Home » Articles posted by DR ANTHONY MELVIN CRASTO Ph.D (Page 269)
Author Archives: DR ANTHONY MELVIN CRASTO Ph.D
Latin American Active Pharmaceutical Ingredients Industry Catches Up on the US

Latin American Active Pharmaceutical Ingredients Industry Catches Up on the US
The market for active pharmaceutical ingredient in the Americas shows a clear north–south divide: 88% percent for the US and Canada, the rest for South and Central American companies. but as the economy in Latin America booms and prosperity growths, these markets are just about to catch up on the US new figures indicate….http://www.process-worldwide.com/management/markets_industries/articles/374702/
Grape consumption may offer benefits for symptomatic knee osteoarthritis
New research presented last week at the Experimental Biology conference in San Diego, California, suggests that regular grape consumption may help alleviate pain associated with symptomatic osteoarthritis of the knee, and improve joint flexibility and overall mobility. Researchers attribute these potential benefits to the polyphenols found in grapes.
The sixteen week clinical study, undertaken by Texas Woman’s University, was designed to investigate the benefits of grape consumption on inflammation and osteoarthritis outcomes. 72 men and women with knee osteoarthritis (OA) were assigned to either consume grapes in the form of a whole grape freeze-dried powder, or a placebo powder.
The study results, presented by lead investigator Shanil Juma, Ph.D., showed that both men and women consuming a grape-enriched diet had a significant decrease in self-reported pain related to activity and an overall decrease in total knee symptoms. This beneficial effect was more pronounced in females. Additionally, age-related differences were observed:…
View original post 374 more words
Grape-enriched diet supports eye health
New research presented this week at the Association for Research in Vision and Ophthalmology conference in Orlando, Florida suggests that regular grape consumption may play a role in eye health by protecting the retina from deterioration. Specifically, a grape-enriched diet resulted in a protective effect on retinal structure and function.
The retina is the part of the eye that contains the cells that respond to light, known as photoreceptors. There are two types of photoreceptors: rods and cones. Retinal degenerative diseases affect over 5 million people in the U.S., and can cause blindness due to photoreceptor cell death.
The study was conducted by a research team at the University of Miami, Bascom Palmer Eye Institute and investigated whether a diet supplemented with grapes could protect the photoreceptors in mice with retinal degeneration. Mice were either fed a grape-supplemented diet corresponding to 3 servings of grapes per day for humans…
View original post 136 more words
Momenta Pharma receives FDA orphan drug designation for pancreatic cancer drug Necuparanib
heparan sulfate mimetic derived from unfractionated heparin with a molecular weight between 5500 and 6200 Da
Necuparanib
M-402
M-ONC-402
MONC 402
| Momenta Pharmaceuticals Inc |
Momenta Pharmaceuticals has received orphan drug designation from the US Food and Drug Administration (FDA) for its necuparanib, a heparan sulfate mimetic indicated for treatment of pancreatic cancer.
Momenta Pharmaceuticals chief medical officer Jim Roach said there is a great need for new medications for patients suffering from pancreatic cancer.
“We are encouraged by the progress of the programme to date, and in the next several months, we anticipate completing Part A of our ongoing Phase I/II study of necuparanib in combination with Abraxane and gemcitabine,” Roach said.
“In the next several months, we anticipate completing Part A of our ongoing Phase I/II study of necuparanib in combination with Abraxane and gemcitabine.”
“We look forward to sharing the results from Part A and advancing the product into the Phase II part of the study in the second half of 2014.”
Necuparanib has recently been adopted as the unique non-proprietary name for M402 by The United States Adopted Names.
The drug is derived from unfractionated heparin. It has been engineered to have significantly reduced anticoagulant activity while preserving the relevant antitumor properties of heparin.
Part A dose escalation component of the Phase I/II trial, which is evaluating necuparanib in combination with Abraxane (nab-paclitaxel) and gemcitabine in advanced metastatic pancreatic cancer patients, is expected to be completed in the next several months.
The company is expected to report the clinical data from Part A in the second half this year. The company also plans to begin Part B of the study by the year-end.
Part B will be a randomised, controlled, proof-of-concept study to assess the antitumor activity of necuparanib in combination with Abraxane plus gemcitabine, versus Abraxane plus gemcitabine alone.
