New Drug Approvals
Follow New Drug Approvals on WordPress.com

FLAGS AND HITS

Flag Counter
DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO

Archives

Categories

Join me on Linkedin

View Anthony Melvin Crasto Ph.D's profile on LinkedIn

Join me on Researchgate

Anthony Melvin Crasto Dr.

  Join me on Facebook FACEBOOK   ...................................................................Join me on twitter Follow amcrasto on Twitter     ..................................................................Join me on google plus Googleplus

MYSELF

DR ANTHONY MELVIN CRASTO Ph.D ( ICT, Mumbai) , INDIA 36Yrs Exp. in the feld of Organic Chemistry,Working for AFRICURE PHARMA as ADVISOR earlier with GLENMARK PHARMA at Navi Mumbai, INDIA. Serving chemists around the world. Helping them with websites on Chemistry.Million hits on google, NO ADVERTISEMENTS , ACADEMIC , NON COMMERCIAL SITE, world acclamation from industry, academia, drug authorities for websites, blogs and educational contribution, ........amcrasto@gmail.com..........+91 9323115463, Skype amcrasto64 View Anthony Melvin Crasto Ph.D's profile on LinkedIn Anthony Melvin Crasto Dr.

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Recent Posts

Rapamycin (Sirolimus) For the prophylaxis of organ rejection in patients receiving renal transplants.


File:Sirolimus.svg

Rapamycin (Sirolimus)

(3S,6R,7E,9R,10R,12R,14S,15E,17E,19​E,21S,23S,26R,27R,34aS)-9,10,12,13,14,21,22,23,24,​25, 26,27,32,33,34,34a-Hexadecahydro-9,27-dihydroxy-3-​[(1R)-2-[(1S,3R,4R)-4-hydroxy-3-methoxycyclohexyl]​-1-methylethyl]-10,21-dimethoxy-6,8,12,14,20,26-he​xamethyl-23,27-epoxy-3H-pyrido[2,1-c][1,4]oxaazacy​clohentriacontine-1,5,11,28,29(4H,6H,31H)-pentone

Wyeth Pharmaceuticals (Originator)

M.Wt:914.18

Formula:C51H79NO13

53123-88-9 cas no

Antifungal and immunosuppressant. Specific inhibitor of mTOR (mammalian target of Rapamycin). Complexes with FKBP-12 and binds mTOR inhibiting its activity. Inhibits interleukin-2-induced phosphorylation and activation of p70 S6 kinase. Induces autophagy in yeast and mammalian cell lines.

Rapamycin is a triene macrolide antibiotic, which demonstrates anti-fungal, anti-inflammatory, anti-tumor and immunosuppressive properties. Rapamycin has been shown to block T-cell activation and proliferation, as well as, the activation of p70 S6 kinase and exhibits strong binding to FK-506 binding proteins. Rapamycin also inhibits the activity of the protein, mTOR, (mammalian target of rapamycin) which functions in a signaling pathway to promote tumor growth. Rapamycin binds to a receptor protein (FKBP12) and the rapamycin/FKB12 complex then binds to mTOR and prevents interaction of mTOR with target proteins in this signaling pathway. Rapamycin name is derived from the native word for Easter Island, Rapi Nui.

  • (-)-Rapamycin
  • Antibiotic AY 22989
  • AY 22989
  • AY-22989
  • CCRIS 9024
  • HSDB 7284
  • NSC 226080
  • Rapammune
  • Rapamune
  • Rapamycin
  • SILA 9268A
  • Sirolimus
  • UNII-W36ZG6FT64
  • WY-090217
  • A 8167

A macrolide compound obtained from Streptomyces hygroscopicus that acts by selectively blocking the transcriptional activation of cytokines thereby inhibiting cytokine production. It is bioactive only when bound to IMMUNOPHILINS. Sirolimus is a potent immunosuppressant and possesses both antifungal and antineoplastic properties.

Sirolimus (INN/USAN), also known as rapamycin, is an immunosuppressant drug used to prevent rejection in organ transplantation; it is especially useful in kidney transplants. It prevents activation of T cells and B cells by inhibiting their response to interleukin-2 (IL-2). Sirolimus is also used as a coronary stent coating. Sirolimus works, in part, by eliminating old and abnormal white blood cells.[citation needed] Sirolimus is effective in mice with autoimmunity and in children with a rare condition called autoimmune lymphoproliferative syndrome (ALPS).

sirolimus

macrolide, sirolimus was discovered by Brazilian researchers as a product of the bacterium Streptomyces hygroscopicus in a soil sample fromEaster Island[1] — an island also known as Rapa Nui.[2] It was approved by the FDA in September 1999 and is marketed under the trade nameRapamune by Pfizer (formerly by Wyeth).

Sirolimus was originally developed as an antifungal agent. However, this use was abandoned when it was discovered to have potent immunosuppressive and antiproliferative properties. It has since been shown to prolong the life of mice and might also be useful in the treatment of certain cancers.

Unlike the similarly named tacrolimus, sirolimus is not a calcineurin inhibitor, but it has a similar suppressive effect on the immune system. Sirolimus inhibits the response tointerleukin-2 (IL-2), and thereby blocks activation of T and B cells. In contrast, tacrolimus inhibits the secretion of IL-2.

The mode of action of sirolimus is to bind the cytosolic protein FK-binding protein 12(FKBP12) in a manner similar to tacrolimus. Unlike the tacrolimus-FKBP12 complex which inhibits calcineurin (PP2B), the sirolimus-FKBP12 complex inhibits themammalian target of rapamycin (mTOR, rapamycin being an older name for sirolimus) pathway by directly binding the mTOR Complex1 (mTORC1).

mTOR has also been called FRAP (FKBP-rapamycin associated protein), RAFT (rapamycin and FKBP target), RAPT1, or SEP. The earlier names FRAP and RAFT were coined to reflect the fact that sirolimus must bind FKBP12 first, and only the FKBP12-sirolimus complex can bind mTOR. However, mTOR is now the widely accepted name, since Tor was first discovered via genetic and molecular studies of sirolimus-resistant mutants of Saccharomyces cerevisiae that identified FKBP12, Tor1, and Tor2 as the targets of sirolimus and provided robust support that the FKBP12-sirolimus complex binds to and inhibits Tor1 and Tor2.

rapamycin

Unlike the similarly named tacrolimus, sirolimus is not a calcineurin inhibitor, but it has a similar suppressive effect on the immune system. Sirolimus inhibits the response to interleukin-2 (IL-2), and thereby blocks activation of T and B cells. In contrast, tacrolimus inhibits the secretion of IL-2.

The mode of action of sirolimus is to bind the cytosolic protein FK-binding protein 12 (FKBP12) in a manner similar to tacrolimus. Unlike the tacrolimus-FKBP12 complex which inhibits calcineurin (PP2B), the sirolimus-FKBP12 complex inhibits the mammalian target of rapamycin(mTOR, rapamycin being an older name for sirolimus) pathway by directly binding the mTOR Complex1 (mTORC1).

mTOR has also been called FRAP (FKBP-rapamycin associated protein), RAFT (rapamycin and FKBP target), RAPT1, or SEP. The earlier names FRAP and RAFT were coined to reflect the fact that sirolimus must bind FKBP12 first, and only the FKBP12-sirolimus complex can bind mTOR. However, mTOR is now the widely accepted name, since Tor was first discovered via genetic and molecular studies of sirolimus-resistant mutants of Saccharomyces cerevisiae that identified FKBP12, Tor1, and Tor2 as the targets of sirolimus and provided robust support that the FKBP12-sirolimus complex binds to and inhibits Tor1 and Tor2.

SIROLIMUS

Rapamycin and its preparation are described in US Patent No. 3,929,992, issued December 30, 1975. Alternatively, rapamycin may be purchased commercially [Rapamune®, Wyeth].

Rapamycin (Sirolimus) is a 31-member natural macrocyclic lactone [C51H79N1O13; MWt=914.2] produced by Streptomyces hygroscopicus and found in the 1970s (U.S. Pat. No. 3,929,992; 3,993,749). Rapamycin (structure shown below) was approved by the Food and Drug Administration (FDA) for the prophylaxis of renal transplant rejection in 1999.

Figure US08088789-20120103-C00001

Rapamycin resembles tacrolimus (binds to the same intracellular binding protein or immunophilin known as FKBP-12) but differs in its mechanism of action. Whereas tacrolimus and cyclosporine inhibit T-cell activation by blocking lymphokine (e.g., IL2) gene transcription, sirolimus inhibits T-cell activation and T lymphocyte proliferation by binding to mammalian target of rapamycin (mTOR). Rapamycin can act in synergy with cyclosporine or tacrolimus in suppressing the immune system.

Rapamycin is also useful in preventing or treating systemic lupus erythematosus [U.S. Pat. No. 5,078,999], pulmonary inflammation [U.S. Pat. No. 5,080,899], insulin dependent diabetes mellitus [U.S. Pat. No. 5,321,009], skin disorders, such as psoriasis [U.S. Pat. No. 5,286,730], bowel disorders [U.S. Pat. No. 5,286,731], smooth muscle cell proliferation and intimal thickening following vascular injury [U.S. Pat. Nos. 5,288,711 and 5,516,781], adult T-cell leukemia/lymphoma [European Patent Application 525,960 A1], ocular inflammation [U.S. Pat. No. 5,387,589], malignant carcinomas [U.S. Pat. No. 5,206,018], cardiac inflammatory disease [U.S. Pat. No. 5,496,832], anemia [U.S. Pat. No. 5,561,138] and increase neurite outgrowth [Parker, E. M. et al, Neuropharmacology 39, 1913-1919, 2000].

Although rapamycin can be used to treat various disease conditions, the utility of the compound as a pharmaceutical drug has been limited by its very low and variable bioavailability and its high immunosuppressive potency and potential high toxicity. Also, rapamycin is only very slightly soluble in water. To overcome these problems, prodrugs and analogues of the compound have been synthesized. Water soluble prodrugs prepared by derivatizing rapamycin positions 31 and 42 (formerly positions 28 and 40) of the rapamycin structure to form glycinate, propionate, and pyrrolidino butyrate prodrugs have been described (U.S. Pat. No. 4,650,803). Some of the analogues of rapamycin described in the art include monoacyl and diacyl analogues (U.S. Pat. No. 4,316,885), acetal analogues (U.S. Pat. No. 5,151,413), silyl ethers (U.S. Pat. No. 5,120,842), hydroxyesters (U.S. Pat. No. 5,362,718), as well as alkyl, aryl, alkenyl, and alkynyl analogues (U.S. Pat. Nos. 5,665,772; 5,258,389; 6,384,046; WO 97/35575).

 ………………………………………..

Synthesis

ref are independent of body…see below  for this clip

Several total synthese of rapamycin have been reported3,4as well as many fragments and part-syntheses. Rapamycin is a complicated molecule comprising a 31-membered ring including a pipecolinyl group and pyranose ring, a conjugated triene system and a tri-carbonyl region. It also has 15 chiral centres, meaning the number of possible stereoisomers is enormous. The synthesis of rapamycin therefore presents a huge challenge to synthetic chemists.

In the following synthesis, published in three separate papers5,6,7two fragments of C10-C21 and C22-C42 are prepared separately, before being combined to give the total synthesis of rapamycin. Only the main outline of the synthesis will be shown as it is too long and complicated to show in great detail. For the full experimental details of the synthesis see the literature (ref. nos. given above).

