New Drug Approvals

Home » Posts tagged 'MST-188'

Tag Archives: MST-188

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,807,644 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Mast Therapeutics’ MST-188 Would Fit Well In Merck’s Drug Development Pipeline


http://seekingalpha.com/article/2283763-mast-therapeutics-mstminus-188-would-fit-well-in-mercks-drug-development-pipeline

MST-188 (purified poloxamer 188)

 

MST-188 is an investigational agent, formulated using a purified form of poloxamer 188. Substantial research has demonstrated that poloxamer 188 has cytoprotective and hemorrheologic properties and inhibits inflammatory processes and thrombosis. We believe the pharmacologic effects of poloxamer 188 support the development of MST-188 in multiple clinical indications for diseases and conditions characterized by microcirculatory insufficiency (endothelial dysfunction and/or impaired blood flow). We are enrolling patients in EPIC, a pivotal phase 3 study of MST-188 in sickle cell disease. In addition, our MST-188 pipeline includes development programs in adjunctive thrombolytic therapy (e.g., acute limb ischemia, stroke), heart failure, and resuscitation (i.e., restoration of circulating blood volume and pressure) following major trauma.


POTENTIAL APPLICATIONS OF MST-188

We believe the pharmacodynamic properties of MST-188 (cytoprotective, hemorheologic, anti-inflammatory, antithrombotic/pro-fibrinolytic) enable it simultaneously to address, or prevent activation of, multiple biochemical pathways that can result in microcirculatory insufficiency, a multifaceted condition principally characterized by endothelial dysfunction and impaired blood flow. The microcirculation is responsible for the delivery of blood through the smallest blood vessels (arterioles and capillaries) embedded within tissues. A healthy endothelium is critical to a functional microcirculation. Without the regular delivery of blood and transfer of oxygen to tissue from the microcirculation, individual cells (in both the endothelium and tissue) are unable to maintain aerobic metabolism and, through a series of complex and interrelated events, eventually die. If microcirculatory insufficiency continues, the patient will suffer tissue necrosis, organ damage and, eventually, death.

Microcirculatory Insuffiency

Sickle Cell Disease (SCD)

 

MST-188 for Sickle Cell Disease

Sickle cell disease is an inherited genetic disorder that affects millions of people worldwide. It is the most common inherited blood disorder in the U.S., where it is estimated to affect approximately 90,000 to 100,000 people, including approximately 1 in 500 African American births. The estimated annual cost of medical care for patients with sickle cell disease in the U.S. exceeds $1.0 billion.

Sickle cell disease is characterized by the “sickling” of red blood cells, which normally are disc-shaped, deformable and move easily through the microvasculature carrying oxygen from the lungs to the rest of the body. Sickled, or crescent-shaped, red blood cells, on the other hand, are rigid and sticky and tend to adhere to each other and the walls of blood vessels. The hallmark of the disease is recurring episodes of severe pain commonly known as crisis or vaso-occlusive crisis. Vaso-occlusive crisis occurs when the proportion of sickled cells rises, leading to obstruction of small blood vessels and reduced blood flow to organs and bone marrow. This obstruction results in intense pain and tissue damage, including tissue death. Over a lifetime, the accumulated burden of damaged tissue frequently results in the loss of vital organ function and a greatly reduced lifespan. In fact, organ failure is the leading cause of death in adults with sickle cell disease1 and the average life expectancy is around 45 years.2

We estimate that, in the U.S., sickle cell disease results in approximately 100,000 hospitalizations and, in addition, approximately 69,000 emergency department treat-and-release encounters each year. Further, although the number is difficult to measure, we estimate that the number of untreated vaso-occlusive crisis events is substantial and in the hundreds of thousands in the U.S. each year.

1. Powars, D .R. et al. November 2005. Outcome of Sickle Cell Anemia: A 4-Decade Observational Study of 1056 Patients. Medicine. Vol 84 No. 6: pp 363-376.
2. Platt et al., June 1994. Mortality in Sickle Cell Disease: Life Expectancy and Risk Factors for Early Death. NEJM. Vol 330; No. 2: 1639-1644.

 

Complications of Arterial Disease

 

MST-188 for Complications of Arterial Disease

Data from experimental models demonstrate the potential for MST-188, when used alone or in combination with thrombolytics, to improve outcomes in patients experiencing complications of arterial disease resulting from atherosclerotic and thromboembolic processes. We believe that, based on the similar pathophysiology of atherosclerotic arterial disease, an agent that is effective in one form of occlusive arterial disease also may be effective in its other manifestations. We plan to first demonstrate the potential of MST-188 in patients with acute limb ischemia, a complication of peripheral arterial disease.

