-(2,4,5-trifluoro-3-(3-morpholinoquinoxaline-6-carbonyl)phenyl)propane-1-sulfonamide (1.94 kg, 76.7%).

Example 3. Preparation of Crystalline Form II of Compound A

[191] N-(2,4,5-trifluoro-3-(3-morpholinoquinoxaline-6-carbonyl)phenyl)propane-l-sulfonamide (4.01 kg) was dissolved in EA (60 kg), and water (20 kg) was added. The organic phase was separated and concentrated to 4-6 kg under vacuum at 40-45 °C. The resulting residue was dissolved in EA (6 kg) and stirred for 4 hours at 10-20 oC. The solid was filtered, washed with EA (1.5 kg), and dried under vacuum at 50-55 oC to afford Crystalline Form II of N-(2,4,5-trifluoro-3 -(3 -morpholinoquinoxaline-6-carbonyl)phenyl)propane- 1 -sulfonami de (3.15 kg, 78.6%).

SEE

US20130053384 69%

Avenciguat


Avenciguat, 1579514-06-9

BI-685509, 582.7 g/mol, C34H38N4O5

UNII ZA7KTB4PSP

5-ethoxy-1-[6-[3-methyl-2-[[5-methyl-2-(oxan-4-yl)-3,4-dihydro-1H-isoquinolin-6-yl]methoxy]phenyl]pyridin-2-yl]pyrazole-4-carboxylic acid

Avenciguat (BI-685509) is a potent and orally active sGC activator. Avenciguat restores cyclic guanosine monophosphate (cGMP) and improves functionality of nitric oxide (NO) pathways. Avenciguat can be used in research of chronic kidney disease (CKD) and diabetic kidney disease (DKD).


Avenciguat is under investigation in clinical trial NCT05282121 (A Study to Test Whether BI 685509 Alone or in Combination With Empagliflozin Helps People With Liver Cirrhosis Caused by Viral Hepatitis or Non-alcoholic Steatohepatitis (NASH) Who Have High Blood Pressure in the Portal Vein (Main Vessel Going to the Liver)).

Avenciguat (development name BI 685509) is a soluble guanylate cyclase activator developed by Boehringer Ingelheim for kidney disease,[1][2] and cirrhosis.[3][4][5]

SCHEME

Ref

PAPER

Journal of Pharmacology and Experimental Therapeutics (2023), 384(3), 382-39

PATENT

Boehringer Ingelheim International GmbH

WO2014039434

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014039434&_cid=P12-M29UB4-37937-1

PATENT

US20230293513

WO2020011804

Clinical data
Other namesBI 685509
Legal status
Legal statusInvestigational
Identifiers
showIUPAC name
CAS Number1579514-06-9
PubChem CID89992620
UNIIZA7KTB4PSP
Chemical and physical data
FormulaC34H38N4O5
Molar mass582.701 g·mol−1
3D model (JSmol)Interactive image
showSMILES
showInChI
References

^ Cherney, David Z. I.; de Zeeuw, Dick; Heerspink, Hiddo J. L.; Cardona, Jose; Desch, Marc; Wenz, Arne; Schulze, Friedrich; Nangaku, Masaomi (August 2023). “Safety, tolerability, pharmacodynamics and pharmacokinetics of the soluble guanylyl cyclase activator BI 685509 in patients with diabetic kidney disease: A randomized trial”Diabetes, Obesity and Metabolism25 (8): 2218–2226. doi:10.1111/dom.15099PMID 37232058S2CID 258909393.

^ Reinhart, Glenn A.; Harrison, Paul C.; Lincoln, Kathleen; Chen, Hongxing; Sun, Peng; Hill, Jon; Qian, Hu Sheng; McHugh, Mark C.; Clifford, Holly; Ng, Khing Jow; Wang, Hong; Fowler, Danielle; Gueneva-Boucheva, Kristina; Brenneman, Jehrod B.; Bosanac, Todd; Wong, Diane; Fryer, Ryan M.; Sarko, Chris; Boustany-Kari, Carine M.; Pullen, Steven S. (March 2023). “The Novel, Clinical-Stage Soluble Guanylate Cyclase Activator BI 685509 Protects from Disease Progression in Models of Renal Injury and Disease”Journal of Pharmacology and Experimental Therapeutics384 (3): 382–392. doi:10.1124/jpet.122.001423PMID 36507845S2CID 254387173.