Heparin, a highly sulfated heparin-like glycosaniinoglycan (HLGAG) produced by mast cells and isolated from natural sources, is a widely used clinical anticoagulant. However, the effects of natural, or unfractionated, heparin can be difficult to predict and patients must be monitored closely to prevent over- or under-anticoagulation. Low molecular weight heparins (LMWHs) obtained by various methods of fractionation or depolymerization of polymeric heparin have more predictable pharmacological action as anticoagulants, reduced side effects, sustained antithrombotic activity, and better bioavailability than unfractionated heparin (UFH). Several LMWHs are approved for outpatient treatment of thrombotic conditions.
There is increasing interest in the potential role of antithrombotic agents in the management of cancer patients. Results from several recent clinical trials have suggested a survival advantage for certain types of cancer patients treated with LMWHs (reviewed in Lemoine, 2005, Journal of Clinical Oncology, 23: 2119-20).
http://www.google.fm/patents/EP2207811A1?cl=en
The invention is based, in part, on the development of polysaccharide preparations, e.g., preparations of polysaccharides derived from heparin, that lack substantial anticoagulant activity (e.g., preparations of polysaccharides that have substantially no anticoagulant activity) but retain activity in other non-coagulation mediated biological processes, and methods to produce them. These compounds can have one or more of the following features: 1) an anti-Xa activity and an anti-IIa activity each less than 50 IU/mg, and 2) anti-metastatic, anti-angiogenic, anti-fibrotic and/or anti-inflammatory activity. The polysaccharides disclosed herein can also have structural characteristics that distinguish them from other polysaccharides, (e.g., from commercially available heparins). For example, a polysaccharide preparation provided herein can have one or more of the following characteristics: the preparation has less than 50% glycol split uronic acid residues; the preparation has no more than 3 glycol split uronic acid residues (UG) per polysaccharide chain; the preparation has greater than 40% U2SHNS>6S disaccharide residues; degree of desulfation of the preparation is less than 40%; one or more polysaccharide chains in the preparation have a 4,5-unsaturation of a non-reducing end uronic acid residue; one or more polysaccharide chains in the preparation have a 2,5-anhydromannitol residue at the reducing end; and the weight average molecular weight of the preparation is between 3,500 and 7,000 Da. This disclosure includes preparations having one or more of these properties and characteristics as well as methods of making and using such preparations. The disclosure also features methods of using such preparations.
Accordingly, in a first aspect, the invention features a polysaccharide preparation (e.g., a heparin-derived preparation) having the following characteristics: (a) a weight average chain molecular weight between 3,500 and 7,000 Da; (b) an anti-Xa activity and an anti-IIa activity each less than 50 IU/mg (e.g., an anti-Xa activity less than about 40 IU/mg, 30 IU/mg, 20 IU/mg, 15 IU/mg, or 10 IU/mg and an anti-IIa activity less than about 40 IU/mg, 30 IU/mg, 20 IU/mg, 10 IU/mg, 5 IU/mg, 4 IU/mg, or 3 IU/mg); and (c) less than 50% glycol split uronic acid residues (e.g., less than 40%, 30%, 25%, or 20% glycol split uronic acid residues) in the preparation. In some embodiments, the preparation contains between 5% and 50% glycol split uronic acid residues (e.g., between 5% and 40%, 5% and 30%, 10% and 50%, 10% and 40%, or 10% and 30% glycol split uronic acid residues).
In a second aspect, the invention features a polysaccharide preparation (e.g., a heparin- derived preparation) having the following characteristics: (a) a weight average chain molecular weight between 3,500 and 7,000 Da; (b) an anti-Xa activity and an anti-IIa activity each less than 50 IU/mg (e.g., an anti-Xa activity less than about 40 IU/mg, 30 IU/mg, 20 IU/mg, 15 IU/mg, or 10 IU/mg and an anti-IIa activity less than about 40 IU/mg, 30 IU/mg, 20 IU/mg, 10 IU/mg, 5 IU/mg, 4 IU/mg, or 3 IU/mg); and (c) the polysaccharide chains of the preparation have no more than 3 glycol split uronic acid residues (UQ) per polysaccharide chain (e.g., each polysaccharide chain has no more than 2 or no more than 1 glycol split uronic acid residue (UQ) per polysaccharide chain).