In the retro-synthesis shown the molecule is disconnected at the ester group next to carbon 1 and the C21-C22 double bond of the triene to give the synthetic precursors 2 and 3. Further disconnections of 3 will be shown later. First the C10-C21 fragment is synthesised.

Synthesis of C10-C21 fragment

The synthesis uses (R)-methyl 3-hydroxy-2-methylpropionate (8) as a starting material.

The starting material 8 is converted to an alcohol by a four-step process; protection of the alcohol as aTHP ether followed by reduction, ether formation and deprotection steps. Substitution of the hydroxyl group in the product for a bromine leads to the formation of the bromide 9. Reaction of 9 with methyl acetoacetate gave ester 10.

Catalytic reduction of 10 using the conditions of Noyori produced ester 11, which was then converted to its Weinreb amide 12. Overall, compound 12 was produced in 54% yield from an inexpensive starting material. Vinyl bromide 13 was metalated with t-BuLi and the resulting vinyllithium was combined with 12 and the PMB-protecting group was removed to give 14. The remaining carbonyl group in 14 was selectively reduced to a hyrdoxy group. In order to differentiate the 1,3-diol a lactol was formed, where one hydroxy group ended up in the ring. To acheive this an oxidation was performed using RuCl2(PPh3)3 resulting in formation of a lactol. The two remaining alcohol groups could then be methylated using MeI forming 15.

The lactol ring opening was achieved using TiCl4 and thiol HS(CH2)2SH to form a dithiolane. The freed alcohol was then protected as its TBS ether and the same protecting group selectively removed from the primary alcohol to form 16. To avoid removing the dithiolane group at a later stage in the synthesis the thio-acetal was converted to the dimethyl acetal 17 using PhI(OCOCF3)2 and methanol.

The next stage in the synthesis was to extend 17 for the building of the triene region. The terminal alcohol was oxidised to its aldehyde using BaMnO4 , then a Wittig reaction was carried out using Ph3P=CHCO2Et and CH2Cl2 to form the second double bond. Reduction of the ester group to an alcohol was carried out using DIBAL-H, then treatment with PPh3 and exposure to the air gave rapamycin fragment 2.

Synthesis of C22-C42 fragment

Here the retro-synthesis of 3 is shown, giving the three synthetic precursors 5, 6 and 7

It was thought 4 could be obtained by alkylative coupling of a vinyllithium species generated from 7 to the Weinreb amide 6. The nucleophilic opening of epoxide 5 by the lithiated sulfone from phenyl sulfone 4 would then produce the desired fragment.

The ester 18 was used as a starting material to make fragment 6.

A Wittig reaction followed by reduction and protection steps produced 19. This was hydrogenated using a rhodium catalyst to give syn-dimethyl product 20. The minor anti diastereomer was successfully separated off. 20 was oxidised then underwent an aldol condensation to give adduct 21.

Transamination of 21 and protection of the alcohol with PMB resulted in amide 6, corresponding to the C22-C28 segment of rapamycin.

The vinyl bromide 7 was prepared using ester 22 as a starting material.

Reduction of 22 followed by dibromoolefination resulted in product 23. Acetylene 24 was prepared using n-BuLi, THF and MeI, then sulfenylation with Ph2S2 and bromination gave fragment 7.

Iodination and alkylation of starting material 25 with the lithiated allylic sulfide shown followed by a number of further steps resulted in its conversion to fragment 5.

Fragments 7 was first converted to its vinyllithium using t-BuLi then combined with 6 forming an enone in 78% yield. Stereoselective reduction of the carbonyl group using Zn(BH4)2 gave an alcohol which was protected with DEIPS giving 28. The phenyl sulfide was oxidised to a sulfone using m-CPBA in excess pyridine.

Lithiation and addition of the epoxide 5 resulted in the hydroxy sulfone in a 4:1 ratio of two diastereomers which were separated by HPLC. Metalation using n-BuLi followed by oxidation formed the total C22-C42 fragment.

Total synthesis of rapamycin through the combination of C10-C21 and C22-C42 fragments.

Fragment 3 (C22-C42) was treated with (S)-Boc-pipecolinal, followed by a Swern oxidation resulted in the aldehyde 29.

Condensation with the lithium salt of phosphine oxide 2 (C10-C21) produced the triene shown below.

The triene was hydrolysed with pyridinium p-toluenesulfonic acid and an aldol reaction was performed. Treatment with triethylsilyl triflate produced an amino acid which was subjected to Mukaiyama macrocyclization conditions to form the 31-membered ring. Finally, deprotection steps were performed to give synthetic rapamyin (1). This was judged to be identical to natural rapamycin by comparison of physical properties, 1H-NMR, 13C-NMR, IR and UV spectral data.

3. K. C. Nicolaou, T. K. Chakraborty, A. D. Piscopio, N. Minowa, P. Bertinato; J. Am. Chem. Soc.; 115; 1993; 4419

4. C. M. Hayward, D. Yohannes, S. J. Danishefsky; J. Am. Chem. Soc.; 115; 1993; 9345

5. S. D. Meyer, T. Miwa, M. Nakatsuka, S. L. Schreiber; J. Org. Chem.57; 1992; 5058-5060

6. D. Romo, D. D. Johnson, L. Plamondon, T. Miwa, S. L. Schreiber; J. Org. Chem.57; 1992; 5060-5063

7. S. D. Meyer, D. Romo, D. D. Johnson, S. L. Schreiber; J. Am. Chem. Soc.; 115; 1993; 7906-7907


………………………………………….

Synthesis

PREPARATION

CUT PASTE FROM TEXT

In one embodiment of this invention rapamycin is prepared in the followingmanner: 4

A suitable fermenter is charged with production meis reached in the fermentation mixture after 2-8 days,

usually after about 5 days, as determined by the cup plate method and Candida albicans as the test organism. The mycelium is harvested by filtration with diatomaceous earth. Rapamycin is then extracted from the mycelium with a water-miscible solvent, for example a lower alkanol, preferably methanol or ethanol. The latter extract is then concentrated, preferably under reduced pressure, and the resulting aqueous phase is extracted with a water-immiscible solvent. A preferred water-immiscible solvent for this purpose is methylene dichloride although chloroform, carbon tetrachloride, benzene, n-butanol and the like may also be used. The latter extract is concentrated, preferably under reduced pressure, to afford the crude product as an oil.

The product may be purified further by a variety of methods. Among the preferred methods of purification is to dissolve the crude product in a substantially nonpolar, first solvent, for example petroleum ether or hexane, and to treat the resulting solution with a suit able absorbent, for example charcoal or silica gel, so that the antibiotic becomes absorbed on the absorbant. The absorbant is then separated and washed or eluted with a second solvent more polar than the first solvent, for example ethyl acetate, methylene dichloride, or a mixture of methylene dichloride and ether (preferred). Thereafter, concentration of the wash solution or eluate affords substantially pure rapamycin. Further purification is obtained by partial precipitation with a nonpolar solvent, for example, petroleum ether, hexane, pentane and the like, from a solution of the rapamycin in a more polar solvent, for example, ether, ethyl acetate, benzene and the like. Still-further purification is obtained by column chromatography, preferably employing silica gel, and by crystallization of the rapamycin from ether.

In another preferred embodiment of this invention a first stage inoculum of S treptomyces hygroscopicus NRRL 5491 is prepared in small batches in a medium containing soybean flour, glucose, ammonium sulfate, and calcium carbonate incubated at about 25C at pH 7.l-7.3 for 24 hrs. with agitation, preferably on a gyrotary shaker. The growth thus obtained is used to inoculate a number of somewhat larger batches of the same medium as described above which are incubated at about 25C and pH 7.1-7.3 for 18 hrs. with agitation, preferably on a reciprocating’shaker, to obtain a sec- “ond stagc inoculum which is used to inoculate the production stage fermenters.

6 5.86′.2.-The fermenters are inoculated with the second stage inoculum described above and incubated at about 25C with’ agitationand aeration while controlling and ‘mai’ntaining the mixture at approximately pH 6.0 by

addition offa base, for example, sodium hydroxide, potassium hydroxide or preferably ammonium hydroxide, as required from time to time. Addition of a source -of assimilable carbon, preferably glucose, is started when theconcentrationof the latter in the broth has dropped to about 0.5% wt/vol, normally about 48 hrs after. the start of fermentation, and is maintained until the end ofthe particular run. In this manner a fermentation broth containing about 60 ug/ml of rapamycin as determined by the assay method described above is obtained in 45 days, when fermentation is stopped.

‘ Filtration of the’mycelium, mixing the latter with a watef-miscible ‘lower’ alkanol, preferably methanol, followed by extraction with a halogenated aliphatic hydrocarbon, preferably trichloroethane, and evaporation of the solvents yields a first oily residue. This first oily residue is dissolved in a lower aliphatic ketone, preferably acetone, filtered from insoluble impurities, the filtrate evaporated to yield a second oily residue which is extractedjwith a water-miscible lower alkanol,

preferably methanol, and the latter extract is evaporated to yield crude rapamycin as a third oily residue. This third oily residue is dissolved in a mixture of a lower aliphatic ketone and a lower aliphatic hydrocarbon, preferably acetone-hexane, an absorbent such as charcoal or preferably silica gel is added to adsorb the rapamycin, the latter is eluted from the adsorbate with a similar but more polar solvent mixture, for example a mixture as above but containing a higher proportion of the aliphatic ketone, the eluates are evaporated and the residue is crystallized from diethyl ether, to yield pure crystalline rapamycin. In this manner a total of 45-5 8% of the rapamycin initially present in the fermentation mixture is recovered as pure crystalline rapamycin.

CHARACTERIZATION solvent systems; for example, ether-hexane 40:60 (Rf 0.42), ‘isopropyl alcoholvbenzene 15:85 (Rf= 0.5) and ethanol-benzene 20:80 (Rf f 0.43);

d. rapamycin obtained from four successive fermentation batchesgave the following values on repeated The production stage fermenters are equipped with 7 devices for controlling and maintaining pH at a predetermined level and for continuous metered addition of elemental analyses:

AVER- e. rapamycin exhibits the following characteristic absorption maxima in its ultraviolet absorption spectrum ethanol):

f. the infrared absorption spectrum of rapamycin in chloroform is reproduced in FIG. 1 and shows characteristic absorption bands at 3560, 3430, 1730, 1705 and 1630-1610 cm;

Further infrared absorption bands are characterized by the following data given in reciprocal centimeters with (s) denoting a strong, (m) denoting a medium, and (w) denoting a weak intensity band. This classification is arbitrarily selected in such a manner that a band is denoted as strong (s) if its peak absorption is more than two-thirds of the background in the same region; medium (m) if its peak is between one-third and twothirds of the background in the same region; and weak (w) if its peak is less than one-third of the background in the same region.

2990 cm (m) 1158 cm” (m) 2955 cm (s) 1129 cm (s) 2919 cm (s) 1080 cm (s) 2858 cm (s) 1060 cm (s) 2815 cm (m) 1040 cm (m) 1440 cm (s) 1020 crn’ (m) 1365 cm (m) 978 cm” (s) 1316 cm (in) 905 cm (m) 1272 cm (m) 888 cm” (w) 1178 cm (s) 866 cm- (w) g. the nuclear magnetic resonance spectrum of rapamycinin deuterochloroform is reproduced in FIG. 2; SEE PATENT

CLAIMS

l. Rapamycin, an antibiotic which a. is a colourless, crystalline compound with a melting point of 183 to l8SC, after recrystallization from ether;

b. is soluble in ether, chloroform, acetone, methanol and dimethylformamide, very sparingly soluble in hexane and petroleum ether and substantially insoluble in water;

c. shows a uniform spot on thin layer plates of silica gel”,

d. has a characteristic elemental analysis of about C,

e. exhibits the following characteristic absorption maxima in its ultraviolet absorption spectrum (95% ff has ‘a characteristic infrared absorption spectrum shown in accompanying FIG. 1; SEE PATENT

……………………………………………..