^ Lawitz, Eric J.; Reiberger, Thomas; Schattenberg, Jörn M.; Schoelch, Corinna; Coxson, Harvey O.; Wong, Diane; Ertle, Judith (November 2023). “Safety and pharmacokinetics of BI 685509, a soluble guanylyl cyclase activator, in patients with cirrhosis: A randomized Phase Ib study”Hepatology Communications7 (11). doi:10.1097/HC9.0000000000000276PMC 10615399PMID 37889522.

^ Jones, Amanda K.; Chen, Hongxing; Ng, Khing Jow; Villalona, Jorge; McHugh, Mark; Zeveleva, Svetlana; Wilks, James; Brilisauer, Klaus; Bretschneider, Tom; Qian, Hu Sheng; Fryer, Ryan M. (July 2023). “Soluble Guanylyl Cyclase Activator BI 685509 Reduces Portal Hypertension and Portosystemic Shunting in a Rat Thioacetamide-Induced Cirrhosis Model”Journal of Pharmacology and Experimental Therapeutics386 (1): 70–79. doi:10.1124/jpet.122.001532PMID 37230799S2CID 258909514.

^ Reiberger, Thomas; Berzigotti, Annalisa; Trebicka, Jonel; Ertle, Judith; Gashaw, Isabella; Swallow, Ros; Tomisser, Andrea (24 April 2023). “The rationale and study design of two phase II trials examining the effects of BI 685509, a soluble guanylyl cyclase activator, on clinically significant portal hypertension in patients with compensated cirrhosis”Trials24 (1): 293. doi:10.1186/s13063-023-07291-3PMC 10123479PMID 37095557.

[1]. Reinhart GA, et, al. The Novel, Clinical-Stage Soluble Guanylate Cyclase Activator BI 685509 Protects from Disease Progression in Models of Renal Injury and Disease. J Pharmacol Exp Ther. 2023 Mar;384(3):382-392.  [Content Brief]

////////////Avenciguat, 1579514-06-9, BI 685509,

VALILTRAMIPROSATE


VALILTRAMIPROSATE

1034190-08-3

  • (S)-3-(2-Amino-3-methylbutanamido)propane-1-sulfonic acid
  • BLU8499
  • WHO 11912
Molecular Weight238.30
FormulaC8H18N2O4S
CAS No.1034190-08-3

ALZ-801
Synonyms: valiltramiprosate, NRM-8499, homotaurine prodrug, 3-APS

This is a prodrug of homotaurine, a modified amino acid previously developed under the names tramiprosate and Alzhemed™. ALZ-801 is converted to homotaurine in vivo, but is more easily absorbed and lasts longer in the blood than tramiprosate.

Tramiprosate was reported to inhibit Aβ42 aggregation into toxic oligomers (Gervais et al., 2007Kocis et al., 2017). Both ALZ-801 and tramiprosate are metabolized to 3-sulfopranpanoic acid (3-SPA), which is normally found in brain and also inhibits Aβ42 aggregation (Hey et al., 2018). A more recent study found that homotaurine activates GABA receptors, and suggests an alternative mechanism of action for ALZ-801 (Meera et al., 2023).

After tramiprosate failed in Phase 3, its maker, NeuroChem, marketed it as a nutritional supplement. Years later, a subgroup analysis of the trial data indicated a potential positive effect in participants who carried two copies of ApoE4 (Abushakra et al., 2016Abushakra et al., 2017). Alzheon licensed ALZ-801 from NeuroChem and is developing it for Alzheimer’s disease.

ALZ-801 is a potent and orally available small-molecule β-amyloid (Aβ) anti-oligomer and aggregation inhibitor, valine-conjugated proagent of Tramiprosate with substantially improved PK properties and gastrointestinal tolerability compared with the parent compound. ALZ-801 is an advanced and markedly improved candidate for the treatment of alzheimer’s disease.

SCHEME

REF 1

US20080146642

https://patents.google.com/patent/US20080146642A1/en

HCL WATER, Dowex™ Marathon™ C ion-exchange column

General/Typical Procedure: [0311] (i) The solid material was dissolved in water (25 mL). The solution was passed through a Dowex™ Marathon™ C ion-exchange column (strongly acidic, 110 g (5 eq), prewashed). The strong acidic fractions were combined and treated with concentrated HCl (10 mL). The mixture was stirred at 50° C. for 30 minutes, and then was concentrated to dryness. The residual material was co-evaporated with EtOH (ethanol) to completely remove water. EtOH (100 mL) was added to the residue. The mixture was stirred at reflux for 1 h, and then cooled to room temperature. The solid material was collected by filtration. The solid material was dissolved in water (10 mL). The solution was added drop wise to EtOH (100 mL). The product slowly crystallized. The suspension was stirred at room temperature for 30 minutes. The solid material was collected by filtration and it was dried in a vacuum oven (60° C.). ID A2. 1H NMR (D2O).δ. 0.87-0.90 (m, 6H), 1.83 (qt, J = 7.2 Hz, 2H), 2.02-2.09 (m, 1H), 2.79 (t, J = 7.8 Hz, 2H), 3.20-3.29 (m, 2H), 3.60 (d, J = 6.3 Hz, 2H); 13C NMR (D2O).δ. 17.20, 17.77, 24.11, 30.00, 38.29, 48.63, 58.96, 169.35; m/z 237 (M-1).