In a third aspect, the invention features a polysaccharide preparation (e.g., a heparin- derived preparation) having the following characteristics: (a) a weight average chain molecular weight between 3,500 and 7,000 Da; (b) an anti-Xa activity and an anti-IIa activity each less than 50 IU/mg (e.g., an anti-Xa activity less than about 40 IU/mg, 30 IU/mg, 20 IU/mg, 15 IU/mg, or 10 IU/mg and an anti-IIa activity less than about 40 IU/mg, 30 IU/mg, 20 IU/mg, 10 IU/mg, 5 IU/mg, 4 IU/mg, or 3 IU/mg); and (c) polysaccharide chains of the preparation have on average no more than 3 glycol split uronic acid residues (Uo) per polysaccharide chain (e.g., on average no more than 2.5, no more than 2, no more than 1.5, or no more than 1 glycol split uronic acid residues (UG) per polysaccharide chain.
In a fourth aspect, the invention features a polysaccharide preparation (e.g., a heparin- derived preparation) having the following characteristics: (a) a weight average chain molecular weight between 3,500 and 7,000 Da; (b) an anti-Xa activity and an anti-IIa activity each less than 50 IU/mg (e.g., an anti-Xa activity less than about 40 IU/mg, 30 IU/mg, 20 IU/mg, 15 IU/mg, or 10 IU/mg and an anti-IIa activity less than about 40 IU/mg, 30 IU/mg, 20 IU/mg, 10 IU/mg, 5 IU/mg, 4 IU/mg, or 3 IU/mg); and (c) the preparation has greater than 40% U2SHNS,6S disaccharide residues (e.g., greater than 50%, 60%, 70%, or 80% U2SHNS,6S disaccharide residues). In some embodiments, the preparation has a degree of desulfation less than 40% (e.g., less than 30%, 20%, or 10%).
In a fifth aspect, the invention features a polysaccharide preparation (e.g., a heparin- derived preparation) lacking substantial anticoagulant activity (e.g., having substantially no anticoagulant activity), wherein the preparatiorrmdudes-polv^accharides that include Formula I:
[Uw-HXjy)Z]m~[UG-HX5y5Z]n
wherein U indicates a uronic acid residue and H indicates a hexosamine residue; m and n are integers such that m = 4-16 (e.g., 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, 4-14, or 4-15), and n = 1-4 (e.g., 1-2 or 1-3);
w = -2OS or -2OH; x = -NS or -NAc; y = -3OS or -3OH; z = -60S or -6OH;
wherein the symbol ~ indicates that the units marked m and n are distributed along the polysaccharide chain and are not necessarily in sequence, wherein w, x, y, and z are each the same or different on each unit marked m, and wherein x, y, and z are each the same or different on each unit marked n.
In a sixth aspect, the invention features a polysaccharide preparation (e.g., a heparin- derived preparation) lacking substantial anticoagulant activity (e.g., having substantially noanticoagulant activity) and having antimetastatic activity, wherein the preparation includes polysaccharides that include Formula II:
[Uw-HXjy;Z] m– [UG-HX)y;Z] n– [Uw-HX;y)Z] 0– [UG-HX^2] p– [Uw-HX;yjZ] q
wherein U indicates a uronic acid residue and H indicates a hexosamine residue; wherein m-r are integers such that: m = 0-10; n= 0- 3;
O = O-IO;
P = 0-3; q = 0-10;
w = -2OS or -2OH; x = -NS or -NAc; y = -3OS or -3OH; z = -60S or -6OH;
wherein w, x, y, and z are each the same or different on each unit marked m, n, o, p, or q. In some embodiments, the sum of n + p is less than or equal to 4 (e.g., less than or equal to 3, 2, 1, or 0). In some embodiments, the preparation has a weight average chain molecular weight between 3,500 and 7,000 Da.
