New Drug Approvals

Home » Uncategorized

Category Archives: Uncategorized

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,808,911 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Balinatunfib


Balinatunfib

CAS 2248726-53-4

MF C27H24F2N6O2, 502.5 g/mol

(1R,11R)-5-[2-(1-aminocyclobutyl)pyrimidin-5-yl]-18-(difluoromethoxy)-12-methyl-2,9,12-triazapentacyclo[9.8.1.02,10.03,8.014,19]icosa-3(8),4,6,9,14(19),15,17-heptaen-13-one

(7R,14R)-11-[2-(1-AMINOCYCLOBUTYL)-5-PYRIMIDINYL]-1-(DIFLUOROMETHOXY)-6,7-DIHYDRO-6-METHYL-7,14-METHANOBENZIMIDAZO[1,2-B][2,5]BENZODIAZOCIN-5(14H)-ONE

(7R,14R)-11-[2-(1-Aminocyclobutyl)pyrimidin-5-yl]-1-(difluoromethoxy)-6-methyl-6,7-dihydro-7,14-methanobenzimidazo[1,2-b][2,5]benzodiazocin-5(14H)-one

(7R,14R)-11-[2-(1-aminocyclobutyl)pyrimidin-5-yl]-1-(difluoromethoxy)-6-methyl-6,7-dihydro-7,14-methano[1,3]benzimidazo[1,2-b][2,5]benzodiazocin-5(14H)-one
tumor necrosis factor (TNF) signaling inhibitor, SAR441566, SAR 441566, PLY98MAN4C

  • OriginatorSanofi
  • ClassAmines; Anti-inflammatories; Antipsoriatics; Antirheumatics; Azabicyclo compounds; Benzimidazoles; Cyclobutanes; Fluorinated hydrocarbons; Heterocyclic compounds with 4 or more rings; Ketones; Phenyl ethers; Pyrimidines; Small molecules
  • Mechanism of ActionTumour necrosis factor alpha inhibitors
  • Phase IICrohn’s disease; Psoriasis; Rheumatoid arthritis; Ulcerative colitis
  • No development reportedInflammation
  • 09 Dec 2025Sanofi plans a phase-I trial (In volunteers) in December 2025 (PO, Tablet), (NCT07272629)
  • 29 Oct 2025Sanofi plans a phase II SPECIFI-IBD-LTS trial for Crohn’s Disease or Ulcerative Colitis ( Treatment-experienced) in unknown location (PO, Tablet) in December 2025 (NCT07222189)
  • 16 Sep 2025Chemical structure information added.
  • You need to be a logged in or subscribed to view this c

Balinatunfib (SAR441566) is an experimental drug which acts as a potent small molecule inhibitor of TNF. Rather than blocking TNF receptors, balinatunfib inactivates TNF directly by stabilising an inactive form of the TNF trimer which fails to bind to its target receptors. It is in early stage clinical trials for rheumatoid arthritis and other chronic autoimmune diseases.[1][2]

SYN

https://www.chemical.ai/blog/humanai-synergy-in-retrosynthetic-analysis-and-route-optimization-of-balinatunfib

PAT

 (WO 2016/050975,

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016050975&_cid=P22-MK3F7M-67505-1

Intermediate 40 

(1R,3R)-1-[2-bromo-6-(difluoromethoxy)phenyl]-7-chloro-2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazol-3-amine

Intermediate 38 (5 g, 11.64 mmol) was suspended in toluene (22 mL) and cooled to 0°C before addition of diphenylphosphoryl azide (3.4 mL, 15 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (2.5 mL, 16 mmol). The mixture was allowed to warm up to r.t and stirred for 2 hours and subsequently at 45°C overnight. The reaction mixture was diluted with EtOAc (150 mL) and the organic phase washed with a saturated aqueous solution of ammonium chloride (50 mL) then a saturated solution of aqueous sodium bicarbonate (50 mL), and concentrated in vacuo. The crude residue thus obtained was solubilized in THF (100 mL) and water (10 mL), trimethylphosphine (17.46 mL, 17.46 mmol) was added and the reaction mixture stirred overnight. The mixture was concentrated in vacuo, partitioned between EtOAc (200 mL) and water (150 mL). The organic layer was extracted with 0.2M HCl aq (3 x 200 mL). The combined acid layer was stirred in an ice bath, whilst 10% NaOH solution was added with stirring until pH increased to 10. The stirred was continued for further 15 minutes to complete precipitation. The precipitate was filtered, rinsed with water (20 mL), then dried under suction for 10 minutes before drying under high vacuum overnight to afford 3.92 g (78%) of the title compound as an off white solid. LCMS basic: RT 1.96 min. (ES+) 428/430 (M+H)+

EXAMPLE 11

(7R, 14R)-11-chloro-1-(difluoromethoxy)-6,7-dihydro-7,14-methanobenzimidazo[1,2-b][2,5]benzodiazocin-5(14H)-one

Intermediate 40 (3.7 g, 8.6 mmol), activated molecular sieve 4A powder (1.2 g), potassium carbonate (1.5 equiv., 13 mmol) followed by dichloro[9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene]palladium(II) (0.04 equiv., 0.35 mmol) were poured into the center of the 100 mL Glass Parr reaction vessel. 3 cycles of vacuum (~20 mmHg) followed by Argon were applied to the closed reactor.

Anhydrous dimethyl sulfoxide (35 mL) was added, followed by phenol 5M in DMSO (1.1 equiv., 9.5 mmol). The solution was degassed by 3 vacuum (~20 mmHg) / argon cycles followed by 3 cycles of vacuum / CO resulting in a final CO pressure of 1 bar.

The mixture was stirred and heated overnight at 100 °C under the CO atmosphere . The reaction was cooled to 30°C, the reactor vessel was opened and EtOAc (40 mL) was added. The resulting mixture was filtered on a pad of Celite, evaporated in vacuo to yield a green oil.

The residue thus obtained was taken up in EtOAc (100 mL) and the organic layer was washed with water, K2CO3 (saturated aqueous solution) and brine (saturated aqueous solution). The aqueous layer was then re-extracted with EtOAc (1 x 50 mL). The combined organic layers were dried over MgSO4, filtered and evaporated to dryness. The obtained green solid (3.65 g), was taken up in EtOAc, the insoluble material was filtered and rinsed with Et2O to afford 1.06 g (33.1%) of the title compound as a grey solid.

The filtrate can be purified by flash chromatography to provide additional product if required:

LCMS basic: MH+ m/z = 376, RT 1.90 minutes.

1H NMR (300 MHz, DMSO) δ 9.12 (d, 1 H, J = 6.7 Hz), 8.23 (dd, 1 H, J = 7.0, 2.4 Hz), 7.60 (m, 5 H), 7.20 (dd, 1 H, J = 8.7, 2.1 Hz), 6.29 (d, 1 H, J = 7.1 Hz), 4.87 (dd, 1 H, J = 6.7 Hz, 6.7 Hz), 3.46 (m, 1 H), 2.72 (d, 1 H, J = 13.4 Hz).

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=US283322316&_cid=P22-MK3EWF-57090-1

Intermediate 3

(7R,14R)-11-Chloro-1-(difluoromethoxy)-6-methyl-6,7-dihydro-7,14-methanobenzimidazo[1,2-b][2,5]benzodiazocin-5(14H)-one

      To a solution of (7R,14R)-11-chloro-1-(difluoromethoxy)-6,7-dihydro-7,14-methanobenzimidazo[1,2-b][2,5]benzodiazocin-5(14H)-one (WO 2016/050975, Example 11) (10 g, 26.6 mmol) in dry THF (135 mL), cooled to −78° C. under nitrogen, was added potassium bis(trimethylsilyl)amide (1M in THF, 30 mL, 30 mmol) dropwise over 15 minutes. The resulting mixture was stirred at −78° C. for 1 h prior to the addition of iodomethane (2.5 mL, 40 mmol) dropwise over 5 minutes. The reaction mixture was stirred at −78° C. for 1 h, then allowed to warm slowly to ambient temperature overnight. The reaction mixture was poured into saturated aqueous ammonium chloride solution (600 mL) and extracted with EtOAc (2×800 mL). The organic extracts were dried (Na 2SO 4), filtered and concentrated in vacuo. Purification by flash chromatography on silica (elution with 5% MeOH/DCM) afforded the title compound (9.12 g, 88%) as a beige solid. δ (300 MHz, DMSO-d 6) 8.33-8.21 (m, 1H), 7.87-7.33 (m, 5H), 7.22 (dd, J 8.7, 2.1 Hz, 1H), 6.23 (d, J 7.1 Hz, 1H), 5.22 (d, J 7.1 Hz, 1H), 3.55-3.41 (m, 1H), 3.33 (s, 3H), 2.81 (d, J 13.8 Hz, 1H). LCMS (ES+) [M+H] 390.0, RT 1.10 minutes (Method 3).

Intermediate 17

tert-Butyl (1-{5-[(7R,14R)-1-(difluoromethoxy)-6-methyl-5-oxo-5,6,7,14-tetrahydro-7,14-methanobenzimidazo[1,2-b][2,5]benzodiazocin-11-yl]pyrimidin-2-yl}cyclobutyl)-carbamate

      A flame-dried flask under nitrogen equipped with a reflux condenser was charged with Intermediate 3 (13.3 g, 34.0 mmol), tris(dibenzylideneacetone)dipalladium(0) (1.61 g, 1.71 mmol), XPhos (1.63 g, 3.43 mmol), bis(pinacolato)diboron (9.85 g, 38.8 mmol) and potassium acetate (8.5 g, 87 mmol), then 1,4-dioxane (136 mL) was added. The resulting mixture was stirred at 100° C. for 22 h before Intermediate 16 (12.3 g, 37.4 mmol) and aqueous tribasic potassium phosphate solution (1.27 mol/L, 40 mL, 50.8 mmol) were added. The reaction mixture was heated under reflux for 3 h before being charged with additional tris(dibenzylideneacetone)dipalladium(0) (500 mg, 0.53 mmol), XPhos (510 mg, 1.07 mmol) and aqueous tribasic potassium phosphate solution (1.27 mol/L, 20 mL, 25.4 mmol). The mixture was stirred for 1 h, then cooled to room temperature, diluted with DCM (600 mL) and washed with brine (400 mL). The aqueous phase was extracted with DCM (500 mL), then the combined organic extracts were passed through a phase separator and concentrated in vacuo. Purification by flash chromatography on silica (elution with 0-5% MeOH/DCM) afforded the title compound (18.0 g, 88%) as an off-white solid. δ (400 MHz, CDCl 3) 8.93 (s, 2H), 8.49 (dd, J8.2, 1.3 Hz, 1H), 7.84 (dd, J8.5, 0.7 Hz, 1H), 7.74-7.63 (m, 1H), 7.48-7.38 (m, 2H), 7.34-7.29 (m, 1H), 6.84 (t, J72.8 Hz, 1H), 6.31 (d, J7.2 Hz, 1H), 5.92 (s, 1H), 5.01 (d, J7.1 Hz, 1H), 3.53 (s, 3H), 3.51-3.43 (m, 1H), 2.90 (d, J 13.6 Hz, 1H), 2.84-2.57 (m, 3H), 2.22-2.07 (m, 3H), 1.43 (s, 9H). LCMS (ES+) [M+H] 603.2, RT 1.25 minutes (Method 3).

EXAMPLE 6

(7R,14R)-11-[2-(1-Aminocyclobutyl)pyrimidin-5-yl]-1-(difluoromethoxy)-6-methyl-6,7-dihydro-7,14-methanobenzimidazo[1,2-b][2,5]benzodiazocin-5(14H)-one

To a solution of Intermediate 17 (18.0 g, 29.9 mmol) in 1,4-dioxane (25 mL) was added 4M hydrochloric acid in 1,4-dioxane (40 mL). The resulting mixture was stirred at room temperature for 1 h, then concentrated in vacuo. The residue was dissolved in water (500 mL) and washed with EtOAc (2×300 mL). The aqueous layer was basified to pH 9 with 2N aqueous sodium hydroxide solution, which resulted in precipitation of a solid. EtOAc (500 mL) was added and the mixture was stirred until all solids had dissolved. The residue was partitioned, then the aqueous layer was further extracted with EtOAc (500 mL). The combined organic layers were dried over Na 2SO and filtered, then concentrated in vacuo and dried overnight under high vacuum. The foamy residue was suspended in a mixture of diethyl ether and hexane (150 mL), then stirred and shaken vigorously, before being concentrated in vacuo, to afford the title compound (12.4 g, 83%) as a white amorphous solid. δ (400 MHz, DMSO-d 6) 9.05 (s, 2H), 8.32-8.22 (m, 1H), 7.91-7.66 (m, 3H), 7.62 (dd, J8.5, 1.8 Hz, 1H), 7.53-7.46 (m, 2H), 6.31 (d, J7.1 Hz, 1H), 5.26 (d, J 7.2 Hz, 1H), 3.52 (dt, J 14.2, 7.3 Hz, 1H), 3.36 (s, 3H), 2.84 (d, J 13.8 Hz, 1H), 2.63 (dtd, J11.5, 5.6, 2.5 Hz, 2H), 2.38 (s, 2H), 2.16-2.05 (m, 2H), 2.04-1.91 (m, 1H), 1.87-1.73 (m, 1H). LCMS (ES+APCI) [M-NH 2− 486.0, RT 1.66 minutes (Method 2). LCMS (ES+) [M+H] 503.0, RT 1.71 minutes (Method 1).

PAT

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2025008402&_cid=P22-MK3EWF-57090-1

 (7R,14R)-1 l-[2-(l-aminocyclobutyl)pyrimidin-5-yl]-l-(difhroromethoxy)-6-methyl-6,7-dihydro-7, 14-methanobenzimidazo[l,2-b][2,5]benzodiazocin-5(14H)-one.