Rapamycin synthetic studies. 1. Construction of the C(27)-C(42) subunit. Tetrahedron Lett 1994, 35, 28, 4907

A partial synthesis of rapamycin has been reported: The condensation of sulfone (I) with epoxide (II) by means of butyllithium followed by desulfonation with Na/Hg gives the partially protected diol (III), which is treated with methanesulfonyl chloride and NaH to afford the epoxide (IV). Ring opening of epoxide (IV) with LiI and BF3.Et2O followed by protection of the resulting alcohol with PMBOC(NH)CCl3 yields the primary iodo compound (V). The condensation of (V) with the fully protected dihydroxyaldehyde (VI) (see later) by means of butyllithium in THF/HMPT gives the fully protected trihydroxyketone (VII), which is hydrolyzed with camphorsulfonic acid (CSA) to the corresponding gemdiol and reprotected with pivaloyl chloride (the primary alcohol) and tert-butyldimethylsilyl trifluoromethanesulfonate (the secondary alcohol), yielding a new fully protected trihydroxyketone (VIII). Elimination of the pivaloyl group with DIBAL and the dithiane group with MeI/CaCO3 affords the hydroxyketone (IX), which is finally oxidized with oxalyl chloride to the ketoaldehyde (X), the C(27)-C(42) fragment [the C(12)-C(15) fragment with the C(12)-substituent based on the IUPAC nomenclature recommendations]. The fully protected dihydroxyaldehyde (VI) is obtained as follows: The reaction of methyl 3-hydroxy-2(R)-methylpropionate (XI) with BPSCl followed by reduction with LiBH4 to the corresponding alcohol and oxidation with oxalyl chloride gives the aldehyde (XII), which is protected with propane-1,3-dithiol and BF3.Et2O to afford the dithiane compound (XIII). Elimination of the silyl group with TBAF followed by esterification with tosyl chloride, reaction with NaI and, finally, with sodium phenylsulfinate gives the sulfone (XIV), which is condensed with the partially protected dihydroxyaldehyde (XV), oxidized with oxalyl chloride and desulfonated with Al/Hg to afford the dithianyl ketone (XVI). The reaction of (XVI) with lithium hexamethyldisilylazane gives the corresponding enolate, which is treated with dimethyllithium cuprate to yield the fully protected unsaturated dihydroxyaldehyde (VI).

……………………………………………

……………………………

The Ley Synthesis of Rapamycin

Rapamycin (3) is used clinically as an immunosuppressive agent. The synthesis of 3 (Angew. Chem. Int. Ed. 200746, 591. DOI: 10.1002/anie.200604053) by Steven V. Ley of the University of Cambridge was based on the assembly and subsequent coupling of the iododiene 1 and the stannyl alkene 2.

The lactone of 1 was prepared by Fe-mediated cyclocarbonylation of the alkenyl epoxide 5, following the protocol developed in the Ley group.

The cyclohexane of 2 was constructed by SnCl4-mediated cyclization of the allyl stannane 9, again employing a procedure developed in the Ley group. Hydroboration delivered the aldehyde 11, which was crotylated with 12, following the H. C. Brown method. The alcohol so produced (not illustrated) was used to direct the diastereoselectivity of epoxidation, then removed, to give 13. Coupling with 14 then led to 2.

Combination of 1 with 2 led to 15, which was condensed with catechol to give the macrocycle 16. Exposure of 16 to base effected Dieckmann cyclization, to deliver the ring-contracted macrolactone 17, which was carried on to (-)-rapamycin (3).

……………………………….

Total Synthesis of Rapamycin

Angewandte Chemie International Edition

Volume 46, Issue 4, pages 591–597, January 15, 2007

Thumbnail image of graphical abstract

PREVIEW THIS ARTICLE WITH READCUBE

Readcube-logo

……………………..

rapamycin_1.jpg

Ley, Maddess, Tackett, Watanabe, Brennan, Spilling, Scott and Osborn. ACIEE2006EarlyView. DOI:10.1002/anie.200604053.

It’s been in the works for quite a while, but Steve Ley’s synthesis of Rapamycin has just been published. This complex beast has a multitude of biological activities, including an interesting immunosuppressive profile, resulting in clinical usage following organ transplantation. So, unsurprisingly, it’s been the target of many projects, with complete total syntheses published by SmithDanishefskySchreiber and KCN.

So what makes this one different? Well, it does have one of the most interesting macrocyclisations I’ve seen since Jamison’s paper, and a very nice demonstration of the BDA-aldol methodology. The overall strategy is also impressive, so on with the retro:

rapamycin_2.jpg

First stop is the BDA-aldol; this type of chemistry is interesting, because the protecting group for the diol is also the stereo-directing group. The stereochemistry for this comes from a glycolic acid, and has been usedin this manner by the group before. The result is as impressive as ever, with a high yield, and presumably a very high d.r. (no mention of actual numbers).

rapamycin_3.jpg

The rest of the fragment synthesis was completed in a succinct and competent manner, but using relatively well known chemistry. However, I was especially impressed with the macrocyclisation I mentioned:

rapamycin_4.jpg

Tethering the free ends of the linear precursor with a simple etherification/esterification onto catechol gave then a macrocycle holding the desired reaction centres together. Treatment of this with base then induces a Dieckmann-condensation type cyclisation to deliver the desired macrocycle. Of course, at this stage, only a few more steps were required to complete the molecule, and end an era of the Wiffen Lab.

………………………………

Drugs Fut 1999, 24(1): 22

DOI: 10.1358/dof.1999.024.01.474036

1H and 13C NMR assignments
ref2. J. B. McAlpine, S. J. Swanson, M. Jackson, D. N. Whittern; J.Antibiot.; 44; 1991; 688-690;

In CDCl3 rapamycin exists as a mixture of conformers in a 3:1 ratio, which complicates the NMR spectrum. In the table below the chemical shifts of the carbons and hydrogens of the major isomer only are given.

Carbon No. Carbon Type Major carbon Major proton Carbon No. Carbon Type Major carbon Major proton
1
C=O 169.2
28
CH-OH 77.3 4.17
2
CH 51.3 5.29
29
C=C 136.1
3
CH2 27.0 2.34, 1.76
30
CH=C 126.8 5.42
4
CH2 20.6 1.78, 1.47
31
CH 46.6 3.33
5
CH2 25.3 1.75, 1.48
32
C=O 208.2
6
CH2 44.2 3.59, 3.44
33
CH2 40.7 2.74, 2.60
8
C=O 166.8
34
CH-OCO 75.7 5.17
9
C=O 192.5
35
CH 33.1 1.98
10
O-C-OH 98.5
36
CH2 38.4 1.22, 1.12
11
CH 33.7 1.98
37
CH 33.2 1.39
12
CH2 27.3 1.60, 1.60
38
CH2 34.2 2.10, 0.68
13
CH2 31.3 1.62, 1.33
39
CH-OCH3 84.4 2.93
14
67.2 3.86
40
CH-OH 73.9 3.37
15
CH2 38.8 1.85, 1.52
41
CH2 31.3 1.99, 1.33
16
CH-OCH3 84.4 3.67
42
CH2 31.7 1.70, 1.00
17
C=C 135.5
43
11-CH3 16.2 0.95
18
CH=C 129.6 5.97
44
17-CH3 10.2 1.65
19
CH=C 126.4 6.39
45
23-CH3 21.5 1.05
20
CH=C 133.6 6.32
46
25-CH3 13.8 1.00
21
CH=C 130.1 6.15
47
29-CH3 13.0 1.74
22
CH=C 140.2 5.54
48
31-CH3 16.0 1.11
23
CH 35.2 2.32
49
35-CH3 15.9 0.92
24
CH2 40.2 1.50, 1.20
50
16-OCH3 55.8 3.13
25
CH 41.4 2.74
51
27-OCH3 59.5 3.34
26
C=O 215.6
52
39-OCH3 56.5 3.41
27
CH-OCH3 84.9 3.71

REFERENCES

  1.  Vézina C, Kudelski A, Sehgal SN (October 1975). “Rapamycin (AY-22,989), a new antifungal antibiotic”J. Antibiot. 28 (10): 721–6. doi:10.7164/antibiotics.28.721PMID 1102508.
  2. Pritchard DI (2005). “Sourcing a chemical succession for cyclosporin from parasites and human pathogens”. Drug Discovery Today 10 (10): 688–691. doi:10.1016/S1359-6446(05)03395-7PMID 15896681.

3. Creating diverse target-binding surfaces on FKBP12: synthesis and evaluation of a rapamycin analogue library.

Wu X, Wang L, Han Y, Regan N, Li PK, Villalona MA, Hu X, Briesewitz R, Pei D.

ACS Comb Sci. 2011 Sep 12;13(5):486-95. doi: 10.1021/co200057n. Epub 2011 Jul 28.

4. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth.

Gibbons JJ, Abraham RT, Yu K.

Semin Oncol. 2009 Dec;36 Suppl 3:S3-S17. doi: 10.1053/j.seminoncol.2009.10.011. Review.

5. Hybrid inhibitors of phosphatidylinositol 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR): design, synthesis, and superior antitumor activity of novel wortmannin-rapamycin conjugates.

Ayral-Kaloustian S, Gu J, Lucas J, Cinque M, Gaydos C, Zask A, Chaudhary I, Wang J, Di L, Young M, Ruppen M, Mansour TS, Gibbons JJ, Yu K.

J Med Chem. 2010 Jan 14;53(1):452-9. doi: 10.1021/jm901427g.

6. Fluorescent probes to characterise FK506-binding proteins.

Kozany C, März A, Kress C, Hausch F.

Chembiochem. 2009 May 25;10(8):1402-10. doi: 10.1002/cbic.200800806.

7. Recent advances in the chemistry, biosynthesis and pharmacology of rapamycin analogs.

Graziani EI.

Nat Prod Rep. 2009 May;26(5):602-9. doi: 10.1039/b804602f. Epub 2009 Mar 5. Review.

Total synthesis of rapamycin.

Ley SV, Tackett MN, Maddess ML, Anderson JC, Brennan PE, Cappi MW, Heer JP, Helgen C, Kori M, Kouklovsky C, Marsden SP, Norman J, Osborn DP, Palomero MA, Pavey JB, Pinel C, Robinson LA, Schnaubelt J, Scott JS, Spilling CD, Watanabe H, Wesson KE, Willis MC.

Chemistry. 2009;15(12):2874-914. doi: 10.1002/chem.200801656.

9  Highly diastereoselective desymmetrisation of cyclic meso-anhydrides and derivatisation for use in natural product synthesis.

Evans AC, Longbottom DA, Matsuoka M, Davies JE, Turner R, Franckevicius V, Ley SV.

Org Biomol Chem. 2009 Feb 21;7(4):747-60. doi: 10.1039/b813494d. Epub 2009 Jan 6.

10  Total synthesis studies on macrocyclic pipecolic acid natural products: FK506, the antascomicins and rapamycin.

Maddess ML, Tackett MN, Ley SV.

Prog Drug Res. 2008;66:13, 15-186. Review.