Examples of such polysaccharide preparations include chains that include the following:
[Uw-HX;yjZ]m~[UG-Hx y z]n
wherein U indicates a uronic acid residue and H indicates a hexosamine residue, wherein m and n are integers such that m = 6-18, and n = 1 -4, w = -2OS or -2OH, x = -NS or -NAc, y = -3OS or -3OH, z = -60S or -6OH,
wherein the symbol ~ indicates that the units marked m and n are distributed along the polysaccharide chain and are not necessarily in sequence, wherein w, x, y, and z are each the same or different on each unit marked m, and wherein x, y, and z are each the same or different on each unit marked n; and
[Uw-HX)y)Z]m-[UG-HXiy)Z]n-[Uw-HXjyjZ]o-[UG-HX5y)Z]p-[Uw-HX!yiZ]q
wherein U indicates a uronic acid residue and H indicates a hexosamine residue, wherein m-r are integers such that: m = 0-10, n= 0- 3, o = 0-10, p = 0-3, q = 0-10, w = -2OS or -2OH, x = -NS or -NAc, y = -3OS or -3OH, z = -60S or -6OH,
wherein w, x, y, and z are each the same or different on each unit marked m, n, o, p, or q.
Anti-IIa Activity
Polysaccharide preparations are disclosed herein that provide substantially reduced anti- Ha activity, e.g., anti-IIa activity of about 0 to 50 IU/mg, about 0 to 40 IU/mg, about 0 to 30 IU/mg, about 0 to 25 IU/mg, about 0 to 20 IU/mg, about 0 to 10 IU/mg, about 0 to 5 IU/mg, about 5 to 10 IU/mg, about 5 to 15 IU/mg, about 5 to 20 IU/mg. Anti-IIa activity is calculated in International Units of anti- Ha activity per milligram using statistical methods for parallel line assays. The anti-IIa activity levels described herein are measured using the following principle.
Polysaccharide (PS) + ATIII→ [PS • ATIII]
Ha
PS • ATIII→[PS • ATIII • Ha] + Ha (Excess)
Ha (Excess) + Substrate -» Peptide + pNA (measured spectrophotometrically) Anti-factor Ha activity is determined by the sample potentiating effect on antithrombin (ATIII) in the inhibition of thrombin. Thrombin excess can be indirectly spectrophotometrically measured. The anti-factor Ha activity can be measured, e.g., on a Diagnostica Stago analyzer or on an ACL Futura3 Coagulation system, with reagents from Chromogenix (S-2238 substrate, Thrombin (53 nkat/vial), and Antithrombin), or on any equivalent system. Analyzer response is calibrated using the 2nd International Standard for Low Molecular Weight Heparin.
EffRx Pharmaceuticals receives FDA orphan drug designation for EX404
EffRx Pharmaceuticals has received US Food and Drug Administration (FDA) orphan-drug designation for its proprietary metformin-based product, EX404, for treatment of paediatric polycystic ovary syndrome (PCOS).
Also known as Stein-Leventhal syndrome, PCOS is a heterogeneous disorder of chronic anovulation and hyperandrogenism.
The syndrome is believed to occur due to hormonal imbalance caused by increased levels of androgens and insulin in the body.
EffRx Pharmaceuticals chairman and CEO Christer Rosén said the FDA’s orphan drug designation of EX404 is a significant step forward in the clinical development programme.
Immunomedics’ IMMU-132 Gets Orphan Drug Status For Small Cell Lung Cancer

(RTTNews) – Immunomedics, Inc. (IMMU), a biopharmaceutical company focusing mainly on the development of monoclonal antibody-based products for the targeted treatment of cancer, autoimmune and other serious diseases, said its antibody-drug conjugate for solid cancer therapy, IMMU-132, has received orphan drug status from the Office of Orphan Products Development of the U.S. Food and Drug Administration or FDA for small cell lung cancer or SCLC treatment.
Immunomedics has received orphan drug designation from the US Food and Drug Administration’s (FDA) Office of Orphan Products Development for its IMMU-132 for pancreatic cancer therapy.
IMMU-132 is Immunomedics’ antibody-drug conjugate in clinical development for treatment of patients with solid cancer.
Immunomedics president and CEO Cynthia Sullivan said that this is the second orphan designation from FDA for IMMU-132, which has demonstrated activity in patients with advanced pancreatic cancer, as well as partial responses in five other types of solid cancer.
“The humanised antibody internalises into cancer cells following binding to TROP-2, making it a suitable candidate for the delivery of cytotoxic drugs.”
The FDA previously granted orphan drug designation to IMMU-132 for treatment of small-cell lung cancer patients.
