New Drug Approvals

Home » 2014 (Page 42)

Yearly Archives: 2014

DRUG APPROVALS BY DR ANTHONY MELVIN CRASTO .....FOR BLOG HOME CLICK HERE

Blog Stats

  • 4,817,078 hits

Flag and hits

Flag Counter

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
Follow New Drug Approvals on WordPress.com

Archives

Categories

Recent Posts

Flag Counter

ORGANIC SPECTROSCOPY

Read all about Organic Spectroscopy on ORGANIC SPECTROSCOPY INTERNATIONAL 

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 37.9K other subscribers
DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO Ph.D

DR ANTHONY MELVIN CRASTO, Born in Mumbai in 1964 and graduated from Mumbai University, Completed his Ph.D from ICT, 1991,Matunga, Mumbai, India, in Organic Chemistry, The thesis topic was Synthesis of Novel Pyrethroid Analogues, Currently he is working with AFRICURE PHARMA, ROW2TECH, NIPER-G, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India as ADVISOR, earlier assignment was with GLENMARK LIFE SCIENCES LTD, as CONSUlTANT, Retired from GLENMARK in Jan2022 Research Centre as Principal Scientist, Process Research (bulk actives) at Mahape, Navi Mumbai, India. Total Industry exp 32 plus yrs, Prior to joining Glenmark, he has worked with major multinationals like Hoechst Marion Roussel, now Sanofi, Searle India Ltd, now RPG lifesciences, etc. He has worked with notable scientists like Dr K Nagarajan, Dr Ralph Stapel, Prof S Seshadri, etc, He did custom synthesis for major multinationals in his career like BASF, Novartis, Sanofi, etc., He has worked in Discovery, Natural products, Bulk drugs, Generics, Intermediates, Fine chemicals, Neutraceuticals, GMP, Scaleups, etc, he is now helping millions, has 9 million plus hits on Google on all Organic chemistry websites. His friends call him Open superstar worlddrugtracker. His New Drug Approvals, Green Chemistry International, All about drugs, Eurekamoments, Organic spectroscopy international, etc in organic chemistry are some most read blogs He has hands on experience in initiation and developing novel routes for drug molecules and implementation them on commercial scale over a 32 PLUS year tenure till date Feb 2023, Around 35 plus products in his career. He has good knowledge of IPM, GMP, Regulatory aspects, he has several International patents published worldwide . He has good proficiency in Technology transfer, Spectroscopy, Stereochemistry, Synthesis, Polymorphism etc., He suffered a paralytic stroke/ Acute Transverse mylitis in Dec 2007 and is 90 %Paralysed, He is bound to a wheelchair, this seems to have injected feul in him to help chemists all around the world, he is more active than before and is pushing boundaries, He has 100 million plus hits on Google, 2.5 lakh plus connections on all networking sites, 100 Lakh plus views on dozen plus blogs, 227 countries, 7 continents, He makes himself available to all, contact him on +91 9323115463, email amcrasto@gmail.com, Twitter, @amcrasto , He lives and will die for his family, 90% paralysis cannot kill his soul., Notably he has 38 lakh plus views on New Drug Approvals Blog in 227 countries......https://newdrugapprovals.wordpress.com/ , He appreciates the help he gets from one and all, Friends, Family, Glenmark, Readers, Wellwishers, Doctors, Drug authorities, His Contacts, Physiotherapist, etc He has total of 32 International and Indian awards

Verified Services

View Full Profile →

Archives

Categories

Flag Counter

Too-clean homes may encourage child allergies, asthma


atasteofcreole's avatarAtasteofcreole's Blog

http://www.live5news.com/story/25711359/too-clean-homes-may-encourage-child-allergies-asthma-study

(HealthDay News) — Cleanliness may be next to godliness, but a home that’s too clean can leave a newborn child vulnerable to allergies and asthma later in life, a new study reports.

Infants are much less likely to suffer from allergies or wheezing if they are exposed to household bacteria and allergens from rodents, roaches and cats during their first year of life, the study found.

The results stunned researchers, who had been following up on earlier studies that found an increased risk of asthma among inner-city dwellers exposed to high levels of roach, mouse and pet droppings and allergens.

“What we found was somewhat surprising and somewhat contradictory to our original predictions,” said study co-author Dr. Robert Wood, chief of the Division of Allergy and Immunology at the Johns Hopkins Children’s Center in Baltimore. “It turned out to be completely opposite — the more of those three allergens…

View original post 719 more words

Odor Code for Food Based on a Few Volatile Substances


thumbnail image: Follow Your Nose

 

The actual flavor of a food is experienced through our sense of smell rather than with our tongue. However, of the large number of volatile compounds in foods, only about 230 are involved in the scent, as reported by German scientists in the journal Angewandte Chemie. The different smells derive from characteristic combinations of three to forty of these odorants.

http://www.chemistryviews.org/details/ezine/6323291/Follow_Your_Nose.html?utm_source=dlvr.it&utm_medium=facebook

 

The Discovery of MK-4256, a Potent SSTR3 Antagonist as a Potential Treatment of Type 2 Diabetes


somatostatin receptor antagonist

C27 H23 F N8 O

494.5229

3(R)-[4-(4-Fluorophenyl)-1H-imidazol-2-yl]-1(R)-(5-methyl-1,2,4-oxadiazol-3-yl)-1-(1-methyl-1H-pyrazol-4-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole
3(R)-[4-(4-Fluorophenyl)-1H-imidazol-2-yl]-1(R)-(5-methyl-1,2,4-oxadiazol-3-yl)-1-(1-methyl-1H-pyrazol-4-yl)-2,3,4,9-tetrahydro-1H-beta-carboline

1H-Pyrido[3,4-b]indole, 3-[5-(4-fluorophenyl)-1H-imidazol-2-yl]-2,3,4,9-tetrahydro-1-(5-methyl-1,2,4-oxadiazol-3-yl)-1-(1-methyl-1H-pyrazol-4-yl)-, (1R,3R)-

