New Drug Approvals

Home » 2019 » March (Page 2)

Monthly Archives: March 2019

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,822,027 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Practical and Scalable Synthetic Method for Preparation of Dolutegravir Sodium: Improvement of a Synthetic Route for Large-Scale Synthesis


Abstract Image

A practical and scalable synthetic method to obtain dolutegravir sodium (1) was established starting from the readily accessible material maltol (2). This synthetic method includes a scalable oxidation process of maltol and palladium-catalyzed amidation for introduction of an amide moiety, leading to a practical manufacturing method in short synthetic steps. The synthetic method demonstrated herein enables multikilogram scale manufacturing of 1 of high purity.

Practical and Scalable Synthetic Method for Preparation of Dolutegravir Sodium: Improvement of a Synthetic Route for Large-Scale Synthesis

 API R&D Laboratory, CMC R&D DivisionShionogi and Co., Ltd.1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
 Production Technology Department, Manufacturing DivisionShionogi and Co., Ltd.1-3, Kuise Terajima 2-chome, Amagasaki, Hyogo 660-0813, Japan
§ Shionogi Pharmaceutical Research CenterShionogi and Co., Ltd.1-1, Futaba-cho 3-chome, Toyonaka, Osaka 561-0825, Japan
Org. Process Res. Dev., Article ASAP
DOI: 10.1021/acs.oprd.8b00409
Publication Date (Web): March 1, 2019
Copyright © 2019 American Chemical Society
This article is part of the Japanese Society for Process Chemistry special issue.

https://pubs.acs.org/doi/10.1021/acs.oprd.8b00409

///////Dolutegravir

Cenobamate


img

Cenobamate
CAS: 913088-80-9
Chemical Formula: C10H10ClN5O2
Molecular Weight: 267.67

Related CAS #: 913088-80-9   913087-59-9

Synonym: YKP-3089; YKP3089; YKP3089; Cenobamate

IUPAC/Chemical Name: (R)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl carbamate

  • 2H-Tetrazole-2-ethanol, α-(2-chlorophenyl)-, carbamate (ester), (αR)- (9CI)
  • (1R)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl carbamate
  • Carbamic acid (R)-(+)-1-(2-chlorophenyl)-2-(2H-tetrazol-2-yl)ethyl ester
  • 2H-Tetrazole-2-ethanol, α-(2-chlorophenyl)-, 2-carbamate, (αR)-

Cenobamate, also known as YKP-3089, is a novel new antiepileptic drug candidate. Cenobamate showed broad-spectrum anticonvulsant activity. Cenobamate entered into clinical trials and was discontinued in 2015.

PATENT

WO 2006112685

SK HOLDINGS CO., LTD. [KR/KR]; 99 Seorin-dong Jongro-ku Seoul 110-110, KR

CHOI, Yong-Moon; US
KIM, Choon-Gil; KR
KANG, Young-Sun; KR
YI, Han-Ju; KR
LEE, Hyun-Seok; KR
KU, Bon-Chul; KR
LEE, Eun-Ho; KR
IM, Dae-Joong; KR
SHIN, Yu-Jin; KR

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006112685

Patent

US 20100323410

PATENT

WO 2011046380

https://patentscope.wipo.int/search/en/detail.jsf%3Bjsessionid=9CF54FB903EC3DFB7B3237259E6419EB.wapp2?docId=WO2011046380&recNum=36&office=&queryString=&prevFilter=%26fq%3DOF%3AIL%26fq%3DICF_M%3A%22C07D%22&sortOption=Relevance&maxRec=1345