11 Determination of sirolimus in rabbit arteries using liquid chromatography separation and tandem mass spectrometric detection.

Zhang J, Rodila R, Watson P, Ji Q, El-Shourbagy TA.

Biomed Chromatogr. 2007 Oct;21(10):1036-44.

12  Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility.

Sormani R, Yao L, Menand B, Ennar N, Lecampion C, Meyer C, Robaglia C.

BMC Plant Biol. 2007 Jun 1;7:26.

13 Total synthesis of rapamycin.

Maddess ML, Tackett MN, Watanabe H, Brennan PE, Spilling CD, Scott JS, Osborn DP, Ley SV.

Angew Chem Int Ed Engl. 2007;46(4):591-7. No abstract available.

15 lipase-catalyzed regioselective esterification of rapamycin: synthesis of temsirolimus (CCI-779).

Gu J, Ruppen ME, Cai P.

Org Lett. 2005 Sep 1;7(18):3945-8.

16 CCI-779 Wyeth.

Elit L.

Curr Opin Investig Drugs. 2002 Aug;3(8):1249-53. Review.

17 Everolimus. Novartis.

Dumont FJ.

Curr Opin Investig Drugs. 2001 Sep;2(9):1220-34. Review.

18 Kuo et al (1992) Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 358 70. PMID:1614535.

19 Huang et al (2003) Rapamycins: mechanism of action and cellular resistance. Cancer Biol.Ther. 2 221. PMID:12878853.

20 Kobayashi et al (2007) Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci. 98 726. PMID: 17425689.

21 Fleming et al (2011) Chemical modulators of autophagy as biological probes and potential therapeutics. 7 9. PMID:21164513.

22 J Am Chem Soc1993,115,(10):4419

23 Tetrahedron Lett1994,35,(28):4911

24 Chemistry (Weinheim)1995,1,(5):318

24

Figure imgf000004_0001SIROLIMUS

FEMALE FERTILITY

http://amcrasto.theeurekamoments.com/2013/02/11/immunosuppressant-drug-rapamycin-helps-preserving-female-fertility/

PATENTS

Canada 2293793 APPROVED2006-07-11 EXP    2018-06-11
Canada 2103571                 2003-04-29           2012-02-21
United States 5989591                 1998-09-11           2018-09-11
United States 5212155                 1993-05-18           2010-05-18
WO1998054308A2 * May 28, 1998 Dec 3, 1998 Biotica Tech Ltd Polyketides and their synthesis and use
EP0589703A1 * Sep 23, 1993 Mar 30, 1994 American Home Products Corporation Proline derivative of rapamycin, production and application thereof
US20010039338 * Jun 7, 2001 Nov 8, 2001 American Home Products Corporation Regioselective synthesis of rapamycin derivatives
WO2007067560A2 * Dec 6, 2006 Jun 14, 2007 Clifford William Coughlin Scalable process for the preparation of a rapamycin 42-ester from a rapamycin 42-ester boronate
WO2012131019A1 Mar 30, 2012 Oct 4, 2012 Sandoz Ag Regioselective acylation of rapamycin at the c-42 position
US7622578 Dec 6, 2006 Nov 24, 2009 Wyeth Scalable process for the preparation of a rapamycin 42-ester from a rapamycin 42-ester boronate
US3929992 Apr 12, 1974 Dec 30, 1975 Ayerst Mckenna & Harrison Rapamycin and process of preparation
US5646160 May 26, 1995 Jul 8, 1997 American Home Products Corporation Method of treating hyperproliferative vascular disease with rapamycin and mycophenolic acid
US5665772 Sep 24, 1993 Sep 9, 1997 Sandoz Ltd. O-alkylated rapamycin derivatives and their use, particularly as immunosuppressants
US5728710 Jul 16, 1993 Mar 17, 1998 Smithkline Beecham Corporation Rapamycin derivatives
US5957975 Dec 15, 1997 Sep 28, 1999 The Centre National De La Recherche Scientifique Stent having a programmed pattern of in vivo degradation
US5985890 Jun 5, 1996 Nov 16, 1999 Novartis Ag Rapamycin derivatives
US6001998 Oct 13, 1995 Dec 14, 1999 Pfizer Inc Macrocyclic lactone compounds and their production process
US6015815 Sep 24, 1998 Jan 18, 2000 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US6187568 Aug 20, 1999 Feb 13, 2001 Pfizer Inc Macrocyclic lactone compounds and their production process
US6273913 Apr 16, 1998 Aug 14, 2001 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6585764 Jun 4, 2001 Jul 1, 2003 Cordis Corporation Stent with therapeutically active dosage of rapamycin coated thereon
US6641611 Nov 26, 2001 Nov 4, 2003 Swaminathan Jayaraman Therapeutic coating for an intravascular implant
US6805703 Sep 18, 2001 Oct 19, 2004 Scimed Life Systems, Inc. Protective membrane for reconfiguring a workpiece
US7025734 Sep 28, 2001 Apr 11, 2006 Advanced Cardiovascular Systmes, Inc. Guidewire with chemical sensing capabilities
US7056942 Jan 16, 2004 Jun 6, 2006 Teva Pharmaceutical Industries Ltd. Carvedilol
US7820812 * Jul 23, 2007 Oct 26, 2010 Abbott Laboratories Methods of manufacturing crystalline forms of rapamycin analogs
US20010027340 Jun 4, 2001 Oct 4, 2001 Carol Wright Stent with therapeutically active dosage of rapamycin coated thereon
US20010029351 May 7, 2001 Oct 11, 2001 Robert Falotico Drug combinations and delivery devices for the prevention and treatment of vascular disease
US20020005206 May 7, 2001 Jan 17, 2002 Robert Falotico Antiproliferative drug and delivery device
US20020007213 May 7, 2001 Jan 17, 2002 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US20020082680 Sep 7, 2001 Jun 27, 2002 Shanley John F. Expandable medical device for delivery of beneficial agent
US20020123505 Sep 10, 2001 Sep 5, 2002 Mollison Karl W. Medical devices containing rapamycin analogs
US20030129215 Sep 6, 2002 Jul 10, 2003 T-Ram, Inc. Medical devices containing rapamycin analogs
US20040072857 Jul 2, 2003 Apr 15, 2004 Jacob Waugh Polymerized and modified rapamycins and their use in coating medical prostheses
US20050033417 Jul 1, 2004 Feb 10, 2005 John Borges Coating for controlled release of a therapeutic agent
US20050101624 Nov 12, 2003 May 12, 2005 Betts Ronald E. 42-O-alkoxyalkyl rapamycin derivatives and compositions comprising same
US20050152842 Dec 22, 2004 Jul 14, 2005 Chun Li Poly (L-glutamic acid) paramagnetic material complex and use as a biodegradable MRI contrast agent
US20050175660 Oct 29, 2004 Aug 11, 2005 Mollison Karl W. Medical devices containing rapamycin analogs
US20050208095 Nov 22, 2004 Sep 22, 2005 Angiotech International Ag Polymer compositions and methods for their use
US20050209244 Feb 27, 2003 Sep 22, 2005 Prescott Margaret F N{5-[4-(4-methyl-piperazino-methyl)-benzoylamido]-2-methylphenyl}-4-(3-pyridyl)-2-pyrimidine-amine coated stents
US20050239178 Apr 25, 2005 Oct 27, 2005 Wyeth Labeling of rapamycin using rapamycin-specific methylases
US20060094744 Sep 28, 2005 May 4, 2006 Maryanoff Cynthia A Pharmaceutical dosage forms of stable amorphous rapamycin like compounds
US20060229711 Apr 4, 2006 Oct 12, 2006 Elixir Medical Corporation Degradable implantable medical devices
US20070015697 Nov 1, 2005 Jan 18, 2007 Peyman Gholam A Enhanced ocular neuroprotection and neurostimulation
US20070059336 Feb 27, 2006 Mar 15, 2007 Allergan, Inc. Anti-angiogenic sustained release intraocular implants and related methods
US20070207186 Mar 3, 2007 Sep 6, 2007 Scanlon John J Tear and abrasion resistant expanded material and reinforcement
US20080086198 May 24, 2007 Apr 10, 2008 Gary Owens Nanoporous stents with enhanced cellular adhesion and reduced neointimal formation
EP1236478A1 Feb 27, 2002 Sep 4, 2002 Medtronic Ave, Inc. Peroxisome proliferator-activated receptor gamma ligand eluting medical device
EP1588727A1 Apr 20, 2005 Oct 26, 2005 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
WO1993016189A1 Feb 11, 1993 Aug 19, 1993 Pfizer Novel macrocyclic lactones and a productive strain thereof
WO1994009010A1 Sep 24, 1993 Apr 28, 1994 Sandoz Ag O-alkylated rapamycin derivatives and their use, particularly as immunosuppressants
WO1996041807A1 Jun 5, 1996 Dec 27, 1996 Sylvain Cottens Rapamycin derivatives
WO1998007415A2 Aug 18, 1997 Feb 26, 1998 Ciba Geigy Ag Methods for prevention of cellular proliferation and restenosis
WO2001087263A2 May 14, 2001 Nov 22, 2001 Cordis Corp Delivery systems for treatment of vascular disease
WO2001087342A2 May 14, 2001 Nov 22, 2001 Cordis Corp Delivery devices for treatment of vascular disease
WO2001087372A1 Apr 25, 2001 Nov 22, 2001 Cordis Corp Drug combinations useful for prevention of restenosis
WO2001087373A1 May 14, 2001 Nov 22, 2001 Cordis Corp Delivery devices for treatment of vascular disease
WO2001087374A1 May 14, 2001 Nov 22, 2001 Cordis Corp Delivery systems for treatment of vascular disease
WO2001087375A1 May 14, 2001 Nov 22, 2001 Cordis Corp Delivery devices for treatment of vascular disease
WO2001087376A1 May 14, 2001 Nov 22, 2001 Cordis Corp Drug/drug delivery systems for the prevention and treatment of vascular disease
WO2002056790A2 Dec 18, 2001 Jul 25, 2002 Avantec Vascular Corp Delivery of therapeutic capable agents
WO2002065947A2 Feb 18, 2002 Aug 29, 2002 Jomed Gmbh Implants with fk506 for prophylaxis and treatment of restonoses
WO2003064383A2 Feb 3, 2003 Aug 7, 2003 Ariad Gene Therapeutics Inc Phosphorus-containing compounds & uses thereof
WO2006116716A2 Apr 27, 2006 Nov 2, 2006 William A Dunn Materials and methods for enhanced degradation of mutant proteins associated with human disease

A plaque, written in Brazilian Portuguese, commemorating the discovery of sirolimus on Easter Island, near Rano Kau

mTOR inhibitor

temsirolimus (CCI-779), everolimus (RAD001), deforolimus (AP23573), AP21967, biolimus, AP23102, zotarolimus (ABT 578), sirolimus (Rapamune), and tacrolimus (Prograf).\

SIROLIMUS

1H NMR

 

13 C NMR

 

 

HPLC

MIDOSTAURIN …with potential antiangiogenic and antineoplastic activities …


MIDOSTAURIN

READ …COMPLETE SYNTHESIS AT

http://www.allfordrugs.com/2014/01/14/midostaurin-with-potential-antiangiogenic-and-antineoplastic-activities/

Idelalisib ….US FDA Accepts NDA for Gilead’s Idelalisib for the Treatment of Refractory Indolent Non-Hodgkin’s Lymphoma


Idelalisib

An antineoplastic agent and p110delta inhibitor

(S)-2-(1-(9H-purin-6-ylamino)propyl)-5-fluoro-3-phenylquinazolin-4(3H)-one

Icos (Originator)

  • CAL-101
  • GS-1101
  • Idelalisib
  • UNII-YG57I8T5M0

M.Wt: 415.43
Formula: C22H18FN7O

CAS No.: 870281-82-6
CAL-101 Solubility: DMSO ≥80mg/mL Water <1.2mg/mL Ethanol ≥33mg/mL

5-Fluoro-3-phenyl-2-[(1S)-1-(7H-purin-6-ylamino)propyl]-4(3H)-quinazolinone

idelalisib

Idelalisib (codenamed GS-1101 or CAL-101) is a drug under investigation for the treatment of chronic lymphocytic leukaemia. It is in Phase III clinical trials testing drug combinations with rituximab and/or bendamustine as of 2013. The substance acts as aphosphoinositide 3-kinase inhibitor; more specifically, it blocks P110δ, the delta isoform of the enzyme phosphoinositide 3-kinase.[1][2]

GDC-0032 is a potent, next-generation beta isoform-sparing PI3K inhibitor targeting PI3Kα/δ/γ with IC 50 of 0.29 nM/0.12 nM/0.97nM,> 10 fold over Selective PI3K [beta].