Arterial disease resulting from atherosclerotic and thromboembolic processes is associated with significant morbidity and mortality. It is a common circulatory problem in which plaque-obstructed arteries reduce the flow of blood to tissues. Atherosclerosis occurs with advanced age, smoking, hypertension, diabetes and dyslipidemia. Peripheral arterial disease, or PAD, refers to disease affecting arteries outside the brain and heart and often refers to blockage of arteries in the lower extremities. Progression of PAD is associated with ongoing obstruction, or occlusion, of the peripheral arteries, which can occur slowly over time or may lead to a sudden, acute occlusion. Acute limb ischemia, or ALI, is a sudden decrease in perfusion of a limb, typically in the legs, that often threatens viability of the limb. The condition is considered acute if clinical presentation occurs within approximately two weeks after symptom onset. ALI rapidly threatens limb viability because there is insufficient time for new blood-vessel growth to compensate for loss of perfusion.

 

A Brief History of MST-188

 

Definitions

RheothRx – A first-generation product with unpurified, excipient-grade poloxamer 188 as the active ingredient. Associated with elevated serum creatinine.

MST-188 (formerly known as ANX-188, FLOCOR and CRL-5861) – A second-generation product with purified poloxamer 188 as the active ingredient. Certain low molecular weight substances present in excipient-grade poloxamer 188 that are associated with elevated serum creatinine are not present in MST-188. No clinically significant elevations in creatinine have been observed in clinical studies conducted with the purified material (>300 administrations).

Early Development: The CytRx Corporation/Burroughs Wellcome Alliance

Poloxamer 188 is a well studied compound. It was originally used as an emulsifying agent in topical wound cleansers and parenteral nutrition products. However, the therapeutic use of poloxamer 188 was largely conceived by Dr. Robert Hunter, MD, PhD (Distinguished Professor and Chairman, Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston). Dr. Hunter (then at Emory University) identified the compound’s rheologic, cytoprotective and antithrombotic activities through an extensive series of laboratory studies. His work led to the formation of CytRx Corporation, a start-up company that licensed Dr. Hunter’s inventions from Emory. CytRx conducted a wide range of pre-clinical and clinical studies with first-generation poloxamer 188, then known as RheothRx. These studies led to a major alliance with Burroughs Wellcome (today, GSK). Burroughs also performed an extensive series of nonclinical studies and 8 clinical trials, primarily focused on acute myocardial infarction (AMI). Early studies investigating RheothRx were promising. The largest AMI trial planned to enroll approximately 20,000 patients. However, during the 3,000-patient lead-in phase of this study, elevations in serum creatinine were observed, particularly in those patients aged 65 years and older and in subjects with elevated creatinine at baseline. This phenomenon was referred to as “acute renal dysfunction” and resulted in the discontinuation of the program by Glaxo, which had recently merged with Burroughs Wellcome.

Addressing Renal Toxicity and Pursuing Sickle Cell Disease

After Glaxo returned the RheothRx program, CytRx investigated the source of the renal dysfunction and determined the elevation in serum creatinine was attributable to preferential absorption of certain low molecular weight substances by the proximal tubule epithelial cells in the kidney. CytRx developed a proprietary method of manufacture based on supercritical fluid chromatography that reduced the level of these low molecular weight substances present in poloxamer 188, creating what is now known as purified poloxamer 188. Nonclinical testing of purified poloxamer 188 (now known as MST-188), demonstrated less accumulation in kidney tissue, less pronounced vacuolization of proximal tubular epithelium, more rapid recovery from vacuolar lesions, and less effect on serum creatinine. A full report of the differential effects of commercial-grade and purified poloxamer 188 on renal function has been published.1