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

References

  1.  Vugler A, O’Connell J, Nguyen MA, Weitz D, Leeuw T, Hickford E, et al. (2022). “An orally available small molecule that targets soluble TNF to deliver anti-TNF biologic-like efficacy in rheumatoid arthritis”Frontiers in Pharmacology13 1037983. doi:10.3389/fphar.2022.1037983PMC 9709720PMID 36467083.
  2.  Li Y, Ye R, Dai H, Lin J, Cheng Y, Zhou Y, et al. (January 2025). “Exploring TNFR1: from discovery to targeted therapy development”Journal of Translational Medicine23 (1): 71. doi:10.1186/s12967-025-06122-0PMC 11734553PMID 39815286.
Identifiers
IUPAC name
CAS Number2248726-53-4
PubChem CID132042903
IUPHAR/BPS13583
ChemSpider129738176
Chemical and physical data
FormulaC27H24F2N6O2
Molar mass502.526 g·mol−1
3D model (JSmol)Interactive image
SMILES
InChI

//////////Balinatunfib, tumor necrosis factor (TNF) signaling inhibitor, SAR441566, SAR 441566, PLY98MAN4C

Amogammadex


Amogammadex

CAS 1309580-40-2

MF C88H136N8O56S8 MW2458.56

(2R)-2-acetamido-3-[[(1S,3S,5S,6S,8S,10S,11S,13S,15S,16S,18S,20S,21S,23S,25S,26S,28S,30S,31S,33S,35S,36S,38S,40S,41R,42R,43R,44R,45R,46R,47R,48R,49R,50R,51R,52R,53R,54R,55R,56R)-10,15,20,25,30,35,40-heptakis[[(2R)-2-acetamido-2-carboxyethyl]sulfanylmethyl]-41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56-hexadecahydroxy-2,4,7,9,12,14,17,19,22,24,27,29,32,34,37,39-hexadecaoxanonacyclo[36.2.2.23,6.28,11.213,16.218,21.223,26.228,31.233,36]hexapentacontan-5-yl]methylsulfanyl]propanoic acid

L-CYSTEINE, S,S’,S”,S”’,S””,S”””,S”””,S”””’-(6A,6B,6C,6D,6E,6F,6G,6H-OCTADEOXY-.GAMMA.-CYCLODEXTRIN-6A,6B,6C,6D,6E,6F,6G,6H-OCTAYL)OCTAKIS(N-ACETYL-
AMOGAMMADEX [INN]
CYCLOOCTAKIS-(1->4)-(6-S-((2R)-2-ACETAMIDO-2-CARBOXYETHYL)-6-THIO-.ALPHA.-D-GLUCOPYRANOSYL)

cyclooctakis-(1→4)-{6-S-[(2R)-2-acetamido-2-carboxyethyl]-6-thio-α-Dglucopyranosyl}
rocuronium and vecuronium reversal agent, L-CYSTEINE, S,S’,S”,S”’,S””,S”””,S”””,S”””’-(6A,6B,6C,6D,6E,6F,6G,6H-OCTADEOXY-.GAMMA.-CYCLODEXTRIN-6A,6B,6C,6D,6E,6F,6G,6H-OCTAYL)OCTAKIS(N-ACETYL-
AMOGAMMADEX [INN]
CYCLOOCTAKIS-(1->4)-(6-S-((2R)-2-ACETAMIDO-2-CARBOXYETHYL)-6-THIO-.ALPHA.-D-GLUCOPYRANOSYL)

Pat

WO2012068981

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012068981&_cid=P21-MJW9RG-10499-1

CD-8

Weigh 23.7 g (0.088 mol) of N-acetylcysteine ​​and measure 160 ml of dry DMF. Add both to a dry three-necked flask and stir until completely dissolved. Cool the reaction solution to approximately -10°C in a constant temperature bath. Slowly add 8.81 g of sodium hydride (60%) in portions under argon protection and mechanical stirring, maintaining the temperature below -5°C. After the addition is complete, continue stirring until no more bubbles emerge, then transfer the solution to approximately 5°C and react until no more bubbles emerge (approximately 2-3 hours).

With the temperature controlled at approximately 5°C in an ice bath, add 8.38 g (3.85 mmol) of DMF solution of 6-per-deoxy-6-per-iodo-γ-cyclodextrin to the reaction solution of the fully reacted N-acetylcysteine ​​sodium salt. Under argon protection, mechanically stir to ensure homogeneity and continue stirring for 30 min. Gradually raise the temperature of the reaction solution to 70°C and react for 12 h. Then cool the reaction solution to room temperature, filter, wash the filter cake twice with DMF, and then wash with acetone until triphenylphosphine and triphenyloxyphosphine are removed. Dry under reduced pressure to obtain crude sodium salt. Dissolve the crude sodium salt in glacial acetic acid, and then pass dry hydrogen chloride gas into the solution under ice bath cooling. A white solid precipitates after 20 min. Filter after no more white solid precipitates (approximately 1 h). Dry acetone was gradually added to the filtrate, and a solid precipitated out. The mixture was filtered, and the filter cake was washed with acetone until there was no sour taste. The cake was dried under reduced pressure to obtain 6-per-deoxy-6-per-(N-acetylglycine methyl)thioether-γ-cyclodextrin (CD-8) with a yield of 48%.

Ή NMR spectra of CD-8 in heavy water (D2O ) : 52.02 (CH3,m,3H), 2.69,2.44 (CH2,m,2H), 3.02 (CH,m,H), 3.06,2.81 (CH2,m,2H), 3.73 (2CH,m,2H), 4.19 (CH,m,H), 4.74 (CH,m,H), 5.03 (CH,s,H) ppm.

PAT

CN102060941 

https://patentscope.wipo.int/search/en/detail.jsf?docId=CN84636898&_cid=P21-MJW9XY-15988-1

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

////////amogammadex

Aleniglipron


Aleniglipron

CAS 2685823-26-9

MF C49H55FN9O6P MW916.0 g/mol

3-[(1S,2S)-1-[2-[(4S)-3-[3-[4-diethylphosphoryl-3-(methylamino)phenyl]-2-oxoimidazol-1-yl]-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-6,7-dihydro-4H-pyrazolo[4,3-c]pyridine-5-carbonyl]-5-(oxan-4-yl)indol-1-yl]-2-methylcyclopropyl]-4H-1,2,4-oxadiazol-5-one

glucagon-like peptide 1 (GLP-1) receptor agonist, GSBR-1290, GSBR 1290, Z6XCL6R9SX

Aleniglipron (development code GSBR-1290) is a small-molecule GLP-1 agonist developed by Structure Therapeutics.[1] It is delivered orally and is in a Phase II trial as of 2023.[2][3][4] In June 2024, Structure Therapeutics reported positive topline data from a Phase 2a obesity study in which GSBR-1290 demonstrated clinically meaningful and statistically significant placebo-adjusted mean weight loss and generally favorable safety and tolerability results.[5]

  • Aleniglipron Phase 2 Body Composition StudyCTID: NCT07169942Phase: Phase 2Status: Active, not recruitingDate: 2025-10-31
  • A Dose-Range Study of Aleniglipron (GSBR-1290) in Participants Living With Obesity or Overweight With at Least One Weight-related ComorbidityCTID: NCT06703021Phase: Phase 2Status: Active, not recruitingDate: 2025-09-15
  • A Phase 2b, Dose-range Finding Study of the Efficacy and Safety of Multiple Doses of Aleniglipron (GSBR-1290) in Participants Living With Obesity or Overweight With at Least One Weight-related ComorbidityCTID: NCT06693843Phase: Phase 2Status: Active, not recruitingDate: 2025-08-26

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=US367934715&_cid=P10-MJRZ0C-74156-1

Example 2: Synthesis of

3-((1S,2S)-1-(2-((S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridine-5-carbonyl)-5-(tetrahydro-2H-pyran-4-yl)-1H-indol-1-yl)-2-methylcyclopropyl)-1,2,4-oxadiazol-5(4H)-one (Compound 121a)

Step A: (4-bromo-2-fluorophenyl)diethylphosphine oxide

      The mixture of 4-bromo-2-fluoro-1-iodobenzene (2.00 g, 6.60 mmol), diethylphosphine oxide (775 mg, 7.30 mmol), Pd 2(dba) (302 mg, 0.330 mmol) and XantPhos (382 mg, 0.660 mmol) in 40 mL of 1,4-dioxane was sparged with argon. Then triethylamine (1.30 g, 13.2 mmol) was added. The mixture was heated at 60° C. for 12 h under an atmosphere of argon. LCMS showed the reaction was completed. The mixture was concentrated, and the residue was diluted with ethyl acetate (100 mL) and washed with water (50 mL). The organic layer was dried and concentrated. The residue was purified with silica gel column chromatography (PE/EA/methanol=1:2:0.1) to provide (4-bromo-2-fluorophenyl)diethylphosphine oxide (1.50 g, 5.37 mmol, 80.6% yield) as a pale white solid.
      LCMS: m/z=279.0, 281.0 (M+H) +.
       1H NMR (400 MHz, DMSO-d 6) δ 7.63-7.73 (m, 3H), 1.95-2.08 (m, 2H), 1.80-1.92 (m, 2H), 0.80-1.10 (m, 6H).

Step B: (4-bromo-2-(methylamino)phenyl)diethylphosphine oxide

      To a mixture of (4-bromo-2-fluorophenyl)diethylphosphine oxide (360 mg, 1.29 mmol) in 2 mL of methanol was added methylamine (9.8 M in methanol, 4 mL, 39.2 mmol). The mixture was heated at 80° C. for 3 h in a microwave reactor. LCMS showed most of the starting material was consumed. The mixture was concentrated, diluted with ethyl acetate (50 mL), and washed with water (30 mL). The organic layer was dried and concentrated. The resulting residue was purified with silica gel column chromatography (PE/EA/methanol=1:2:0.1) to provide (4-bromo-2-(methylamino)phenyl)diethylphosphine oxide (179 mg, 0.617 mmol, 47.9% yield) as a white solid.
      LCMS: m/z=290.0, 292.0 (M+H) +.
       1H NMR (600 MHz, DMSO-d 6) δ 7.75-7.76 (m, 1H), 7.11 (dd, J=13.2, 8.4 Hz, 1H), 6.63-6.80 (m, 2H), 2.71 (d, J=5.4 Hz, 3H), 1.88-1.94 (m, 4H), 0.90-1.05 (m, 6H).

Step C: tert-butyl (S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-2,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxylate

      The mixture of (4-bromo-2-(methylamino)phenyl)diethylphosphine oxide (310 mg, 1.07 mmol), tert-butyl (S)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-3-(2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxylate (428 mg, 0.970 mmol), CuI (278 mg, 1.46 mmol), potassium carbonate (268 mg, 1.94 mmol), and (1S,2S)—N 1,N 2-dimethylcyclohexane-1,2-diamine (208 mg, 1.46 mmol) in NMP (25 mL) was heated at 130° C. for 3 h under an atmosphere of argon. LCMS showed the reaction was completed. The mixture was added ethyl acetate (100 mL) and washed with water (50 mL*3). The organic layer was dried and concentrated. The residue was purified with silica gel column chromatography (PE/EA/methanol=1:4:0.3) to provide tert-butyl (5)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-2,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxylate (530 mg, 0.810 mmol, 84.0% yield) as a pale yellow solid. LCMS: m/z=651.3 (M+H) +.
       1H NMR (600 MHz, DMSO-d 6) δ 7.73 (q, J=4.8 Hz, 1H), 7.35 (d, J=3.0 Hz, 1H), 7.26 (dd, J=13.2, 8.4 Hz, 1H), 7.11 (d, J=6.6 Hz, 2H), 6.98 (s, 1H), 6.89 (d, J=7.8 Hz, 1H), 6.86 (s, 1H), 5.12 (br. s, 1H), 4.13-4.34 (m, 1H), 3.02-3.19 (m, 1H), 2.69-2.74 (m, 4H), 2.61-2.69 (m, 1H), 2.19 (s, 6H), 1.89-1.95 (m, 4H), 1.43 (s, 9H), 1.17-1.18 (m, 3H), 0.95-1.05 (m, 6H).

Step D: (5)-1-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-3-(2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridin-3-yl)-1,3-dihydro-2H-imidazol-2-one hydrochloride

      To a mixture of tert-butyl (S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-2,4,6,7-tetrahydro-5H-pyrazolo[4,3-c]pyridine-5-carboxylate (520 mg, 0.800 mmol) in 1,4-dioxane (6 mL) was added hydrogen chloride (4 M in 1,4-dioxane, 12 mL, 48.0 mmol).
      The mixture was stirred at room temperature for 3 h. LCMS showed the reaction was completed. The mixture was concentrated, and the residue was dispersed in 40 mL of ethyl ether. The resulting solid was collected and dried in vacuo to provide (S)-1-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-3-(2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridin-3-yl)-1,3-dihydro-2H-imidazol-2-one hydrochloride (430 mg, 0.730 mmol, 91.7% yield) as a pale yellow solid.
      LCMS: m/z=551.2 (M+H) +.
       1H NMR (400 MHz, DMSO-d 6) δ 10.14 (s, 1H), 9.46-9.53 (m, 1H), 7.39 (d, J=3.2 Hz, 1H), 7.27 (dd, J=12.8, 8.4 Hz, 1H), 7.13 (d, J=6.4 Hz, 2H), 6.93 (d, J=3.2 Hz, 1H), 6.90 (dt, J=8.4, 2.0 Hz, 1H), 6.86-6.87 (m, 1H), 4.55-4.59 (m, 2H), 3.58-3.62 (m, 1H), 3.28-3.33 (m, 1H), 3.03-3.10 (m, 1H), 2.90-3.05 (m, 1H), 2.73 (s, 3H), 2.20 (d, J=2.0 Hz, 6H), 1.88-1.97 (m, 4H), 1.36 (d, J=6.8 Hz, 3H), 0.90-1.05 (m, 6H).

Step E: 3-((1S,2S)-1-(2-((S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino) phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridine-5-carbonyl)-5-(tetrahydro-2H-pyran-4-yl)-1H-indol-1-yl)-2-methylcyclopropyl)-1,2,4-oxadiazol-5(4H)-one

      To a mixture of 1-((1S,2S)-2-methyl-1-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)cyclopropyl)-5-(tetrahydro-2H-pyran-4-yl)-1H-indole-2-carboxylic acid (272 mg, 0.710 mmol) and DMF (7 mL) in a 50 mL flask (flask A) were added HATU (810 mg, 2.13 mmol) and triethylamine (1.45 g, 14.3 mmol). The mixture was stirred at room temperature for 10 mins. In another 50 mL flask (flask B), (5)-1-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-3-(2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridin-3-yl)-1,3-dihydro-2H-imidazol-2-one hydrochloride (420 mg, 0.710 mmol) and triethylamine (2.90 g, 28.7 mmol) in 7 mL of DMF was stirred at room temperature for 10 mins. Then the mixture in flask B was added into flask A dropwise. The resulting mixture was stirred at room temperature for 12 h. LCMS showed most of the starting material was consumed. The mixture was diluted with DCM (100 mL) and washed with water (50 mL*3). The organic layer was dried and concentrated. The residue was purified with Prep-HPLC (0.01% hydrochloric acid in water and acetonitrile) to provide 3-((1S,2S)-1-(2-((S)-3-(3-(4-(diethylphosphoryl)-3-(methylamino)phenyl)-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2-(4-fluoro-3,5-dimethylphenyl)-4-methyl-4,5,6,7-tetrahydro-2H-pyrazolo[4,3-c]pyridine-5-carbonyl)-5-(tetrahydro-2H-pyran-4-yl)-1H-indol-1-yl)-2-methylcyclopropyl)-1,2,4-oxadiazol-5 (4H)-one (290 mg) as a white solid.
      LCMS: m/z=916.4 (M+H) +.
       1H NMR (400 MHz, DMSO-d 6, 80° C.) δ 11.58 (br. s, 1H), 7.66 (br. s, 1H), 7.52 (s, 1H), 7.42 (d, J=8.4 Hz, 1H), 7.05-7.30 (m, 5H), 6.70-6.95 (m, 4H), 5.56 (br. s, 1H), 4.45 (br. s, 1H), 3.95-3.99 (m, 2H), 3.40-3.70 (m, 3H), 2.83-2.90 (m, 3H), 2.60-2.80 (m, 3H), 2.22 (d, J=1.6 Hz, 6H), 1.88-1.96 (m, 4H), 1.58-1.80 (m, 7H), 1.43 (br. s, 3H), 1.17 (br. s, 3H), 0.95-1.10 (m, 6H).