In an ongoing Phase I/II clinical study, IMMU-132 has resulted in partial responses in patients with colorectal cancer, esophageal cancer, triple negative breast cancer, and small-cell and non-small-cell lung cancers.
IMMU-132 is composed of a humanised antibody, hRS7, that binds to the trophoblast cell-surface antigen (TROP-2), also known as the epithelial glycoprotein-1 antigen (EGP-1).
The humanised antibody internalises into cancer cells following binding to TROP-2, making it a suitable candidate for the delivery of cytotoxic drugs.
In preclinical studies, IMMU-132 has demonstrated that it delivers 120-times the amount of SN-38, the active metabolite of irinotecan, to a human pancreatic tumor xenograft than when irinotecan is given.
IMMU-132 significantly improves survival and tumour regression in various animal models of human cancers.
TIC 10 structure established……Synthesis: Structural misassignment stems from long-standing use of incorrect recipe to prepare anticancer agent

Misassigned (top) and corrected (bottom) structures of bioactive TIC10.

PIC FROM
Don’t forget the chemistry
In a bit of a whoopsie it has come to light 1 that a compound TIC10, a stimulator of gene expression for TRAIL and in PhI/II clinical trials has in fact got an incorrect structure or rather the compound that was protected in the patent was assigned the incorrect structure. It was patented in a single compound patent 2 – which might ring alarm bells for some – were they really that confident they had the best compound. A quick look at the patent revealed large amounts of in vitro work but none in vivo again begging the question how good is this single compound. The compound had been identified by a group at Pennsylvania State University and licensed to Oncoceutics from screening of the NCI compound collection but the team, as reported, only attempted structural characterisation by MS. This would be unlikely to differentiate regioisomers which is what the problem turns out to be. It does however seem strange that the patenting error was not detected during resynthesis and scale-up for progression to the clinic. The error was picked up when a group from the Scripp’s 3 who synthesised the patented compound but found it inactive while they found the NCI batch to be active. They characterised the patented (inactive) and non-patented (active ex NCI) structures by crystallography and total synthesis. The corrected structure has now been patented by the Scripps group and licensed to Sorrento.
Of course this is all a bit embarrassing for those concerned but also more seriously could end up with extensive patent litigation, wasting money and discouraging investors from supporting the work until the patent situation is clarified causing delay in progressing the asset. Please please talk to medicinal chemsist early in a project this one looks like no one did which has led to an expensive mistake.
1. S. Borman Chem Eng News 2014, May 26 page 7
2. US Patent US8673923
3. N. T. Jacob et al Angew. Chemie. Int. Ed., Article first published online: 18 May 2014 DOI: 10.1002/anie.201402133






The fog is beginning to lift on how a mistake in the structural analysis of a promising drug candidate occurred and was sustained for so long that the agent was nearly in human clinical trials before the error was discovered.
Kim D. Janda and coworkers at Scripps Research Institute California recently discovered that the structure of a promising cancer drug candidate, called TIC10 or ONC201, had been misassigned in the agent’s patent (Angew. Chem. Int. Ed. 2014, DOI: 10.1002/anie.201402133). The biotech firm Oncoceutics, which has licensed the patent (U.S. 8673923), is sponsoring Phase I/II human clinical trials for the agent, which are currently in a prerecruitment phase. But Scripps has applied for a patent on the corrected structure and has licensed it exclusively to another company, Sorrento Therapeutics (C&EN, May 26, page 7).
TIC10 originated with a 1973 German patent (2150062) owned by C. H. Boehringer Sohn, in Ingelheim, now called Boehringer Ingelheim. The now-expired patent covers a family of 43 compounds, one of which is now called TIC10, and their possible use as antiseizure medications. It also contains a recipe for synthesizing the compounds.
At some point, the National Cancer Institute (NCI) picked up TIC10 for its publicly accessible Diversity Set II database, which researchers can screen freely to find agents with interesting activities. The compound’s structure shown in the database listing was the same as in the German patent—with three rings fused in a linear fashion.
Wafik S. El-Deiry of Pennsylvania State University and coworkers discovered that NCI’s TIC10 sample had potent anticancer activity (Sci. Transl. Med. 2013, DOI: 10.1126/scitranslmed.3004828). They used mass spectrometry to try to confirm that the structure of the compound was the same as that listed in the NCI database. But MS is inadequate for structure confirmation when used on its own.