GS-1101 is a novel, orally available small molecule inhibitor of phosphatidylinositol 3-kinase delta (PI3Kdelta) develop by Gilead and is waiting for registration in U.S. for the treatment of patients with indolent non-Hodgkin’s lymphoma that is refractory (non-responsive) to rituximab and to alkylating-agent-containing chemotherapy and for the treatment of chronic lymphocytic leukemia. The compound is also in phase III clinical evaluation for the treatment of elderly patients with previously untreated small lymphocytic lymphoma (SLL) and acute myeloid leukemia. Clinical trials had been under way for the treatment of inflammation and allergic rhinitis; however, no recent development has been reported. Preclinical studies have shown that GS-1101 has desirable pharmaceutical properties. The compound was originally developed by Calistoga Pharmaceuticals, acquired by Gilead on April 1, 2011.

clinical trials, click link

http://clinicaltrials.gov/search/intervention=CAL-101%20OR%20GS-1101%20OR%20Idelalisib

FOSTER CITY, Calif.–(BUSINESS WIRE)–Jan. 13, 2014– Gilead Sciences, Inc. (Nasdaq: GILD) announced today that the U.S. Food and Drug Administration (FDA) has accepted for review the company’s New Drug Application (NDA) for idelalisib, a targeted, oral inhibitor of PI3K delta, for the treatment of refractory indolent non-Hodgkin’s lymphoma (iNHL). FDA has granted a standard review for the iNHL NDA and has set a target review date under the Prescription Drug User Fee Act (PDUFA) of September 11, 2014.

The NDA for iNHL, submitted on September 11, 2013, was supported by a single arm Phase 2 study (Study 101-09) evaluating idelalisib in patients with iNHL that is refractory (non-responsive) to rituximab and to alkylating-agent-containing chemotherapy. Following Gilead’s NDA submission for iNHL, FDA granted idelalisib a Breakthrough Therapy designation for relapsed chronic lymphocytic leukemia (CLL). The FDA grants Breakthrough Therapy designation to drug candidates that may offer major advances in treatment over existing options. Gilead submitted an NDA for idelalisib for the treatment of CLL on December 6, 2013.

About Idelalisib

Idelalisib is an investigational, highly selective oral inhibitor of phosphoinositide 3-kinase (PI3K) delta. PI3K delta signaling is critical for the activation, proliferation, survival and trafficking of B lymphocytes and is hyperactive in many B-cell malignancies. Idelalisib is being developed both as a single agent and in combination with approved and investigational therapies.

Gilead’s clinical development program for idelalisib in iNHL includes Study 101-09 in highly refractory patients and two Phase 3 studies of idelalisib in previously treated patients. The development program in CLL includes three Phase 3 studies of idelalisib in previously treated patients. Combination therapy with idelalisib and GS-9973, Gilead’s novel spleen tyrosine kinase (Syk) inhibitor, also is being evaluated in a Phase 2 trial of patients with relapsed or refractory CLL, iNHL and other lymphoid malignancies.

Additional information about clinical studies of idelalisib and Gilead’s other investigational cancer agents can be found at http://www.clinicaltrials.gov. Idelalisib and GS-9973 are investigational products and their safety and efficacy have not been established.

About Indolent Non-Hodgkin’s Lymphoma

Indolent non-Hodgkin’s lymphoma refers to a group of largely incurable slow-growing lymphomas that run a relapsing course after therapy and can lead ultimately to life-threatening complications such as serious infections and marrow failure. Most iNHL patients are diagnosed at an advanced stage of disease, and median survival from time of initial diagnosis for patients with the most common form of iNHL, follicular lymphoma, is 8 to 10 years. The outlook for refractory iNHL patients is significantly poorer.

About Gilead Sciences

Gilead Sciences is a biopharmaceutical company that discovers, develops and commercializes innovative therapeutics in areas of unmet medical need. The company’s mission is to advance the care of patients suffering from life-threatening diseases worldwide. Headquartered in Foster City, California, Gilead has operations in North and South America, Europe and Asia Pacific.

The delta form of PI3K is expressed primarily in blood-cell lineages, including cells that cause or mediate hematologic malignancies, inflammation, autoimmune diseases and allergies. By specifically inhibiting only PI3K delta, a therapeutic effect is exerted without inhibiting PI3K signalling that is critical to the normal function of healthy cells. Extensive studies have shown that inhibition of other PI3K forms can cause significant toxicities, particularly with respect to glucose metabolism, which is essential for normal cell activity.

In 2011, orphan drug designation was assigned to GS-1101 in the U.S. for the treatment of CLL. In 2013, several orphan drug designations were assigned to the compound in the E.U. and U.S.: for the treatment of follicular lymphoma, for the treatment of mucosa-associated lymphoid tissue lymphoma (MALT), for the treatment of nodal marginal zone lymphoma, for the treatment of splenic marginal zone lymphoma, and for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma. Orphan drug designation was also assigned in the U.S. for the treatment of lymphoplasmacytic lymphoma with or without Walenstom’s macroglobulinemia and, in the E.U., for the treatment of Waldenstrom’s macroglobulinemia (lymphoplasmacytic lymphoma).

Later in 2013, some of these orphan drug designations were withdrawn in the E.U.; for the treatment of chronic lymphocytic leukemia / small lymphocytic lymphoma, for the treatment of extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma), for the treatment of of nodal marginal-zone lymphoma and for the treatment of splenic marginal-zone lymphoma. In 2013, the FDA granted a breakthrough therapy designation for the treatment of chronic lymphocytic leukemia.

  1.  H. Spreitzer (13 May 2013). “Neue Wirkstoffe – Ibrutinib und Idelalisib”. Österreichische Apothekerzeitung (in German) (10/2013): 34.
  2.  Wu, M.; Akinleye, A.; Zhu, X. (2013). “Novel agents for chronic lymphocytic leukemia”.Journal of Hematology & Oncology 6: 36. doi:10.1186/1756-8722-6-36.PMC 3659027PMID 23680477.

idelalisib

CAL-101 is an Oral Delta Isoform-Selective PI3 Kinase Inhibitor.

CAL-101 (GS 1101) is a potent PI3K p110δ inhibitor with an IC50 of 65 nM. PI3K-delta inhibitor CAL-101 inhibits the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3), preventing the activation of the PI3K signaling pathway and thus inhibiting tumor cell proliferation, motility, and survival. Unlike other isoforms of PI3K, PI3K-delta is expressed primarily in hematopoietic lineages. The targeted inhibition of PI3K-delta is designed to preserve PI3K signaling in normal, non-neoplastic cells. [3][4]
Reference:
[3] Blood 2011, 117, 591-594.
[4] Blood, 2010, 116, 2078-2088.
5. WO 2005113556
6. WO 2005113554
7. WO 2010057048
8. WO 2011156759
9. WO 2012125510
10. WO 2013134288
11. US 2013274198
12. J Med Chem. 2013 Mar 14;56(5):1922-39. doi: 10.1021/jm301522m
US8207153 6-27-2012 QUINAZOLINONES AS INHIBITORS OF HUMAN PHOSPHATIDYLINOSITOL 3-KINASE DELTA
US2012015964 1-20-2012 QUINAZOLINONES AS INHIBITORS OF HUMAN PHOSPHATIDYLINOSITOL 3-KINASE DELTA
US2011306622 12-16-2011 METHODS OF TREATING HEMATOLOGICAL DISORDERS WITH QUINAZOLINONE COMPOUNDS IN SELECTED SUBJECTS
US7932260 4-27-2011 Quinazolinones as Inhibitors of Human Phosphatidylinositol 3-Kinase Delta
US2011044942 2-25-2011 METHODS OF TREATMENT FOR SOLID TUMORS
US2010256167 10-8-2010 QUINAZOLINONES AS INHIBITORS OF HUMAN PHOSPHATIDYLINOSITOL 3-KINASE DELTA
US2010202963 8-13-2010 THERAPIES FOR HEMATOLOGIC MALIGNANCIES
WO2005113556A1 * 12 May 2005 1 Dec 2005 Icos Corp Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta
WO2005117889A1 * 12 Nov 2004 15 Dec 2005 Didier Bouscary Methods for treating and/or preventing aberrant proliferation of hematopoietic
WO2005120511A1 * 4 Jun 2005 22 Dec 2005 Joel S Hayflick Methods for treating mast cell disorders
WO2006089106A2 * 16 Feb 2006 24 Aug 2006 Icos Corp Phosphoinositide 3-kinase inhibitors for inhibiting leukocyte accumulation
US20060106038 * 25 May 2005 18 May 2006 Icos Corporation Methods for treating and/or preventing aberrant proliferation of hematopoietic cells
……………………….
synthesis

The synthesis of a compound in accordance with formula I is first exemplified using steps A-E below, which provide a synthetic procedure for compound 107, the structure of which is shown below.

Figure imgf000150_0001

(107) is idelalisib

……………….

Synthesis of 2-fluoro-6-nitro-N-phenyl-benzamide (108)

Step A: A solution of 2-fluoro-6- nitrobenzoic acid (100 g, 0.54 mol) and dimethylformamide (5 mL) in dichloromethane (600 mL) was treated dropwise with oxalyl chloride (2 M in dichloromethane, 410 mL, 0.8 mol, 1.5 eq) over 30 min. After stirring 2 h at room temperature, the reaction was concentrated to an orange syrup with some solids present. The syrup was dissolved in dry dioxane (80 mL) and slowly added to a suspension of aniline (49 mL, 0.54 mol, 1 eq) and sodium bicarbonate (90 g, 1.08 mol, 2 eq) in a mixture of dioxane (250 mL) and water (250 mL) at 6 0C. The temperature reached 27°C at the end of the addition. After 30 min, the reaction mixture was treated with water (1.2 L). The precipitate was collected by vacuum filtration, washed with water (300 mL) , air dried in the funnel, and dried in vacuo at 50°C for 24 h to afford an off-white solid product (139 g, 99%). 1H NMR (300 MHz, DMSO-d6) δ 10.82 (s, IH), 8.12 (d, J = 7.7 Hz, IH), 7.91-7.77 (m, 2H), 7.64 (d, J = 7.7 Hz, 2H), 7.38 (t, J = 7.9 Hz, 2H), 7.15 > (t, J = 7.4 Hz, IH), ESI-MS m/z 261 (MH+). The reaction described above and compound 108 are shown below.