3-((1R,3R)-3-(4-(4-fluorophenyl)-1H-imidazol-2-yl)-1-(1-methyl-1H-pyrazol-4-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)-5-methyl-1,2,4-oxadiazole

Merck & Co. (Originator)

Somatostatin srif1C (sst3) Antagonists

The Discovery of MK-4256, a Potent SSTR3 Antagonist as a Potential Treatment of Type 2 Diabetes 
(ACS Medicinal Chemistry Letters) Thursday May 10th 2012
Author(s): Shuwen HeZhixiong YeQuang TruongShrenik ShahWu DuLiangqin GuoPeter H. DobbelaarZhong LaiJian Liu,Tianying JianHongbo QiRaman K. BakshiQingmei HongJames DellureficioAlexander PasternakZhe FengReynalda deJesusLihu YangMikhail ReibarkhScott A. BradleyMark A. HolmesRichard G. BallRebecca T. RuckMark A. Huffman,Frederick WongKoppara SamuelVijay B. ReddyStan MitelmanSharon X. TongGary G. ChicchiKwei-Lan TsaoDorina TruscaMargaret WuQing ShaoMaria E. TrujilloGeorge J. EiermannCai LiBei B. ZhangAndrew D. HowardYun-Ping Zhou,Ravi P. NargundWilliam K. Hagmann,
DOI:10.1021/ml300063m
GO TO: [Article]

 

http://pubs.acs.org/doi/suppl/10.1021/ml300063m/suppl_file/ml300063m_si_001.pdf

 

 

The fast eluting diastereomer(52 mg, 10%) was 3-((1R,3R)-3-(4-(4-fluorophenyl)-1H-imidazol-2-yl)-1-(1-methyl-1H-pyrazol-4-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)-5-methyl-1,2,4-oxadiazole(8, MK-4256).[α]D= +24.2, c=10 mg/mL in MeOH. LC-MS: m/z 495.3 (M+ H)+.

1HNMR (500 MHz, CD3OD)δ
7.74 (m, 2H), 7.65 (s, 1H), 7.52 (m, 2H), 7.37 (m,2H), 7.13
9(m, 3H), 7.04 (t, 1H), 4.47 (dd, 1H), 3.87 (s, 3H),3.24 (dd, 1H), 3.16 (dd, 1H), 2.63 (s,
3H).
13C NMR (150.8 MHz, CD3OD)
δ
178.0, 173.0, 162.0, 150.2, 139.7, 138.1, 137.1,
132.4, 130.6, 126.5, 126.4, 124.4, 122.0, 119.0, 11
8.2, 115.2, 112.4, 111.3, 109.1, 55.5,
50.2, 37.8, 27.9, 11.1. (Note: two carbons have coinciding chemical shift of 130.6 ppm).
Accurate Mass C27H23FN8O [M+H] measured 495.2068, calculated 495.2052.
Thesloweluting diastereomer (40 mg, 8%) was 3-((1S,3R)-3-(4-(4-fluorophenyl)-1H-imidazol-2-
yl)-1-(1-methyl-1H-pyrazol-4-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)-5-methyl-1,2,4-oxadiazole (9). LC-MS: m/z 495.3 (M + H)+.1
H NMR (500 MHz,CD3OD):
δ
7.73 (m, 2H), 7.54 (d, 1H), 7.48 (s, 1H), 7.43 (s,
1H), 7.40 (d, 1H), 7.36 ( brs,
1H), 7.13 (m, 3H), 7.06 (t, 1H), 4.40 (dd, 1H), 3.8
4 (s, 3H), 3.26 (dd, 1H), 3.16 (dd, 1H),
2.63 (s, 3H).

……………………………….

Route Development and Multikilogram GMP Delivery of a Somatostatin Receptor Antagonist

By:Ruck, RT (Ruck, Rebecca T.)[ 1 ] ; Huffman, MA (Huffman, Mark A.)[ 1 ] ; Stewart, GW (Stewart, Gavin W.)[ 2 ] ; Cleator, E (Cleator, Ed)[ 2 ] ; Kandur, WV (Kandur, Wynne V.)[ 1 ] ; Kim, MM (Kim, Mary M.)[ 1 ] ; Zhao, DL (Zhao, Dalian)[ 1 ]

ORGANIC PROCESS RESEARCH & DEVELOPMENT

Volume:16Issue:8Pages:1329-1337

DOI:10.1021/op300128c

Author Information

Reprint Address: Ruck, RT (reprint author)

Merck & Co Inc, Dept Proc Chem, Merck Res Labs, Rahway, NJ 07065 USA.

 Addresses:

[ 1 ] Merck & Co Inc, Dept Proc Chem, Merck Res Labs, Rahway, NJ 07065 USA
[ 2 ] Merck Sharp & Dohme Res Labs, Dept Proc Chem, Hoddesdon EN11 9BU, Herts, England

http://pubs.acs.org/doi/abs/10.1021/op300128c

http://pubs.acs.org/doi/suppl/10.1021/op300128c/suppl_file/op300128c_si_001.pdf

Abstract Image

Route development and demonstration on multikilogram scale for the first GMP delivery of MK-4256 are described. Key aspects of the convergent route include a regioselective green iodination, one-pot oxadiazole synthesis, and an efficient ketone Pictet–Spengler reaction with diastereomeric upgrade via crystallization to afford 6 kg of API. A recycle procedure augmented the yield of desired diastereomer in the Pictet–Spengler reaction from a mixture of diastereomers heavily enriched in the undesired diastereomer.

Residual metals were <10 ppm. Chiral method: Chiralcel OD-H, 250 mm × 4.6 mm, 40 °C, 1 mL/min, 260 nm, 30 min run time, 20% (1:1 IPA/MeOH) in heptane +0.1% TEA isocratic: rt (1): 7.61 min, rt (enantiomer-1): 14.45 min. By HPLC assay, final product was 99.60 LCAP 1, 0.17 LCAP 22, 0.24 LCAP enantiomer-22, enantiomer-1 was undetectable.