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

References

  1.  Mao, Ting; Meng, Qinghua; Zhang, Haizhen; Zhang, Jinqiang J.; Shi, Songting; Guan, Zhibo; Jiang, Xinglong; Zhang, Fang; Lei, Hui; Lin, Xichen (20 June 2023). “760-P: Discovery of GSBR-1290, a Highly Potent, Orally Available, Novel Small Molecule GLP-1 Receptor Agonist”. Diabetes72 (Supplement_1) 760-P. doi:10.2337/db23-760-PS2CID 259430363.
  2.  “Structure Therapeutics Initiates Phase 2a Study of Oral GLP-1 agonist GSBR-1290 for the Treatment of Type 2 Diabetes and Obesity”BioSpace. 25 May 2023. Retrieved 4 November 2023.
  3.  “Structure announces positive results from oral GLP-1 receptor agonist gsbr-1290”Bariatric News. 2 October 2023. Retrieved 4 November 2023.
  4.  Satija, Bhanvi (29 September 2023). “Structure Therapeutics surges as early data from obesity pill tops expectations”Reuters. Retrieved 4 November 2023.
  5.  “Structure Therapeutics Reports Positive Topline Data from its Phase 2a Obesity Study and Capsule to Tablet PK Study for its Oral Non-Peptide Small Molecule GLP-1 Receptor Agonist GSBR-1290”BioSpace. 2024-06-03. Retrieved 2024-10-24.
Legal status
Legal statusInvestigational
Identifiers
IUPAC name
CAS Number2685823-26-9
PubChem CID164809721
DrugBankDB18551
UNIIZ6XCL6R9SX
Chemical and physical data
FormulaC49H55FN9O6P
Molar mass916.008 g·mol−1
InChI

//////////Aleniglipron, glucagon-like peptide 1 (GLP-1) receptor agonist, GSBR-1290, GSBR 1290, Z6XCL6R9SX

Zoracopan


Zoracopan

CAS 2243483-63-6

MF C31H31BrN6O3 MW 615.52

2-Azabicyclo[3.1.0]hexane-3-carboxamide, 2-[2-[3-acetyl-7-methyl-5-(2-methyl-5-pyrimidinyl)-1H-indol-1-yl]acetyl]-N-(6-bromo-3-methyl-2-pyridinyl)-5-methyl-, (1R,3S,5R)-

(1R,3S,5R)-2-{[3-acetyl-7-methyl-5-(2-methylpyrimidin5-yl)-1H-indol-1-yl]acetyl}-N-(6-bromo-3-methylpyridin2-yl)-5-methyl-2-azabicyclo[3.1.0]hexane-3-carboxamide
complement factor D inhibitor, ALXN-2080, ALXN 2080, E7799Y8LXY

Zoracopan is a selective complement factor D (CFD) inhibitor. When administered systemically (orally or intravenously), Zoracopan accumulates and is sustained-released in ocular tissues, primarily in the choroid-retinal pigment epithelium (C-RPE) and/or iridociliary body (I-CB).

Zoracopan is a small molecule drug. The usage of the INN stem ‘-copan’ in the name indicates that Zoracopan is a complement receptor antagonist/complement inhibitor. Zoracopan is under investigation in clinical trial NCT06173596 (A Study to Evaluate Potential Drug Interactions Between ALXN2080 and Itraconazole, Fluconazole & Carbamazepine in Healthy Adults). Zoracopan has a monoisotopic molecular weight of 614.16 Da.

  • Safety and Tolerability, PK, and PD Study of Single and Multiple ALXN2080 Doses in Healthy ParticipantsCTID: NCT05428696Phase: Phase 1Status: CompletedDate: 2024-06-07
  • A Study to Evaluate Potential Drug Interactions Between ALXN2080 and Itraconazole, Fluconazole & Carbamazepine in Healthy AdultsCTID: NCT06173596Phase: Phase 1Status: CompletedDate: 2024-06-20
  • A Study to Investigate the Potential Drug Interactions Between ALXN2080 and Rosuvastatin and Metformin in Healthy Adult ParticipantsCTID: NCT06160414Phase: Phase 1Status: CompletedDate: 2025-04-24

WO2024259085

WO2024137329

SYN

US11084800,

426

https://patentscope.wipo.int/search/en/detail.jsf?docId=US289331902&_cid=P10-MJJEYB-31207-1

SYN

WO2021183555

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018160889&_cid=P10-MJJEK1-12570-1

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

[1]. Ocular drug depot for complement-mediated disorders. WO2021183555A1 – Ocular drug depot for complement-mediated disorders – Google Patents.

////zoracopan, complement factor D inhibitor, ALXN-2080, ALXN 2080, E7799Y8LXY

Zerencotrep


Zerencotrep

CAS 1628287-16-0

MF C23H20ClF3N4O5, MW 524.88

7-[(4-chlorophenyl)methyl]-1-(3-hydroxypropyl)-3-methyl-8-[3-(trifluoromethoxy)phenoxy]purine-2,6-dione

7-[(4-chlorophenyl)methyl]-1-(3-hydroxypropyl)-3-
methyl-8-[3-(trifluoromethoxy)phenoxy]-3,7-dihydro1H-purine-2,6-dione
transient receptor potential channel 4 and 5 (TRPC4, TRPC5) inhibitor, Pico 145, HC 608, HMIMSYLCWQ

Pico145 (HC-608) is a remarkable inhibitor of TRPC1/4/5 channels, inhibits (-)-englerin A-activated TRPC4/TRPC5 channels, with IC50s of 0.349 and 1.3 nM in cells, and shows no effect on TRPC3, TRPC6, TRPV1, TRPV4, TRPA1, TRPM2, TRPM8.


Zerencotrep is a small molecule drug. The usage of the INN stem ‘-cotrep’ in the name indicates that Zerencotrep is a transient receptor potential canonical channel 5 (TRPC5) antagonist. Zerencotrep has a monoisotopic molecular weight of 524.11 Da.

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014143799&_cid=P22-MJF454-30876-1

The following examples 7a through 7k were prepared using the method of example 6, step 1.

Example 7a 7-(4-chlorobenzyl)-l -(3-hydroxypropyl)-3-methyl-8-(3-(trifluoromethoxy)phenoxy)-l -purine-2,6(3H,7H)-dione

The title compound was prepared using the method of example 6, step 1 and purified

preparative HPLC to give 7-(4-chlorobenzyl)-l -(3-hydroxypropyl)-3-methyl-8-(3-

(trifluoromethoxy)phenoxy)-lH-purine-2,6(3H,7H)-dione (10 mg, 17.3% yield) as white solid. lH-NMR (CD3OD) δ 7.57-7.53(t, IH), 7.46-7.44(d, 2H), 7.37-7.33(m, 4H), 7.26-7.24(d, IH), 5.49(s, 2H), 4.13-4.09(t, IH), 3.64-3.60(t, 2H), 3.42(s, 3H), 1.89-1.86(m, 2H). LCMS retention time 3.059 min; LCMS MH+ 525.

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

///////////zerencotrep, Pico 145, HC 608, HMIMSYLCWQ

Zemprocitinib


Zemprocitinib

CAS 2417414-44-7

MF C16H19N5O2S MW 345.4 g/mol

N-[3-(3,5,8,10-tetrazatricyclo[7.3.0.02,6]dodeca-1,4,6,8,11-pentaen-3-yl)-1-bicyclo[1.1.1]pentanyl]propane-1-sulfonamide

N-[3-(imidazo[4,5-d]pyrrolo[2,3-b]pyridin-1(6H)-yl)bicyclo[1.1.1]pentan-1-yl]propane-1-sulfonamide
Janus kinase inhibitor, anti-inflammatory, LNK 01001, LG6MM3RP86

Zemprocitinib (also known as LNK01001) is a selective Janus kinase (JAK) 1 inhibitor, a type of small molecule drug being developed for inflammatory and autoimmune conditions like rheumatoid arthritis, atopic dermatitis, and ankylosing spondylitis. It works by blocking the JAK1 enzyme, reducing the inflammatory signals that cause these diseases, and has shown promising results in clinical trials, with development reaching Phase 3. 

Key Aspects:

  • Drug Class: JAK1 Inhibitor.
  • Mechanism: Blocks Janus Kinase 1, a key enzyme in inflammatory pathways.
  • Developer: Initially Lynk Pharmaceuticals.
  • Potential Uses: Rheumatoid Arthritis, Atopic Dermatitis, Ankylosing Spondylitis, Psoriasis, Alopecia Areata.
  • Development Stage: Reached Phase 3 clinical trials for several indications.
  • Chemical Info: CAS: 2417414-44-7; Formula: C16H19N5O2S. 

In Summary:

Zemprocitinib is an investigational drug targeting inflammation by inhibiting JAK1, with potential to treat various autoimmune disorders, showing strong efficacy in early clinical trials for conditions like rheumatoid arthritis. 

SYN

US20220009927

https://patentscope.wipo.int/search/en/detail.jsf?docId=US347660217&_cid=P21-MJDP3D-82397-1

Example 1

Step 1. 4-Chloro-1-tosyl-1H-pyrrolo[2,3-b]pyridine (1b)

      Compound 1a (30 g, 0.2 mol) and TsCl (45 g, 0.24 mol) were dissolved in a mixture of acetone and water (600 mL, V:V=5:1) followed by the addition of NaOH (11.8 g, 0.29 mmol) at 0° C. After stirring at RT for 1 h, the mixture was concentrated to 100 mL of solvent and cooled with ice-water. The formed solid was filtered and dried to afford title product as a white solid (52 g, 86% yield). 1H NMR (400 MHz, CDCl 3) δ 8.30 (d, J=5.6 Hz, 1H), 8.05 (d, J=8.4 Hz, 2H), 7.76 (d, J=4.0 Hz, 1H), 7.27 (d, J=8.4 Hz, 2H), 7.18 (d, J=5.2 Hz, 1H), 6.69 (d, J=4.0 Hz, 1H), 2.37 (s, 3H).

Step 2. 4-Chloro-5-nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridine (1c)

      To a mixture of compound 1b (5.0 g, 16.3 mmol) and 75 mL of DCM was added tetrabutylammonium nitrate (2.9 g, 21.3 mmol) portion-wise at 0° C. followed by trifluoroacetic anhydride (3.14 mL, 22.2 mmol) slowly. After stirring for 16 hrs at RT, another portion of tetrabutylammonium nitrate (0.58 g, 4.23 mmol) and trifluoroacetic anhydride (0.8 mL, 5.7 mmol) were added at 0° C. After warmed up to room temperature, the reaction mixture was stirred for 4 hrs at RT. The reaction mixture was diluted with DCM (150 mL), washed with water (30 mL×2) and then concentrated to dryness. The residue was triturated in MeOH to afford title product as a white solid (3.15 g, 55% yield). LC-MS (Method 2): t R=1.76 min, m/z (M+H) +=351.8.

Step 3. Tert-butyl 3-((5-nitro-1-tosyl-1H-pyrrolo[2,3-b]pyridin-4-yl)amino)bicyclo[1.1.1]pentane-1-carboxylate (Id)

      Compound 1c (500 mg, 1.42 mmol), tert-butyl 3-aminobicyclo[1.1.1]pentane-1-carboxylate (313 mg, 1.71 mmol) and DIPEA (276 mg, 2.13 mmol) were dissolved in isopropanol (5 mL). The above solution was stirred at 120° C. for 2 hrs. After cooling, the formed solid was collected by filtering and dried to afford the title product as a brown solid (612 mg, 86% yield). 1H NMR (400 MHz, CDCl 3) δ 9.28 (s, 1H), 9.11 (s, 1H), 8.07 (d, J=8.0 Hz, 2H), 7.64 (d, J=5.6 Hz, 1H), 7.30 (d, J=8.0 Hz, 2H), 6.96 (d, J=5.6 Hz, 1H), 2.48 (s, 6H), 2.40 (s, 3H), 1.47 (s, 9H).

Step 4. Tert-butyl 3-((5-amino-1-tosyl-1H-pyrrolo[2,3-b]pyridin-4-yl)amino)bicyclo[1.1.1]pentane-1-carboxylate (le)

      Compound 1d (600 mg, 1.22 mmol) was dissolved in MeOH (6 mL) followed by the addition of Pd/C (48 mg, 10% wt) in one portion. The mixture was hydrogenated (1 atm) at RT for 16 hrs. The mixture was filtered and the filtrate was concentrated. The residue was purified by prep. TLC (PE:EtOAc=1:1) to afford the title product as a white solid (258 mg, 46% yield). LC-MS (Method 2): t R=1.64 min, m/z (M+H) +=469.0.

Step 5. Tert-butyl 3-(6-tosylimidazo[4,5-d]pyrrolo[2,3-b]pyridin-1(6H)-yl)bicyclo[1.1.1]pentane-1-carboxylate (1f)

      Compound 1e (258 mg, 0.55 mmol), triethyl orthoformate (204 mg, 1.37 mmol) and p-toluenesulfonic acid (10 mg, 0.05 mmol) were dissolved in toluene (6 mL). The mixture was stirred for 16 hrs at 120° C. After cooling, the mixture was concentrated to dryness. The residue was purified by chromatography on silica gel (elute: PE:EtOAc=1:1) to afford the title product as a brown solid (191 mg, 73% yield). 1H NMR (400 MHz, CDCl 3) δ 8.91 (s, 1H), 8.10 (d, J=8.0 Hz, 2H), 7.82 (d, J=8.0 Hz, 2H), 7.27-7.25 (m, 2H), 6.83 (d, J=4.4 Hz, 1H), 2.71 (s, 6H), 2.35 (s, 3H), 1.51 (s, 9H).

Step 6. 3-(6-Tosylimidazo[4,5-d]pyrrolo[2,3-b]pyridin-1(6LF)-yl)bicyclo[1.1.1]pentane-1-carboxylic acid (1g)

      To a solution of compound 1f (191 mg, 0.40 mmol) in DCM (2 mL) was added TFA (1 mL). After stirring for 16 hrs at RT, the mixture was concentrated to dryness to afford crude title product as a brown solid (170 mg, 100% yield). LC-MS (Method 2): t R=1.47 min, m/z (M+H) +=423.0

Step 7. Tert-butyl (3-(6-tosylimidazo[4,5-d]pyrrolo[2,3-b]pyridin-1(6LF)-yl)bicyclo[1.1.1]pentan-1-yl)carbamate (1h)

      To a mixture of compound 1g (153 mg, 0.36 mmol) in tert-butanol (7.2 mL) was added DPPA (130 mg, 0.47 mmol) and TEA (73 mg, 0.72 mmol) under N 2. The mixture was stirred at RT for 30 minutes and then raised to 90° C. and stirred for another 16 hrs. After cooling, the mixture was concentrated to dryness. The residue was purified by chromatography on silica gel (elute: DCM:MeOH=50:1) to afford the title product as a brown solid (160 mg, 89% yield). LC-MS (Method 2): t R=1.71 min, m/z (M+H) +=494.0.

Step 8. Tert-butyl (3-(imidazo[4,5-d]pyrrolo[2,3-b]pyridin-1(6H)-yl)bicyclo[1.1.1]pentan-1-yl)carbamate (1i)

      To a solution of compound 1h (160 mg, 0.32 mmol) in MeOH (3 mL) and water (3 mL) was added NaOH (300 mg, 7.5 mmol). After stirring for 4 hrs at RT, the mixture was concentrated. The residue was diluted with water (20 mL) and extracted with EtOAc (30 mL*2). The combined organic layers were concentrated to dryness and the residue was purified by chromatography on silica gel (elute: DCM:MeOH=20:1) to afford the title product as a white solid (60 mg, 55% yield). 1H NMR (400 MHz, CDCl 3) δ 9.99 (s, 1H), 9.81 (s, 1H), 7.80 (s, 1H), 7.39 (d, J=4.4 Hz, 1H), 6.36 (d, J=4.4 Hz, 1H), 5.30 (br s, 1H), 2.80 (s, 6H), 1.50 (s, 9H).