As disclosed in U. S. Patent Application Publication No. 2006/0258718 A1, carbamic acid (R)-1-aryl-2-tetrazolyl-ethyl esters (hereinafter referred to as “the carbamate compounds”) with anticonvulsant activity are useful in the treatment of disorders of the central nervous system, especially including anxiety, depression, convulsion, epilepsy, migraines, bipolar disorder, drug abuse, smoking, ADHD, obesity, sleep disorders, neuropathic pain, strokes, cognitive impairment, neurodegeneration, strokes and muscle spasms.
Depending on the position of N in the tetrazole moiety thereof, the carbamate compounds are divided into two positional isomers: tetrazole-1-yl (hereinafter referred to as “1N tetrazole”) and treatzole-2-yl (hereinafter referred to as “2N tetrazole”). The introduction of tetrazole for the preparation of the carbamate compounds results in a 1:1 mixture of the two positional isomers which are required to be individually isolated for pharmaceutical use.
Having chirality, the carbamate compounds must be in high optical purity as well as chemical purity as they are used as medications.
In this regard, U. S. Patent Application Publication No. 2006/0258718 A1 uses the pure enantiomer (R)-aryl-oxirane as a starting material which is converted into an alcohol intermediate through a ring-opening reaction by tetrazole in the presence of a suitable base in a solvent, followed by introducing a carbamoyl group into the alcohol intermediate. For isolation and purification of the 1N and 2N positional isomers thus produced, column chromatography is set after the formation of an alcohol intermediate or carbamate.
For use in the preparation, (R)-2-aryl-oxirane may be synthesized from an optically active material, such as substituted (R)-mandelic acid derivative, via various routes or obtained by asymmetric reduction-ring formation reaction of α-halo arylketone or by separation of racemic 2-aryl-oxirane mixture into its individual enantiomers. As such, (R)-2-aryl-oxirane is an expensive compound.
In addition, the ring-opening reaction of (R)-2-aryl-oxirane with tetrazole is performed at relatively high temperatures because of the low nucleophilicity of the tetrazole. However, the ring opening reaction includes highly likely risk of a runaway reaction because tetrazoles start to spontaneously degrade at 110 ~ 120℃.
In terms of a selection of reaction, as there are two reaction sites in each (R)-2-aryl-oxirane and tetrazole, the ring-opening reaction therebetween affords the substitution of 1N- or 2N-tetrazole at the benzyl or terminal position, resulting in a mixture of a total of 4 positional isomers. Therefore, individual positional isomers are low in production yield and difficult to isolate and purify.
Preparation Example 1: Preparation of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-one
To a suspension of 2-bromo-2′-chloroacetophenone (228.3 g, 0.978 mol) and potassium carbonate (161.6 g, 1.170 mol) in acetonitrile (2000 mL) was added a 35 w/w% 1H-tetrazole dimethylformamide solution (215.1 g, 1.080 mol) at room temperature. These reactants were stirred for 2 h at 45℃ and distilled under reduced pressure to remove about 1500 mL of the solvent. The concentrate was diluted in ethyl acetate (2000 mL) and washed with 10% brine (3 x 2000 mL). The organic layer thus separated was distilled under reduced pressure to afford 216.4 g of an oily solid residue. To a solution of the solid residue in ethyl acetate (432 mL) was slowly added heptane (600 mL). The precipitate thus formed was filtered at room temperature and washed to yield 90.1 g (0.405 mol) of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-one (hereinafter referred to as 1N ketone ).
1H-NMR(CDCl 3) 8.87(s, 1H), d7.77(d, 1H), d7.39-7.62(m, 3H), d5.98(s, 2H)
Preparation Example 2: Preparation of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-one
After the filtration of Preparation Example 1, the filtrate was concentrated and dissolved in isopropanol (100 mL), and to which heptane (400 mL) was then added to complete the crystallization. Filtering and washing at 5℃ afforded 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-one (hereinafter referred to as “2N ketone”) as a solid. 94.7 g (0.425 mol).
1H-NMR(CDCl 3) d8.62(s, 1H), d7.72(d, 1H), d7.35-7.55(m, 3H), d6.17(s, 2H)
PREPARATION EXAMPLE 3: Preparation of Alcohol Compound of (R)-Configuration by enantioselective enzymatic reduction via various oxidoreductases
The following four solutions were prepared as follows:
Enzyme Solution 1
Competent Escherichia coli StarBL21(De3) cells (Invitrogen) were transformed with the expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 1. The Escherichia coli colonies transformed with the resulting expression constructs were then cultivated in 200 mL of LB medium (1% tryptone, 0.5 % yeast and 1% sodium chloride) with 50 micrograms/mL of ampicillin or 40 micrograms/mL of kanamycin, respectively, until an optical density of 0.5, measured at 550 nm, was achieved. The expression of the desired recombinant protein was induced by the addition of isopropylthiogalactoside (IPTG) to a concentration of 0.1 mM. After 16 hours of induction at 25 ℃ and 220 rpm, the cells were harvested and frozen at -20 ℃. In the preparation of the enzyme solutions, 30 g of cells were resuspended in 150 mL of triethanolamine buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8) and homogenized in a high pressure homogenizer. The resultant enzyme solution was mixed with 150 mL glycerol and stored at -20℃.
Enzyme Solution 2
RB791 cells ( E.coli genetic stock, Yale, USA) were transformed with the expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 2. The Escherichia coli colonies transformed with the resulting expression constructs were then cultivated in 200 mL of LB medium (1% tryptone, 0.5 % yeast and 1% sodium chloride) with 50 micrograms/mL of ampicillin or 40 micrograms/mL of kanamycin, respectively, until an optical density of 0.5, measured at 550 nm, was achieved. The expression of the desired recombinant protein was induced by the addition of isopropylthiogalactoside (IPTG) to a concentration of 0.1 mM. After 16 hours of induction at 25℃ and 220 rpm, the cells were harvested and frozen at -20℃. In the preparation of the enzyme solutions, 30 g of cells were resuspended in 150 mL of triethanolamine buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8) and homogenized in a high pressure homogenizer. The resultant enzyme solution was mixed with 150 mL glycerol and stored at -20℃.
Enzyme Solution 3
Enzyme solutions 3 was prepared in the same manner as described in Enzyme solution 1 except that expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 3 instead of expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 1 was used.
Enzyme Solution 4
Enzyme solutions 4 was prepared in the same manner as described for enzyme solution 2 except that expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 4 instead of expression constructs pET21-MIX coding for oxidoreductase SEQ ID NO 2 was used.
Different oxidoreductases contained in each enzyme solutions 1 to 4 were examined as follows for the conversion of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-one (1N ketone) and 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-one (2N ketone) to the corresponding 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-ol (hereinafter, referred to as 1N alcohol ) and 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-ol (hereinafter, referred to as “2N alcohol”), respectively.
Reaction batch A
160 ㎕ buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8)
100 ㎕ NADPH (40 mg/ml)
40 ㎕ 2-propanol
50 ㎕ enzyme solution 1
2 mg 1N ketone or 2N ketone
Reaction batch B
160 ㎕ buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8)
100 ㎕ NADPH (40 mg/ml)
40 ㎕ 2-propanol
50 ㎕ enzyme solution 2
2 mg 1N ketone or 2N ketone
Reaction batch C
350 ㎕ buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8)
0,05 mg NADP
50 ㎕ enzyme solution 3
10 mg 1N ketone or 2N ketone
250 ㎕ 4-methyl-2-pentanol
50 ㎕ enzyme (oxidoreductase from Thermoanerobium brockii) solution for regeneration of cofactor
Reaction batch D
350 ㎕ buffer (TEA 100 nM, 2 mM MgCl2, 10% glycerol, pH 8
0,05 mg NADP
50 ㎕ enzyme solution 4
10 mg 1N ketone or 2N ketone
250 ㎕ 4-methyl-2-pentanol
50 ㎕ enzyme (oxidoreductase from Thermoanerobium brockii) solution for regeneration of cofactor
After 24h of incubating each reaction batch A, B, C and D, 1 mL of acetonitrile was added to each reaction batch which was centrifuged and transferred into a HPLC analysis vessel for enantiomeric excess and conversion. Conversion and ee-value of products are listed in Table 1 below calculated using the following equations:
Conversion Rate (%) = [(Area of Product)/(Area of Reactant + Area of Product)]x100
ee-value(%) = [(Area of R-Configuration – Area of S-Configuration)/(Area of R-Configuration + Area of S-Configuration)] x 100
Table 1 [Table 1] 
PREPARATION EXAMPLE 4: Enzymatic reduction via oxidoreductase SEQ NO: 2
For the conversion of 1N/2N ketone to R-1N/R-2N alcohol, 30㎕ of the enzyme solution 2 containing the oxidoreductase SEQ NO: 2 were added to a mixture of 300㎕ of a buffer (100 mM TEA, pH 8, 1mM MgCl2, 10% glycerol), 100mg of a mixture of 1N ketone and 2N ketone (1N:2N=14%:86%), 0.04mg NADP and 300㎕ 2-butanol. The reaction mixture was incubated at room temperature under constant thorough mixing. After 48 hours, more than 98% of the ketones were reduced to an alcohol mixture of the following composition(R-2N alcohol 80%; S-2N alcohol 0%; R-1N alcohol 20%, S-1N alcohol 0%; 1N ketone 0%; 2N ketone 0%).
After general work up and recrystallization with ethyl acetate/hexane, optically pure alcohols were obtained as below:
(R)-1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-1-yl)ethan-1-ol (1N alcohol
1H-NMR(CDCl 3) d8.74(s, 1H), d7.21-7.63(m, 4H), d5.57(m, 1H), d4.90(d, 1H), d4.50(d, 1H), d3.18(d, 1H);
(R)-1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-ol (2N alcohol)
1H-NMR(CDCl 3) d8.55(s, 1H), d7.28-7.66(m, 4H), d5.73(d, 1H), d4.98(d, 1H), d4.83(d, 1H), d3.38(br, 1H).
Preparation of Carbamate
Preparation Example 5: Preparation of Carbamic Acid (R)-1-(2-Chlorophenyl)-2-(tetrazol-2-yl)ethyl ester
50ml of the enzyme solution 2 containing the oxidoreductase SEQ NO: 2 were added to a mixture of 250ml of a buffer (100 mM TEA, pH 8, 1mM MgCl2, 10% glycerol), 50g (225mmol) of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-one(2N ketone), 4mg NAD, 300 ml of 2-propanol and 150mL of butyl acetate. The reaction mixture was stirred at room temperature. After 48 hours more than 98% of 2N ketone was reduced to corresponding (R)-1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-ol (R-2N alcohol) with >99%ee values. To this resulting mixture, 500mL of ethyl acetate was added. After being separated, the organic layer thus formed was washed with 10% brine (3 x 500mL). The organic layer thus formed was dried over magnesium sulfate and filtered and the filtrate was distilled under reduced pressure to give 50.4g (224 mmol) of 1-(2-chlorophenyl)-2-(1,2,3,4-tetrazol-2-yl)ethan-1-ol (R-2N alcohol, optical purity 99.9%) as an oily residue. To this resulting crude product, 450mL of tetrahydrofuran was added. After cooling to -15℃, 38g (267mmol) of chlorosulfonyl isocyanate was slowly added and stirred at -10℃ for 2 h. The slow addition of water induced termination of the reaction. The resulting solution was concentrated under reduced pressure until about 300 mL of the solvent was removed. The concentrate was diluted with 600mL of ethyl acetate and washed with 10% brine (3 x 500 mL). The organic layer was concentrated under reduced pressure and the concentrate was dissolved in isopropanol (90 mL) to which heptane (180 mL) was slowly added, leading to the completion of crystallization. The precipitate thus obtained was filtered and washed to afford 51.8 g (194 mmol) of carbamic acid (R)-1-(2-chlorophenyl)-2-(tetrazol-2-yl)ethyl ester (optical purity 99.9%).
1H-NMR(Acetone-d 6) d8.74(s, 1H), d7.38-7.54(m, 4H), d6.59(m, 1H), d6.16(Br, 2H), d4.90(d, 1H), d5.09(m, 2H)
As described hitherto, carbamate compounds with high optical and chemical purity can be produced with an economical benefit in accordance with the present invention.
Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
AMINO ACID SEQUENCES
SEQ ID NO 1: Oryctolagus cuniculus from rabbit DSMZ 22167
SEQ ID NO 2: Candida magnoliae DSMZ 22052 protein sequence carbonyl reductase
SEQ ID NO 3: Candida vaccinii CBS7318 protein sequence carbonyl reductase
SEQ ID NO 4: Candida magnoliae CBS6396 protein sequence carbonyl reductase
NUCLEIC ACID SEQUENCES
SEQ ID NO 5: Oryctolagus cuniculus from rabbit DSMZ 22167
SEQ ID NO 6: Candida magnoliae DSMZ 22052 nucleic acid sequence carbonyl reductase
SEQ ID NO 7: Candida vaccinii CBS7318 nucleic acid sequence carbonyl reductase
SEQ ID NO 8: Candida magnoliae CBS6396 nucleic acid sequence carbonyl reductase