……………………………….

http://www.google.com/patents/WO2009011836A1?cl=en

WO 2009011836

Several methods for preparing the compounds of this invention are illustrated in the following Schemes and Examples. Starting materials are either commercially available or made by known procedures in the literature or as illustrated. The present invention further provides processes for the preparation of compounds of structural formula I as defined above, hi some cases the order of carrying out the foregoing reaction schemes may be varied to facilitate the reaction or to avoid unwanted reaction products. The following examples are provided for the purpose of illustration only and are not to be construed as limitations on the disclosed invention. All temperatures are degrees Celsius unless otherwise noted. The assignment of stereochemistry at the stereogenic carbon center indicated by an ** in Structure G of Scheme 3 from the Pictet-Spengler cyclization reaction to elaborate the β-carboline nucleus was determined using the aid of nuclear Overhauser effect (NOE) NMR spectroscopy. For a thorough discussion of the theory and application of NOE NMR spectroscopy, reference is made to Ernst, R.R.; Bodenhausen, B.; Wokaun, A., “Principles of Nuclear Magnetic Resonances in One or Two Dimensions”, Oxford University Press, 1992; Neuhaus, D.; Williamson, M. P., “The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd Edition”, in “Methods in Stereochemical Analysis”, Marchand, A. P. (series editor), John A. Wiley and Sons, New York 2000.

SCHEME l

 

In Scheme 1 , substituted indoles A are treated with dimethylamine and paraformaldehyde in a Mannich reaction to form 3-(dimethylamino)methyl-indole B. Reaction of B with nitro ester C affords the 3-(indol-3-yl)-2-nitro-propionic acid, ethyl ester D which is reduced to tryptophan derivative E. Acylation of the amine in E and hydrolysis of the ester F affords the appropriately protected tryptophan derivative G. Separation of the isomers of F or G by chiral column chromatography yields the individual enantiomers.

SCHEME 2

In Scheme 2, substituted indole A is reacted with L-serine in the presence of acetic anhydride and acetic acid to form tryptophan B. Hydrolysis of the amide followed by amine protection affords the desired substituted tryptophan intermediate D.

SCHEME 3

 

In Scheme 3, substituted tryptophan derivative A is reacted with α-bromo-ketone B to afford ester C. Reaction with ammonium acetate effects cyclization to form substituted imidazole D. Removal of the N-Boc protecting group with acid yields indole imidazole E which is reacted with aldehydes or ketones F in a Pictet-Spengler cyclization to afford the desired product G.

EXAMPLE 21

 

(3i?Vr4-(4-Fluorophenvn-lH-imidazol-2-yll-l-r5-methyl-1.2.4-oxadiazol-3-vn-l-π-methyl-lH- pyrazol-4-yl)-23,4,9-tetrahydro-lH-β-carboline

(IR)-I -[4-(4-Fluorophenyl)- 1 H-imidazol-2-yl] -2-( 1 H-indol-3 -yl) ethanamine hydrochloride (370 mg, 1.037 mmol) [prepared by treatment of tert-butyl (lR)-2-(l H-indol-3 -yl)- l-(4-(4-fluorophenyl)-l H-imidazol-2-yl)- 1-ethylcarbamate with hydrochloric acid] was treated with pyridine (4 mL) followed by reaction with l-methyl-pyrazol-4-yl 5-methyl-l,2,4-triazol-3-yl ketone (Intermediate 22) (219 mg, 1.141 mmol). The reaction was heated under N2 (oil bath 7O0C) for 48 h followed by additional heating (oil bath 850C) for 3 d. The reaction mixture was concentrated and azeotroped with toluene. The residue was purified with preparative TLC eluting with 10% MeOH in CH2Cl2 to give (3i?)-[4-(4-fluorophenyl)-lH-imidazol-2-yl]-l-(5- methyl-1 ,2,4-oxadiazol-3-yl)-l-(l-methyl-pyrazol-4-yl)-2,3,4,9-tetrahydro-lH-β-carboline as a mixture of diastereoisomers which were separated by chiral ΗPLC. The isomers were characterized by an analytical chiral AD column eluting with 20% IPA in heptane. (3i?)-[4-(4- Fluorophenyl)- 1 H-imidazol-2-yl] – 1 -(5 -methyl- 1 ,2,4-oxadiazol-3 -yl)-( 1 R)-( 1 -methyl-pyrazol-4- yl)-2,3,4,9-tetrahydro-lH-β-carboline (faster eluting isomer: retention time 18.13 min): 1H NMR (500 MHz, MeOH-(I4): δ 7.74 (m, 2H), 7.65 (s, IH), 7.52 (m, 2H), 7.37 (m, 2H), 7.13 (m, 3H), 7.04 (s, IH), 4.47 (dd, IH), 3.87 (s, 3H), 3.24 (dd, IH), 3.16 (dd, IH), 2.63 (s, 3H). LC-MS: m/z 495.3 (M + H)+ (2.56 min).

(3i?)-[4-(4-Fluorophenyl)-lH-imidazol-2-yl]-l-(5-methyl-l,2,4-oxadiazol-3-yl)-(lS)-(l-methyl- pyrazol-4-yl)-2,3,4,9-tetrahydro-l//-β-carboline (slower eluting isomer: retention time 24.62 min): 1H NMR (500 MHz, MeOH-Cl4): δ 7.73 (m, 2H), 7.54 (d, IH), 7.48 (s, IH), 7.43 (s, IH),

7.40 (d, IH), 7.36 ( brs, IH), 7.13 (m, 3H), 7.06 (t, IH), 4.40 (dd, IH), 3.84 (s, 3H), 3.26 (dd, IH), 3.16 (dd, IH), 2.63 (s, 3H). LC-MS: m/z 495.3 (M + H)+ (2.61 min).