Step 9. 3-(Imidazo[4,5-d]pyrrolo[2,3-b]pyridin-1(6H)-yl)bicyclo[1.1.1]pentan-1-amine 2,2,2-trifluoroacetate (1j)

      To a solution of compound 1i (60 mg, 0.18 mmol) in DCM (2 mL) was added TFA (0.5 mL). After stirring for 1 hour at RT, the mixture was concentrated to dryness to afford crude title product as a brown solid (100 mg, 100% yield). LC-MS (Method 2): t R=0.309 min, m/z (M+H) +=240.0

Step 10. N-(3-(Imidazo[4,5-d]pyrrolo[2,3-b]pyridin-1(6H)-yl)bicyclo[1.1.1]pentan-1-yl)propane-1-sulfonamide (1)

      To a solution of compound 1j (40 mg, 0.16 mmol) and TEA (51 mg, 50 mmol) in DMF (1 mL) was added propane-1-sulfonyl chloride (28 mg, 0.5 mmol) at 0° C. After stirring for 3 hrs at RT, the mixture was diluted with water (20 mL) and extracted with EtOAc (20 mL*3). The combined organic layers were concentrated to dryness. The residue was purified prep. HPLC (Method A) to afford the title product as a white solid (10 mg, 18% yield). LC-MS (Method 1): t R=2.71 min, m/z (M+H) +=346.0. 1H NMR (400 MHz, DMSO-d 6) δ 11.94 (s, 1H), 8.59 (d, J=1.6 Hz, 1H), 8.40 (s, 1H), 8.13 (s, 1H), 7.51 (s, 1H), 6.70 (d, J=1.6 Hz, 1H), 3.08 (d, J=8.8 Hz, 2H), 2.70 (s, 6H), 1.74-1.72 (m, 2H), 1.73 (d, J=6.0 Hz, 3H).

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

///////////Zemprocitinib, Janus kinase inhibitor, anti-inflammatory, LNK 01001, LG6MM3RP86

Zavolosotine


Zavolosotine

CAS 2604416-66-0

MF C20H18F5N5O MW439.38

4-[(3S)-3-aminopyrrolidin-1-yl]-6-cyano-5-(3,5-difluorophenyl)-N-[(2S)-1,1,1-trifluoropropan-2-yl]pyridine-3-carboxamide

4-[(3S)-3-aminopyrrolidin-1-yl]-6-cyano-5-(3,5-difluorophenyl)-N-[(2S)-1,1,1-trifluoropropan-2-yl]pyridine-3-carboxamide

4-[(3S)-3-aminopyrrolidin-1-yl]-6-cyano-5-(3,5-difluorophenyl)- N-[(2S)-1,1,1-trifluoropropan-2-yl]pyridine3-carboxamide
somatostatin receptor agonist, 275EAX4XXX

Zavolosotine (Compound 1) is an orally active agonist for somatostatin receptor type 5 (SST5) with EC50 <1 nM. Zavolosotine inhibits insulin and glucagon secretion, increases levels of glucagon in blood in rat model.

SYN

WO2022177988

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2022177988&_cid=P20-MJ9E0I-92373-1

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=US318018214&_cid=P20-MJ9DV5-88499-1

Example 4. 4-[(3S)-3-aminopyrrolidin-1-yl]-6-cyano-5-(3,5-difluorophenyl)-N-[(2S)-1,1,1-trifluoropropan-2-yl]pyridine-3-carboxamide (Compound 1-71)

Step 4-1, preparation of tert-butyl (S)-(1-(2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate: to a DMF (70 mL) solution was added 4,6-dichloronicotinaldehyde (6.8 g, 1.0 Eq, 39 mmol), tert-butyl (S)-pyrrolidin-3-ylcarbamate (7.6 g, 1.1 Eq, 41 mmol) and TEA (16 mL, 3.1 Eq, 120 mmol). The resulting mixture was stirred at 50° C. for 4 hours. The reaction crude was quenched with water (100 mL) and extracted with ethyl acetate (3×40 mL). The organic layers were combined, washed with brine, dried and concentrated under vacuum. The remaining residue was purified by silica gel chromatography eluting with ethyl acetate/petroleum ether (1/3) to afford tert-butyl (S)-(1-(2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (5.3 g, 42%) as a yellow solid. MS (M+H) +=326.2.
      Step 4-2, preparation of tert-butyl (S)-(1-(3-bromo-2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate: to an AcOH (60 mL) solution of tert-butyl (S)-(1-(2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (5.3 g, 1.0 Eq, 16 mmol) was added NBS (3.1 g, 1.1 Eq, 17 mmol) at 10° C. The resulting mixture was stirred at the same temperature for 1 hour. The reaction mixture was quenched with saturated NaHCO and extracted with ethyl acetate (3×40 mL). The organic layers were combined, washed with brine, dried and concentrated under vacuum. The remaining residue was purified by silica gel chromatography eluting with ethyl acetate/petroleum ether (1/4) to afford tert-butyl (S)-(1-(3-bromo-2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (3.5 g, 53%) as a yellow solid. MS (M+H) +=404.1, 406.1.
      Step 4-3, preparation of tert-butyl (S)-(1-(2-chloro-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate: to a mixture of tert-butyl (S)-(1-(3-bromo-2-chloro-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (3.5 g, 1.0 Eq, 8.6 mmol), (3,5-difluorophenyl)boronic acid (0.88 Eq, 7.6 mmol, 1.2 g), Pd(DtBPF)Cl (300 mg, 0.05 Eq, 0.46 mmol) and potassium phosphate (5.4 g, 2.9 Eq, 25 mmol) was added Toluene (140 mL) and water (14 mL) under atmospheric nitrogen. The resulting mixture was stirred at 40° C. for 2 hours. The reaction crude was concentrated under reduced pressure and the remaining residue was purified by silica gel column chromatography eluting with petroleum ether/EtOAc (3:1) to afford tert-butyl (S)-(1-(2-chloro-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (2.7 g, 71%) as a yellow solid. MS (M+H) +=438.0, 440.0.
      Step 4-4, preparation of tert-butyl (S)-(1-(2-cyano-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate: to a mixture of tert-butyl (S)-(1-(2-chloro-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (2.7 g, 1.0 Eq, 6.2 mmol), Pd 2(dba) 3.CHCl (310 mg, 0.05 Eq, 0.31 mmol), Zn(CN) (1.4 g, 1.9 Eq, 12 mmol) and (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane) (720 mg, 0.20 Eq, 1.24 mmol) was added DMF (30 mL) under atmospheric nitrogen. The resulting mixture was heated under microwave radiation conditions at 135° C. for 1 hour. The reaction crude was quenched with water (100 mL) and extracted with EtOAc (3×40 mL). Organic layers were combined, washed with brine, dried over anhydrous Na 2SO 4, filtered and concentrated under vacuum. The remaining residue was purified by silica gel chromatography eluting with petroleum ether/EtOAc (1:1) to afford tert-butyl (S)-(1-(2-cyano-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (2.2 g, 83%) as a yellow solid. MS (M+H) +=429.2.
      Step 4-5, preparation of (S)-4-(3-((tert-butoxycarbonyl)amino)pyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)nicotinic acid: to a tert-butyl alcohol solution (20 mL) of (S)-(1-(2-cyano-3-(3,5-difluorophenyl)-5-formylpyridin-4-yl)pyrrolidin-3-yl)carbamate (2.4 g, 1.0 Eq, 5.1 mmol) was added sodium dihydrogen phosphate (2.4 g, 3.0 Eq, 15 mmol) 2-methylbut-2-ene (11.0 g, 31 Eq, 157 mmol), sodium chlorite (1.0 g, 2.2 Eq, 11 mmol) and water (6.6 mL). The resulting mixture was stirred at ambient temperature for 1 hour. The reaction mixture was quenched with saturated NaHSO (50 mL) and extracted with ethyl acetate (3×40 mL). The organic layers were combined, washed with brine, dried and concentrated under vacuum to afford (S)-4-(3-((tert-butoxycarbonyl)amino)pyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)nicotinic acid (2.0 g, 88%) as a yellow solid. This material was used for next step without purification. MS (M+H) +=445.2.
      Step 4-6, preparation of tert-butyl ((S)-1-(2-cyano-3-(3,5-difluorophenyl)-5-(((S)-1,1,1-trifluoropropan-2-yl)carbamoyl)pyridin-4-yl)pyrrolidin-3-yl)carbamate: to a DMF solution (2.0 mL) of (S)-4-(3-((tert-butoxycarbonyl)amino)pyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)nicotinic acid (70 mg, 1.0 Eq, 0.16 mmol) was added (S)-1,1,1-trifluoropropan-2-amine hydrochloride (35 mg, 1.5 Eq, 0.23 mmol), N-ethyl-N-isopropylpropan-2-amine (4.4 Eq, 0.70 mmol, 0.12 mL) and HATU (60 mg, 1.0 Eq, 0.16 mmol). The resulting mixture was stirred at ambient temperature for 2 hours. The reaction crude was purified by Prep-HPLC using the following conditions: SunFire Prep C18 OBD Column, 19*150 mm 5 μm; mobile phase, Water (0.1% FA) and ACN (24.0% ACN up to 46.0% in 7 min); Total flow rate, 20 mL/min; Detector, UV 220 nm. This resulted in tert-butyl ((S)-1-(2-cyano-3-(3,5-difluorophenyl)-5-(((S)-1,1,1-trifluoropropan-2-yl)carbamoyl)pyridin-4-yl)pyrrolidin-3-yl)carbamate (45 mg, 53%) as a light yellow solid. MS (M+H) +=540.3.
      Step 4-7, preparation of 4-((S)-3-aminopyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)-N—((S)-1,1,1-trifluoropropan-2-yl)nicotinamide: to a DCM solution (2.0 mL) of tert-butyl ((S)-1-(2-cyano-3-(3,5-difluorophenyl)-5-(((S)-1,1,1-trifluoropropan-2-yl)carbamoyl)pyridin-4-yl)pyrrolidin-3-yl)carbamate (45 mg, 1.0 Eq, 0.083 mmol) was added TFA (1.0 mL). The resulting mixture was stirred at ambient temperature for 2 hours. The reaction solution was concentrated and freeze-dried under vacuum to afford the TFA salt of 4-((S)-3-aminopyrrolidin-1-yl)-6-cyano-5-(3,5-difluorophenyl)-N—((S)-1,1,1-trifluoropropan-2-yl)nicotinamide bis(2,2,2-trifluoroacetate) (40.2 mg, 72%) as a light yellow solid. MS (M+H) +=440.2.

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

[1]. FERRARA-COOK C, et al., Somatostatin receptor type 5 agonist for the treatment of hyperinsulinism. WO2022177988 .

///////////zavolosotine, somatostatin receptor agonist, 275EAX4XXX

Vicadrostat


Vicadrostat

CAS 1868065-21-7

MF C15H12ClN3O3 MW 317.73

2-chloro-4-[(6R)-6-(hydroxymethyl)-6-methyl-4-oxo-6,7-dihydropyrano[3,4-d]imidazol-3(4H)-yl]benzonitrile
aldosterone synthase inhibitor, BI 690517, AF4VW4GA3H

Vicadrostat is an aldosterone synthase inhibitor (IC50=48 nM). Vicadrostat can be used for research in kidney diseases and cardiovascular diseases

Vicadrostat (BI 690517) is an investigational drug by Boehringer Ingelheim that selectively blocks aldosterone synthase, reducing excess aldosterone linked to kidney, heart, and metabolic diseases like chronic kidney disease (CKD) and heart failure. Currently in Phase III trials (EASi-KIDNEY and EASi-HF), it’s being tested alone and with empagliflozin (an SGLT2 inhibitor) to reduce proteinuria and improve heart/kidney health, showing promise in reducing albuminuria. 

What it is

  • Type: A highly selective Aldosterone Synthase Inhibitor (ASI).
  • Mechanism: Blocks the enzyme that makes aldosterone, a hormone that causes fluid retention and damage in heart/kidney conditions. 

What it’s for

  • Conditions: Investigated for Chronic Kidney Disease (CKD) and Heart Failure with Preserved Ejection Fraction (HFpEF).
  • Goal: To reduce high aldosterone levels, organ damage, and slow disease progression, particularly in interconnected cardiovascular and renal conditions. 

How it’s being studied

  • Combination Therapy: Key trials combine vicadrostat with empagliflozin (Jardiance).
  • Promising Results: A Phase II trial showed significant reduction in urine protein (albuminuria) when combined with empagliflozin.
  • Clinical Trials: Undergoing large Phase III trials (EASi-KIDNEY and EASi-HF) to confirm its efficacy and safety. 

Key benefit

  • Offers a potential new treatment by targeting aldosterone, addressing multiple interconnected organ systems (heart, kidney, metabolism) simultaneously. 
  • OriginatorBoehringer Ingelheim
  • Class2 ring heterocyclic compounds; Alcohols; Benzonitrile; Chlorinated hydrocarbons; Imidazoles; Pyrones; Small molecules; Urologics
  • Mechanism of ActionCytochrome P-450 CYP11B2 inhibitors
  • Phase IIICardiovascular disorders; Heart failure; Hypertension; Renal failure; Type 2 diabetes mellitus
  • No development reportedDiabetic nephropathies
  • 28 Oct 2025No recent reports of development identified for phase-I development in Renal-failure(In volunteers) in Netherlands (IV)
  • 28 Oct 2025No recent reports of development identified for phase-I development in Renal-failure(In volunteers) in Netherlands (PO)
  • 08 Sep 2025Boehringer Ingelheim initiates a phase I trial (In volunteers, Combination therapy) in Germany (NCT07133399)
  • A Study to Test Whether Vicadrostat in Combination With Empagliflozin Helps People With Chronic Kidney DiseaseCTID: NCT06926660Phase: Phase 2Status: RecruitingDate: 2025-11-28
  • A Study to Test Whether Vicadrostat (BI 690517) in Combination With Empagliflozin Helps People With Heart Failure and a Weak Pumping Function of the Left Side of the HeartCTID: NCT06935370Phase: Phase 3Status: RecruitingDate: 2025-11-26
  • A Study to Test Whether Vicadrostat in Combination With Empagliflozin Helps People With Heart FailureCTID: NCT06424288Phase: Phase 3Status: RecruitingDate: 2025-11-26
  • A Study to Test Vicadrostat (BI 690517) Taken Together With Empagliflozin in People With Type 2 Diabetes, High Blood Pressure, and Cardiovascular DiseaseCTID: NCT07064473Phase: Phase 3Status: RecruitingDate: 2025-11-26
  • A Study in Healthy Men to Compare the Amount of Vicadrostat and Empagliflozin in the Blood When Taken Separately and TogetherCTID: NCT07035457Phase: Phase 1Status: CompletedDate: 2025-08-20

SYN

compound 29 A [WO2016014736A1]

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016014736&_cid=P12-MJ3WOZ-69028-1

Example 8: Synthesis of 2-chloro-4-[(6R)-6-(hydroxymethyl)-6-methyl-4-oxo-3H,4H,6H,7H-pyrano[3,4-d]imidazol-3-yl]benzonitrile (29 enantiomer A) and 2-chloro-4-[(6S)-6-(hydroxymethyl)-6-methyl-4-oxo-3H,4H,6H,7H-pyrano[3,4-d]imidazol-3-yl]benzonitrile (29 enantiomer B)

29 enan

A mixture of 0.50 g (1.7 mmol) of I-07e and 0.56 g (2.5 mmol) of 77% m-CPBA (m-chloroperoxybenzoic acid) in 10 mL of CH2CI2 is stirred fori 6 h. EtOAc (200 mL) and 20 mL of 10% Na2S03 are added. The mixture is washed twice with 50 mL of NaHC03 and the washes are extracted with 50 mL of CH2C12. The organic extracts are combined, dried with MgS04, filtered and concentrated to give 507 mg of racemic 29 as a pale yellow solid. Chiral

chromatography of 507 mg (LUX 5u Cellulose 4, 28% EtOH:C02, 80 g/min, 120 bar, 40 °C) delivers 238 mg of 29 enantiomer A and 230 mg of 29 enantiomer B. The absolute

stereochemistry for compounds 29 A and 29 B were determined by high resolution single crystal X-ray crystallography structure determination and careful examination of the Flack parameter on the refined structures (H.D. Flack and G. Bernardinelli, 2008, Chirality, 20, 681-690).