Clip

Our team enjoyed celebrating the news of FDA acceptance of our new drug application (NDA) for investigational antiepileptic drug, cenobamate. A special thank you to everyone on our team who worked tirelessly to make this milestone possible!
SK life science announces FDA acceptance of NDA submission for cenobamate, an investigational antiepileptic drug PDUFA date set for November 21, 2019 Fair Lawn, New Jersey, February 4, 2019 – SK Life Science, Inc., a subsidiary of SK Biopharmaceuticals Co., Ltd., an innovative biopharmaceutical company focused on developing and bringing to market treatments for central nervous system (CNS) disorders, announced today that the U.S. Food and Drug Administration (FDA) has accepted the filing of its New Drug Application (NDA) for cenobamate. Cenobamate, an investigational antiepileptic drug for the potential treatment of partial-onset seizures in adult patients, is the first molecule discovered and developed from inception through to the submission of an NDA without partnering or out-licensing from a Korean pharmaceutical company.
SK life science plans to commercialize cenobamate independently. The NDA submission is based on data from pivotal trials that evaluated the efficacy and safety of cenobamate. Results from the clinical trial program, which enrolled more than 1,900 patients, have been presented at medical conferences including the American Academy of Neurology (AAN) and the American Epilepsy Society (AES) Annual Meetings. “The FDA’s acceptance of our NDA filing is a critical step toward our goal of introducing a new treatment option for people with uncontrolled epilepsy,” said Marc Kamin, M.D., chief medical officer at SK life science. “We look forward to working with the FDA during their review of our data on cenobamate.” Despite the availability and introduction of many new AEDs, overall treatment outcomes for people with epilepsy have not improved in 20 years
1 and the CDC states that nearly 60 percent of people with epilepsy are still experiencing seizures, showcasing a great unmet need for patients and their families. 2 Additionally, while some patients may experience a reduction in seizure frequency with current treatments, they continue to live with seizures.
2 The impact of continued seizures can be debilitating and life-altering and the complications of epilepsy can include depression and anxiety, cognitive impairment and SUDEP (sudden unexpected death in epilepsy).
3 About Epilepsy Epilepsy is a common neurological disorder characterized by seizures.
4 There are approximately 3.4 million people in the U.S. living with epilepsy, and approximately 65 million worldwide.
5 The majority of people with epilepsy (60%) have partial-onset seizures, which are located in just one part of the brain.
6 People with epilepsy are also at risk for accidents and other health complications including falling, drowning, car accidents, depression and anxiety and SUDEP. 3
About Cenobamate Cenobamate (YKP3089) was discovered by SK Biopharmaceuticaals and SK life science and is being investigated for the potential treatment of partial-onset seizures in adult patients. Cenobamate’s mechanism of action is not fully understood, but it is believed to work through two separate mechanisms: enhancing inhibitory currents through positive modulation of GABA-A receptors and decreasing excitatory currents by inhibiting the persistent sodium current. Global trials for adults with partial-onset seizures are ongoing to evaluate cenobamate safety.
Additional clinical trials are investigating cenobamate safety and efficacy in other seizure types. The U.S. Food and Drug Administration (FDA) accepted the filing of the New Drug Application for cenobamate for the potential treatment of partial-onset seizures in adults in February 2019. Cenobamate is not approved by the FDA or any other regulatory authorities. Safety and efficacy have not been established. About SK life science SK Life Science, Inc., a subsidiary of SK Biopharmaceuticals, Co., Ltd., is focused on developing and commercializing treatments for disorders of the central nervous system (CNS).
Both are a part of the global conglomerate SK Group, the second largest company in Korea. SK life science is located in Fair Lawn, New Jersey. We have a pipeline of eight compounds in development for the treatment of CNS disorders including epilepsy, sleep disorder and attention deficit hyperactivity disorder, among others. The first product the company is planning to commercialize independently is cenobamate (YKP3089), an investigational compound for the potential treatment of partial-onset seizures in adult patients, currently in a Phase 3 global clinical trial.
For more information, visit SK life science’s website at http://www.SKLifeScienceInc.com.
For more information, visit SK Biopharmaceuticals’ website at http://www.skbp.com/eng. —-
1. Chen Z, Brodie MJ, Liew D, Kwan P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. https://www.ncbi.nlm.nih.gov/pubmed/29279892 Published online December 26, 2017.
2. Center for Disease Control and Prevention. Active Epilepsy and Seizure Control in Adults — United States, 2013 and 2015. https://www.cdc.gov/mmwr/volumes/67/wr/mm6715a1.htm?s_cid=mm6715a1 Accessed December 27, 2018.
3. Epilepsy Foundation. Staying Safe. https://www.epilepsy.com/learn/seizure-first-aid-and-safety/staying-safe Accessed November 20, 2018.
4. Epilepsy Foundation. What Is Epilepsy? https://www.epilepsy.com/learn/about-epilepsy-basics/what-epilepsy Accessed November 20, 2018.
5. Epilepsy Foundation. Facts about Seizures and Epilepsy. https://www.epilepsy.com/learn/about-epilepsybasics/facts-about-seizures-and-epilepsy Accessed November 20, 2018.
6. National Institute of Neurological Disorders and Stroke. The Epilepsies and Seizures: Hope through Research. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope-Through-Research/Epilepsies-andSeizures-Hope-Through#3109_9 Accessed November 20, 2018.

REFERENCES

1: Mula M. Emerging drugs for focal epilepsy. Expert Opin Emerg Drugs. 2013
Mar;18(1):87-95. doi: 10.1517/14728214.2013.750294. Epub 2012 Nov 26. Review.
PubMed PMID: 23176519.

2: Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress
report on new antiepileptic drugs: a summary of the Ninth Eilat Conference (EILAT
IX). Epilepsy Res. 2009 Jan;83(1):1-43. doi: 10.1016/j.eplepsyres.2008.09.005.
Epub 2008 Nov 12. PubMed PMID: 19008076.

/////////////YKP-3089, YKP3089, YKP3089, Cenobamate

NC(O[C@H](C1=CC=CC=C1Cl)CN2N=CN=N2)=O

Rovafovir Etalafenamide


2D chemical structure of 912809-27-9

Rovafovir etalafenamide

GS-9131

UNII-U8S0IC8DY7

 ethyl ((S)-((((2R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-2,5-dihydrofuran-2-yl)oxy)methyl)(phenoxy)phosphoryl)-L-alaninate

L-Alanine, N-((S)-((((2R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-2,5-dihydro-2-furanyl)oxy)methyl)phenoxyphosphinyl)-, ethyl ester
CAS: 912809-27-9
Chemical Formula: C21H24FN6O6P
Molecular Weight: 506.43

  • Originator Gilead Sciences
  • Class Antiretrovirals; Purine nucleosides; Small molecules
  • Mechanism of Action Nucleoside reverse transcriptase inhibitors
  • Phase II HIV-1 infections
  • 03 Apr 2018 Phase-II clinical trials in HIV-1 infections (Treatment-experienced) in Uganda (PO) (NCT03472326)
  • 21 Mar 2018 Gilead Sciences plans a phase II study for HIV-1 infections in March 2018 (NCT03472326)
  • 26 Mar 2009 Preclinical pharmacokinetics data in HIV-1 infections presented at the 237th American Chemical Society National Meeting (237th-ACS-2009)

Rovafovir Etalafenamide, also known as GS-9131, is an anti-HIV Nucleoside Phosphonate prodrug.

POSTER

http://www.croiconference.org/sites/default/files/posters-2017/436_White.pdf

Patent

WO 2006110157

WO 2008103949

WO 2010005986

PATENT

WO 2012159047

 

PATENT

WO-2019027920

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019027920&tab=PCTDESCRIPTION&maxRec=1000

As discussed in U.S. Pat. Nos. 7,871,991, 9,381,206, 8,951,986, and 8,658,617, ethyl ((S)-((((2R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-2,5-dihydrofuran-2-yl)oxy)methyl)(phenoxy)phosphoryl)-L-alaninate is a reverse transcriptase inhibitor that blocks the replication of HIV viruses, in vivo and in vitro, and has limited undesirable side effects when administered to human beings. This compound has a favorable in vitro resistance profile with activity against Nucleoside RT Inhibitor (NRTI)-Resistance Mutations, such as Ml 84V, K65R, L74V, and one or more (e.g., 1, 2, 3, or 4) TAMs (thymidine analogue mutations). It has the following formula (see, e.g., U.S. Pat. No. 7,871,991), which is referred to as Formula I:

[0004] Ethyl ((S)-((((2R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-2,5-dihydrofuran-2-yl)oxy)methyl)(phenoxy)phosphoryl)-L-alaninate is difficult to isolate, purify, store for an extended period, and formulate as a pharmaceutical composition.

[0005] The compound of formula la was previously identified as the most chemically stable form of ethyl ((S)-((((2R,5R)-5-(6-amino-9H-purin-9-yl)-4-fluoro-2,5-dihydrofuran-2-

yl)oxy)methyl)(phenoxy)phosphoryl)-L-alaninate. See, e.g. , U.S. Pat. Nos. 8,658,617,

8,951,986, and 9,381,206. However, a total degradation increase of 2.6% was observed when the compound of formula (la) was stored at 25 °C/60% RH over 6 months. Therefore, the compound of formula la requires refrigeration for long-term storage.

[0006] Accordingly, there is a need for stable forms of the compound of Formula I with suitable chemical and physical stability for the formulation, therapeutic use, manufacturing, and storage of the compound. New forms, moreover, can provide better stability for the active pharmaceutical substance in a pharmaceutical formulation.

PAPER

Bioorganic & Medicinal Chemistry (2010), 18(10), 3606-3617.

https://www.sciencedirect.com/science/article/pii/S0968089610002452?via%3Dihub

Image result for Discovery of GS-9131: Design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148

Image result for Discovery of GS-9131: Design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148

PAPER

 RSC Drug Discovery Series (2011), 4(Accounts in Drug Discovery), 215-237.

PAPER

https://aac.asm.org/content/52/2/648

Image result for GS-9131

REFERENCES

1: Rai MA, Pannek S, Fichtenbaum CJ. Emerging reverse transcriptase inhibitors for HIV-1 infection. Expert Opin Emerg Drugs. 2018 May 10:1-9. doi: 10.1080/14728214.2018.1474202. [Epub ahead of print] PubMed PMID: 29737220.

2: Mackman RL. Anti-HIV Nucleoside Phosphonate GS-9148 and Its Prodrug GS-9131: Scale Up of a 2′-F Modified Cyclic Nucleoside Phosphonate and Synthesis of Selected Amidate Prodrugs. Curr Protoc Nucleic Acid Chem. 2014 Mar 26;56:14.10.1-21. doi: 10.1002/0471142700.nc1410s56. Review. PubMed PMID: 25606977.

3: De Clercq E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates: the magic of the phosphonate bond. Biochem Pharmacol. 2011 Jul 15;82(2):99-109. doi: 10.1016/j.bcp.2011.03.027. Epub 2011 Apr 8. Review. PubMed PMID: 21501598.

4: Mackman RL, Ray AS, Hui HC, Zhang L, Birkus G, Boojamra CG, Desai MC, Douglas JL, Gao Y, Grant D, Laflamme G, Lin KY, Markevitch DY, Mishra R, McDermott M, Pakdaman R, Petrakovsky OV, Vela JE, Cihlar T. Discovery of GS-9131: Design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148. Bioorg Med Chem. 2010 May 15;18(10):3606-17. doi: 10.1016/j.bmc.2010.03.041. Epub 2010 Mar 27. PubMed PMID: 20409721.