Penn State was granted a patent to use TIC10 to treat cancer, and it licensed the patent to Oncoceutics for development. The company used the Boehringer recipe to develop a production process to produce sufficient amounts of the compound for study and eventually for clinical trials.
When Janda’s group decided to study TIC10 for possible use in a combination therapy, they opted to synthesize the three-ring linear structure from scratch, instead of using the Boehringer recipe. The compound they made that had that structure was bioinactive, so they ordered the compound from NCI and found that agent to be bioactive. When they then analyzed the bioactive agent carefully, they found it to have a structure in which one of the three fused rings is at an angle to the other two. They then synthesized this angular structure from scratch, applied for a patent on it, and relicensed it.
The reason the structural problem with TIC10 persisted so long is that until Janda’s group joined the TIC10 game, others all seemed to be using the Boehringer recipe to make it and were thus synthesizing a bioactive but structurally misidentified compound.
Oncoceutics Chief Business Officer Lee Schalop notes that all of the company’s research on ONC201, including studies required for approval of the agent’s Investigational New Drug Application with the Food & Drug Administration, were carried out with the bioactive agent. Oncoceutics did not reply by C&EN press time to an inquiry about what techniques it used to characterize ONC201 during its studies.
A number of reagent suppliers have also been marketing TIC10 for research purposes. A search of Chemical Abstracts Service databases in May showed that eight companies were selling CAS Registry Number 41276-02-2, the compound with the misassigned linear structure. (CAS is a unit of the American Chemical Society, which publishes C&EN.)
Sigma-Aldrich, one of the companies offering TIC10, hired a contractor to synthesize TIC10. But the company didn’t officially launch the compound for sale and didn’t ship any to customers. In response to the Janda publication, Sigma-Aldrich halted the product launch.
Sorrento patent attorney Jeff Oster tells C&EN that a meeting between Oncoceutics and Sorrento had been scheduled to begin untangling some of TIC10’s patent and licensing issues. But Schalop says Oncoceutics has no plans to meet with Sorrento.
EMA publishes final QP Declaration Template

EMA publishes final QP Declaration Template
The European Medicines Agency (EMA) has published the Template for the Qualified Person’s declaration concerning GMP compliance of the active substance used as starting material and verification of its supply chain – “The QP declaration template”.
Read more.
Researchers discover new form of cancer
This is the story of two perfectly harmless genes. By themselves, PAX3 and MAML3 don’t cause any problems. However, when they combine during an abnormal but recurring chromosomal mismatch, they can be dangerous. The result is a chimera—a gene that is half of each—and that causes biphenotypic sinonasal sarcoma. The tumor usually begins in the nose and may infiltrate the rest of the face, requiring disfiguring surgery to save the individual. Because Mayo Clinic pathology researchers have now described the molecular makeup of the rare tumor, several existing cancer drugs may be targeted against it. The findings appear in the current issue of Nature Genetics.
In 2004, Mayo Clinic pathologists Andre Oliveira, M.D., Ph.D., and Jean Lewis, M.D., first noticed something unusual about a tumor sample they were analyzing under the microscope. By 2009, they had seen the same pathology several times and had begun collecting data. In 2012…
View original post 427 more words
Grape consumption may offer benefits for symptomatic knee osteoarthritis
New research presented last week at the Experimental Biology conference in San Diego, California, suggests that regular grape consumption may help alleviate pain associated with symptomatic osteoarthritis of the knee, and improve joint flexibility and overall mobility. Researchers attribute these potential benefits to the polyphenols found in grapes.
The sixteen week clinical study, undertaken by Texas Woman’s University, was designed to investigate the benefits of grape consumption on inflammation and osteoarthritis outcomes. 72 men and women with knee osteoarthritis (OA) were assigned to either consume grapes in the form of a whole grape freeze-dried powder, or a placebo powder.
The study results, presented by lead investigator Shanil Juma, Ph.D., showed that both men and women consuming a grape-enriched diet had a significant decrease in self-reported pain related to activity and an overall decrease in total knee symptoms. This beneficial effect was more pronounced in females. Additionally, age-related differences were observed:…
View original post 374 more words
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO
.....