The following compounds are prepared from the appropriate olefin I-07c and n in the same manner as 29 enantiomers A & B.

3- (3,4-dichlorophenyl)-6-(hydroxymethyl)-6-methyl-3H,4H,6H,7H-pyrano[3,4- d]imidazol-4-one (30 enantiomers A & B) from I-07c.(RegisPack, 25% (EtOH + 1% iPrNH2):C02, 80 mL/min, 100 bar, 25 °C)

4- [6-(hydroxymethyl)-6-methyl-4-oxo-3H,4H,6H,7H-pyrano[3,4-d]imidazol-3-yl]-3- methylbenzonitrile (31 enantiomers A & B) from I-07n. (LUX 5u Cellulose 4, 25% EtOH:C02, 90 g/min, 120 bar, 40 °C)

SYN

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=9D1B049BBF0DDAFA23D2F0BE26189EE7.wapp1nC?docId=WO2025190858&_cid=P12-MJ3WMH-67572-1

SYN

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2025174790&_cid=P12-MJ3WOZ-69028-1

PAT

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

[1]. Jennifer Burke, et al. Aldosterone synthase inhibitors.WO2016014736.2018-09-07

//////////vicadrostat, aldosterone synthase inhibitor, BI 690517, AF4VW4GA3H

Varegacestat


Varegacestat

CAS 1584647-27-7

MF C26H25F7N4O3 MW574.5

(2R,3S)-N1-[(3S)-5-(3-fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-1H1,4-benzodiazepin-3-yl]-2,3-bis(3,3,3-trifluoropropyl)butanediamide

(2R,3S)-N1-((3S)-5-(3-FLUOROPHENYL)-2,3-DIHYDRO-9-METHYL-2-OXO-1H-1,4-BENZODIAZEPIN-3-YL)-2,3-BIS(3,3,3-TRIFLUOROPHENYL)BUTANEDIAMIDE
(2R,3S)-N1-((3S)-5-(3-FLUOROPHENYL)-9-METHYL-2-OXO-2,3-DIHYDRO-1H-1,4-BENZODIAZEPIN-3-YL)-2,3-BIS(3,3,3-TRIFLUOROPHENYL)BUTANEDIAMIDE
gamma-secretase inhibitor, antineoplastic, AL102, BMS 986115, LSK1L593UU, AL 102

BMS-986115 has been used in trials studying the treatment of Various Advanced Cancer.

Varegacestat is an orally bioavailable, gamma secretase (GS) and pan-Notch inhibitor, with potential antineoplastic activity. Upon administration, varegacestat binds to GS and blocks the proteolytic cleavage and release of the Notch intracellular domain (NICD), which would normally follow ligand binding to the extracellular domain of the Notch receptor. This prevents both the subsequent translocation of NICD to the nucleus to form a transcription factor complex and the expression of Notch-regulated genes. This results in the induction of apoptosis and the inhibition of growth of tumor cells that overexpress Notch. Overexpression of the Notch signaling pathway plays an important role in tumor cell proliferation and survival. The integral membrane protein GS is a multi-subunit protease complex that cleaves single-pass transmembrane proteins, such as Notch receptors, at residues within their transmembrane domains and leads to their activation

AL 102 (previously known as BMS 986115), was developed as an orally active a gamma-secretase and pan-Notch inhibitor. The drug participated in phase I clinical trials in solid tumor patients. The drug was safe and well-tolerated and stabilized disease for more than six months in 14% of patients, however, Bristol-Myers Squibb terminated the study because of the changes in the business objectives. Ayala, an Israeli biotech company, licensed rights for the development of AL 102 from Bristol-Myers Squibb. In December 2018, Ayala in collaborating with Novartis decided to investigate AL102 for treatment of multiple myeloma. Ayala studied AL102, an inhibitor of the Notch pathway, in blood cancers. It is known that the pathway regulates cell-fate determination during development and maintains adult tissue balance. Cumulative evidence indicates that Notch is overactive in multiple myeloma and participates in its onset and progression.

SYN

US9273014

PATENTS

US-20150166489-A1

https://patentscope.wipo.int/search/en/detail.jsf?docId=US137591635&recNum=1&maxRec=&office=&prevFilter=&sortOption=&queryString=&tab=PCTDescription

PATENT

US-20140087992-A1

https://www.google.com/patents/US20140087992

Example 1(2R,3S)—N-((3S)-5-(3-Fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-1H-1,4-benzodiazepin-3-yl)-2,3-bis(3,3,3-trifluoropropyl)succinamide

Intermediate 1A: (2S,3R)-tert-Butyl 6,6,6-trifluoro-3-(((S)-5-(3-fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)carbamoyl)-2-(3,3,3-trifluoropropyl)hexanoate

Figure US20140087992A1-20140327-C00139

In a 100 mL round-bottomed flask, a solution of Intermediate B-1 (1683 mg, 5.94 mmol), Et3N (1.656 mL, 11.88 mmol), and Intermediate S-1 in DMF (20 mL) was treated with o-benzotriazol-1-yl-N,N,N′,N′-tetramethyluronium tetrafluoroborate (3815 mg, 11.88 mmol) and stirred at room temperature for 1 hour. The reaction mixture was diluted with water and saturated aqueous NaHCO3. An off white precipitate formed and was filtered and washed with water. The resulting solid was dried on the filter under a stream of nitrogen to give Intermediate 1A (3.7 g, 99% yield). MS (ES): m/z=632.4[M+H+]; HPLC: RT=3.635 min Purity=98%. (H2O/MeOH with TFA, CHROMOLITH® ODS S5 4.6×50 mm, gradient=4 min, wavelength=220 nm). 1H NMR (400 MHz, methanol-d4) δ 7.53 (t, J=4.5 Hz, 1H), 7.46-7.30 (m, 3H), 7.28-7.23 (m, 1H), 7.23-7.18 (m, 2H), 5.37 (s, 1H), 2.88 (td, J=10.4, 3.4Hz, 1H), 2.60 (td, J=10.2, 4.1 Hz, 1H), 2.54-2.40 (m, 1H), 2.47 (s, 3H), 2.33-2.12 (m, 3H), 1.98-1.69 (m, 4H), 1.51 (s, 9H).

Intermediate 1B: (2S,3R)-6,6,6-Trifluoro-3-(((S)-5-(3-fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-1H-benzo[e][1,4]diazepin-3-yl)carbamoyl)-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure US20140087992A1-20140327-C00140

In a 250 mL round-bottomed flask, a solution of Intermediate 1A (3.7 g, 5.86 mmol) in DCM (25 mL) was treated with TFA (25 mL) and the resulting pale orange solution was stirred at room temperature for 1.5 hours. The reaction mixture was then concentrated to give Intermediate 1B. HPLC: RT=3.12 min (H2O/MeOH with TFA, CHROMOLITH® ODS S5 4.6×50 mm, gradient=4 min, wavelength=220 nm). MS (ES): m/z=576.3 (M+H)+. 1H NMR (400 MHz, methanol-d4) δ 7.54 (t, J=4.5 Hz, 1H), 7.49-7.29 (m, 3H), 7.28-7.15 (m, 3H), 5.38 (br. s., 1H), 2.89 (td, J=10.3, 3.7 Hz, 1H), 2.67 (td, J=9.9, 4.2Hz, 1H), 2.56-2.38 (m, 1H), 2.48 (s, 3H), 2.34-2.13 (m, 3H), 2.00-1.71 (m, 4H).

Example 1

In a 250 mL round-bottomed flask, a solution of Intermediate 1B (4.04 g, 5.86 mmol) in THF (50 mL) was treated with ammonia (2M in iPrOH) (26.4 mL, 52.7 mmol), followed by HOBT (1.795 g, 11.72 mmol) and EDC (2.246 g, 11.72 mmol). The resulting white suspension was stirred at room temperature overnight. The reaction mixture was diluted with water and saturated aqueous NaHCO3. The resulting solid was filtered, rinsed with water and then dried on the filter under a stream of nitrogen. The crude product was suspended in 20 mL of iPrOH and stirred at room temperature for 20 min and then filtered and washed with iPrOH and dried under vacuum to give 2.83 g of solid. The solid was dissolved in refluxing EtOH (100 mL) and slowly treated with 200 mg activated charcoal added in small portions. The hot mixture was filtered through CELITE® and rinsed with hot EtOH. The filtrate was reduced to half volume, allowed to cool and the white precipitate formed was filtered and rinsed with EtOH to give 2.57 g of white solid. A second recrystallization from EtOH (70 mL) afforded Example 1 (2.39 g, 70% yield) as a white solid. HPLC: RT=10.859 min (H2O/CH3CN with TFA, Sunfire C18 3.5 μm, 3.0×150 mm, gradient=15 min, wavelength=220 and 254 nm); MS (ES): m/z=575.3 [M+H+]; 1H NMR (400 MHz, methanol-d4) δ 7.57-7.50 (m, 1H), 7.47-7.30 (m, 3H), 7.29-7.15 (m, 3H), 5.38 (s, 1H), 2.85-2.75 (m, 1H), 2.59 (td, J=10.5, 4.0 Hz, 1H), 2.53-2.41 (m, 4H), 2.31-2.10 (m, 3H), 1.96-1.70 (m, 4H).

PATENT

WO-2014047372-A1

https://www.google.com/patents/WO2014047372A1?cl=en

Figure imgf000041_0001
Figure imgf000042_0001

Scheme 3

Figure imgf000044_0001
Figure imgf000045_0001

XII XI

Scheme 4

Figure imgf000047_0001

Intermediate S-l : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid

Figure imgf000053_0001

Intermediate S-IA: 3,3,3-Trifluoro ropyl trifluoromethanesulfonate

Figure imgf000053_0002

[00180] To a cold (-25 °C) stirred solution of 2,6-lutidine (18.38 mL, 158 mmol) in DCM (120 mL) was added Tf20 (24.88 mL, 147 mmol) over 3 min, and the mixture was stirred for 5 min. To the reaction mixture was added 3,3,3-trifluoropropan-l-ol (12 g, 105 mmol) over an interval of 3 min. After 2 hr, the reaction mixture was warmed to room temperature and stirred for 1 hr. The reaction mixture was concentrated to half its volume, then purified by loading directly on a silica gel column (330g ISCO) and the product was eluted with DCM to afford Intermediate S-IA (13.74 g, 53%) as a colorless oil. 1H NMR (400 MHz, CDC13) δ ppm 4.71 (2 H, t, J= 6.15 Hz), 2.49-2.86 (2 H, m).

Intermediate S-1B: (4S)-4-Benzyl-3-(5,5,5-trifluoropentanoyl)-l,3-oxazolidin-2-one

Figure imgf000054_0001

[00181] To a stirring solution of 5,5,5-trifluoropentanoic acid (14.76 g, 95 mmol) and DMF (0.146 rriL) in DCM (50 mL) was slowly added oxalyl chloride (8.27 mL, 95 mmol). After 2h, the mixture was concentrated to dryness. A separate flask was changed with (S)-4-benzyloxazolidin-2-one (16.75 g, 95 mmol) in THF (100 mL) and then cooled to -78 °C. To the solution was slowly added n-BuLi (2.5M, 37.8 mL, 95 mmol) over 10 min, stirred for 10 min, and then a solution of the above acid chloride in THF (50 mL) was slowly added over 5 min. The mixture was stirred for 30 min, and then warmed to room temperature. The reaction was quenched with sat aq NH4C1. Next, 10% aq LiCl was then added to the mixture, and the mixture was extracted with Et20. The organic layer was washed with sat aq NaHC03 then with brine, dried (MgSC^), filtered and concentrated to dryness. The residue was purified by Si02 chromatography (ISCO, 330 g column, eluting with a gradient from 100% hexane to 100% EtOAc) to afford the product Intermediate S-IB; (25.25 g, 85%): 1H NMR (400 MHz, CDC13) δ ppm 7.32-7.39 (2 H, m), 7.30 (1 H, d, J= 7.05 Hz), 7.18-7.25 (2 H, m), 4.64-4.74 (1 H, m), 4.17-4.27 (2 H, m), 3.31 (1 H, dd, J= 13.35, 3.27 Hz), 3.00-3.11 (2 H, m), 2.79 (1 H, dd, J= 13.35, 9.57 Hz), 2.16-2.28 (2 H, m), 1.93-2.04 (2 H, m).

Intermediate S-IC: tert- utyl (3R)-3-(((4S)-4-benzyl-2-oxo-l,3-oxazolidin-3- yl)carbonyl)-6,6,6-trifluoroh xanoate

Figure imgf000054_0002

[00182] To a cold (-78 °C), stirred solution of Intermediate S-IB (3.03 g, 9.61 mmol) in THF (20 mL) was added NaHMDS (1.0M in THF) (10.6 mL, 10.60 mmol) under a nitrogen atmosphere. After 2 hours, tert-butyl 2-bromoacetate (5.62 g, 28.8 mmol) was added neat via syringe at -78 °C and stirring was maintained at the same temperature. After 6 hours, the reaction mixture was warmed to room temperature. The reaction mixture was partitioned between saturated NH4C1 and EtOAc. The organic phase was separated, and the aqueous phase was extracted with EtOAc (3x). The combined organics were washed with brine, dried (Na2s04), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (Teledyne ISCO

CombiFlash Rf, 5% to 100% solvent A/B = hexanes/EtOAc, REDISEP® Si02 120g). Concentration of the appropriate fractions provided Intermediate S-1C (2.79 g, 67.6%) as a colorless viscous oil: 1H NMR (400 MHz, CDC13) δ ppm 7.34 (2 H, d, J= 7.30 Hz), 7.24-7.32 (3 H, m), 4.62-4.75 (1 H, m, J= 10.17, 6.89, 3.43, 3.43 Hz), 4.15-4.25 (3 H, m), 3.35 (1 H, dd, J= 13.60, 3.27 Hz), 2.84 (1 H, dd, J= 16.62, 9.57 Hz), 2.75 (1 H, dd, J = 13.35, 10.07 Hz), 2.47 (1 H, dd, J= 16.62, 4.78 Hz), 2.11-2.23 (2 H, m), 1.90-2.02 (1 H, m), 1.72-1.84 (1 H, m), 1.44 (9 H, s).

Intermediate S-ID: (2R)-2-( -tert-Butoxy-2-oxoethyl)-5,5,5-trifluoropentanoic acid

Figure imgf000055_0001

[00183] To a cool (0 °C), stirred solution of Intermediate S-1C (2.17 g, 5.05 mmol) in THF (50 mL) and water (15 mL) was added a solution of LiOH (0.242 g, 10.11 mmol) and H202 (2.065 mL, 20.21 mmol) in H20 (2 mL). After 10 min, the reaction mixture was removed from the ice bath, stirred for lh, and then cooled to 0 °C. Saturated aqueous NaHCC”3 (25 mL) and saturated aqueous Na2s03 (25 mL) were added to the reaction mixture, and the mixture was stirred for 10 min, and then partially concentrated. The resulting mixture was extracted with DCM (2x), cooled with ice and made acidic with cone. HC1 to pH 3. The mixture was saturated with solid NaCl, extracted with EtOAc (3x), and then dried over MgS04, filtered and concentrated to a colorless oil to afford Intermediate S-ID, 1.2514g, 92%): 1H NMR (400 MHz, CDCI3) δ ppm 2.83-2.95 (1 H, m), 2.62-2.74 (1 H, m), 2.45 (1 H, dd, J= 16.62, 5.79 Hz), 2.15-2.27 (2 H, m), 1.88-2.00 (1 H, m), 1.75-1.88 (1 H, m), 1.45 (9 H, s). Intermediate S-l : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid, and Intermediate S-1E: (2R,3R)-3-(tert-butoxycarbonyl)- 6,6,6-trifluoro-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure imgf000056_0001

(S-1E)

[00184] To a cold (-78 °C) stirred solution of Intermediate S-1D (5 g, 18.50 mmol) in THF (60 mL) was slowly added LDA (22.2 mL, 44.4 mmol, 2.0M) over 7 min. After stirring for 2 hr, Intermediate S- 1 A (6.38 g, 25.9 mmol) was added to the reaction mixture over 3 min. After 60 min, the reaction mixture was warmed to -25 °C

(ice/MeOH/dry ice) and stirred for an additional 60 min at which time sat aq NH4C1 was added. The separated aqueous phase was acidified with IN HC1 to pH 3, and then extracted with Et20. The combined organic layers were washed with brine (2x), dried over MgS04, filtered and concentrated to provide a 1 :4 (II :I1E) mixture (as determined by 1H NMR) of Intermediate S-l and Intermediate S-1E (6.00 g, 89%) as a pale yellow solid. 1H NMR (500 MHz, CDC13) δ ppm 2.81 (1 H, ddd, J = 10.17, 6.32, 3.85 Hz), 2.63- 2.76 (1 H, m), 2.02-2.33 (4 H, m), 1.86-1.99 (2 H, m), 1.68-1.85 (2 H, m), 1.47 (9 H, s).