5: Cihlar T, Laflamme G, Fisher R, Carey AC, Vela JE, Mackman R, Ray AS. Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation. Antimicrob Agents Chemother. 2009 Jan;53(1):150-6. doi: 10.1128/AAC.01183-08. Epub 2008 Nov 10. PubMed PMID: 19001108; PubMed Central PMCID: PMC2612154.

6: Cihlar T, Ray AS, Boojamra CG, Zhang L, Hui H, Laflamme G, Vela JE, Grant D, Chen J, Myrick F, White KL, Gao Y, Lin KY, Douglas JL, Parkin NT, Carey A, Pakdaman R, Mackman RL. Design and profiling of GS-9148, a novel nucleotide analog active against nucleoside-resistant variants of human immunodeficiency virus type 1, and its orally bioavailable phosphonoamidate prodrug, GS-9131. Antimicrob Agents Chemother. 2008 Feb;52(2):655-65. Epub 2007 Dec 3. PubMed PMID: 18056282; PubMed Central PMCID: PMC2224772.

7: Ray AS, Vela JE, Boojamra CG, Zhang L, Hui H, Callebaut C, Stray K, Lin KY, Gao Y, Mackman RL, Cihlar T. Intracellular metabolism of the nucleotide prodrug GS-9131, a potent anti-human immunodeficiency virus agent. Antimicrob Agents Chemother. 2008 Feb;52(2):648-54. Epub 2007 Dec 3. PubMed PMID: 18056281; PubMed Central PMCID: PMC2224749.

8: Birkus G, Wang R, Liu X, Kutty N, MacArthur H, Cihlar T, Gibbs C, Swaminathan S, Lee W, McDermott M. Cathepsin A is the major hydrolase catalyzing the intracellular hydrolysis of the antiretroviral nucleotide phosphonoamidate prodrugs GS-7340 and GS-9131. Antimicrob Agents Chemother. 2007 Feb;51(2):543-50. Epub 2006 Dec 4. PubMed PMID: 17145787; PubMed Central PMCID: PMC1797775.

//////////////Rovafovir etalafenamide, GS-9131, PHASE 2

C[C@@H](C(OCC)=O)N[P@@](OC1=CC=CC=C1)(CO[C@H]2O[C@@H](N3C=NC4=C(N)N=CN=C34)C(F)=C2)=O

OLACAFTOR, VX 440


Image result for VX 440

NHOUNZMCSIHKHJ-FQEVSTJZSA-N.png

OLACAFTOR, VX 440

CAS 1897384-89-2

Molecular Formula: C29H34FN3O4S
Molecular Weight: 539.666 g/mol

CFTR corrector; UNII-RZ7027HK8F; RZ7027HK8F;

Target-based Actions, CFTR modulator

Indications, Cystic fibrosis

CS-0044588

UNII-RZ7027HK8F

RZ7027HK8F

Olacaftor (VX-440, VX440) is a next-generation CFTR corrector, shows the potential to enhance the amount of CFTR protein at the cell’s surface and for treatment of cystic fibrosis..

  • Originator Vertex Pharmaceuticals
  • Class Pyridines; Pyrrolidines
  • Mechanism of Action Cystic fibrosis transmembrane conductance regulator stimulants
  • Phase II Cystic fibrosis
  • 01 Jun 2018 Chemical structure information added
  • 01 Aug 2017 Vertex Pharmaceuticals completes a phase II trial in Cystic fibrosis (In adolescents, In adults, In the elderly, Combination therapy) in USA, Australia, Austria, Belgium, Canada, Denmark, Germany, Italy, Spain, Netherlands and United Kingdom (PO) (NCT02951182) (EudraCT2016-000454-36)
  • 18 Jul 2017 Efficacy and events data from a phase II trial in Cystic fibrosis released by Vertex Pharmaceuticals

PATENT

WO2016057572

https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=B67642F2D5C265D1AF3AC60194173694.wapp1nB?docId=WO2016057572&recNum=6&office=&queryString=&prevFilter=%26fq%3DOF%3AWO%26fq%3DICF_M%3A%22A01N%22&sortOption=Pub+Date+Desc&maxRec=22922

PATENT

US9782408

PATENT

WO-2019028228

https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019028228&tab=PCTDESCRIPTION&maxRec=1000

Processes for preparing (S)-2,2,4-trimethylpyrrolidine and its salts, particularly hydrochloride comprising the reaction of 2,2,6,6-tetramethyl-piperidin-4-one with chloroform and a base (sodium hydroxide), followed by reaction with an acid (hydrochloric acid), hydrogenation, reduction and salt synthesis is claimed. Also claimed is a process for the preparation of an intermediate of (S)-2,2,4-trimethylpyrrolidine hydrochloride. The compound is useful as an intermediate for the synthesis of CFTR modulators, useful for treating cystic fibrosis.
(5)-2,2,4-trimethylpyrrolidine free base and salt forms thereof, (R)-2,2,4-trimethylpyrrolidine free base and salt forms thereof, (,S)-3,5,5-trimethylpyrrolidine-2-one, (R)-3,5,5-trimethylpyrrolidine-2-one, and 5,5-dimethyl-3-methylenepyrrolidin-2-one are useful molecules that can be used in the synthesis of pharmaceutically active molecules, such as modulators of CFTR activity, for example those disclosed in PCT Publication Nos. WO 2016/057572, WO 2018/064632, and WO 2018/107100, including the following molecules, which are being investigated in clinical trials for the treatment of cystic fibrosis:

[0003] There remains, however, a need for more efficient, convenient, and/or economical processes for the preparation of these molecules.

[0004] Disclosed herein are processes for preparing 5,5-dimethyl-3-methylenepyrrolidin-2-one, (,S)-3,5,5-trimethylpyrrolidine-2-one, (R)-3,5,5-trimethylpyrrolidine-2-one, (,S)-2,2,4-trimethylpyrrolidine, and (R)-2,2,4-trimethylpyrrolidine, and their salt forms:


trimethylpyrrolidine-2-one)); ((R)-3,5,5-trimethylpyrrolidine-2-one));

((,S)-2,2,4-trimethylpyrrolidine) ;and 

Scheme 1. Synthesis of (S)-2,2,4-trimethylpyrrolidine

(2) (3) (4S) (1 S)

Scheme 2. Synthesis of (R)-2,2,4-trimethylpyrrolidine

(2) (3) (4R) (1 R)

Scheme 3. Synthesis of 5,5-dimethyl-3-methylenepyrrolidin-2-one

3 C

EXAMPLES

Example 1. Reaction (a) and (b): Synthesis of 5,5-dimethyl-3-methylenepyrrolidin- 2-one

(2) (3) C (3)

Example 1A:

[0055] 2,2,6,6-tetramethylpiperidin-4-one (50.00 g, 305.983 mmol, 1.000 equiv), tributylmethylammonium chloride (2.89 g, 3.0 mL, 9.179 mmol, 0.030 equiv), chloroform (63.92 g, 43.2 mL, 535.470 mmol, 1.750 equiv), and DCM (dichloromethane) (100.0 mL, 2.00 vol) were charged to a 1000 mL three-neck round bottom flask equipped with an overhead stirrer. The reaction mixture was stirred at 300 rpm, and 50 wt% NaOH (195.81 g, 133.2 mL, 2,447.863 mmol, 8.000 equiv) was added dropwise (via addition funnel) over 1.5 h while maintaining the temperature below 25 °C with intermittent ice/acetone bath. The reaction mixture was stirred at 500 rpm for 18 h, and monitored by GC (3% unreacted piperidinone after 18 h). The suspension was diluted with DCM (100.0 mL, 2.00 vol) and H2O (300.0 mL, 6.00 vol), and the phases were separated. The aqueous phase was extracted with DCM (100.0 mL, 2.00 vol). The organic phases were combined and 3 M hydrochloric acid (16.73 g, 153.0 mL, 458.974 mmol, 1.500 equiv) was added. The mixture was stirred at 500 rpm for 2 h. The conversion was complete after approximately 1 h. The aqueous phase was saturated with NaCl, H2O (100.0 mL, 2.00 vol) was added to help reduce the emulsion, and the phases were separated. The aqueous phase was extracted with DCM (100.0 mL, 2.00 vol) twice. H2O (100.0 mL, 2.00 vol) was added to help with emulsion separation. The organic phases were combined, dried (MgS04), and

concentrated to afford 32.6 g (85%) of crude Compound (3) as a pale orange clumpy solid. The crude was recrystallized from hot (90°C) iPrOAc (isopropyl acetate) (71.7 mL, 2.2 vol. of crude), cooled to 80 °C, and -50 mg of crystalline Compound (3) was added for seeding. Crystallization started at 77 °C, the mixture was slowly cooled to ambient temperature, and aged for 2 h. The solid was collected by filtration, washed with 50/50 iPrOAc/heptane (20.0 mL, 0.40 vol) twice, and dried overnight in the vacuum oven at 40 °C to afford the desired product (23.70 g, 189.345 mmol, 62% yield) as a white sand colored crystalline solid. ¾ MR (400 MHz, CDCh, 7.26 ppm) δ 7.33 (bs, 1H), 5.96-5.95 (m, 1H), 5.31-5.30 (m, 1H), 2.6 (t, J= 2.5 Hz, 2H), 1.29 (s, 6H).