Figure imgf000151_0001

………………………..

Synthesis of(S) – [1- (2-fluoro-6-nitro-benzoyl) -phenyl-aminocarbonyl] – propyl-carbamic acid tert-butyl ester (109)

Step B: A suspension of compound 108 (0.5 mol) and dimethylformamide (5 mL) in thionyl chloride (256 mL, 2.5 mol, 5 eq) was stirred at 85°C for 5 hours. The reaction mixture was concentrated in vacuo to a brown syrup. The syrup was dissolved in dichloromethane (200 mL) and was slowly added to a solution of N-BOC-L-2-aminobutyric acid (112 g, 0.55 mol, 1.1 eq) and triethylamine (77 mL, 0.55 mol, 1.1 eq) in dichloromethane (600 mL) at 10 0C. After stirring at room temperature for 3 h, salts were removed by filtration, and the solution was washed with 100 mL of water, saturated sodium bicarbonate, water, 5% citric acid, and saturated sodium chloride. The organic phase was dried with magnesium sulfate and concentrated to a red syrup. The syrup was dissolved in dichloromethane (450 mL) and purified by flash chromatography on a silica gel plug (15 x 22 cm, 4 L dry silica) eluted with hexanes/ethyl acetate (10%, 8 L; 15%, 8 L; 20%, 8 L; 25%, 4 L) to yield the compound 109 as an off-white solid (147 g, 66%). 1H NMR (300 MHz, DMSO-d6) δ 8.13 (d, J = 8.0 Hz, IH), 7.84 (t, J = 8.6 Hz, IH), 7.78- 7.67 (m, IH), 7.65-7.49 (m, 3H), 7.40-7.28 ( m, 2H), 7.19 (d, J = 7.5 Hz, IH), 4.05 (broad s, IH), 1.75- 1.30 (m, 2H), 1.34 (s, 9H), 0.93 (broad s, 3H). ESI- MS m/z 446.3 (MH+) . The reaction described above and compound 109 are shown below.

Figure imgf000152_0001
…………………….

Synthesis of(S) – [1- (5-fluoro-4-oxo-3-phenyl-3 , 4-dihydro-quinazolin-2- yl) -propyl] -carbamic acid tert-butyl ester (110)

Step C: A solution of compound 109 (125 mmol, 1 eq) in acetic acid (500 mL) was treated with zinc dust (48.4 g, 740 mmol, 6 eq) added in 3 portions, and the reaction mixture was allowed to cool to below 35°C between additions. After stirring for 2 h at ambient temperature, solids were filtered off by vacuum filtration and washed with acetic acid (50 mL) . The filtrate was concentrated in vacuo, dissolved in EtOAc (400 mL) , washed with water (300 mL) , and the water layer was extracted with EtOAc (300 mL) . The combined organic layers were washed with water (200 mL) , sat’d sodium bicarbonate (2 x 200 mL) , sat’d NaCl (100 mL) , dried with MgSO4, and concentrated to a syrup. The syrup was dissolved in toluene (200 mL) and purified by flash chromatography on a silica gel plug (13 x 15 cm, 2 L dry silica) eluted with hexanes/ethyl acetate (10%, 4 L; 15%, 4 L; 17.5%, 8 L; 25%, 4 L) to yield compound 110 as an off-white foamy solid (33.6 g, 69%). 1H NMR (300 MHz, DMSO-d6) δ 7.83 (td, J = 8.2, 5.7 Hz, IH), 7.64-7.48 (m, 5H), 7.39 (broad d, J = 7.6 Hz, IH), 7.30 (dd, J = 8.3 Hz, IH), 7.23 (d, J = 7.6 Hz, IH), 4.02-3.90 (m, IH), 1.76-1.66 (m, IH), 1.62-1.46 (m, IH), 1.33 (s, 9H), 0.63 (t, J= 7.3 Hz, 3H). ESI-MS m/z 398.3 (MH+). The reaction described above and compound 110 are shown below.

Figure imgf000153_0001

…………..

Syn of (S) -2- (1-amino-propyl) -5-fluoro-3-phenyl-3H-quinazolin-4- one (111)

Step D: A solution of compound 110 (85 mmol) in dichloromethane (60 mL) was treated with trifluoroacetic acid (60 mL) . The reaction mixture was stirred for 1 h, concentrated in vacuo, and partitioned between dichloromethane (150 mL) and 10% K2CO3 (sufficient amount to keep the pH greated than 10) . The aqueous layer was extracted with additional dichloromethane (100 raL) , and the combined organic layers were washed with water (50 mli) and brine (50 mL) . After drying with Mg SO4, the solution was concentrated to provide compound 111 as an off-white solid (22 g, 88%) . 1H NMR (300 MHz,

CDCl3) δ 7.73-7.65 (m, IH), 7.62-7.49 (m, 4H), 7.32- 7.22 (m, 2H), 7.13-7.06 (m, IH), 3.42 (dd, J= 7.5, 5.2 Hz, IH), 1.87-1.70 (m, IH), 1.58-1.43 (m, IH), 0.80 (t, J = 7.4 Hz, 3H) . ESI-MS m/z 298.2 (MH+) . The reaction described above and compound 111 are shown below.

Figure imgf000154_0001

………………

syn of (S) -5-fluoro-3-phenyl-2- [1- (9H-purin-6-ylamino) -propyl] – 3H-quinazolin-4-one (107)

Step E: A suspension of compound 111(65.6 mmol, 1 eq) , 6-bromopurine (14.6 g, 73.4 mmol, 1.1 eq) , and DIEA (24.3 mL, 140 mmol, 2 eq) in tert- butanol (40 mL) was stirred for 24 h at 800C. The reaction mixture was concentrated in vacuo and treated with water to yield a solid crude product that was collected by vacuum filtration, washed with water, and air dried. Half of the obtained solid crude product was dissolved in MeOH (600 mL) , concentrated onto silica gel (300 mL dry) , and purified by flash chromatography (7.5 x 36 cm, eluted with 10 L of 4% MeOH/CH2Cl2) to yield a solid product. The solid product was then dissolved in EtOH (250 mL) and concentrated in vacuo to compound 107 idelalisib as a light yellow solid (7.2 g, 50%).

1H NMR (300 MHz, 80 0C, DMSO-d5) δ 12.66 (broad s, IH), 8.11 (s, IH), 8.02 (broad s, IH), 7.81-7.73 (m, IH),7.60-7.42 (m, 6H), 7.25-7.15 (m, 2H), 4.97 (broad s, IH), 2.02-1.73 (m, 2H), 0.79 (t, J= 7.3 Hz, 3H).

ESI-MS m/z 416.2 (MH+).

C, H, N elemental analysis (C22Hi8N7OF-EtOH- 0.4 H2O).

Chiral purity 99.8:0.2 (S:R) using chiral HPLC (4.6 x 250 mm Chiralpak ODH column, 20 °C, 85:15 hexanes : EtOH, 1 rnL/min, sample loaded at a concentration of 1 mg/mL in EtOH) . The reaction described above and compound 107 idelalisib are shown below.

Figure imgf000155_0001
WO2001030768A1 * 26 Oct 2000 3 May 2001 Gustave Bergnes Methods and compositions utilizing quinazolinones
WO2001081346A2 * 24 Apr 2001 1 Nov 2001 Icos Corp Inhibitors of human phosphatidyl-inositol 3-kinase delta
WO2003035075A1 * 27 Aug 2002 1 May 2003 Icos Corp Inhibitors of human phosphatidyl-inositol 3-kinase delta
WO2005016348A1 * 13 Aug 2004 24 Feb 2005 Jason Douangpanya Method of inhibiting immune responses stimulated by an endogenous factor
WO2005016349A1 * 13 Aug 2004 24 Feb 2005 Thomas G Diacovo Methods of inhibiting leukocyte accumulation
WO2005067901A2 * 7 Jan 2005 28 Jul 2005 Carrie A Northcott Methods for treating and preventing hypertension and hypertension-related disorders
8-1-2013
Identification of potent Yes1 kinase inhibitors using a library screening approach.
Bioorganic & medicinal chemistry letters
 
3-14-2013
Synthesis and cancer stem cell-based activity of substituted 5-morpholino-7H-thieno[3,2-b]pyran-7-ones designed as next generation PI3K inhibitors.
Journal of medicinal chemistry
 
10-25-2012
PI3Kδ and PI3Kγ as targets for autoimmune and inflammatory diseases.
Journal of medicinal chemistry

A case of MIRGI : EPILEPSY ; Diagnosis through Ayurveda Latest technologies ; मिर्गी के एक रोगी का आयुर्वेदिक निदान परीक्षण


Dr.D.B.Bajpai's avatar**आधुनिक युग आयुर्वेद ** ई०टी०जी० आयुर्वेदास्कैन ** DIGITAL AYURVEDA TRIDOSHO SCANNER**AYURVED H. T. L. WHOLE-BODY SCANNER**आयुषव्यूज रक्त केमिकल केमेस्ट्री परीक्षण अनालाइजर ** डिजिटल हैनीमेनियन होम्योपैथी स्कैनर **

नीचे दिया गया विवरण एक मिर्गी के रोगी का है जिसकी उमर १७ साल की है / इसको मिर्गी का दौरा पिछले सात साल से आ रहा है / इसके पिता एक एलोपैथी के चिकित्सक हैं / एलोपैथी का बेहतर और अच्छे से अच्छा इलाज कराने के बाद भी इस लड़्के को मिर्गी का दौरा लगातार आता रहा / शुरु शुरु मे मिर्गी का दौरा कुछ माह के अन्तराल मे कुछ समय एक मिनट से अधिक का आता था परन्तु बाद मे जैसे जैसे समय बीतता गया मिर्गी का दौरा जल्दी जल्दी और दिन मे कई कई बार आने लगा तथा दौरे से आने वाली बेहोशी का समय भी बढ गया / कई शहरों और देश के प्रतिष्ठित चिकित्सा सनस्थानों मे एलोपैथी दवाओं का इलाज कराने के बाद भी इस लड़्के को मिर्गी का दौरा लगातार आता रहा और ठीक नही हुआ / सबसे चिन्ताजनक बात parents के लिये यह्…

View original post 727 more words

Basta ya de malgastar el dinero en vitaminas y suplementos minerales


ateo666666's avatarLa Ciencia y sus Demonios

suplementos vitaminicos minerales estafa peligroEste es el demoledor título de un reciente editorial de la prestigiosa revista médica “Annals of Internal Medicine” que sirve de introducción a una serie de artículos científicos publicados sobre el posible papel de vitaminas y suplementos minerales en la prevención o progresión de diversas enfermedades crónicas y su efecto sobre la tasa de mortalidad.