[00185] To a cold (-78 °C), stirred solution of a mixture of Intermediate S-l and Intermediate S-1E (5.97 g, 16.30 mmol) in THF (91 mL) was added LDA (19 mL, 38.0 mmol, 2.0M in THF/hexane/ethyl benzene) dropwise via syringe over 10 min (internal temperature never exceeded -65 °C, J-KEM® probe in reaction solution). The mixture was stirred for 15 min, and then warmed to room temperature (24 °C water bath), stirred for 15 min, and then cooled to -78 °C for 15 min. To the reaction mixture was added Et2AlCl (41 mL, 41.0 mmol, 1M in hexane) via syringe (internal temperature never exceeded -55 °C), and the mixture was stirred for 10 min, and then warmed to room temperature (24 °C bath) for 15 min and then back to -78 °C for 15 min. Meanwhile, a 1000 mL round bottom flask was charged with MeOH (145 mL) and precooled to -78 °C. With vigorous stirring the reaction mixture was transferred via cannula over 5 min to the MeOH. The flask was removed from the bath, ice was added followed by the slow addition of IN HC1 (147 mL, 147 mmol). Gas evolution was observed as the HC1 was added. The reaction mixture was allowed to warm to room temperature during which the gas evolution subsided. The reaction mixture was diluted with EtOAc (750 mL), saturated with NaCl, and the organic phase was separated, washed with a solution of potassium fluoride (8.52 g, 147 mmol) and IN HC1 (41 mL, 41.0 mmol) in water (291 mL), brine (100 mL), and then dried (Na2s04), filtered and concentrated under vacuum. 1H NMR showed the product was a 9: 1 mixture of Intermediate S-l and Intermediate S- 1E. The enriched mixture of Intermediate S-l and Intermediate S-1E (6.12 g, >99% yield) was obtained as a dark amber solid: 1H NMR (400 MHz, CDC13) δ ppm 2.64-2.76 (2 H, m), 2.04-2.35 (4 H, m), 1.88-2.00 (2 H, m), 1.71-1.83 (2 H, m), 1.48 (9 H, s).

Alternate procedure to make Intermediate S-l :

Intermediate S-IF: (2R,3 -1 -Benzyl 4-tert-butyl 2,3-bis(3,3,3-trifluoropropyl)succinate

Figure imgf000057_0001

[00186] To a stirred solution of a 9: 1 enriched mixture of Intermediate S-l and Intermediate S-1E (5.98 g, 16.33 mmol) in DMF (63 mL) were added potassium carbonate (4.06 g, 29.4 mmol) and benzyl bromide (2.9 mL, 24.38 mmol), the mixture was then stirred overnight at room temperature. The reaction mixture was diluted with EtOAc (1000 mL), washed with 10% LiCl (3×200 mL), brine (200 mL), dried (Na2S04), filtered, concentrated, and then dried under vacuum. The residue was purified by Si02 chromatography using a toluene:hexane gradient. Diastereomerically purified

Intermediate S-IF (4.81g, 65%) was obtained as a colorless solid: 1H NMR (400 MHz, chloroform-d) δ 7.32-7.43 (m, 5H), 5.19 (d, J= 12.10 Hz, 1H), 5.15 (d, J= 12.10 Hz, 1H), 2.71 (dt, J= 3.52, 9.20 Hz, 1H), 2.61 (dt, J= 3.63, 9.63 Hz, 1H), 1.96-2.21 (m, 4H), 1.69-1.96 (m, 3H), 1.56-1.67 (m, 1H), 1.45 (s, 9H).

Intermediate S-l : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid

Figure imgf000058_0001

[00187] To a solution of Intermediate S-1F (4.81 g, 10.54 mmol) in MeOH (100 mL) was added 10% palladium on carbon (wet, Degussa type, 568.0 mg, 0.534 mmol) in a H2– pressure flask. The vessel was purged with N2 (4x), then purged with H2 (2x), and finally, pressurized to 50 psi and shaken overnight. The reaction vessel was

depressurized and purged with nitrogen. The mixture was filtered through CELITE®, washed with MeOH and then concentrated and dried under vacuum. Intermediate S-1 (3.81 g, 99% yield)) was obtained as a colorless solid: 1H NMR (400 MHz, chloroform-d) δ 2.62-2.79 (m, 2H), 2.02-2.40 (m, 4H), 1.87-2.00 (m, 2H), 1.67-1.84 (m, 2H), 1.48 (s, 9H).

Alternate procedure to make Intermediate S-1 :

Intermediate S-1 : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid

Figure imgf000058_0002

[00188] Intermediate S-1 as a mixture with Intermediate S-IE was prepared in a similar procedure as above from Intermediate S-1D to afford a 1 :2.2 mixture of

Intermediate S-1 and Intermediate S-IE (8.60 g, 23.48 mmol), which was enriched using LDA (2.0 M solution in THF, ethyl benzene and heptane, 28.2 mL, 56.4 mmol) and diethyl aluminum chloride (1.0 M solution in hexane, 59 mL, 59.0 mmol) in THF (91 mL). After workup as described above, the resulting residue was found to be a 13.2: 1 (by 1H NMR) mixture of Intermediate S-1 and Intermediate S-IE, which was treated as follows: The crude material was dissolved in MTBE (43 mL). Hexanes (26 mL) were slowly charged to the reaction mixture while maintaining a temperature below 30 °C. The reaction mixture was stirred for 10 min. Next, tert-butylamine (2.7 mL, 1.1 eq) was charged slowly over a period of 20 minutes while maintaining a temperature below 30 °C. This addition was observed to be exothermic. The reaction mixture was stirred for 2 hrs below 30 °C and then filtered. The solid material was washed with 5:3 MTBE: hexane (80 mL), and the filtrate was concentrated and set aside. The filtered solid was dissolved in dichloromethane (300 mL), washed with IN HC1 (lOOmL), and the organic layer was washed with brine (100 mL x 2), and then concentrated under reduced pressure below 45 °C to afford Intermediate S-l (5.46 g, 64%).

A second alternate procedure for preparing Intermediate S-l :

Intermediate S-1G: tert- utyl 5,5,5-trifluoropentanoate

Figure imgf000059_0001

[00189] To a stirred solution of 5,5,5-trifluoropentanoic acid (5 g, 32.0 mmol) in THF (30 mL) and hexane (30 mL) at 0 °C, was added tert-butyl 2,2,2-trichloroacetimidate (11.46 mL, 64.1 mmol). The mixture was stirred for 15 min at 0 °C. Boron trifluoride etherate (0.406 mL, 3.20 mmol) was added and the reaction mixture was allowed to warm to room temperature overnight. To the clear reaction mixture was added solid NaHC03 (5 g) and stirred for 30 min. The mixture was filtered through MgSC^ and washed with hexanes (200 mL). The solution was allowed to rest for 45 min, and the resulting solid material was removed by filtering on the same MgSC^ filter again, washed with hexanes (100 mL) and concentrated under reduced pressure without heat. The volume was reduced to about 30 mL, filtered through a clean fritted funnel, washed with hexane (5 mL), and then concentrated under reduced pressure without heat. The resulting neat oil was filtered through a 0.45μιη nylon membrane filter disk to provide Intermediate S-1G (6.6 g, 31.4 mmol 98% yield) as a colorless oil: 1H NMR (400 MHz, CDC13) δ ppm 1.38 (s, 9 H) 1.74-1.83 (m, 2 H) 2.00-2.13 (m, 2 H) 2.24 (t, J= 7.28 Hz, 2 H). Intermediate S-1H: (4S)-4-(Propan-2-yl)-3-(5,5,5-trifluoropentanoyl)-l,3-oxazolidin-2- one

Figure imgf000060_0001

[00190] To a stirred solution of 5,5,5-trifluoropentanoic acid (5.04 g, 32.3 mmol) in DCM (50 mL) and DMF (3 drops) was added oxalyl chloride (3.4 mL, 38.8 mmol) dropwise over 5 min. The solution was stirred until all bubbling subsided. The reaction mixture was concentrated under reduced pressure to give pale yellow oil. To a separate flask charged with a solution of (4S)-4-(propan-2-yl)-l,3-oxazolidin-2-one (4.18 g, 32.4 mmol) in THF (100 mL) at -78 °C was added n-BuLi (2.5M in hexane) (13.0 mL, 32.5 mmol) dropwise via syringe over 5 min. After stirring for 10 min, the above acid chloride, dissolved in THF (20 mL), was added via cannula over 15 min. The reaction mixture was warmed to 0 °C, and was allowed to warm to room temperature as the bath warmed and stirred overnight. To the reaction mixture was added saturated NH4C1, and the mixture was extracted with EtOAc (2x). The combined organics were washed with brine, dried (Na2s04), filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography (Teledyne ISCO CombiFlash Rf, 5% to 60% solvent A/B = hexanes/EtOAc, REDISEP® Si02 120g). Concentration of the appropriate fractions provided Intermediate S-1H (7.39 g, 86%) as a colorless oil: 1H NMR (400 MHz, CDC13) δ ppm 4.44 (1 H, dt, J= 8.31, 3.53 Hz), 4.30 (1 H, t, J= 8.69 Hz), 4.23 (1 H, dd, J= 9.06, 3.02 Hz), 2.98-3.08 (2 H, m), 2.32-2.44 (1 H, m, J= 13.91, 7.02, 7.02, 4.03 Hz), 2.13-2.25 (2 H, m), 1.88-2.00 (2 H, m), 0.93 (3 H, d, J= 7.05 Hz), 0.88 (3 H, d, J= 6.80 Hz).

Intermediate S-1I: (2S,3R)-tert-Butyl 6,6,6-trifluoro-3-((S)-4-isopropyl-2- oxooxazolidine-3-carbonyl)-2-(3,3,3-trifluoropropyl)hexanoate, and Intermediate S-U: (2R,3R)-tert-Butyl 6,6,6-trifluoro-3-((S)-4-isopropyl-2-oxooxazolidine-3-carbonyl)-2- (3 ,3 ,3 -trifluoropropyl)hexanoate

Figure imgf000061_0001

[00191] To a cold (-78 °C), stirred solution of diisopropylamine (5.3 mL, 37.2 mmol) in THF (59 mL) under a nitrogen atmosphere was added n-BuLi (2.5M in hexane) (14.7 mL, 36.8 mmol). The mixture was then warmed to 0 °C to give a 0.5M solution of LDA. A separate vessel was charged with Intermediate S-1H (2.45 g, 9.17 mmol). The material was azeotroped twice with benzene (the RotoVap air inlet was fitted with a nitrogen inlet to completely exclude humidity), and then toluene (15.3 mL) was added. This solution was added to a flask containing dry lithium chloride (1.96 g, 46.2 mmol). To the resultant mixture, cooled to -78 °C, was added the LDA solution (21.0 mL, 10.5 mmol) and the mixture was stirred at -78 °C for 10 min, then warmed to 0 °C for 10 min., and then cooled to -78 °C. To a separate reaction vessel containing Intermediate S-1G (3.41 g, 16.07 mmol), also azeotroped twice with benzene, was added toluene (15.3 mL), cooled to -78 °C and LDA (37.0 mL, 18.5 mmol) was added. The resulting solution was stirred at -78 °C for 25 min. At this time the enolate derived from the ester was transferred via cannula into the solution of the oxazolidinone enolate and stirred at -78 °C for an additional 5 min, at which time the septum was removed and solid powdered bis(2- ethylhexanoyloxy)copper (9.02 g, 25.8 mmol) was rapidly added to the reaction vessel and the septum was replaced. The vessel was immediately removed from the cold bath and immersed into a warm water bath (40 °C) with rapid swirling and with a concomitant color change from the initial turquoise to brown. The reaction mixture was stirred for 20 min, was then poured into 5% aqueous NH4OH (360 mL) and extracted with EtOAc (2x). The combined organics were washed with brine, dried (Na2s04), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (Teledyne ISCO CombiFlash Rf, 0% to 60% solvent A/B = hexanes/EtOAc, REDISEP® Si02 120g). Concentration of the appropriate fractions provided a mixture of Intermediate S- II and Intermediate S-1J (2.87 g, 66%) as a pale yellow viscous oil. 1H NMR showed the product was a 1.6: 1 mixture of diastereomers S-1LS-1J as determined by the integration of the multiplets at 2.74 and 2.84 ppm: 1H NMR (400 MHz, CDC13) δ ppm 4.43-4.54 (2 H, m), 4.23-4.35 (5 H, m), 4.01 (1 H, ddd, J= 9.54, 6.27, 3.51 Hz), 2.84 (1 H, ddd, J = 9.41, 7.28, 3.64 Hz), 2.74 (1 H, ddd, J= 10.29, 6.27, 4.02 Hz), 2.37-2.48 (2 H, m, J = 10.38, 6.98, 6.98, 3.51, 3.51 Hz), 2.20-2.37 (3 H, m), 1.92-2.20 (8 H, m), 1.64-1.91 (5 H, m), 1.47 (18 H, s), 0.88-0.98 (12 H, m). Intermediate S-1 : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid, and Intermediate S-IE: (2R,3R)-3-(tert-Butoxycarbonyl)- 6,6,6-trifluoro-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure imgf000062_0001

(S-IE)

[00192] To a cool (0 °C), stirred solution of Intermediate S-1I and Intermediate S-1 J (4.54 g, 9.51 mmol) in THF (140 mL) and water (42 mL) were sequentially added hydrogen peroxide (30% in water) (10.3 g, 91 mmol) and LiOH (685.3 mg, 28.6 mmol). The mixture was stirred for 1 hr. At this time the reaction vessel was removed from the cold bath and then stirred for 1.5 hr. To the reaction mixture were added saturated NaHC03 (45 mL) and saturated Na2s03 (15 mL), and then the mixture was partially concentrated under reduced pressure. The resulting crude solution was extracted with DCM (3x). The aqueous phase was acidified to pH~l-2 with IN HC1, extracted with DCM (3x) and then EtOAc (lx). The combined organics were washed with brine, dried (Na2s04), filtered and concentrated under reduced pressure to provide a mixture of Intermediates S-1 and S-IE (3.00 g, 86%) as a colorless oil: 1H NMR (400 MHz, CDC13) δ ppm 2.76-2.84 (1 H, m, diastereomer 2), 2.64-2.76 (3 H, m), 2.04-2.35 (8 H, m), 1.88- 2.00 (4 H, m), 1.71-1.83 (4 H, m), 1.48 (9 H, s, diastereomer 1), 1.46 (9 H, s,

diastereomer 2); 1H NMR showed a 1.7: 1 mixture of S-1E:S-1F by integration of the peaks for the t-butyl groups. Intermediate S-1 : (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3,3,3- trifluoropropyl)hexanoic acid, and Intermediate S-IF: (2R,3R)-3-(fert-Butoxycarbonyl)- 6,6,6-trifluoro-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure imgf000063_0001