Synthesis IB:

[0056] i. Under a nitrogen atmosphere, 2,2,6,6-tetramethylpiperidin-4-one (257.4 kg, 1658.0 mol, 1.00 eq.), tri-butyl methyl ammonium chloride (14.86 kg, 63.0 mol, 0.038 eq.), chloroform (346.5 kg, 2901.5 mol, 1.75 eq.) and DCM (683.3 kg) were added to a 500 L enamel reactor. The reaction was stirred at 85 rpm and cooled to 15~17°C. The solution of 50wt% sodium hydroxide (1061.4 kg, 13264.0 mol, 8.00 eq.) was added dropwise over 40 h while maintaining the temperature between 15~25°C. The reaction mixture was stirred and monitored by GC.

ii. The suspension was diluted with DCM (683.3 kg) and water (1544.4 kg). The organic phase was separated. The aqueous phase was extracted with DCM (683.3 kg). The organic phases were combined, cooled to 10°C and then 3 M hydrochloric acid (867.8 kg, 2559.0 mol, 1.5 eq.) was added. The mixture was stirred at 10-15 °C for 2 h. The organic phase was separated. The aqueous phase was extracted with DCM (683.3 kg x 2). The organic phases were combined, dried over Na2S04 (145.0 kg) for 6 h. The solid was filtered off and washed with DCM (120.0 kg). The filtrate was stirred with active charcoal (55 kg) for 6 h. The resulting mixture was filtered and the filtrate was concentrated under reduced pressure (30~40°C, -O. lMPa). Then isopropyl acetate (338 kg) was added and the mixture was heated to 87-91°C, stirred for 1 h. Then the solution was cooled to 15 °C in 18 h and stirred for 1 h at 15 °C. The solid was collected by filtration, washed with 50% isopropyl acetate/hexane (80.0 kg x 2) and dried overnight in the vacuum oven at 50 °C to afford 5,5-dimethyl-3-methylenepyrrolidin-2-one as an off white solid, 55% yield.

Example 2. Reaction (c): Synthesis of (S)-3,5,5-trimethyl-pyrrolidin-2-one from 5,5-dimethyl-3-methylenepyrrolidin-2-one

(3) (4S)

Example 2A: Use of Rh Catalyst

[0057] Step 1 : Preparation of Rh Catalyst Formation: In a 3 L Schlenk flask, 1.0 L of tetrahydrofuran (THF) was degassed with an argon stream. Mandyphos Ligand SL-M004-1 (1.89 g) and [Rh(nbd)Cl]2 (98%, 0.35 g) (chloronorbornadiene rhodium(I) dimer) were added. The resulting orange catalyst solution was stirred for 30 min at room temperature to form a catalyst solution.

[0058] Step 2: A 50 L stainless steel autoclave was charged with 5,5-dimethyl-3-methylenepyrrolidin-2-one (6.0 kg, Compound (3)) and THF (29 L). The autoclave was

sealed and the resulting suspension was flushed with nitrogen (3 cycles at 10 bar), and then released of pressure. Next the catalyst solution from Step 1 was added. The autoclave was flushed with nitrogen without stirring (3 cycles at 5 bar) and hydrogen (3 cycles at 5 bar). The pressure was set to 5 bar and a 50 L reservoir was connected. After 1.5 h with stirring at 1000 rpm and no hydrogen uptake the reactor was flushed again with nitrogen (3 cycles at 10 bar) with stirring and additional catalyst solution was added. The autoclave was again flushed to hydrogen with the above described procedure (3 x 5 bar N2, 3 x 5 bar H2) and adjusted to 5 bar. After 2 h, the pressure was released, the autoclave was flushed with nitrogen (3 cycles at 5 bar) and the product solution was discharged into a 60 L inline barrel. The autoclave was charged again with THF (5 L) and stirred with 1200 rpm for 5 min. The wash solution was added to the reaction mixture.

[0059] Step 3 : The combined solutions were transferred into a 60 L reactor. The inline barrel was washed with 1 L THF which was also added into the reactor. 20 L THF were removed by evaporation at 170 mbar and 40°C. 15 L heptane were added. The distillation was continued and the removed solvent was continuously replaced by heptane until the THF content in the residue was 1% w/w (determined by NMR). The reaction mixture was heated to 89°C (turbid solution) and slowly cooled down again (ramp: 14°C/h). Several heating and cooling cycles around 55 to 65°C were made. The off-white suspension was transferred to a stirred pressure filter and filtered (ECTFE-pad, d = 414 mm, 60 my, Filtration time = 5 min). 10 L of the mother liquor was transferred back into the reactor to wash the crystals from the reactor walls and the obtained slurry was also added to the filter. The collected solid was washed with 2 x 2.5 1 heptane, discharged and let dry on the rotovap at 40°C and 4 mbar to obtain the product, (S)-3,5,5-trimethyl-pyrrolidin-2-one; 5.48 Kg (91%), 98.0% ee.

Synthesis 2B: Use of Ru Catalyst

[0060] The reaction was performed in a similar manner as described above in Example 2A except the use of a Ru catalyst instead of a Rh catalyst.

[0061] Compound (3) (300 g) was dissolved in THF (2640 g, 10 Vol) in a vessel. In a separate vessel, a solution of [RuCl(p-cymene){(R)-segphos}]Cl (0.439g, 0.0002 eq) in THF (660 g, 2.5 Vol) was prepared. The solutions were premixed in situ and passed

through a Plug-flow reactor (PFR). The flow rate for the Compound (3) solution was at 1.555 mL/min and the Ru catalyst solution was at 0.287 mL/min. Residence time in the PFR was 4 hours at 30 °C, with hydrogen pressure of 4.5 MPa. After completion of reaction, the TFIF solvent was distilled off to give a crude residue. Heptane (1026 g, 5 vol) was added and the resulting mixture was heated to 90 °C. The mixture was seeded with 0.001 eq. of Compound 4S seeds. The mixture was cooled to -15 °C at 20 °C/h. After cooling, heptane (410 g, 2 vol) was added and the solid product was recovered by filtration. The resulting product was dried in a vacuum oven at 35 °C to give (S)-3,5,5-trimethyl-pyrrolidin-2-one (281.77 g, 98.2 % ee, 92 % yield).

Example 2C: Analytical Measurements

[0062] Analytical chiral HPLC method for the determination of the conversion, chemoselectivity and enantiomeric excess of the products form Example 2A and 2B was made under the following conditions: Instrument: Agilent Chemstation 1100; Column: Phenomenex Lux 5u Cellulose— 2, 4.6 mm x 250 mm x 5 um, LHS6247; Solvent:

Heptane/iPrOH (90: 10); Flow: 1.0 ml/min; Detection: UV (210 nm); Temperature: 25°C; Sample concentration: 30 μΐ of reaction solution evaporated, dissolved in 1 mL;

heptane/iPrOH (80/20); Injection volume: 10.0 
Run time 20 min; Retention times: 5,5–dimethyl-3-methylenepyrrolidin-2-one: 13.8 min, (,S)-3,5,5-trimethyl-pynOlidin-2-one: 10.6 min, and (R)-3,5,5-trimethyl-pyrrolidin-2-one: 12.4 min.

Example 3: Alternate Synthesis of (S)-3,5,5-trimethyl-pyrrolidin-2-one from 5,5-dimethyl-3-methylenepyrrolidin-2-one

Ru(Me-allyl)2(C0D)2BF4

1 eq HBF4 Et20

5 bar H2 at 45°C

[0063] Mandyphos (0.00479 mmol, 0.12 eq) was weighed into a GC vial. In a separate vial, Ru(Me-allyl)2(COD) (16.87 mg, 0.0528 mmol) was weighed and dissolved in DCM (1328 \iL). In another vial HBF4 Et20 (6.6 μΐ,) and BF3 Et20 (2.0 μΐ,) were dissolved in DCM (240 μΐ.). To the GC vial containing the ligand was added, under a flow of argon, the Ru(Me-allyl)2(COD) solution (100 μΐ,; 0.00399 mmol, O. leq) and the HBF4 Et20 / BF3 -Et20 solution (20 μΐ^ 1 eq HBF4 Et20 and catalytic BF3 Et20). The resulting mixtures were stirred under a flow of argon for 30 minutes. 5,5-dimethyl-3-methylenepyrrolidin-2-one (5 mg, 0.0399 mmol) in EtOH (1 mL) was added. The vials were placed in the hydrogenation apparatus. The apparatus was flushed with H2 (3 χ) and charged with 5 bar H2. After standing for 45 minutes, the apparatus was placed in an oil bath at temperature of 45°C. The reaction mixtures were stirred overnight under H2. 200 μΙ_, of the reaction mixture was diluted with MeOH (800 μΐ.) and analyzed for conversion and ee. 1H MR (400 MHz, Chloroform-d) δ 6.39 (s, 1H), 2.62 (ddq, J = 9.9, 8.6, 7.1 Hz, 1H), 2.17 (ddd, J = 12.4, 8.6, 0.8 Hz, 1H), 1.56 (dd, J = 12.5, 9.9 Hz, 1H), 1.31 (s, 3H), 1.25 (s, 3H), 1.20 (d, J = 7.1 Hz, 3H).