////////VALILTRAMIPROSATE, ALZ-801, ALZ 801, BLU 8499, WHO 11912

VICATERTIDE


VICATERTIDE

1251838-01-3

L-Leucyl-L-glutaminyl-L-valyl-L-valyl-L-tyrosyl-L-leucyl-L-histidine

C42H66N10O10

L-Histidine, L-leucyl-L-glutaminyl-L-valyl-L-valyl-L-tyrosyl-L-leucyl- (ACI)

871.04

SB-01, HY-P5542, CS-0887146

(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-5-oxopentanoyl]amino]-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-methylpentanoyl]amino]-3-(1H-imidazol-5-yl)propanoic acid

  • L-Leucyl-L-glutaminyl-L-valyl-L-valyl-L-tyrosyl-L-leucyl-L-histidine (ACI)
  • 1: PN: KR983182 SEQID: 1 claimed sequence
  • Vevoctadekin
  • LQVVYLH

Vicatertide is a TGF beta-1 inhibitor[1].

KR983182 

SEQ ID NO: 1 (LQVVYLH: SEQ ID NO: 1)

<Example 1> Preparation of peptides

A peptide having the amino acid sequence of SEQ ID NO: 1 (LQVVYLH: SEQ ID NO: 1) was produced by Peptron Inc. Specifically, coupling was performed one by one starting from the C-terminus using the Fmoc SPPS (9-Fluorenylmethyloxycarbonyl solid phase peptide synthesis) method using an automatic synthesizer (ASP48S, Peptron Inc).

NH 2 -His(Trt)-2-chloro-Trityl Resin , in which the first amino acid at the C-terminus of the peptide was attached to the resin, was used. All amino acid raw materials used in peptide synthesis have the N-terminus protected by Fmoc, and all residues are trityl (Trt), t-butyloxycarbonyl (Boc), t-butyl (t-Bu), etc., which are removed by acid. The protected one was used. As a coupling reagent, HBTU (2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate)/HOBt (Hydroxxybenzotriazole)/NMM (N-methylmorpholine) was used. (1) Protected amino acid (8 equivalents) and coupling reagent HBTU (8 equivalents)/HOBt (8 equivalents)/NMM (16 equivalents) were dissolved in DMF (Dimethylformamide) and added, followed by reaction at room temperature for 2 hours. (2) Fmoc removal was performed twice for 5 minutes at room temperature by adding 20% ​​piperidine in DMF. After repeating reactions (1) and (2) to create the basic peptide skeleton, TFA (trifluoroacetic acid)/EDT (1,2-ethanedithiol)/Thioanisole/TIS (triisopropylsilane)/H 2 O=90/ 2.5 / Peptides were separated from the resin using 2.5/2.5/2.5. After purification by reverse phase HPLC using a Vydac Everest C18 column (250 mm × 22 mm, 10 μm), water-acetonitrile linear gradient (10~75% ( v/v) of acetonitrile) method. The molecular weight of the purified peptide was confirmed using LC/MS (Agilent HP1100 series) and lyophilized.

Ref

[1]. WHO D rug Information. Vol. 37, No. 2, 2023.

////VICATERTIDE, SB-01, SB 01, HY P5542, CS 0887146

Vorbipiprant


Vorbipiprant,

CR6086

1417742-86-9

4-[1-[[[(5R)-6-[[4-(Trifluoromethyl)phenyl]methyl]-6-azaspiro[2.5]oct-5-yl]carbonyl]amino]cyclopropyl]benzoic acid

Benzoic acid, 4-[1-[[[(5R)-6-[[4-(trifluoromethyl)phenyl]methyl]-6-azaspiro[2.5]oct-5-yl]carbonyl]amino]cyclopropyl]-

Molecular Weight472.50
FormulaC26H27F3N2O3

Vorbipiprant (CR6086) is an EP4 receptor antagonist, serving as a targeted immunomodulator. Thus, Vorbipiprant is also a potential immune checkpoint inhibitor, to turn cold tumors into hot tumors. Vorbipiprant also antagonizes PGE2-stimulated cAMP production (IC50=22 nM). Vorbipiprant exhibit striking DMARD effects in rodents, and anti-inflammatory activity to inhibt immune-mediated inflammatory diseases.