The relative stereochemistry of the two diastereoisomers was determined by nuclear Overhauser effect (nθe) NMR spectroscopy. The slower eluting diastereisoomer afforded an nOe signal between the C-3 and C-5 hydrogens on the C-I pyrazole and the C-3 hydrogen on the β-carboline and the faster eluting product did not. Therefore, the diastereoisomer that eluted first from the preparative chiral HPLC purification was assigned as the c/s-isomer (imidazole and pyrazole are cis) and the slower eluting isomer as the trørøs-isomer.

…………………..

Dobbelaar, P. H.; Du, W.; Guo, L.; Hagmann, W. K.; He, S.; Jian, T.; Liu, J.; Nargund, R. P.; Pasternak, A.; Shah, S. K.; Truong, Q. T.; Ye, Z.; Dellureficio, J.; Bakshi, R.WO/2009/011836 A1, 2009.

Drugs Fut 2012, 37(5): 379

The discovery of MK-4256, a potent SSTR3 antagonist as a potential treatment of type 2 diabetes
ACS Med Chem Lett 2012, 3(6): 484

Route development and multikilogram GMP delivery of a somatostatin receptor antagonist
Org Process Res Dev 2012, 16(8): 1329

Addressing cardiovascular issues of SSTR3 antagonists in K-4256 structural class
247th ACS Natl Meet (March 16-20, Dallas) 2014, Abst MEDI 213

Discovery of MK-4256, a subtype selective SSTR antagonist as a potential treatment of type-2 diabetes
243rd ACS Natl Meet (March 25-29, San Diego) 2012, Abst MEDI 186

………………………………

US6586445 * Jun 8, 1999 Jul 1, 2003 Société de Conseils de Recherches et d’Applications Scientifiques, S.A.S. Racemic mixtures of 1,2,3,4-tetra hydro-1-(4-methoxyphenyl)-3 -(4-phenyl-1H-imidazol-2-yl)-9H- pyrido(3,4-b)indole, which bind to somatostatin receptors and block sodium channel modulators; antidiabetic, antiinflammatory agents; diarrhea
US6864253 * Oct 1, 2002 Mar 8, 2005 Orth-Mcneil Pharmaceutical, Inc. Heterocyclic amines such as 1-(3,4-methylenedioxyphenyl)-2-(5 -(3,4-dimethoxyphenyl)pyrimidin-2-yl)- 2,3,4,9-tetrahydro-1H-beta-carboline, used as enzyme inhibitors for prophylaxix of sexual disorders
US6933303 * Oct 18, 2002 Aug 23, 2005 Transtech Pharma, Inc. Antidiabetic agents

 

WO2010083136A1 * Jan 12, 2010 Jul 22, 2010 Merck Sharp & Dohme Corp. Oxadiazole beta carboline derivatives as antidiabetic compounds
WO2011012661A1 Jul 28, 2010 Feb 3, 2011 Novartis Ag Pyridine and pyrazine derivatives as protein kinase modulators
WO2011028455A1 Aug 23, 2010 Mar 10, 2011 Merck Sharp & Dohme Corp. Aminotetrahydropyrans as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
WO2011088025A1 Jan 11, 2011 Jul 21, 2011 Merck Sharp & Dohme Corp. Oxadiazole beta carboline derivatives as antidiabetic compounds
WO2012101062A1 Jan 20, 2012 Aug 2, 2012 Novartis Ag Substituted bi-heteroaryl compounds as cdk9 inhibitors and their uses
WO2012164071A1 Jun 1, 2012 Dec 6, 2012 Intervet International B.V. Imidazole derivatives
WO2013068328A1 Nov 6, 2012 May 16, 2013 Intervet International B.V. Bicyclo [2.2.2] octan-1-ylcarboxylic acid compounds as dgat-1 inhibitors
WO2013068439A1 Nov 8, 2012 May 16, 2013 Intervet International B.V. 4-amino-5-oxo-7,8-dihydropyrimido[5, 4 -f] [1, 4] oxazepine compounds as dgat1 inhibitors
EP2676959A1 Nov 11, 2009 Dec 25, 2013 Merck Sharp & Dohme Corporation Combination drugs comprising aminotetrahydropyrans as Dipeptidyl Peptidase-IV Inhibitors for the Treatment or Prevention of Diabetes
EP2676960A1 Nov 11, 2009 Dec 25, 2013 Merck Sharp & Dohme Corp. Combination drugs comprising aminotetrahydropyrans as Dipeptidyl Peptidase-IV Inhibitors for the Treatment or Prevention of Diabetes
EP2676961A1 Nov 11, 2009 Dec 25, 2013 Merck Sharp & Dohme Corporation Combination drugs comprising aminotetrahydropyrans as Dipeptidyl Peptidase-IV Inhibitors for the Treatment or Prevention of Diabetes
US20120264777 * Jan 11, 2011 Oct 18, 2012 Merck Sharp & Dohme Corp. Oxadiazole beta carboline derivatives as antidiabetic compounds

Memantine


 

 

Memantine

1-amino-3,5-dimethyl adamantane

Memantina, Memantinum, Ebixa, 3,5-dimethyladamantan-1-amine, 1-Amino-3,5-dimethyladamantane, Memantin, CAS 19982-08-2, Memantinum [INN-Latin]
Molecular Formula: C12H21N   Molecular Weight: 179.30184
HCL SALT      41100-52-1

 

REVIEW BY ARK…..http://learnabout.arkpatentintelligence.com/drug-in-focus-memantine…… GREAT REVIEW BY

 


Please visit www.arkpatentintelligence.com to find out more about Pipeline Patent Intelligence and how it can assist your generic drug development
Visit THEIR  product page OR
Request a call to be contacted by an Ark Patent Intelligence staff member

 

Memantine is an orally active NMDA (N-methyl-D-aspartate) receptor antagonist which works by blocking the NMDA receptors in the brain. It blocks the excessive activity of glutamate, but still allows the normal activation of these receptors that occurs when the brain forms a memory. Therefore it improves the brain functioning in Alzheimer’s disease, and may also block the glutamate activity that could cause further damage to the brain cells.