IPC analytical method for Asymmetric Hydrogenation

(3) (4S) (4R)

Example 4. Synthesis of (S)-2,2,4-trimethylpyrrolidine hydrochloride from (S)-3,5,5-trimethyl-pyrrolidin-2-one

(4S) (1S)HCI

Example 4A:

[0064] Anhydrous THF (100 ml) was charged to a dry 750 ml reactor and the jacket temperature was set to 50° C. Once the vessel contents were at 50° C, LiAlH4pellets (10 g, 263 mmol, 1.34 eq.) were added. The mixture was stirred for 10 minutes, then a solution of (4S) (25 g, 197 mmol) in anhydrous THF (100 ml) was added dropwise over 45 minutes, maintaining the temperature between 50-60° C. Once the addition was complete the jacket temperature was increased to 68° C and the reaction was stirred for 18.5 hrs. The reaction mixture was cooled to 30° C then saturated sodium sulfate solution (20.9 ml) was added dropwise over 30 minutes, keeping the temperature below 40° C. Vigorous evolution of hydrogen was observed and the reaction mixture thickened but remained mixable. The mixture thinned towards the end of the addition. The mixture was cooled to 20° C, diluted with iPrOAc (100 ml) and stirred for an additional 10 minutes. The suspension was then drained and collected through the lower outlet valve, washing through with additional iPrOAc (50 ml). The collected suspension was filtered through a Celite pad on a sintered glass funnel under suction and washed with iPrOAc (2×50 ml).

[0065] The filtrate was transferred back to the cleaned reactor and cooled to 0° C under nitrogen. 4M HCI in dioxane (49.1 ml, 197 mmol, leq.) was then added dropwise over 15 minutes, maintaining the temperature below 20°C. A white precipitate formed. The reactor was then reconfigured for distillation, the jacket temperature was increased to 100 °C, and distillation of solvent was carried out. Additional z-PrOAc (100 mL) was added during concentration, after >100 mL distillate had been collected. Distillation was continued until -250 mL total distillate was collected, then a Dean-Stark trap was attached and reflux continued for 1 hour. No water was observed to collect. The reaction mixture was cooled to 20 °C and filtered under suction under nitrogen. The filtered solid was washed with i-PrOAc (100 mL), dried under suction in nitrogen, then transferred to a glass dish and dried in a vacuum oven at 40 °C with a nitrogen bleed. Compound (1S)»HC1 was obtained as a white solid (24.2g, 82%).

Synthesis 4B:

[0066] To a glass lined 120 L reactor was charged LiAlH4 pellets (2.5 kg 66 mol, 1.2 equiv.) and dry THF (60 L) and warmed to 30 °C. To the resulting suspension was charged (¾)-3,5,5-trimethylpyrrolidin-2-one (7.0 kg, 54 mol) in THF (25 L) over 2 hours while maintaining the reaction temperature at 30 to 40 °C. After complete addition, the reaction temperature was increased to 60 – 63 °C and maintained overnight. The reaction mixture was cooled to 22 °C and sampled to check for completion, then cautiously quenched with the addition of EtOAc (1.0 L, 10 moles, 0.16 eq) followed by a mixture of THF (3.4 L) and water (2.5 kg, 2.0 eq) then followed by a mixture of water (1.75 kg) with 50 % aqueous sodium hydroxide (750 g, 2 eq water with 1.4 eq sodium hydroxide relative to aluminum), followed by 7.5 L water (6 eq “Fieser” quench). After the addition was completed, the reaction mixture was cooled to room temperature, and the solid was removed by filtration and washed with THF (3 x 25 L). The filtrate and washings were combined and treated with 5.0 L (58 moles) of aqueous 37% HC1 (1.05 equiv.) while maintaining the temperature below 30°C. The resultant solution was concentrated by vacuum distillation to a slurry in two equal part lots on the 20 L Buchi evaporator.

Isopropanol (8 L) was charged and the solution reconcentrated to near dryness by vacuum distillation. Isopropanol (4 L) was added and the product slurried by warming to about 50 °C. Distillation from Isopropanol continued until water content by KF is < 0.1 %. Methyl tertbutyl ether (6 L) was added and the slurry cooled to 2-5 °C. The product was collected by filtration and rinsed with 12 L methyl tert-butyl ether and pulled dry with a strong nitrogen flow and further dried in a vacuum oven (55 °C/300 torr/N2 bleed) to afford (S)-2,2,4-trimethylpyrrolidine»HCl ((1S HC1) as a white, crystalline solid (6.21 kg, 75% yield). ¾ NMR (400 MHz, DMSO-^6) δ 9.34 (s, 2H), 3.33 (dd, J= 11.4, 8.4 Hz, 1H), 2.75 (dd, J= 11.4, 8.6 Hz, 1H), 2.50 – 2.39 (m, 1H), 1.97 (dd, 7= 12.7, 7.7 Hz, 1H), 1.42 (s, 3H), 1.38 (dd, 7= 12.8, 10.1 Hz, 1H), 1.31 (s, 3H), 1.05 (d, 7= 6.6 Hz, , 3H).

Synthesis 4C:

[0067] With efficient mechanical stirring, a suspension of LiAlH4 pellets (100 g 2.65 mol; 1.35 eq.) in THF (1 L; 4 vol. eq.) warmed at a temperature from 20 °C – 36 °C (heat of mixing). A solution of (¾)-3,5,5-trimethylpyrrolidin-2-one (250 g; 1.97 mol) in THF (1 L; 4 vol. eq.) was added to the suspension over 30 min. while allowing the reaction temperature to rise to -60 °C. The reaction temperature was increased to near reflux (-68 °C) and maintained for about 16 h. The reaction mixture was cooled to below 40 °C and cautiously quenched with drop-wise addition of a saturated aqueous solution of Na2S04 (209 mL) over 2 h. After the addition was completed, the reaction mixture was cooled to ambient temperature, diluted with /-PrOAc (1 L), and mixed thoroughly. The solid was removed by filtration (Celite pad) and washed with /-PrOAc (2 x 500 mL). With external cooling and N2 blanket, the filtrate and washings were combined and treated with drop-wise addition of anhydrous 4 M HC1 in dioxane (492 mL; 2.95 mol; 1 equiv.) while maintaining the temperature below 20 °C. After the addition was completed (20 min), the resultant suspension was concentrated by heating at reflux (74 – 85 °C) and removing the distillate. The suspension was backfilled with /-PrOAc (1 L) during concentration. After about 2.5 L of distillate was collected, a Dean-Stark trap was attached and any residual water was azeotropically removed. The suspension was cooled to below 30 °C when the solid was collected by filtration under a N2 blanket. The solid is dried under N2 suction and further dried in a vacuum oven (55 °C/300 torr/N2 bleed) to afford 261 g (89% yield) of (S 2,2,4-trimethylpyrrolidine»HCl ((1S HC1) as a white, crystalline solid. ¾ NMR (400 MHz, DMSO-^6) δ 9.34 (s, 2H), 3.33 (dd, J = 11 A, 8.4 Hz, 1H), 2.75 (dd, J= 11.4, 8.6 Hz, 1H), 2.50 – 2.39 (m, 1H), 1.97 (dd, J= 12.7, 7.7 Hz, 1H), 1.42 (s, 3H), 1.38 (dd, J = 12.8, 10.1 Hz, 1H), 1.31 (s, 3H), 1.05 (d, J= 6.6 Hz, 3H). ¾ MR (400 MHz, CDCh) δ 9.55 (d, J= 44.9 Hz, 2H), 3.52 (ddt, J= 12.1, 8.7, 4.3 Hz, 1H), 2.94 (dq, J= 11.9, 5.9 Hz, 1H), 2.70 – 2.51 (m, 1H), 2.02 (dd, J= 13.0, 7.5 Hz, 1H), 1.62 (s, 3H), 1.58 – 1.47 (m, 4H), 1.15 (d, J= 6.7 Hz, 3H).

Synthesis 4D:

[0068] A 1L four-neck round bottom flask was degassed three times. A 2M solution of LiAlHun THF (100 mL) was charged via cannula transfer. (¾)-3,5,5-trimethylpyrrolidin-2-one (19.0 g) in THF (150 mL) was added dropwise via an addition funnel over 1.5 hours at 50-60 °C, washing in with THF (19 mL). Upon completion of the addition, the reaction was stirred at 60 °C for 8 hours and allowed to cool to room temperature overnight. GC analysis showed <1% starting material remained. Deionized water (7.6 mL) was added slowly to the reaction flask at 10-15 °C, followed by 15% potassium hydroxide (7.6 mL). Isopropyl acetate (76 mL) was added, the mixture was stirred for 15 minutes and filtered, washing through with isopropyl acetate (76 mL). The filtrate was charged to a clean and dry 500 mL four neck round bottom flask and cooled to 0-5 °C. 36% Hydrochloric acid (15.1 g, 1.0 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (190 mL), was carried out to leave a residual volume of -85 mL. Karl Fischer analysis = 0.11% w/w H2O. MTBE (methyl tertiary butyl ether) (19 mL) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (25 mL) and drying under vacuum at 40-45 °C to give crude (,S)-2,2,4-trimethylpyrrolidine hydrochloride as a white crystalline solid (17.4 g, 78% yield). GC purity = 99.5%. Water content = 0.20% w/w. Chiral GC gave an ee of 99.0% (S). Ruthenium content = 0.004 ppm. Lithium content = 0.07 ppm. A portion of the dried crude ,S)-2,2,4-trimethylpyrrolidine hydrochloride (14.3g) was charged to a clean and dry 250 mL four-neck round bottom flask with isopropanol (14.3 mL) and the mixture held at 80-85 °C (reflux) for 1 hour to give a clear solution. The solution was allowed to cool to 50 °C (solids precipitated on cooling) then MTBE (43 mL) was added and the suspension held at 50-55 °C (reflux) for 3 hours. The solids were filtered off at 10 °C, washing with MTBE (14 mL) and dried under vacuum at 40 °C to give recrystallised (S)- 2.2.4- trimethylpyrrolidine hydrochloride ((1S)»HC1) as a white crystallised solid (13.5 g, 94% yield on recrystallisation, 73% yield). GC purity = 99.9%. Water content = 0.11% w/w. 99.6% ee (Chiral GC) (S). Ruthenium content = 0.001 ppm. Lithium content = 0.02 ppm.