[00193] To a cold (-78 °C) stirred solution of diisopropylamine (1.7 mL, 11.93 mmol) in THF (19 mL) under a nitrogen atmosphere was added n-BuLi (2.5M in hexanes) (4.8 mL, 12.00 mmol). The mixture was stirred for 5 min and then warmed to 0 °C. In a separate vessel, to a cold (-78 °C) stirred solution of the mixture of Intermediates S-1 and S-1E (1.99 g, 5.43 mmol) in THF (18 mL) was added the LDA solution prepared above via cannula slowly over 25 min. The mixture was stirred for 15 min, then warmed to room temperature (placed in a 24 °C water bath) for 15 min, and then again cooled to -78 °C for 15 min. To the reaction mixture was added Et2AlCl (1M in hexane) (11.4 mL, 11.40 mmol) via syringe. The mixture was stirred for 10 min, warmed to room

temperature for 15 min and then cooled back to -78 °C for 15 min. Methanol (25 mL) was rapidly added, swirled vigorously while warming to room temperature, and then concentrated to ~l/4 the original volume. The mixture was dissolved in EtOAc and washed with IN HC1 (50 mL) and ice (75 g). The aqueous phase was separated and extracted with EtOAc (2x). The combined organics were washed with a mixture of KF (2.85g in 75 mL water) and IN HC1 (13 mL) [resulting solution pH 3-4], then with brine, dried (Na2s04), filtered and concentrated under reduced pressure to give a 9: 1 (S-LS-1E) enriched diastereomeric mixture (as determined by 1H NMR) of Intermediate S-1 and Intermediate S-1E (2.13 g, >99%) as a pale yellow viscous oil: 1H NMR (400 MHz, CDC13) δ ppm 2.64-2.76 (2 H, m), 2.04-2.35 (4 H, m), 1.88-2.00 (2 H, m), 1.71-1.83 (2 H, m), 1.48 (9 H, s).

Intermediate S-2: (2R,3S)-3-(fert-Butoxycarbonyl)-6,6,6-trifluoro-2-(3- fluoropropyl)hexanoic acid

Figure imgf000064_0001

Intermediate S-2: (2R,3S)-3-(tert-Butoxycarbonyl)-7,7,7-trifluoro-2-(3,3,3- trifluoropropyl)heptanoic acid, and Intermediate S-2A: (2R,3R)-3-(tert-Butoxycarbonyl)- 7,7,7-trifluoro-2-(3,3,3-trifluoropropyl)heptanoic acid

Figure imgf000064_0002

(S-2A)

[00194] To a cold (-78 °C), stirred solution of Intermediate S-1D (1.72 g, 6.36 mmol) in THF (30 mL) was slowly added LDA (7.32 mL, 14.6 mmol) over 7 min. After stirring for 1 h, 4,4,4-trifluorobutyltrifluoromethanesulfonate (2.11 g, 8.11 mmol) was added to the reaction mixture over 2 min. After 15 min, the reaction mixture was warmed to -25 °C (ice/MeOH/dry ice) for lh, and then cooled to -78 °C. After 80 min, the reaction was quenched with a saturated aqueous NH4C1 solution (10 mL). The reaction mixture was further diluted with brine and the solution was adjusted to pH 3 with IN HC1. The aqueous layer was extracted with ether. The combined organics were washed with brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to provide a mixture of Intermediates S-2 and S-2A (2.29 g, 95%) as a colorless oil. 1H NMR (400MHz, chloroform-d) δ 2.83-2.75 (m, 1H), 2.64 (ddd, J = 9.9, 6.7, 3.6 Hz, 1H), 2.32-2.03 (m, 5H), 1.98-1.70 (m, 3H), 1.69-1.52 (m, 3H), 1.50-1.42 (m, 9H). 1H NMR showed a 1 :4.5 mixture (S-2:S-2A) of diastereomers by integration of the peaks for the t- Bu groups.

Intermediate S-2: (2R,3S)-3-(fert-Butoxycarbonyl)-7,7,7-trifluoro-2-(3,3,3- trifluoropropyl)heptanoic acid, and Intermediate S-2A: (2R,3R)-3-(tert-Butoxycarbonyl)- 7,7,7-trifluoro-2-(3,3,3-trifluoropropyl)heptanoic acid

Figure imgf000065_0001

[00195] A mixture of Intermediate S-2 and Intermediate S-2A (2.29 g, 6.02 mmol) was dissolved in THF (38 mL) to give a colorless solution which was cooled to -78 °C. Then, LDA (7.23 mL, 14.5 mmol) (2.0M in heptane/THF/ethylbenzene) was slowly added to the reaction mixture over 3 min. After stirring for 15 min, the reaction mixture was placed in a room temperature water bath. After 15 min the reaction mixture was placed back in a -78 °C bath and then diethylaluminum chloride (14.5 mL, 14.5 mmol) (1M in hexane) was added slowly over 5 min. The reaction mixture was stirred at -78 °C. After 15 min, the reaction mixture was placed in a room temperature water bath for 10 min, and then cooled back to -78 °C. After 15 min, the reaction was quenched with MeOH (30.0 mL, 741 mmol), removed from the -78 °C bath and concentrated. To the reaction mixture was added ice and HC1 (60.8 mL, 60.8 mmol) and the resulting mixture was extracted with EtOAc (2x 200 mL). The organic layer was washed with potassium fluoride (3.50g, 60.3 mmol) in 55 mL H20 and 17.0 mL of IN HC1. The organics were dried over anhydrous magnesium sulfate and concentrated under reduced pressure to provide an enriched mixture of Intermediate S-2 and Intermediate S-2A (2.25g, 98% yield) as a light yellow oil. 1H NMR (400MHz, chloroform-d) δ 2.83-2.75 (m, 1H), 2.64 (ddd, J= 9.9, 6.7, 3.6 Hz, 1H), 2.32-2.03 (m, 5H), 1.98-1.70 (m, 3H), 1.69-1.52 (m, 3H), 1.50-1.42 (m, 9H). 1H NMR showed a 9: 1 ratio in favor of the desired diastereomer Intermediate S-2.

Intermediate S-2B: (2R,3S)-1 -Benzyl 4-tert-butyl 2,3-bis(4,4,4-trifluorobutyl)succinate

Figure imgf000065_0002

[00196] To a stirred 9: 1 mixture of Intermediate S-2 and Intermediate S-2A (2.24 g, 5.89 mmoL) and potassium carbonate (1.60 g, 11.58 mmoL) in DMF (30 mL) was added benzyl bromide (1.20 mL, 10.1 mmoL)). The reaction mixture was stirred at room temperature for 19 h. The reaction mixture was diluted with ethyl acetate (400 mL) and washed with 10% LiCl solution (3 x 100 mL), brine (50 mL), and then dried over anhydrous magnesium sulfate, filtered and concentrated to dryness under vacuum. The residue was purified by flash chromatography (Teledyne ISCO CombiFlash 0%> to 100% solvent A/B = hexane/EtOAc, REDISEP® Si02 220 g, detecting at 254 nm, and monitoring at 220 nm). Concentration of the appropriate fractions provided Intermediate S-2B (1.59 g, 57.5%). HPLC: RT = 3.863 min (CHROMOLITH® SpeedROD column 4.6 x 50 mm, 10-90% aqueous methanol over 4 minutes containing 0.1% TFA, 4 mL/min, monitoring at 220 nm), 1H NMR (400MHz, chloroform-d) δ 7.40-7.34 (m, 5H), 5.17 (d, J= 1.8 Hz, 2H), 2.73-2.64 (m, 1H), 2.55 (td, J= 10.0, 3.9 Hz, 1H), 2.16-1.82 (m, 5H), 1.79-1.57 (m, 3H), 1.53-1.49 (m, 1H), 1.45 (s, 9H), 1.37-1.24 (m, 1H).

Intermediate S-2: (2R,3S)-3-(tert-Butoxycarbonyl)-6,6,6-trifluoro-2-(4,4,4- trifluorobutyl)hexanoic acid

Figure imgf000066_0001

[00197] To a stirred solution of Intermediate S-2B (1.59 g, 3.37 mmoL) in MeOH (10 mL) and EtOAc (10 mL) under nitrogen was added 10%> Pd/C (510 mg). The atmosphere was replaced with hydrogen and the reaction mixture was stirred at room temperature for 2.5 h. The palladium catalyst was filtered off through a 4 μΜ polycarbonate film and rinsed with MeOH. The filtrate was concentrated under reduced pressure to give intermediate S-2 (1.28 g, 99%). 1H NMR (400MHz, chloroform-d) δ 2.76-2.67 (m, 1H), 2.65-2.56 (m, 1H), 2.33-2.21 (m, 1H), 2.17-2.08 (m, 3H), 1.93 (dtd, J= 14.5, 9.9, 5.2 Hz, 1H), 1.84-1.74 (m, 2H), 1.70-1.52 (m, 3H), 1.48 (s, 9H).

Intermediate A- 1 : (2-Amino-3 -methylphenyl)(3 -fluorophenyl)methanone

Figure imgf000067_0001

Intermediate A-1 A: 2-Amino- -methoxy-N,3-dimethylbenzamide

Figure imgf000067_0002

[00198] In a 1 L round-bottomed flask was added 2-amino-3-methylbenzoic acid (11.2 g, 74.1 mmol) and Ν,Ο-dimethylhydroxylamine hydrochloride (14.45 g, 148 mmol) in DCM (500 mL) to give a pale brown suspension. The reaction mixture was treated with Et3N (35 mL), HOBT (11.35 g, 74.1 mmol) and EDC (14.20 g, 74.1 mmol) and then stirred at room temperature for 24 hours. The mixture was then washed with 10% LiCl, and then acidified with IN HCl. The organic layer was washed successively with 10%> LiCl and aq NaHC03. The organic layer was decolorized with charcoal, filtered, and the filtrate was dried over MgSC^. The mixture was filtered and concentrated to give 13.22 g (92% yield) of Intermediate A-1A. MS(ES): m/z = 195.1 [M+H+]; HPLC: RT = 1.118 min. (H20/MeOH with TFA, CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm); 1H NMR (500MHz, chloroform-d) δ 7.22 (dd, J= 7.8, 0.8 Hz, 1H), 7.12-7.06 (m, 1H), 6.63 (t, J= 7.5 Hz, 1H), 4.63 (br. s., 2H), 3.61 (s, 3H), 3.34 (s, 3H), 2.17 (s, 3H).

Intermediate A- 1 : (2-Amino-3 -methylphenyl)(3 -fluorophenyl)methanone

Figure imgf000067_0003

[00199] In a 500 mL round-bottomed flask, a solution of l-fluoro-3-iodobenzene (13.61 mL, 116 mmol) in THF (120 mL) was cooled in a -78 °C bath. A solution of n- BuLi, (2.5M in hexane, 46.3 mL, 116 mmol) was added dropwise over 10 minutes. The solution was stirred at -78 °C for 30 minutes and then treated with a solution of

Intermediate A-1 A (6.43 g, 33.1 mmol) in THF (30 mL). After 1.5 hours, the reaction mixture was added to a mixture of ice and IN HCl (149 mL, 149 mmol) and the reaction flask was rinsed with THF (5 ml) and combined with the aqueous mixture. The resulting mixture was diluted with 10% aq LiCl and the pH was adjusted to 4 with IN NaOH. The mixture was then extracted with Et20, washed with brine, dried over MgS04, filtered and concentrated. The resulting residue was purified by silica gel chromatography (220g ISCO) eluting with a gradient from 10% EtOAc/hexane to 30% EtOAc/hexane to afford Intermediate A-l (7.11 g, 94% yield) as an oil. MS(ES): m/z = 230.1 [M+H+]; HPLC: RT = 2.820 min Purity = 99%. (H20/MeOH with TFA, CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm).

Intermediate B-1 : (S)-3-Amino-5-(3-fluorophenyl)-9-methyl-lH-benzo[e][l,4]diazepin- 2(3H)-one

Figure imgf000085_0001

Intermediate B-1 A: (S)-Benzyl (5-(3-fluorophenyl)-9-methyl-2-oxo-2,3-dihydro benzo[e] [ 1 ,4]diazepin-3-yl)carbamate

Figure imgf000085_0002

(B-1A)

[00225] In a 1 L round-bottomed flask, a solution of 2-(lH-benzo[d][l,2,3]triazol-l- yl)-2-((phenoxycarbonyl)amino)acetic acid (J. Org. Chem., 55:2206-2214 (1990)) (19.37 g, 62.0 mmol) in THF (135 mL) was cooled in an ice/water bath and treated with oxalyl chloride (5.43 mL, 62.0 mmol) and 4 drops of DMF. The reaction mixture was stirred for 4 hours. Next, a solution of Intermediate A- 1 (7.11 g, 31.0 mmol) in THF (35 mL) was added and the resulting solution was removed from the ice/water bath and stirred at room temperature for 1.5 hours. The mixture was then treated with a solution of ammonia, (7M in MeOH) (19.94 mL, 140 mmol). After 15 mins, another portion of ammonia, (7M in MeOH) (19.94 mL, 140 mmol) was added and the resulting mixture was sealed under N2 and stirred overnight at room temperature. The reaction mixture was then concentrated to ~l/2 volume and then diluted with AcOH (63 mL) and stir at room temperature for 4 hours. The reaction mixture was then concentrated, and the residue was diluted with 500 mL water to give a precipitate. Hexane and Et20 were added and the mixture was stirred at room temperature for 1 hour to form an orange solid. Et20 was removed under a stream of nitrogen and the aqueous layer was decanted. The residue was triturated with 40 mL of iPrOH and stirred at room temperature to give a white precipitate. The solid was filtered and washed with iPrOH, then dried on a filter under a stream of nitrogen to give racemic Intermediate B-1A (5.4 g, 41.7%yield).

[00226] Racemic Intermediate B-1A (5.9 g, 14.3 mmol) was resolved using the Chiral SFC conditions described below. The desired stereoisomer was collected as the second peak in the elution order: Instrument: Berger SFC MGIII, Column: CHIRALPAK® IC 25 x 3 cm, 5 cm; column temp: 45 °C; Mobile Phase: C02/MeOH (45/55); Flow rate: 160 mL/min; Detection at 220 nm.

[00227] After evaporation of the solvent, Intermediate B-1A (2.73 g, 46% yield) was obtained as a white solid. HPLC: RT = 3.075 min. (H20/MeOH with TFA,

CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm).

Chiral HPLC RT: 8.661 min (AD, 60% (EtOH/MeOH)/heptane) > 99%ee. MS(ES): m/z = 418.3 [M+H+];1H NMR (500MHz, DMSO-d6) δ 10.21 (s, 1H), 8.38 (d, J= 8.3 Hz, 1H), 7.57-7.47 (m, 2H), 7.41-7.29 (m, 8H), 7.25-7.17 (m, 2H), 5.10-5.04 (m, 3H), 2.42 (s, 3H).

Intermediate B-l : (S)-3-Amino-5-(3-fluorophenyl)-9-methyl-lH-benzo[e][l,4]diazepin- 2(3H)-one.