Memantine hydrochloride is commercially available in the market in products sold under the trademark NAMENDA. It is available for oral administration as capsule shaped film-coated tablets containing 5 mg and 10 mg of memantine hydrochloride. U.S. Patent No. 3,391 ,142 discloses memantine and its related compounds, and their pharmaceutically acceptable salts.

SynthesisReference DrugSyn.orgUS3391142

……………………………….

Country Patent Number Approved Expires (estimated)
Canada 2426492 2006-10-03 2023-05-08
United States 5061703 1995-04-11 2015-04-11
Memantine is an amantadine derivative with low to moderate-affinity for NMDA receptors. It is a noncompetitive NMDA receptor antagonist that binds preferentially to NMDA receptor-operated cation channels. It blocks the effects of excessive levels of glutamate that may lead to neuronal dysfunction. It is under investigation for the treatment of Alzheimer’s disease, but there has been no clinical support for the prevention or slowing of disease progression.

 

MEMANTINE

OLD CLIP

Forest Announces U.S. Availability of New Once-Daily NAMENDA XR

– Treatment for moderate to severe Alzheimer’s Disease is now available to patients in a convenient extended release formulation –

NYSE:FRX.NEW YORK–(BUSINESS WIRE)–Forest Laboratories, Inc. announced today that NAMENDA XR(TM) (memantine hydrochloride) once-daily formulation is now available in pharmacies throughout the United States. NAMENDA XR is approved by the U.S. Food and Drug Administration (FDA) for the treatment of moderate to severe dementia of the Alzheimer’s type.

http://www.pharmalive.com/once-daily-namenda-xr-launched-in-us

 

Memantine is the first in a novel class of Alzheimer’s disease medications acting on theglutamatergic system by blocking NMDA-type glutamate receptors. It was first synthesized by Eli Lilly and Company in 1968. Memantine is marketed under the brandsAxura and Akatinol by MerzNamenda by ForestEbixa and Abixa by Lundbeck andMemox by Unipharm. Memantine has been shown to have a modest effect in moderate-to-severe Alzheimer’s disease  and in dementia with Lewy bodies. Despite years of research, there is little evidence of effect in mild Alzheimer’s disease. 1-4

 

 

 

Medical use

Memantine is approved by the U.S. F.D.A and the European Medicines Agency for treatment of moderate-to-severe Alzheimer’s disease,[5] and has now received a limited recommendation by the UK’s National Institute for Clinical Excellence for patients who fail other treatment options.[6] Within the new guidance memantine is recommended as an option for managing Alzheimer’s disease for people with: moderate Alzheimer’s disease who are intolerant of or have a contraindication to AChE (acetylcholinesterase) inhibitors or those with severe Alzheimer’s disease.

Memantine has been associated with a moderate decrease in clinical deterioration[7] with only a small positive effect on cognition, mood, behavior, and the ability to perform daily activities in moderate to severe Alzheimer’s disease.[8] There does not appear to be any benefit in mild disease.[4]

Adverse effects

Memantine is, in general, well-tolerated.[8] Common adverse drug reactions (≥1% of patients) include confusion, dizziness, drowsiness, headache, insomnia, agitation, and/or hallucinations. Less common adverse effects include vomiting, anxiety, hypertonia, cystitis, and increased libido.[7][9] It has been reported to induce reversible neurological impairment in multiple sclerosis patients, which led to the halt of an ongoing clinical trial.[10][11] Though exceedingly rare, extrapyramidal side effects (such as dystonic reactions, etc.) may occur, in particular, in the younger population.[citation needed]

A recent study demonstrates therapeutically-relevant doses of memantine in the mouse can lead to disruption of cognitive flexibility.[12]

Biochemistry

The drug belongs to a class of drugs called NMDA receptor antagonists, which reduce certain types of brain activity by binding to NMDA receptors on brain cells and blocking the activity of the neurotransmitter glutamate. At normal levels, glutamate aids in memory and learning, but if levels are too high, glutamate appears to overstimulate nerve cells, killing them through excitotoxicity.

Pharmacology

Glutamatergic (NMDA receptor)

A dysfunction of glutamatergic neurotransmission, manifested as neuronal excitotoxicity, is hypothesized to be involved in the etiology of Alzheimer’s disease. Targeting the glutamatergic system, specifically NMDA receptors, offers a novel approach to treatment in view of the limited efficacy of existing drugs targeting the cholinergic system.[13]

Memantine is a low-affinity voltage-dependent uncompetitive antagonist at glutamatergic NMDA receptors.[14][15][16][17][18] By binding to the NMDA receptor with a higher affinity than Mg2+ ions, memantine is able to inhibit the prolonged influx of Ca2+ ions, particularly from extrasynaptic receptors, which forms the basis of neuronal excitotoxicity. The low affinity, uncompetitive nature, and rapid off-rate kinetics of memantine at the level of the NMDA receptor-channel, however, preserves the function of the receptor at synapses, as it can still be activated by physiological release of glutamate following depolarization of the presynaptic neuron.[19][20][21][22][15][16][23][24][25] The interaction of memantine with NMDA receptors plays a major role in the symptomatic improvement that the drug produces in Alzheimer’s disease. Moreover, there is no evidence as yet that the ability of memantine to protect against NMDA receptor-mediated excitotoxicity has a disease-modifying effect in Alzheimer’s, although this has been suggested in animal models.[22]

Serotonergic (5-HT3 receptor)

Memantine acts as a non-competitive antagonist at the 5-HT3 receptor, with a potency similar to that for the NMDA receptor.[26] The clinical significance of this serotonergic activity in the treatment of Alzheimer’s disease is unknown.