Synthesis 4E:

[0069] A reactor was charged with lithium aluminum hydride (LAH) (1.20 equiv.) and 2-MeTHF (2-methyltetrahydrofuran) (4.0 vol), and heated to internal temperature of 60 °C while stirring to disperse the LAH. A solution of (¾)-3,5,5-trimethylpyrrolidin-2-one (1.0 equiv) in 2-MeTHF (6.0 vol) was prepared and stirred at 25 °C to fully dissolve the (S)- 3.5.5- trimethylpyrrolidin-2-one. The (¾)-3,5,5-trimethylpyrrolidin-2-one solution was added slowly to the reactor while keeping the off-gassing manageable, followed by rinsing the addition funnel with 2-MeTHF (1.0 vol) and adding it to the reactor. The reaction was stirred at an internal temperature of 60 ± 5 °C for no longer than 6 h. The internal temperature was set to 5 ± 5 °C and the agitation rate was increased. A solution of water (1.35 equiv.) in 2-MeTHF (4.0v) was prepared and added slowly to the reactor while the internal temperature was maintained at or below 25 °C. Additional water (1.35 equiv.) was charged slowly to the reactor while the internal temperature was maintained at or below 25 °C. Potassium hydroxide (0.16 equiv.) in water (0.40 vol) was added to the reactor over no less than 20 min while the temperature was maintained at or below 25 °C. The resulting solids were removed by filtration, and the reactor and cake were washed with 2-MeTHF (2 x 2.5 vol). The filtrate was transferred back to a jacketed vessel, agitated, and the temperature was adjusted to 15 ± 5 °C. Concentrated aqueous HC1 (35-37%, 1.05 equiv.) was added slowly to the filtrate while maintaining the temperature at or below 25 °C and was stirred no less than 30 min. Vacuum was applied and the solution was distilled down to a total of 4.0 volumes while maintaining the internal temperature at or below 55 °C, then 2-MeTHF (6.00 vol) was added to the vessel. The distillation was repeated until Karl Fischer analysis (KF) < 0.20% w/w H2O. Isopropanol was added (3.00 vol), and the temperature was adjusted to 70 °C (65 – 75 °C) to achieve a homogenous solution, and stirred for no less than 30 minutes at 70 °C. The solution was cooled to 50 °C (47 – 53 °C) over 1 hour and stirred for no less than 1 h, while the temperature was maintained at 50°C (47 – 53 °C). The resulting slurry was cooled to -10 °C (-15 to -5°C) linearly over no less than 12 h. The slurry was stirred at -10 °C for no less than 2 h. The solids were isolated via filtration or centrifugation and were washed with a solution of 2-MeTHF (2.25 vol) and IPA (isopropanol) (0.75 vol). The solids were dried under vacuum at 45 ± 5 °C for not less than 6 h to yield (,S)-2,2,4-trimethylpyrrolidine hydrochloride ((1S)»HC1).

Example 5: Phase Transfer Catalyst (PTC) Screens for the Synthesis of 5,5-dimethyl-3-methylenepyrrolidin-2-one

[0070] Various PTCs were tested as described below:

[0071] 2,2,6,6-tetramethylpiperidin-4-one (500.0 mg, 3.06 mmol, 1.0 eq.), PTC (0.05 eq.), and chloroform (0.64 g, 0.4 mL, 5.36 mmol, 1.75 eq.) were charged into a vial equipped with a magnetic stir bar. The vial was cooled in an ice bath and a solution of 50 wt% sodium hydroxide (0.98 g, 24.48 mmol, 8.0 eq.) was added dropwise over 2 min. The reaction mixture was stirred until completion as assessed by GC analysis. The reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H2O (3.0 mL, 6.0v). The phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v). The organic

phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion and assessed by

HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC. The reaction results are summarized in the following table:

Example 6: Solvent Screens for the Synthesis of 5,5-dimethyl-3-methylenepyrrolidin-2-one

[0072] Various solvents and amounts were tested as described below:

[0073] 2,2,6,6-tetramethylpiperidin-4-one (500.0 mg, 3.06 mmol, 1.0 eq. (“starting material”)), tetrabutylammonium hydroxide (0.12 g, 0.153 mmol, 0.050 eq), chloroform (0.64 g, 0.4 mL, 5.36 mmol, 1.75 eq.), and solvent (2v or 4v, as shown below) were charged into a vial equipped with a magnetic stir bar. The vial was cooled in an ice bath and a solution of 50 wt% sodium hydroxide (0.98 g, 24.48 mmol, 8.0 eq.) was added drop wise over 2 min. The reaction mixture was stirred until completion and assessed by GC analysis. The reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H2O (3.0 mL, 6.0v). The phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v). The organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion, assessed by HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC. Reaction results are summarized in the following table:

Example 7: Base Screens for the Synthesis of 5,5-dimethyl-3-methylenepyrrolidin-2-one

[0074] In this experiment, various concentrations of NaOH were tested as described below:

[0075] 2,2,6,6-tetramethylpiperidin-4-one (500.0 mg, 3.06 mmol, 1.0 eq. (“starting material”), tetrabutylammonium hydroxide (0.12 g, 0.153 mmol, 0.050 eq), and chloroform (0.64 g, 0.4 mL, 5.36 mmol, 1.75 eq.) were charged into a vial equipped with a magnetic stir bar. The vial was cooled in an ice bath, and a solution of an amount wt% sodium hydroxide as shown in the Table below in water (0.98 g, 24.48 mmol, 8.0 eq.) was added drop wise over 2 min. The reaction mixture was stirred until completion and assessed by GC analysis. The reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H2O (3.0 mL, 6.0v). The phases were separated and the aqueous phase is extracted with DCM (1.0 mL, 2.0v). The organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion, assessed by HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL,

2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC.

Reaction results are summarized in the following table:

Example 8: Phase Transfer Catalyst (PTC) Synthesis of 5,5-dimethyl-3-methylenepyrrolidin-2-one

[0076] Various amounts of PTCs were tested as described below:

Tetrabutylammonium hydroxide (0.01 eq.), TBAB (0.01 eq.), Tributylmethylammonium chloride (0.01 eq.), Tetrabutylammonium hydroxide (0.02 eq.), TBAB (0.02 eq.), Tributylmethylammonium chloride (0.02 eq.), Tetrabutylammonium hydroxide (0.03 eq.), TBAB (0.03 eq.), Tributylmethylammonium chloride (0.03 eq.).

[0077] 2,2,6,6-tetramethylpiperidin-4-one (500.0 mg, 3.06 mmol, 1.0 eq. (“starting material”)), PTC (0.12 g, 0.153 mmol, 0.050 eq), and chloroform (1.75 eq.) were charged into a vial equipped with a magnetic stir bar. The vial was cooled in an ice bath, and a solution of 50 wt% sodium hydroxide (0.98 g, 24.48 mmol, 8.0 eq.) was added drop wise over 2 min. The reaction mixture was stirred until completion, assessed by GC analysis. The reaction mixture was diluted with DCM (2.0 mL, 4.0v) and H20 (3.0 mL, 6.0v). The phases were separated and the aqueous phase was extracted with DCM (1.0 mL, 2.0v). The organic phases were combined and 2 M hydrochloric acid (0.17 g, 2.3 mL, 4.59 mmol, 1.5 eq.) was added. The reaction mixture was stirred until completion, assessed by HPLC. The aqueous phase was saturated with NaCl and the phases were separated. The aqueous phase was extracted with DCM (1.0 mL, 2.0v) twice, the organic phases were combined, and 50 mg of biphenyl in 2 mL of MeCN was added as an internal HPLC standard. Solution yield was assessed by HPLC. The reaction results are summarized in the following table:

Reactions Conditions Result

8D Tetrabutylammonium hydroxide Almost complete

(0.02 eq.) overnight (2% starting

material), 82% solution yield

8E TBAB (0.02 eq.) Almost complete

overnight (2% starting material), 71% solution yield

8F Tributylmethylammonium chloride Incomplete overnight (4%

(0.02 eq.) starting material), 72%

solution yield

8G Tetrabutylammonium hydroxide Almost complete

(0.03 eq.) overnight (3% starting

material), 76% solution yield

8H TBAB (0.03 eq.) Almost complete

overnight (3% starting material), 76% solution yield

81 Tributylmethylammonium chloride Almost complete

(0.03 eq.) overnight (2% starting

material), 78% solution yield

Example 9. Preparation of 2,2,6,6-tetramethylpiperidin-4-one hydrochloride

2,2,6,6-tetramethylpiperidin-4-one 2,2,6,6-tetramethylpiperidin-4-one hydrochloride

[0078] 2,2,6,6-tetramethyl-4-piperidinone (30 g, 193.2 mmol, 1.0 eq) was charged to a 500 mL nitrogen purged three necked round bottomed flask equipped with condenser. IPA (300 mL, 10 vol) was added to the flask and the mixture heated to 60 °C until dissolved.