Subsequently, CytRx sought to re-introduce MST-188 into the clinic. However, CytRx lacked the resources to conduct a 20,000-patient heart attack study. Instead, they focused the development of MST-188 in sickle cell disease (SCD), a rare disease with a huge unmet need and in which RheothRx had demonstrated positive results in a pilot Phase 2 study conducted by Burroughs Wellcome. In that Phase 2 study (n=50), RheothRx significantly reduced the duration of crisis, pain intensity, and total analgesic use and showed trends to shorter days of hospitalization in the subgroup of patients who received the full dose of study drug (n=31). These data were reported more fully by Adams-Graves et al.2 Notably, CytRx conducted safety studies in both adult and pediatric sickle cell patients and, even at significantly higher levels of exposure than anticipated therapeutic doses, there were no clinically significant changes in serum creatinine observed and no acute kidney failure reported. Based on these promising Phase 1 and 2 results, CytRx subsequently launched a randomized, double-blind, placebo-controlled Phase 3 study of MST-188 in 350 patients with sickle cell disease. The primary endpoint was a reduction in the duration of a painful crisis. However, CytRx concluded the study at 255 patients, in part due to capital constraints. Nonetheless, the study demonstrated treatment benefits in favor of MST-188. However, it did not achieve statistical significance in the primary study endpoint (p=0.07). Mast believes that enrolling fewer than the originally-planned number of patients and key features of the study’s design negatively affected the outcome of the primary endpoint. In particular, the study assumed that most patients would resolve their crisis within one week (168 hours). However, a substantial number of patients did not achieve crisis resolution within 168 hours and were assigned a “default” value of 168 hours, which had a potentially significant effect on the primary endpoint. Notably, in a post hoc “responder’s analysis” of the intent-to-treat population (n=249), which analyzed the proportion of patients who achieved crisis resolution at 168 hours (excluding those who had been assigned the default of 168 hours), over 50% of subjects receiving MST-188 achieved crisis resolution within 168 hours, compared to 37% in the control group (p=0.02). Data from the Phase 3 study are reported more fully by Orringer et al.3 Following conclusion of the Phase 3 study, CytRx merged with a private company and modified its business strategy by discontinuing development of all of its existing programs (including MST-188) to focus on assets held by the private company with which it merged.

SynthRx

After the corporate reorganization at CytRx, a group of individuals, including Dr. Hunter, formed a private entity, which they named SynthRx, Inc., to acquire rights to the data, know-how, and extensive clinical and pre-clinical and manufacturing information necessary to continue development of MST-188. SynthRx developed new intellectual property and conducted additional analyses of the existing data. However, they were unable to raise capital to fund development of MST-188 during the “great recession.”

Mast Therapeutics

In 2010, Mast Therapeutics met with Dr. Hunter and his colleagues to negotiate the acquisition of SynthRx and continue the development of MST-188. The merger was finalized in April 2011.

Since April 2011, Mast Therapeutics has re-established the unique manufacturing process through a partnership with Pierre Fabre (FRA) and met with the FDA multiple times to discuss a pivotal study protocol for MST-188 in sickle cell disease. In 2013, Mast initiated the EPIC study, a 388-patient pivotal Phase 3 trial of MST-188 in sickle cell disease, and, in 2014, Mast initiated its second MST-188 clinical program with a Phase 2, proof-of-concept study of MST-188 in combination with rt-PA in patients with acute limb ischemia. In addition, based on recent nonclinical study data showing improvements in cardiac ejection fraction and key biomarkers and prior studies showing MST-188 improved cardiac function without increasing cardiac energy requirements, Mast has announced its intent to pursue clinical development of MST-188 in heart failure.

1. Emanuele, M. and Balasubramaniam, B. Differential Effects of Commercial-Grade and Purified Poloxamer 188 on Renal Function. Drugs in R&D April 2014. Available at http://link.springer.com/article/10.1007/s40268-014-0041-0
2. Adams-Graves P, Kedar A, Koshy M, et al. RheothRx (Poloxamer 188) Injection for the Acute Painful Episode of Sickle Cell Disease: A Pilot Study. Blood 1997;90:2041-6
3. Orringer EP, Casella JF, Ataga KI, et al. Purified poloxamer 188 for treatment of acute vaso-occlusive crisis of sickle cell disease: A randomized controlled trial. JAMA 2001;286(17):2099-106

 

EPIC’s study drug, MST-188, is a new class of drug that acts by attaching to the damaged surfaces of the cell membranes, potentially improving blood flow and oxygen delivery.

Improving blood flow and oxygen delivery may reduce the duration and severity of pain crises faced by sickle cell patients.

 

 

 

 

 

Mast Ischemia Drug Gets Orphan Drug Designation


Wed, 11/13/2013
Mast Therapeutics Inc. announced that the U.S. Food and Drug Administration (FDA) has designated MST-188 for the treatment of acute limb ischemia as an orphan drug.http://www.dddmag.com/news/2013/11/mast-ischemia-drug-gets-orphan-drug-designation

MST-188 (purified poloxamer 188)

MST-188 is a purified form of a nonionic, triblock copolymer (poloxamer 188). It is an investigational agent that binds to hydrophobic surfaces on damaged cells and improves membrane hydration and lowers adhesion and viscosity, particularly under low shear conditions. MST-188 has the potential to reduce ischemic tissue injury and end-organ damage by restoring microvascular function, which is compromised in a wide range of serious and life-threatening diseases and conditions. We initially are developing MST-188 as a treatment for complications arising from sickle cell disease.