[00228] In a 100 mL round-bottomed flask, a solution of Intermediate B-1A (2.73 g, 6.54 mmol) in acetic acid (12 mL) was treated with HBr, 33% in HOAc (10.76 mL, 65.4 mmol) and the mixture was stirred at room temperature for 1 hour. The solution was diluted with Et20 to give a yellow precipitate. The yellow solid was filtered and rinsed with Et20 under nitrogen. The solid was transferred to 100 mL round bottom flask and water was added (white precipitate formed). The slurry was slowly made basic with saturated NaHC03. The resulting tacky precipitate was extracted with EtOAc. The organic layer was washed with water, dried over MgS04, and then filtered and

concentrated to dryness to give Intermediate B-l (1.68 g, 91% yield) as a white foam solid. MS(ES): m/z = 284.2 [M+H+]; HPLC: RT = 1.72 min (H20/MeOH with TFA, CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm). 1H NMR (400MHz, DMSO-d6) δ 10.01 (br. s., 1H), 7.56-7.44 (m, 2H), 7.41-7.26 (m, 3H), 7.22-7.11 (m, 2H), 4.24 (s, 1H), 2.55 (br. s., 2H), 2.41 (s, 3H). [00229] The compounds listed below in Table 6 (Intermediates B-2 to B-3) were prepared according to the general synthetic procedure described for Intermediate B-l , using the starting materials Intermediate A- 10 and Intermediate A-4, respectively.

Example 1

(2R,3S)-N-((3S)-5-(3-Fluorophenyl)-9-methyl-2-oxo-2,3-dihydro-lH-l,4-benzodiazepin- 3-yl)-2, -bis(3,3,3-trifluoropropyl)succinamide

Figure imgf000098_0001

Intermediate 1A: (2S,3R)-tert-Butyl 6,6,6-trifluoro-3-(((S)-5-(3-fluorophenyl)-9-methyl- 2-0X0-2, 3-dihydro-lH-benzo[e][l,4]diazepin-3-yl)carbamoyl)-2-(3,3 ,3- trifluoropropyl)hexanoat

Figure imgf000098_0002

[00240] In a 100 mL round-bottomed flask, a solution of Intermediate B-l (1683 mg, 5.94 mmol), Et3N (1.656 mL, 11.88 mmol), and Intermediate S-l in DMF (20 mL) was treated with o-benzotriazol-l-yl-A .A .N’.N’-tetramethyluronium tetrafluoroborate (3815 mg, 11.88 mmol) and stirred at room temperature for 1 hour. The reaction mixture was diluted with water and saturated aqueous NaHC03. An off white precipitate formed and was filtered and washed with water. The resulting solid was dried on the filter under a stream of nitrogen to give Intermediate 1A (3.7 g, 99% yield). MS(ES): m/z =

632.4[M+H+]; HPLC: RT = 3.635 min Purity = 98%. (H20/MeOH with TFA,

CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm). 1H NMR (400MHz, methanol-d4) δ 7.53 (t, J = 4.5 Hz, 1H), 7.46-7.30 (m, 3H), 7.28-7.23 (m, 1H), 7.23-7.18 (m, 2H), 5.37 (s, 1H), 2.88 (td, J = 10.4, 3.4 Hz, 1H), 2.60 (td, J =

10.2, 4.1 Hz, 1H), 2.54-2.40 (m, 1H), 2.47 (s, 3 H), 2.33-2.12 (m, 3H), 1.98-1.69 (m, 4H), 1.51 (s, 9H). Intermediate IB: (2S,3R)-6,6,6-Trifluoro-3-(((S)-5-(3-fluorophenyl)-9-methyl-2-oxo-

2,3-dihydro-lH-benzo[e][l,4]diazepin-3-yl)carbamoyl)-2-(3,3,3-trifluoropropyl)hexanoic acid

Figure imgf000099_0001

[00241] In a 250 mL round-bottomed flask, a solution of Intermediate 1A (3.7 g, 5.86 mmol) in DCM (25 mL) was treated with TFA (25 mL) and the resulting pale orange solution was stirred at room temperature for 1.5 hours. The reaction mixture was then concentrated to give Intermediate IB. HPLC: RT = 3.12 min (H20/MeOH with TFA, CHROMOLITH® ODS S5 4.6 x 50 mm, gradient = 4 min, wavelength = 220 nm).

MS(ES): m/z = 576.3 (M+H)+. 1H NMR (400MHz, methanol-d4) δ 7.54 (t, J= 4.5 Hz, 1H), 7.49-7.29 (m, 3H), 7.28-7.15 (m, 3H), 5.38 (br. s., 1H), 2.89 (td, J= 10.3, 3.7 Hz, 1H), 2.67 (td, J= 9.9, 4.2 Hz, 1H), 2.56-2.38 (m, 1H), 2.48 (s, 3 H), 2.34-2.13 (m, 3H), 2.00-1.71 (m, 4H).

Example 1 :

[00242] In a 250 mL round-bottomed flask, a solution of Intermediate IB (4.04 g, 5.86 mmol) in THF (50 mL) was treated with ammonia (2M in iPrOH) (26.4 mL, 52.7 mmol), followed by HOBT (1.795 g, 11.72 mmol) and EDC (2.246 g, 11.72 mmol). The resulting white suspension was stirred at room temperature overnight. The reaction mixture was diluted with water and saturated aqueous NaHC03. The resulting solid was filtered, rinsed with water and then dried on the filter under a stream of nitrogen. The crude product was suspended in 20 mL of iPrOH and stirred at room temperature for 20 min and then filtered and washed with iPrOH and dried under vacuum to give 2.83 g of solid. The solid was dissolved in re fluxing EtOH(100 mL) and slowly treated with 200 mg activated charcoal added in small portions. The hot mixture was filtered through CELITE® and rinsed with hot EtOH. The filtrate was reduced to half volume, allowed to cool and the white precipitate formed was filtered and rinsed with EtOH to give 2.57 g of white solid. A second recrystallization from EtOH (70 mL) afforded Example 1 (2.39 g, 70% yield) as a white solid. HPLC: RT = 10.859 min (H20/CH3CN with TFA, Sunfire C18 3.5μπι, 3.0x150mm, gradient = 15 min, wavelength = 220 and 254 nm); MS(ES): m/z = 575.3 [M+H+]; 1H NMR (400MHz, methanol-d4) δ 7.57-7.50 (m, 1H), 7.47-7.30 (m, 3H), 7.29-7.15 (m, 3H), 5.38 (s, 1H), 2.85-2.75 (m, 1H), 2.59 (td, J= 10.5, 4.0 Hz, 1H), 2.53-2.41 (m, 4H), 2.31-2.10 (m, 3H), 1.96-1.70 (m, 4H).

SEE

WO2012129353A1 *Mar 22, 2012Sep 27, 2012Bristol-Myers Squibb CompanyBis(fluoroalkyl)-1,4-benzodiazepinone compounds

PAPER RELATED

Structure–activity relationships in a series of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides identified highly potent inhibitors of γ-secretase mediated signaling of Notch1/2/3/4 receptors. On the basis of its robust in vivo efficacy at tolerated doses in Notch driven leukemia and solid tumor xenograft models, 12 (BMS-906024) was selected as a candidate for clinical evaluation.

Discovery of Clinical Candidate BMS-906024: A Potent Pan-Notch Inhibitor for the Treatment of Leukemia and Solid Tumors

Ashvinikumar V. Gavai*, Claude Quesnelle, Derek Norris, Wen-Ching Han, Patrice Gill, Weifang Shan, Aaron Balog, Ke Chen§, Andrew Tebben, Richard Rampulla, Dauh-Rurng Wu, Yingru Zhang, Arvind Mathur,Ronald White, Anne Rose, Haiqing Wang, Zheng Yang, Asoka Ranasinghe, Celia D’Arienzo, Victor Guarino, Lan Xiao, Ching Su, Gerry Everlof, Vinod Arora, Ding Ren Shen, Mary Ellen Cvijic, Krista Menard, Mei-Li Wen, Jere Meredith, George Trainor, Louis J. Lombardo, Richard Olson, Phil S. Baran§,John T. Hunt, Gregory D. Vite, Bruce S. Fischer, Richard A. Westhouse, and Francis Y. Lee

Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States

Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States

§ Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037,United StatesACS Med. Chem. Lett.

, 2015, 6 (5), pp 523–527

DOI: 10.1021/acsmedchemlett.5b00001, http://pubs.acs.org/doi/abs/10.1021/acsmedchemlett.5b00001

*Phone: 609-252-5091. E-mail: ashvinikumar.gavai@bms.com.

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

PAPER RELATED

Abstract Image

An enantioselective synthesis of (S)-7-amino-5H,7H-dibenzo[b,d]azepin-6-one (S1) is described. The key step in the sequence involved crystallization-induced dynamic resolution (CIDR) of compound 7 using Boc-d-phenylalanine as a chiral resolving agent and 3,5-dichlorosalicylaldehyde as a racemization catalyst to afford S1 in 81% overall yield with 98.5% enantiomeric excess.

Crystallization-Induced Dynamic Resolution toward the Synthesis of (S)-7-Amino-5H,7H-dibenzo[b,d]-azepin-6-one: An Important Scaffold for γ-Secretase Inhibitors

Sukhen Karmakar, Vijay Byri, Ashvinikumar V. Gavai, Richard Rampulla, Arvind Mathur, and Anuradha Gupta*

Department of Discovery Synthesis, Biocon Bristol-Myers Squibb Research Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bengaluru 560099, India

Bristol-Myers Squibb Company, P.O Box 4000, Princeton, New Jersey 08543-4000, United StatesOrg. Process Res. Dev.

, Article ASAP

DOI: 10.1021/acs.oprd.6b00207, http://pubs.acs.org/doi/suppl/10.1021/acs.oprd.6b00207

*E-mail: anuradha.gupta@syngeneintl.com.

Cited PatentFiling datePublication dateApplicantTitle
WO2000007995A1 *Aug 7, 1999Feb 17, 2000Du Pont Pharmaceuticals CompanySUCCINOYLAMINO LACTAMS AS INHIBITORS OF Aβ PROTEIN PRODUCTION
WO2000038618A2 *Dec 23, 1999Jul 6, 2000Du Pont Pharmaceuticals CompanySUCCINOYLAMINO BENZODIAZEPINES AS INHIBITORS OF Aβ PROTEIN PRODUCTION
WO2001060826A2 *Feb 16, 2001Aug 23, 2001Bristol-Myers Squibb Pharma CompanySUCCINOYLAMINO CARBOCYCLES AND HETEROCYCLES AS INHIBITORS OF Aβ PROTEIN PRODUCTION
US6737038 *May 17, 2000May 18, 2004Bristol-Myers Squibb CompanyUse of small molecule radioligands to discover inhibitors of amyloid-beta peptide production and for diagnostic imaging
US7053084Feb 17, 2000May 30, 2006Bristol-Myers Squibb CompanySuccinoylamino benzodiazepines as inhibitors of Aβ protein production
US7456172Jan 13, 2006Nov 25, 2008Bristol-Myers Squibb Pharma CompanySuccinoylamino benzodiazepines as inhibitors of Aβ protein production
US20030134841 *Nov 1, 2002Jul 17, 2003Olson Richard E.Succinoylamino lactams as inhibitors of A-beta protein production
US20120245151 *Mar 22, 2012Sep 27, 2012Bristol-Myers Squibb CompanyBisfluoroalkyl-1,4-benzodiazepinone compounds

//////////varegacestat, BMS-986115, BMS 986115, 3,5-dichlorosalicylaldehydeAlzheimer’s diseaseBoc-D-phenylalanineCIDR;dibenzoazepenone,  DKR; Notch inhibitorsNotch inhibitorSAR,  T-acute lymphoblastic leukemiatriple-negative breast cancerγ-secretase inhibitor, PHASE 1, BMS, Bristol-Myers Squibb,  Ashvinikumar Gavai, 1584647-27-7, LSK1L593UU, AL 102

Suvadronabinol


Suvadronabinol

CAS 1225194-84-2

MF C30H43NO6 MW513.7 g/mol

4-{[(2S)-3-methyl-1-oxo-1-{[(6aR,10aR)-6,6,9-trimethyl-3-pentyl6a,7,8,10a-tetrahydro-6H-dibenzo[b,d]pyran-1-yl]oxy}butan-2-yl]amino}-4-oxobutanoic acid

3-{[(2S)-1-{[(6aR,10aR)-6,6,9-trimethyl-3-pentyl-6H,6aH,7H,8H,10aH-benzo[c]isochromen-1-yl]oxy}-3-methyl-1-oxobutan-2-yl]carbamoyl}propanoic acid

4-{[(2S)-3-methyl-1-oxo-1-{[(6aR,10aR)-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-dibenzo[b,d]pyran-1-yl]oxy}butan-2-yl]amino}-4-oxobutanoic acid
cannabinoid receptor agonist, DB 21741, XV9S3R9XJC

Suvadronabinol (DB21741) is a potent, synthetic small-molecule cannabinoid receptor type 1 (CB1) agonist, initially developed for therapeutic potential in areas like appetite stimulation, pain, or weight management, acting similarly to cannabis compounds but with specific design, currently in preclinical research stages, noted for its high selectivity and potency. 

Key Characteristics:

  • Type: Small Molecule Drug.
  • Mechanism: A highly selective agonist for the cannabinoid receptor type 1 (CB1).
  • Development: Originally developed by Elsohly Laboratories, it’s in preclinical R&D, with status as an experimental compound.
  • Molecular Weight: Approximately 513.31 Da.
  • CAS Number: 1225194-84-2. 

Potential Applications (Research Areas):

  • Appetite Stimulation & Weight Loss: Similar to dronabinol, it targets pathways involved in metabolism and appetite.
  • Pain Management: As a cannabinoid, it interacts with the endocannabinoid system, which plays a role in pain perception. 

Status:

  • It’s an investigational compound, meaning it’s still under study and not yet approved for medical use. 

In essence, Suvadronabinol is a targeted synthetic cannabinoid designed to interact with the body’s CB1 receptors, showing promise in preclinical research for conditions where cannabinoid effects are desired, but it’s not a widely available or established medicine. 

SYN

SYN

US20150045282

SYN

WO2010051541 

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010051541&_cid=P22-MIXZ0J-96045-1

Example 10: Preparation of THC-valinate-hemisuccinate (15):

Compound 15 was also prepared using scheme II, where the starting material was compound 6 (THC-valinate). Product 15 was purified using column chromatography (>85% yield) and confirmed by mass spectroscopy in the positive ionization mode (M+NlV = 531) (Fig 17). The structure of product 15 was also confirmed by spectral analysis 1H-NMR and 13C-NMR (see Fig 18 for 13C-NMR assignments).

Spectral analysis of Δ9-THC prodrugs prepared above: Identity and purity of the synthesized prodrugs was established by spectral means including 1H-NMR, 13C-NMR and 2D-NMR such as COSY, HMQC, HMBC, as well as other spectroscopic means (IR1 UV and MS). The synthetic protocols outlined above yielded prodrugs with ≥95% purity.

str1

AS ON OCT2025 4.511 LAKHS VIEWS ON BLOG WORLDREACH AVAILABLEFOR YOUR ADVERTISEMENT

wdt-16

join me on Linkedin

Anthony Melvin Crasto Ph.D – India | LinkedIn

join me on Researchgate

RESEARCHGATE

This image has an empty alt attribute; its file name is research.jpg

join me on Facebook

Anthony Melvin Crasto Dr. | Facebook

join me on twitter

Anthony Melvin Crasto Dr. | twitter

+919321316780 call whatsaapp

EMAIL. amcrasto@gmail.com

……

////////Suvadronabinol, cannabinoid receptor agonist, DB 21741, XV9S3R9XJC