View original post 1,498 more words

Molidustat (BAY 85-3934)


 

Molidustat (BAY 85-3934)

READ AT

http://medcheminternational.blogspot.in/2014/01/molidustat-bay-85-3934.html

CICAPROST , ZK-96480


http://chem.sis.nlm.nih.gov/chemidplus/RenderImage?maxscale=30&width=300&height=300&superlistid=0094079808
Cicaprost
READ AT

Iloprost (ciloprost)


CILUPREVIR » All About Drugs


CILUPREVIR » All About Drugs

WANT TO KNOW ABOUT VIR SERIES CLICK

click

http://drugsynthesisint.blogspot.in/p/vir-series-hep-c-virus-22.html

AND

http://medcheminternational.blogspot.in/p/vir-series-hep-c-virus.html

CILUPREVIR

CILUPREVIR
(1S,4R,6S,7Z,14S,18R)-14- {[(cyclopentyloxy)carbonyl]amino}-18-[(7-methoxy-2- {2-[(propan-2-yl)amino]-1,3-thiazol-4-yl}quinolin-4- yl)oxy]-2,15-dioxo-3,16- diazatricyclo[14.3.0.0{4,6}]nonadec-7-ene-4- carboxylic acid
Ciluprevir, BILN-2061, BILN 2061, CHEBI:161337, BILN2061, BILN 2061ZW, BILN-2061-ZW,
CAS , 300832-84-2
Molecular Formula: C40H50N6O8S   Molecular Weight: 774.9254
Abstract Image
Ciluprevir is used in the treatment of hepatitis C. It is manufactured by Boehringer Ingelheim Pharma GmbH & Co. KG under the research code of BILN-2061. It is targeted against NS2-3 protease.[1]
Ciluprevir is an HCV NS3 protease inhibitor which had been in phase II clinical trials at Boehringer Ingelheim for the treatment of hepatitis C, however, no recent developments from the company have been reported.

  1.  Abbenante, G; Fairlie, DP (2005). “Protease inhibitors in the clinic”. Medicinal chemistry 1 (1): 71–104. PMID 16789888.
1. Challenge and Opportunity in Scaling-Up Metathesis Reaction: Synthesis of Ciluprevir (BILN 2061)Peter J. Dunn, et al
2. Synthesis of BILN 2061, an HCV NS3 protease inhibitor with proven antiviral effect in humans
Org Lett 2004, 6(17): 2901
http://pubs.acs.org/doi/full/10.1021/ol0489907

3. Efficient synthesis of (S)-2-(cyclopentyloxycarbonyl)-amino-8-nonenoic acid: Key buiding block for BILN 2061, an HCV NS3 protease inhibitor
Org Process Res Dev 2007, 11(1): 60

4. Chinese Journal of Chemistry, 2011 ,  vol. 29,  7  pg. 1489 – 1502
DOI: 10.1002/cjoc.201180270
 http://onlinelibrary.wiley.com/doi/10.1002/cjoc.201180270/abstract;jsessionid=F5F4331F5A95D00728394A254C2B1AE7.f01t04
…………………………..
US 8222369
WO 2006071619
WO 2000059929
WO 2004092203
WO 2004039833
WO 2004037855
WO 2006036614
WO 2006033878
WO 2005042570
WO 2004093915
………………………………………………………………………..
https://www.google.co.in/patents/US8222369

Figure US08222369-20120717-C00019

Figure US08222369-20120717-C00021

…………………………………………………………………..
http://www.google.com/patents/WO2000059929A1
COMPD 822 IS CILUPREVIR IN TABLE 8
EXAMPLE 8 Synthesis of 4-hydroxy-7-methoxy-2[4(2-isopropylaminothiazolyl)] quinoline (8f ) Note: [ A variety of 2-alkylaminothiazolyl substituents were made using the same synthetic scheme where compound 8b was replaced by other alkyl thioureas.]

Figure imgf000045_0001
Figure imgf000045_0002

8b 8c 8d

Figure imgf000046_0001

A. The protocol used for the conversion of -anisidine to 8a was identical to that described in the literature: F.J. Brown et al. J. Med. Chem. 1989, 32 , 807-826. However, the purification procedure was modified to avoid purification by chromatography. The EtOAc phase containing the desired product was treated with a mixture of MgSO4, charcoal and 5% w/w (based on expected mass) silica gel. After filtration on celite, the product was triturated with ether. Compound 8a was obtained as a pale brown solid in >99% purity (as confirmed by HPLC).
B. A suspension of isopropyl thiourea (8b, 3.55 g, 30 mmol) and 3- bromopyruvic acid (8c, 5 g, 1 eq.) in dioxane (300 mL , 0.1 M) was heated to 80 °C.
Upon reaching 80 C the solution became clear and soon after the product precipitated as a white solid. After 2 hours of heating, the solution was cooled to RT and the white precipitate was filtered to obtain compound 8d in high purity (>98% purity as confirmed by NMR) and 94% yield (7.51 g). C. A mixture of the carboxylic acid 8d (4.85 g, 18.2 mmol) and the aniline derivative 8a (3 g, leq.) in pyridine (150 mL, 0.12 M) was cooled to -30 °C (upon cooling, the clear solution became partially a suspension). Phosphorus oxychloride (3.56 ml, 2.1 eq.) was then added slowly over a 5 min period. The reaction was stirred at -30 C for 1 h, the bath was removed and the reaction mixture was allowed to warm-up to RT. After 1.5 h the reaction mixture was poured into ice, the pH was adjusted to 11 with aqueous 3N NaOH, extracted with CH2C12, dried over anhydrous MgSO4, filtered and concentrated under vacuum. The beige solid was then purified by flash chromatography (45% EtOAc in hexane) to give compound 8e as a pale yellow solid in 73% yield (6.07 g). D. A solution of tBuOK (2.42 g, 21.6 mmol) in anhydrous tBuOH (40ml, 0.14 M, distilled from Mg metal) was heated to reflux. Compound 8e (1.8g, 5.4 mmol) was added portion-wise over 5 min and the dark red solution formed was stirred at reflux for an additional 20 min (completion of the reaction was monitored by HPLC). The mixture was cooled to RT and HCl was added (4 N in dioxane, 1.5 eq.). The mixture was then concentrated under vacuum, in order to assure that all of the
HCl and dioxane were removed, the product was re-dissolved twice in CH2C12 and dried under vacuum to finally obtain the HCl salt of compound 8f as a beige solid (1.62 g, 93% pure by HPLC). The product was then poured into a phosphate buffer
(IN NaH2PO4, pH=~4.5) and sonicated. The beige solid was filtered and dried under vacuum to give compound 8f (1.38 g, 81% yield) as a beige solid (91% pure by HPLC).
*H NMR (400 MHz, DMSO) δ 8.27 (s, IH), 8.12 (d, IH, J = 9.2 Hz), 7.97 (br.s, IH), 7.94 (s, IH), 7.43 (s, IH), 7.24 (dd, IH, J = 9.2, 2.2 Hz), 3.97 (m, IH), 3.94 (s, 3H), 1.24 (d, 2H, J = 6.4 Hz)
…………
METHYL ESTER
EXAMPLE 34c
Using the same procedure as described in example 34 but reacting bromoketone 34f with commercially available N-iso-propylthiourea gave # 822

Figure imgf000095_0002

Η NMR (400 MHz, DMSO-d6) δ 8.63 (s, IH), 8.33-8.23 (bs, IH), 8.21 (d, J = 9.2 Hz, IH), 8.04 (d, J = 8.3 Hz, IH), 7.86 (bs, IH), 7.77 (s, IH), 7.35-7.23 (m, 2H), 5.81 (bs, IH), 5.52 (dd, J = 8.5 Hz, IH), 5.27 (dd, J = 9.2 Hz, IH), 4.65 (d, J = 11.8 Hz, IH), 4.51 (dd, J = 7.6 Hz, IH), 4.37 (bs, IH), 4.15 (bs, IH), 4.07-3.98 (m, 2H), 3.97 (s, 3H), 3.88 (d, J = 8.9 Hz, IH), 2.60-2.53 (m, 2H), 2.47-2.37 (m, 2H), 2.19-2.10 (dd, J = 9.2 Hz, IH), 1.80-1.64 (m, 2H), 1.63-1.29 (m, 13H), 1.27 and 1.25 (2 x d, J – 6.5 Hz, 6H), 1.23-1.09 (m, 2H). MS; es+: 775.0 (M + H)+, es : 772.9 (M – H)\
CILUPREVIR IS FREE ACID OF ABOVE AND HAS ENTRY 822 TABLE 8
………
FREE AMINO COMPD
(Table 8)

Figure imgf000090_0001
Figure imgf000090_0002
Figure imgf000091_0001
Figure imgf000091_0002