[0079] To the solution at 60 °C was added 5-6 M HC1 in IPA (40 mL, 214.7 mmol, 1.1 eq) over 10 min and the resulting suspension stirred at 60 °C for 30 min then allowed to cool to ambient temperature. The suspension was stirred at ambient temperature overnight, then filtered under vacuum and washed with IPA (3 x 60 mL, 3 x 2 vol). The cream colored solid was dried on the filter under vacuum for 10 min.

[0080] The wet cake was charged to a 1 L nitrogen purged three necked round bottomed flask equipped with condenser. IPA (450 mL, 15 vol) was added to the flask and the suspension heated to 80 °C until dissolved. The mixture was allowed to cool slowly to ambient temperature over 3 h and the resulting suspension stirred overnight at ambient temperature.

[0081] The suspension was filtered under vacuum, washed with IPA (60 mL, 2 vol) and dried on the filter under vacuum for 30 min. The resulting product was dried in a vacuum oven at 40 °C over the weekend to give a white crystalline solid, 21.4 g, 64% yield.

Example 10. Synthesis of (S)-2,2,4-trimethylpyrrolidine hydrochloride from (S)-3,5,5-trimethyl-pyrrolidin-2-one

[0082] Each reactor was charged with (,S)-3,5,5-trimethyl-pyrrolidin-2-one in THF, H2, and the catalyst shown in the below table. The reactor was heated to 200 C and pressurized to 60 bar, and allowed to react for 12 hours. GC analysis showed that (S)-2,2,4-trimethylpyrrolidine was produced in the columns denoted by “+.”

[0083] A 2.5% solution of (,S)-3,5,5-trimethyl-pyrrolidin-2-one in THF was flowed at 0.05 mL/min into a packed bed reactor prepacked with 2% Pt-0.5%>Sn/SiO2catalyst immobilized on silica gel. H2 gas was also flowed into the packed bed reactor at 20 mL/min. The reaction was carried out at 130 °C under 80 bar pressure with a WHSV (Weigh Hourly Space Velocity) of 0.01-0.02 h“1. The product feed was collected in a batch tank and converted to (S)-2,2,4-trimethylpyrrolidine HC1 in batch mode: 36%>

Hydrochloric acid (1.1 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (4v), was carried out to leave a residual volume of 5v. Karl Fischer analysis < 0.2% w/w H2O. MTBE (methyl tertiary butyl ether) (lv) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (1.5v) and drying under vacuum at 40-45 °C to give (S)-2,2,4-trimethylpyrrolidine hydrochloride as a white crystalline solid (74.8%> yield, 96.1% ee).

Alternate synthesis

[0084] A 2.5%) solution of (,S)-3,5,5-trimethyl-pyrrolidin-2-one in THF was flowed at 0.05 mL/min into a packed bed reactor prepacked with 4% Pt-2%>Sn/Ti02catalyst immobilized on silica gel. H2 gas was also flowed into the packed bed reactor at 20 mL/min. The reaction was carried out at 200 °C under 50 bar pressure with a WHSV (Weigh Hourly Space Velocity) of 0.01-0.02 h“1. The product feed was collected in a batch tank and converted to (S)-2,2,4-trimethylpyrrolidine HC1 in batch mode: 36%

Hydrochloric acid (1.1 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (4v), was carried out to leave a residual volume of 5v. Karl Fischer analysis < 0.2% w/w H2O. MTBE (methyl tertiary butyl ether) (lv) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (1.5v) and drying under vacuum at 40-45 °C to give (S)-2,2,4-trimethylpyrrolidine hydrochloride as a white crystalline solid (88.5% yield, 29.6%> ee).

Alternate synthesis

[0085] A 2.5% solution of (,S)-3,5,5-trimethyl-pyrrolidin-2-one in THF was flowed at 0.05 mL/min into a packed bed reactor prepacked with 2% Pt-0.5%>Sn/TiO2 catalyst immobilized on silica gel. H2 gas was also flowed into the packed bed reactor at 20 mL/min. The reaction was carried out at 150 °C under 50 bar pressure with a WHSV (Weigh Hourly Space Velocity) of 0.01-0.02 h“1. The product feed was collected in a batch tank and converted to (S)-2,2,4-trimethylpyrrolidine HC1 in batch mode: 36%>

Hydrochloric acid (1.1 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (4v), was carried out to leave a residual volume of 5v. Karl Fischer analysis < 0.2% w/w H20. MTBE (methyl tertiary butyl ether) (lv) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (1.5v) and drying under vacuum at 40-45 °C to give (S)-2,2,4-trimethylpyrrolidine hydrochloride as a white crystalline solid (90.9% yield, 98.0%> ee).

Alternate synthesis

[0086] A 2.5%) solution of (,S)-3,5,5-trimethyl-pyrrolidin-2-one in THF was flowed at 0.03 mL/min into a packed bed reactor prepacked with 2% Pt-8%>Sn/Ti02catalyst immobilized on silica gel. H2 gas was also flowed into the packed bed reactor at 40 mL/min. The reaction was carried out at 180 °C under 55 bar pressure with a residence time of 6 min. The product feed was collected in a batch tank and converted to (S)-2,2,4-trimethylpyrrolidine HC1 in batch mode: 36% Hydrochloric acid (1.1 eq.) was added keeping the temperature below 20 °C. Distillation of the solvent, backfilling with isopropyl acetate (4v), was carried out to leave a residual volume of 5v. Karl Fischer analysis < 0.2% w/w H2O. MTBE (methyl tertiary butyl ether) (lv) was added at 20-30 °C and the solids were filtered off under nitrogen at 15-20 °C, washing with isopropyl acetate (1.5v) and drying under vacuum at 40-45 °C to give (,S)-2,2,4-trimethylpyrrolidine hydrochloride as a white crystalline solid (90.4%> yield, 96.8%> ee).

Patent

WO 2019010092

PATENT

US 20160095858

https://patents.google.com/patent/US20160095858A1/en

Cystic fibrosis (CF) is a recessive genetic disease that affects approximately 30,000 children and adults in the United States and approximately 30,000 children and adults in Europe. Despite progress in the treatment of CF, there is no cure.

In patients with CF, mutations in CFTR endogenously expressed in respiratory epithelia leads to reduced apical anion secretion causing an imbalance in ion and fluid transport. The resulting decrease in anion transport contributes to enhanced mucus accumulation in the lung and the accompanying microbial infections that ultimately cause death in CF patients. In addition to respiratory disease, CF patients typically suffer from gastrointestinal problems and pancreatic insufficiency that, if left untreated, results in death. In addition, the majority of males with cystic fibrosis are infertile and fertility is decreased among females with cystic fibrosis. In contrast to the severe effects of two copies of the CF associated gene, individuals with a single copy of the CF associated gene exhibit increased resistance to cholera and to dehydration resulting from diarrhea—perhaps explaining the relatively high frequency of the CF gene within the population.

Sequence analysis of the CFTR gene of CF chromosomes has revealed a variety of disease causing mutations (Cutting, G. R. et al. (1990) Nature 346:366-369; Dean, M. et al. (1990) Cell 61:863:870; and Kerem, B-S. et al. (1989) Science 245:1073-1080; Kerem, B-S et al. (1990) Proc. Natl. Acad. Sci. USA 87:8447-8451). To date, greater than 1000 disease causing mutations in the CF gene have been identified (http://cftr2.org). The most prevalent mutation is a deletion of phenylalanine at position 508 of the CFTR amino acid sequence, and is commonly referred to as F508del. This mutation occurs in approximately 70% of the cases of cystic fibrosis and is associated with a severe disease.

The deletion of residue 508 in F508del prevents the nascent protein from folding correctly. This results in the inability of the mutant protein to exit the ER, and traffic to the plasma membrane. As a result, the number of channels present in the membrane is far less than observed in cells expressing wild-type CFTR. In addition to impaired trafficking, the mutation results in defective channel gating. Together, the reduced number of channels in the membrane and the defective gating lead to reduced anion transport across epithelia leading to defective ion and fluid transport. (Quinton, P. M. (1990), FASEB J. 4: 2709-2727). Studies have shown, however, that the reduced numbers of F508del in the membrane are functional, albeit less than wild-type CFTR. (Dalemans et al. (1991), Nature Lond. 354: 526-528; Denning et al., supra; Pasyk and Foskett (1995), J. Cell. Biochem. 270: 12347-50). In addition to F508del, other disease causing mutations in CFTR that result in defective trafficking, synthesis, and/or channel gating could be up- or down-regulated to alter anion secretion and modify disease progression and/or severity.

Accordingly, there is a need for novel treatments of CFTR mediated diseases.

////////////////OLACAFTOR, VX 440, Phase II,  Cystic fibrosis, CS-0044588UNII-RZ7027HK8FRZ7027HK8F

CC1CC(N(C1)C2=C(C=CC(=N2)C3=CC(=CC(=C3)F)OCC(C)C)C(=O)NS(=O)(=O)C4=CC=CC=C4)(C)C