Cholinergic (nicotinic acetylcholine receptor)

Memantine acts as a non-competitive antagonist at different neuronal nicotinic acetylcholine receptors (nAChRs) at potencies possibly similar to the NMDA and 5-HT3 receptors, but this is difficult to ascertain with accuracy because of the rapid desensitization of nAChR responses in these experiments. It can be noted that memantine is an antagonist at alpha-7 nAChR, which may contribute to initial worsening of cognitive function during early memantine treatment. Alpha-7 nAChR upregulates quickly in response to antagonism, which could explain the cognitive-enhancing effects of chronic memantine treatment.[24][27][28] It has been shown that the number of nicotinic receptors in the brain are reduced in Alzheimer’s disease, even in the absence of a general decrease in the number of neurons, and nicotinic receptor agonists are viewed as interesting targets for anti-Alzheimer drugs.[29] Consequently, this may also suggest that administration of nicotine itself may act against the effects of Alzheimer’s disease. In fact a recent small double blind placebo controlled randomized trial published in the Journal Neurology demonstrated a significant benefit from use of 15 mg nicotine patches in non-smoking elderly patients with mild cognitive impairment. The small sample sizes suggest that the effect size is substantial due to the limited statistical power inherent in a small N trial. (see : http://www.ncbi.nlm.nih.gov/pubmed/22232050)

Dopaminergic (D2 receptor)

Memantine acts as an agonist at the dopamine D2 receptor.[30]

Availability

The hydrochloride (Memantine HCl) is white water soluble powder available as capsule-shaped film-coated tablets or oral solution. The tablets are available as 5 mg, 10 mg or 20 mg of memantine hydrochloride. The oral solution contains 2 mg of memantine hydrochloride per ml.

History

Memantine was first synthesized and patented by Eli Lilly and Company in 1968 (as cited in the Merck Index), and then developed by Merz in collaboration with Neurobiological Technologies, Inc. and Children’s Hospital, Boston/Harvard Medical School, and then licensed to Forest for the U.S. and Lundbeck for selected European and international markets.

Sales of the drug reached $1.8 billion for 2010.

Research

Memantine is also being tested for generalized anxiety disorder, epilepsy, opioid dependence, systemic lupus erythematosus, depression, bipolar disorder,[31] obsessive compulsive disorder, Tourette Syndrome, problem gambling, attention-deficit hyperactivity disorder (ADHD),[32] glaucoma, tinnitus, neuropathic pain including Complex Regional Pain Syndrome,[33] pervasive developmental disorders, HIV associated dementia,[34] nystagmus,[35] multiple sclerosis,[10] autism,[36] migraine,[37] amyotrophic lateral sclerosis,[38] Down syndrome[39] and for protection of cognitive function during whole brain radiation

 

 

 

Memantine (1-amino-3,5-dimethyl adamantane, disclosed, e.g., in U.S. Patents No. 4,122,193; 4,273,774; 5,061 ,703) is a systemically-active uncompetitive NMDA receptor antagonist having moderate affinity for the receptor and strong voltage dependency and rapid blocking/unblocking kinetics. Memantine has been shown to be useful in alleviation of various progressive neurodegenerative disorders such as dementia in patients with moderate to severe Alzheimer’s disease, Parkinson’s disease, and spasticity (see, e.g., U. S. Patents No. 5,061 ,703; 5,614,560, and 6,034,134; Parsons et al., Neuropharmacology 1999 Jun; 38(6):735-67; Mόbius, ADAD, 1999,13:S172-178; Danysz et al., Neurotox. Res., 2000, 2:85-97; Winblad and Poritis, Int. J. Geriatr. Psychiatry, 1999, 14:135-146; Danysz et al., Cυrr. Pharm. Des., 2002, 8:835-843; Jirgensons et. al., Eur. J. Med. Chem., 2000, 35: 555-565). Memantine has also been suggested to be useful in the treatment of AIDS dementia (U.S. Patent No. 5,506,231), neuropathic pain (U.S. Patent No. 5,334,618), epilepsy, glaucoma, hepatic encephalopathy, multiple sclerosis, stroke, tardive dyskinesia (Parsons et al., 1999, supra), autism, Attention-Deficit/Hyperactivity Disorder (ADHD) and other autistic spectrum disorders (US Published Application No. 2006/0079582). Memantine is currently approved in Europe and the United States for the treatment of Alzheimer’s disease.

[0003] US Patent No. 3,391 ,142 discloses a process for the synthesis of adamantylamines, including memantine hydrochloride, involving treatment of 1-bromo- 3,5-dimethyladamantane with acetonitrile and concentrated sulfuric acid to yield the corresponding 1-acetamido-3,5-dimethyladamantane which is hydrolyzed with sodium hydroxide to yield 1-amino-3,5-dimethyladamantane which is converted to memantine hydrochloride via treatment with hydrochloric acid.

 

[0004] US Patent No. 4,122,193 discloses a process for the synthesis of i-amino-3,5- dialkyl adamantane derivatives, including memantine hydrochloride, which involves treatment of a 1-halo-3,5-dialkyl adamantane derivatives with a urea followed by treatment with hydrochloric acid.

 

R,, R2 = lower alkyl

[0005] US Patent No. 5,061 ,703 discloses a process for the synthesis of aminoadamantanes, including memantine hydrochloride, which involves halogenation and/or alkylation of the adamantane ring followed by introduction of the amino group via treatment of the halogenated derivative with formamide and subsequent hydrolysis.

HCONH2 HCI

R = H, alkyl X = Cl, Br [0006] Czech Republic Patent No. 288445 discloses a process for the synthesis of 1- amino-3,5-dimethyladannantane hydrochloride wherein 1-chloro-3,5- dimethyladamantane is reacted with formamide followed by treatment of the formamide intermediate with aqueous hydrochloric acid to yield 1-amino-3,5-dimethyladamantane hydrochloride.