A. To a solution of the macrocyclic intermediate 23b (13.05 g, 27.2 mmol, 1.0 eq.), Ph3P (14.28 g, 54.4 mmol, 2.0 eq) and 2-carboxymethoxy-4-hydroxy-7- methoxyquinoline (WO 00/09543 & WO 00/09558) (6.67 g, 28.6 mmol, 1.05 eq) in
THF (450 mL) at 0°C, DIAD (10.75 mL, 54.6 mmol, 2.0 eq) was added dropwise over a period of 15 min. The ice bath was then removed and the reaction mixture was stirred at RT for 3 h. After the complete conversion of starting material to products, the solvent was evaporated under vacuum, the remaining mixture diluted with
EtOAc, washed with saturated NaHCO3 (2x) and brine (lx), the organic layer was dried over anhydrous MgSO4, filtered and evaporated to dryness. Pure compound 34a was obtained after flash column chromatography; the column was eluted first with hexane/EtOAc (50:50), followed by CHCl3/EtOAc (95:5) to remove Ph3PO and
DIAD byproducts and elution of the impurities was monitored by TLC. Finally, the desired product 34a was eluted from the column with CHC13/ EtOAc (70:30).
Usually, the chromatography step had to be repeated 2-3 times before compound 34a could be isolated in high purity as a white solid with an overall yield of 68% (12.8 g, 99.5% pure by HPLC).
B. To a solution of the Boc-protected intermediate 34a (1.567g) in CH2C12 (15 mL), 4N HCl in dioxane (12 mL) was added and the reaction mixture was stirred at RT for 1 h. [In the event that a thick gel would form half way through the reaction period, an additional 10 mL CH2C12 was added.] Upon completion of the deprotection the solvents were evaporate to dryness to obtain a yellow solid and a paste like material. The mixture was redissolved in approximately 5% MeOH in
CH2C12 and re-evaporated to dryness under vacuum to obtain compound 34b as a yellow solid, which was used in the next step without any purification. C. To a solution of cyclopentanol (614 μL, 6.76 mmoL) in THF (15 mL), a solution of phosgene in toluene (1.93 M, 5.96 mL, 11.502 mmol) was added dropwise and the mixture was stirred at R.T. for 2 h to form the cyclopentyl chloroformate reagent (z). After that period, approximately half of the solvent was removed by evaporation under vacuum, the remaining light yellow solution was diluted by the addition of CH2C12 (5 mL) and concentrated to half of its original volume, in order to assure the removal of all excess phosgene. The above solution of the cyclopentyl chloroformate reagent was further diluted with THF (15 mL) and added to the amine-2HCl salt 34b. The mixture was cooled to 0 C in an ice bath, the pH was adjusted to -8.5-9 with the addition of Et3N (added dropwise) and the reaction mixture was stirred at 0 C for 1 h. After that period, the mixture was diluted with
EtOAc, washed with water (lx), saturated NaHCO3 (2x), H2O (2x) and brine (lx).
The organic layer was dried over anhydrous MgSO4, filtered and evaporated under vacuum to obtain a yellow-amber foam. Compound 34c was obtained as a white foam after purification by flash column chromatography (using a solvent gradient from 30% hexane to 20% hexane in EtOAc as the eluent) in 80% yield (1.27 g) and >93% purity. D. The dimethyl ester 34c (1.17g) was dissolved in a mixture of
THF/MeOH/H2O (20 mL, 2:1:1 ratio), and an aqueous solution of NaOH (1.8 mL,
IN, 1 eq.) was added. The reaction mixture was stirred at RT for 1 h before it was evaporated to dryness to obtain the sodium salt 34d as a white solid (-1.66 mmol). Compound 34d was used in the next step without purification.
E. The crude sodium salt 34d (1.66 mmoL) was dissolved in THF (17 mL), Et3N was added and the mixture was cooled to 0 C in an ice bath. Isobutylchloroformate
(322 μl, 2.5 mmol) was added dropwise and the mixture was stirred at 0 C for 75 min. After that period, diazomethane (15 mL) was added and stirring was continued at 0 C for 30 min and then at RT for an additional 1 h. Most of the solvent was evaporated to dryness under vacuum, the remaining mixture was diluted with EtOAc, washed with saturated NaHCO3 (2x), H2O (2x) and brine (lx), dried over anhydrous MgSO4, filtered and evaporated to dryness to obtain compound 34e as a light yellow foam (1.2g, -1.66 mmol). The diazoketone intermediate 34e was used in the next step without purification.
F. The diazoketone 34e (1.2g, 1.66 mmoL) dissolved in THF (17 mL) was cooled to 0 C in an ice bath. A solution of aqueous HBr (48%, 1.24 mL) was added dropwise and the reaction mixture was stirred at 0 C for 1 h. The mixture was then diluted with EtOAc, wash with saturated NaHCO3 (2x), H2O (2x) and brine (lx), the organic layer was dried over anhydrous MgSO4, filtered and evaporated to dryness to obtain the β-bromoketone intermediate 34f as a light yellow foam (-1.657 mmol).
G. To a solution of the bromoketone 34f (600 mg,0.779 mmol) in isopropanol (5 mL), thiourea (118 mg, 1.55 mmol) was added and the reaction mixture was placed in a pre-heated oil bath at 75 C where it was allowed to stir for 1 hr. The isopropanol was then removed under vacuum and the product dissolved in EtOAc
(100 mL). The solution was washed with saturated NaHCO3 and brine, the organic layer was dried over anhydrous Na2SO4, filtered and evaporated to afford the crude product 34g (522 mg) as a red-brown solid. This material was used in the final step without any further purification.
H. The crude methyl ester 34g (122 mg, 0.163 mmol) was dissolved in a solution of THF/MeOH/H2O (2:1:1 ratio, 4 mL) and saponified using LiOH»H2O (89 mg, 2.14 mmol). The hydrolysis reaction was carried out over a 12-15 h period at RT. The solvents were then removed under vacuum and the crude product purified by C18 reversed phase HPLC, using a solvent gradient from 10% CH3CN in H2O to 100%
CH3CN, to afford the HCV protease inhibitor #812 as a yellow solid (24 mg, 20% overall yield for the conversion of intermediate 34f to inhibitor #812).
*H NMR (400 MHz, DMSO-d6) δ 8.63 (s, IH), 8.26-8.15 (m, 2H), 7.79 (bs, IH), 7.72
(bs, IH), 7.50 (bs, 2H), 7.33-7.25 (m, 2H), 5.77 (bs, IH), 5.52 (dd, J = 8.3 Hz, IH), 5.27 (dd, J = 9.2 Hz, IH), 4.64 (d, J = 10.8 Hz, IH), 4.50 (dd, J = 8.3 Hz, IH), 4.39-4.31 (m, IH), 4.08-3.99 (m, 2H), 3.94 (s, 3H), 3.87 (d, J = 9.5 Hz, 2H), 2.65-2.53 (m, 2H), 2.46- 2.36 (m, 2H), 2.20-2.12 (dd, J = 8.6 Hz, IH), 1.80-1.64 (m, 2H), 1.63-1.06 (m, 14H). MS; es+: 733.2 (M + H)+, es: 731.2 (M – H)\
………………..
http://www.google.com/patents/WO2006036614A2
(Z)-( 1S,4R, 14S, 18R)- 14-Cyclopentyloxycarbonylamino- 18-[2-(2- isopropylamino-thiazol-4-yl)-7-methoxy-quinolin-4-yloxy]-2,15-dioxo-3,16-diaza- tricyclo[14.3.0.0 ‘ ]nonadec-7-ene-4-carboxylic acid , whose chemical structure is as follows:

Figure imgf000015_0001

, provided for in Tsantrizos et al., U.S. Patent No. 6,608,027 Bl,
…………………………
https://www.google.co.in/patents/WO2005090383A2
ENTRY 218
Figure imgf000034_0001
…………………..
http://www.google.com/patents/WO2004039833A1
Figure imgf000015_0003

……………..
nmr
Synthesis of BILN 2061, an HCV NS3 protease inhibitor with proven antiviral effect in humans
Org Lett 2004, 6(17): 2901
http://pubs.acs.org/doi/full/10.1021/ol0489907
http://pubs.acs.org/doi/suppl/10.1021/ol0489907/suppl_file/ol0489907si20040715_032207.pdf  procedure
http://pubs.acs.org/doi/suppl/10.1021/ol0489907/suppl_file/ol0489907si20040715_032254.pdf nmr spectra
BILN 2061:
Methyl ester 18 (2.69 g, 3.41 mmol) was dissolved in a mixture of THF
(40 mL), MeOH (20 mL) and water (20 mL) and added LiOH.H2O (1.14 g, 27.3 mmol).The resulting mixture was left to stir at RT for 15 h. The solvents were then removedunder reduced pressure and the crude product was redissolved with EtOAc and dilutedwith brine. The pH of the aqueous layer was adjusted to 6 with aqueous HCl (1N) and theaqueous phase was extracted with EtOAc (3x). The combined organic phase werewashed with water, brine, dried over MgSO4 and concentrated under reduced pressure toafford BILN 2061 as a yellow solid (2.63 g, 99% yield). HPLC(A) 99%, MS m/z (ES+)773 (M+H)+, (ES-) 775 (M-H)-;
1H NMR (DMSO-d6) δ 8.63 (s, 1H), 8.26-8.15 (m, 2H),
7.79 (bs, 1H), 7.72 (bs, 1H), 7.50 (bs, 2H), 7.33-7.25 (m, 2H), 5.77 (bs, 1H), 5.52 (dd, J=8.3 Hz, 1H), 5.27 (dd, J= 9.2 Hz, 1H), 4.64 (d, J= 10.8 Hz, 1H), 4.50 (dd, J= 8.3 Hz, 1H),4.39-4.31 (m, 1H), 4.08-3.99 (m, 2H), 3.94 (s, 3H), 3.87 (d, J= 9.5 Hz, 2H), 2.65-2.53(m, 2H), 2.46-2.36 (m, 2H), 2.20-2.12 (dd, J= 8.6 Hz, 1H), 1.80-1.64 (m, 2H), 1.63-1.06(m, 14H); HRMS calcd for C40H51N6O8S: 775.3489; found: 775.3476

…………………………

WO2007019674A1 Aug 3, 2006 Feb 22, 2007 Boehringer Ingelheim Int Viral polymerase inhibitors
WO2010021717A2 * Aug 20, 2009 Feb 25, 2010 Sequoia Pharmaceuticals, Inc. Hcv protease inhibitors
WO2010080874A1 Jan 7, 2010 Jul 15, 2010 Scynexis, Inc. Cyclosporine derivative for use in the treatment of hcv and hiv infection
EP1455809A2 * Dec 13, 2002 Sep 15, 2004 Bristol-Myers Squibb Co. Inhibitors of hepatitis c virus
EP2364984A1 Aug 28, 2006 Sep 14, 2011 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
EP2366704A1 Aug 28, 2006 Sep 21, 2011 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
US7368452 Jul 18, 2006 May 6, 2008 Enanta Pharmaceuticals, Inc. Quinoxalinyl macrocyclic hepatitis C serine protease inhibitors
US7608590 Jan 28, 2005 Oct 27, 2009 Medivir Ab HCV NS-3 serine protease inhibitors
US7671032 Jan 28, 2005 Mar 2, 2010 Medivir Ab HCV NS-3 serine protease inhibitors
US7816348 Jan 29, 2007 Oct 19, 2010 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US7897622 Aug 10, 2007 Mar 1, 2011 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8148399 Jul 28, 2006 Apr 3, 2012 Tibotec Pharmaceuticals Ltd. Macrocyclic inhibitors of hepatitis C virus
US8153800 Aug 3, 2011 Apr 10, 2012 Tibotec Pharmaceuticals Ltd. Macrocyclic inhibitors of hepatitis C virus
US8242140 Jul 31, 2008 Aug 14, 2012 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8349869 Mar 6, 2012 Jan 8, 2013 Tibotec Pharmaceuticals Ltd. Macrocylic inhibitors of hepatitis C virus
US8476257 Dec 3, 2008 Jul 2, 2013 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
US8541402 May 3, 2012 Sep 24, 2013 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
WO2000059929A1 * Apr 3, 2000 Oct 12, 2000 Boehringer Ingelheim Ca Ltd Macrocyclic peptides active against the hepatitis c virus
WO2003053349A2 * Dec 13, 2002 Jul 3, 2003 Squibb Bristol Myers Co Inhibitors of hepatitis c virus
WO2003064455A2 * Jan 24, 2003 Aug 7, 2003 Boehringer Ingelheim Ca Ltd Macrocyclic peptides active against the hepatitis c virus
WO2003066103A1 * Feb 5, 2003 Aug 14, 2003 Boehringer Ingelheim Pharma Pharmaceutical compositions for hepatitis c viral protease inhibitors

………………………………………………………………………………………….

 picture    animation

WANT TO KNOW ABOUT VIR SERIES CLICK

click

http://drugsynthesisint.blogspot.in/p/vir-series-hep-c-virus-22.html

AND

http://medcheminternational.blogspot.in/p/vir-series-hep-c-virus.html

Orphan Drugs: GlaxoSmithKline’s Combo Melanoma Treatment


Orphan Druganaut Blog's avatarOrphan Druganaut Blog

GlaxoSmithKline (GSK) receives FDA approval in May 2013, for two orphan drugs for the treatment of patients with advanced or unresectable melanoma :

•   Tafinlar (Dabrafenib)

•   Mekinist (Trametinib).

Both drugs are approved as single agents, not as a combination treatment. Tafinlar, a BRAF inhibitor, is approved for melanoma whose tumors express the BRAF V600E gene mutation. Mekinist, a MEK inhibitor, is approved for melanoma whose tumors express the BRAF V600E or V600K gene mutations. Both drugs are approved with a companion genetic test, ThxID BRAF test, made by France’s bioMérieux, which will help determine if a patient’s melanoma cells have the V600E or V600K mutation in the BRAF gene. About 50% of Melanomas arising in the skin have a BRAF gene mutation.

GSK announces on January 8,  that the FDA gives the first combination oral targeted therapy, Tafinlar + Mekinist, accelerated approval for the treatment of unresectable or metastatic melanoma, with BRAF V600E or V600K mutations…

View original post 153 more words

Follow New Drug Approvals on WordPress.com

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

DISCLAIMER

I , Dr A.M.Crasto is writing this blog to share the knowledge/views, after reading Scientific Journals/Articles/News Articles/Wikipedia. My views/comments are based on the results /conclusions by the authors(researchers). I do mention either the link or reference of the article(s) in my blog and hope those interested can read for details. I am briefly summarising the remarks or conclusions of the authors (researchers). If one believe that their intellectual property right /copyright is infringed by any content on this blog, please contact or leave message at below email address amcrasto@gmail.com. It will be removed ASAP