SCHEME

PATENT

Rottapharm S.p.A.

World Intellectual Property Organization, WO2013004290

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013004290&_cid=P10-M25P3U-15334-1

Example 7: 4-(1-(6-(4-(trifluoromethyl)benzyl)-6-azaspiro[2.5]octane-5-carboxamido)cyclopropyl)benzoic acid (single unknown enantiomer) (E7)

Procedure A:

The title compound (E7) (54 mg) was prepared according to the general procedure for esters hydrolysis (Method B) starting from methyl 4-(1 -(6-(4-(trifluoromethyl)benzyl)-6-azaspiro[2.5]octane-5-carboxamido)cyclopropyl)benzoate (D122b) (100mg). (LiOH: 4 eq; Reaction time: 18 hrs; RT)

MS: (ES/+) m/z: 473.4 [MH+] C26H27F3N2O3 requires 472.20

Chiral HPLC: [DAICEL AD-H; Mobile phase A: 90% n-heptane (+0.2% TFA), B: 10% EtOH; DAD: 245 nm]: Peak retention time: 18.97 min.

1 H NMR (400 MHz, CHCI3-d) δ (ppm): 7.97 (d, J = 8.0 Hz, 2 H), 7.74 – 7.35 (m, 5 H), 7.26 (br. s., 1 H), 3.86 (d, J = 14.1 Hz, 1 H), 3.38 (d, J = 14.1 Hz, 1 H), 3.08 (d, J = 7.8 Hz, 1 H), 2.91 (d, J = 9.8 Hz, 1 H), 2.27 (br. s., 1 H), 2.05 (t, J = 1 1 .2 Hz, 1 H), 1 .84 (br. s., 1 H), 1 .50 – 1 .24 (m, 4 H), 1 .14 (br. s., 1 H), 0.98 (d, J = 12.7 Hz, 1 H), 0.53 – 0.23 (m, 4 H)

Procedure B:

methyl 4-(1 -(6-(4-(trifluoromethyl)benzyl)-6-azaspiro[2.5]octane-5-carboxamido)cyclopropyl)benzoate (D123)) (17.7 g, 36.38 mmol) was partitioned between dioxane (485 ml) and water (242 ml) prior addition of LiOH H2O (6.1 g,

145.5 mmol). The mixture was stirred at RT for 10 hrs. Water (200 ml) was added followed by addition of acetic acid (5.27 ml). Dioxane was evaporated off and acetic acid was added until the pH of the aqueous solution reached the value of ~ 4. The white solid was filtered from the reaction and dried under vacuum overnight then 24 hrs under vacuum at 40 °C affording the title compound (E7) (16.7g).

MS: (ES/+) m/z: 473.3 [MH+] C26H27F3N203 requires 472.20

Chiral HPLC: [DAICEL AD-H; Mobile phase A: 90% n-heptane (+0.2% TFA), B: 10% EtOH; DAD: 245 nm]: Peak retention time: 19.07 min.

1 H NMR (400 MHz, DMSO-d6) δ (ppm): 12.92 – 12.51 (m, 1 H), 8.83 – 8.62 (m, 1 H), 7.85 – 7.75 (m, 2 H), 7.74 – 7.57 (m, 4 H), 7.26 – 7.14 (m, 2 H), 3.87 – 3.72 (m, 1 H), 3.27 – 3.20 (m, 1 H), 2.99 – 2.86 (m, 1 H), 2.79 – 2.69 (m, 1 H), 2.19 – 1 .98 (m, 2 H), 1 .86 – 1 .70 (m, 1 H), 1 .32 – 1 .07 (m, 5 H), 0.94 – 0.82 (m, 1 H), 0.46 -0.17 (m, 4 H).


[1]. Caselli G, et al. Pharmacological characterisation of CR6086, a potent prostaglandin E2 receptor 4 antagonist, as a new potential disease-modifying anti-rheumatic drug. Arthritis Res Ther. 2018 Mar 1;20(1):39.  [Content Brief][2]. Caselli G, et al. Combination of the EP4 antagonist CR6086 and anti-PD-1 monoclonal antibody inhibits tumor growth in a microsatellite stable colorectal cancer in mice[J]. Cancer Research, 2020, 80(16_Supplement): 2208-2208.

//////////Vorbipiprant, CR 6086