HCONH2

[0007] Czech Republic Patent No. 282398 discloses a process for the synthesis of 1- amino-3,5-dimethyladamantane hydrochloride which involves treatment of 1-acetamido- 3,5-dimethyl adamantane with a base (such as postassium hydroxide) in a solvent such as methanol, ethanol, or 2-propanol.

 

[0008] Chinese Published Patent Publication No. CN 1566075 discloses a process for preparing 1-aminoadamantane derivatives, including memantine hydrochloride, wherein a halogenated adamantane compound (which may have substituents, including alkyl groups, in the 3 and 5 positions) is reacted with formamide or a substituted formamide, followed by deformylation under acidic conditions to yield a 1-aminoadamantane derivative.

X = Cl, Br, I R1, R2, R3 = H, alkyl, etc.

[0009] US Patent No. 5,599,998 discloses a process for the synthesis of 1- aminoadamantane derivatives, including memantine, which involves treatment of a 1- halo adamantane derivative with lithium metal to yield the lithiated intermediate which is treated with an aminating agent (such as NH2CI) under sonication conditions.

NH,CI

X = Cl, Br, I R3, R5, R7, R8 = H, F, Me

[0010] US Published Application No. 2006/025885 discloses a process for the synthesis of 1-aminoadamantane derivatives, including memantine hydrochloride, wherein a halogenated adamantane compound (which may have alkyl substituents, in the 3 and 5 positions of the adamantane ring) is reacted with acetonitrile in the presence of glacial acetic acid and concentrated sulfuric acid, followed by hydrolysis in the presence of an alkaline earth metal in a solvent such as 1-methoxy-2-propanol to yield the 1- aminoadamantane derivative which may then be converted to an acid addition salt via treatment with the appropriate acid (e.g., hydrochloric acid).

X = = F, Cl, Br, I

R1, R2 = = H, C.^alkyl

[0011] International Publication No. WO 2006/076562 discloses a process for the synthesis of memantine hydrochloride, wherein 1-halo-3,5-dimethyladamantane is reacted with acetonitrile in the presence of phosphoric acid to yield N-acetyl-1-amino- 3,5-dimethyladamantane, which may be converted to memantine (for example, via basic hydrolysis) which may then be treated with hydrochloric acid to yield memantine hydrochloride.

 

X = F, Cl, Br, I

[0012] International Publication No. WO 2006/122238 discloses processes for preparing memantine or an acid addition salt of memantine, which involve either reaction of 1- bromo-3,5-dimethyladamantane with formamide to form N-formyl-1-amino-3,5- dimethyladamantane or reaction of 1-hydroxy-3,5-dimethyladamantane with a hydrogen halide to obtain 1-halo-3,5-dimethyl adamantane which is then reacted with formamide to yield N-formyl-1-amino-3,5-dimethyladamantane. The N-formyl-1-amino-3,5- dimethyladamantane intermediate is deformylated under acidic conditions to yield memantine hydrochloride.

[0013] International Publication No. WO 2005/062724 discloses a process for the synthesis of 1-aminoadamantane derivatives, including memantine, which involves bromination of a compound of formula Ma, followed by hydrolysis to yield a compound of formula Md, which is treated with acetonitrile in the presence of an acid (e.g., sulfuric acid) to yield the acetamido intermediate of formula Hc. The compound of formula Mc is then hydrolyzed in the presence of acid or base to yield the aminoadamantane derivative of formula I.

 

R1, R2 = C1-talkyl R3 = H, C,^alkyl

[0014] International Publication No. WO 2007/101536 discloses a process for the synthesis of 1-formamido-3,5-dimethyladmantane which involves treatment of 1 ,3- dimethyladamantane with formamide in a concentrated acid, as well as a process for the conversion of 1-formamido-3,5-dimethyladmantane to memantine hydrochloride via hydrolysis with hydrochloric acid. add

[0015] Pharmaceutical active ingredients must meet strict regulatory requirements with respect to purity. Typically, products meeting such purity requirements may obtained by purifying a crude active pharmaceutical ingredient using standard purification techniques.

[0016] Memantine produced by processes known in the art may contain trace impurities including 1-amino-3,5,7-trimethyladamantane. As such trace impurities are closely related to memantine, isolating memantine from crude preparations using standard purification techniques is difficult.

[0017] Thus, a need exists to develop a process for producing memantine which is substantially free of impurities, such as 1-amino-3,5,7-trimethyladamantane.

………………………………………..

http://www.google.com/patents/EP2389351A1?cl=en

DETAILED DESCRIPTION OF THE INVENTION

[0030] A process for the preparation of 1 ,3-dimethyladamantane is shown in Scheme 1. [0031] Acenaphthene (1) is hydrogenated over a catalyst such as Raney Nickel at elevated temperature and pressure to yield perhydroacenaphthene (2). Perhydroacenaphthene is treated with a Lewis acid such as AICI3 and/or AIBr3 in the presence or absence of HCI to yield 1 ,3-dimethyladamantane which may be further purified (e.g., via fractional distillation) to provide 1 ,3-dimethyladamantane (4) containing 0.05% or less of the impurity 1,3,5-trimethyladamantane.

hydrogenation raney nickel

temp./ press.

AICL

 

Scheme 1 – Preparation of 1,3-dimethyladamantane

[0032] 1 ,3-dimethyladamantane containing 0.05% or less of the impurity 1 ,3,5- trimethyladamantane may be converted to memantine, or a pharmaceutically acceptable salt thereof (e.g., memantine hydrochloride), which is substantially free of the impurity 1-amino-3,5,7-trimethyladamantane, according to Scheme 2.

[0033] 1 ,3-dimethyladamantane (4), which contains 0.05% or less of the impurity 1 ,3,5- trimethyladamantane, may be treated with a halogenating agent (e.g., bromine, chlorine, or t-butylchloride) to yield 1-halo-3,5-dimethyladamantane derivative 5. Derivative 5 may be treated with formamide to yield 1-formamido-3,5- dimethyladamantane derivative 6. Alternatively, 1 ,3-dimethyladamantane, which contains 0.05% or less of the impurity 1 ,3,5-trimethyladamantane, may be treated with formamide in the presence of concentrated acid to yield 1-formamido-3,5- dimethyladamantane derivative 6. Derivative 6 may be hydrolyzed under basis or acidic conditions to provide memantine, which is substantially free of the impurity 1-amino- 3,5,7-trimethyladamantane, or a pharmaceutically acceptable salt thereof.