How MST-188 Works…

Background

Non-purified forms of poloxamer 188 (P188) have been used in foods, drugs and cosmetics since the 1950s. In the 1980s, extensive research on the mechanisms and potential clinical applications of P188 was conducted. Research has demonstrated that P188 binds to hydrophobic surfaces that develop when cells are damaged and restores normal hydrated surfaces, while having little or no activity in normal, healthy tissues. Research also has demonstrated that P188 prevents adhesion and aggregation of soluble fibrin and formed elements in the blood and maintains the deformability of red blood cells, the non-adhesiveness of unactivated platelets and granulocytes and the normal viscosity of blood. In addition, it is believed that P188 is not metabolized, but is excreted unchanged in the urine with a half-life of approximately four to six hours.

Formulations of P188 (non-purified and purified) have been studied in clinical trials involving nearly 4,000 individuals. It has been evaluated in the clinic to treat acute myocardial infarction, sickle cell disease and malaria, including a 2,950-patient, randomized, controlled study of P188 (non-purified) in acute myocardial infarction. The effectiveness of P188 also has been investigated in nonclinical studies of stroke, hemorrhagic shock, bypass surgery, adult respiratory distress syndrome, neurologic protection in deep hypothermic circulatory arrest, vasospasm, spinal cord injury, angioplasty, frostbite, amniotic fluid embolism, acute ischemic bowel disease and burns.

MST-188

Our(mast) purified form of P188, or purified P188, which is the active ingredient in MST-188, was designed to eliminate certain low molecular weight substances present in P188 (non-purified), which we believe were primarily responsible for the moderate to moderately severe elevations in serum creatinine levels (acute renal dysfunction) observed in prior clinical studies of P188 (non-purified). Purified P188 has been evaluated in multiple clinical studies by a prior sponsor, including a 255-patient, phase 3 study. In that study, purified P188 was generally well tolerated and there were no clinically significant elevations in serum creatinine among subjects who received purified P188 compared to placebo.

We believe that, as a rheologic, antithrombotic and cytoprotective agent, MST-188 has potential application in treating a wide range of diseases and conditions resulting from microvascular-flow abnormalities.

Sickle Cell Disease Market & Opportunity

More than $1.0 billion is spent annually in the U.S. to treat patients with sickle cell disease. Sickle cell disease is a genetic disorder characterized by the “sickling” of red blood cells, which normally are disc-shaped, deformable and move easily through the microvasculature carrying oxygen from the lungs to the rest of the body. Sickled, or crescent-shaped, red blood cells, on the other hand, are rigid and sticky and tend to adhere to each other and the vascular endothelium. Patients with sickle cell disease are known to experience severely painful episodes associated with the obstruction of small blood vessels by sickle-shaped red blood cells. These painful episodes are commonly known as acute crisis or vaso-occlusive crisis. Reduced blood flow to organs and bone marrow during vaso-occlusive crisis not only causes intense pain, but can result in tissue death, or necrosis. The frequency, severity and duration of these acute crises can vary considerably.

We (mast) estimate that, in the U.S., sickle cell disease results in over 95,000 hospitalizations and, in addition, approximately 69,000 emergency department treat-and-release encounters each year. When a patient with sickle cell disease makes an institutional visit, vaso-occlusive crisis is the primary diagnosis in approximately 77% of hospital admissions and 64% of emergency room treat-and-release encounters. In addition, although the number is difficult to measure, we estimate that the number of untreated sickle cell crisis events is substantial and in the hundreds of thousands in the U.S. each year. We believe that, if MST-188 is approved, as people with sickle cell disease are made aware of the new therapy, more people who suffer from acute crisis will seek treatment.

Development Status

We (mast) have initiated a Phase 3 clinical study of MST-188 for the treatment of sickle cell disease. The primary objective will be to demonstrate that MST-188 reduces the duration of vaso-occlusive crisis in patients with sickle cell disease. Please see our Clinical Trials page for more information regarding our phase 3 study of MST-188. In addition to the phase 3 study, we plan to conduct a number of smaller-scale clinical studies to further assess the efficacy, safety and tolerability of MST-188, and expect these studies to overlap with the phase 3 study.