[0034] Derivative 5 may be also treated with acetonitrile in the presence of acid (e.g., sulfuric acid, phosphoric acid, nitric acid, a combination of acetic acid and sulfuric acid, or mixtures thereof) to yield 1-acetamido-3,5-dimethyladamantane derivative 7. Derivative 7 may be hydrolyzed to provide memantine, which is substantially free of the impurity 1-amino-3,5,7-trimethyladamantane, which may be converted to a pharmaceutically acceptable salt via treatment with a pharmaceutically acceptable acid.

 

Scheme 2 – Synthesis of memantine [0035] As used herein, the term halogen refers to fluorine, chlorine, bromine, and iodine.

[0036] As used herein, the term “substantially free of the impurity 1 ,3,5- trimethyladamantane” used in conjunction with 1 ,3-dimethyladamantane includes 1 ,3- dimethyladamantane which contains 0.05% or less of the impurity 1 ,3,5- trimethyladamantane.

[0037] As used herein, the term “substantially free of the impurity 1-amino-3,5,7- trimethyladamantane” used in conjunction with memantine (or a pharmaceutically acceptable salt thereof, e.g., memantine hydrochloride) includes memantine (or a pharmaceutically acceptable salt thereof, e.g., memantine hydrochloride) which contains 0.02% or less of the impurity 1-amino-3,5,7-trimethyladamantane.

 

Example 1

Analytical method for determining impurities in 1 ,3-dimethyladamantane

[0059] Analysis is performed on DANI 86.10 HT gas chromatograph equipped with CTC 200S automatic sampler. Millennium 3.20 software is applied for acquisition and processing of the data. All further calculations are made by MS Excel 97 software, statistics are calculated according to “Validierung in Chromotographie” Novia GmbH. 08.02.1996, Frankfurt am Main.

[0060] Gas chromatographic analysis to determine the impurity profile of 1 ,3- dimethyladamantane is performed on an SE-52 capillary column (length: 25 ; ID: 0.32 mm; df = 0.25 μm). An flame ionization detector (FID) is applied for detection. The injector temperature is 2500C and the detector temperature is also 2500C. The carrier gas is nitrogen.

[0061] Both calibration standards and analytical samples are prepared by dissolution of the components in hexane. 1-Hydroxyadamantane is applied as internal standard. All impurities are calibrated against the 1 ,3-dimethyladamantane peak.

[0062] Results for a high purity sample of 1 ,3-dimethyladamantane are shown in Table 1 below and in Figure 1.

Table 1 – Impurity profile for high purity 1 ,3-dimethyladamantane

 

Example 2

Preparation of 1, 3-dimethyladamantane

[0063] Acenaphthene is washed with bentonite in toluene, followed by a second wash with cyclohexene. The acenaphthene is then hydrogenated over Raney Nickel at 150 bar at a temperature of 140 to 180 0C. The catalyst is filtered off and the crude perhydroacenaphthene (240 kg) is treated with AICI3 (45 kg) and HCI (100 ml_) at 80 to 90 0C for 4 h. The reaction mixture is then heated to 120 0C for 8 h. An additional 100 ml_ of hydrochloric acid and an additional 5 kg of AICI3 are added and the reaction mixture is heated to 80 to 900C for 4 h. The crude 1 , 3-dimethyladamantane is purified via fractional distillation on a DN 300 column with oriented Sulzer type packing providing a minium of 60 theoretical plates, with the temperature profile being dependent on column pressure. The critical point is estimated on the basis of trend and is confirmed by analytical control. 1 ,3-Dimethyladamantane containing 0.05% or less of the impurity 1 ,3,5, trimethyladamantane is obtained in about 75% yield.

Example 3

Preparation of 1-bromo-3,5-dimethyladamantane

[0064] 1 , 3-dimethyladamantane containing 0.05% or less of the impurity 1 ,3,5, trimethyladamantane, as prepared in Example 2, is treated with bromine (3 equivalents) and heated to reflux for 16 h. The reaction mixture is cooled to about 15 0C and quenched with sodium bisulphite in methylene chloride. The aqueous layer is removed, and the organic layer is washed with water. The organic layer is concentrated in vacuo to yield 1-bromo-3,5-dimethyladamantane as an oil.

Example 4

Preparation of 1-amino-3,5-dimethyladamantane hydrochloride

[0065] 1-bromo-3,5-dimethyladamantane as prepared in Example 3, is treated with an excess of formamide and heated to 120 0C for 3 to 5 h. The reaction mixture is cooled and diluted with methylene chloride. This mixture is washed 4 times with a 30% sodium hydroxide solution. The organic layer is concentrated via distillation followed by addition of water. The distillation is continued to remove the organic layer, and the mixture is then cooled to below 800C. The N-formyl-1-amino-3,5-dimethyladamantane intermediate, which is optionally isolated, is then hydrolyzed by addition of a 37% hydrochloric acid solution. The reaction mixture is heated to reflux for about 3 h, and the reaction mixture is then cooled to 5 0C to yield crude 1-amino-3,5- dimethyladamantane hydrochloride which is isolated by centrifugation and washed with water followed by ethyl acetate. The crude 1-amino-3,5-dimethyladamantane hydrochloride is then reprecipitated to yield the title compound.

[0066] The purity of memantine hydrochloride prepared according to Examples 3-4 is shown in Table 2.

Table 2

 

Example 5

Preparation of 1-formamido-3,5-dimethyladamantane

[0067] 1,3-dimethyladamantane containing 0.05% or less of the impurity 1 ,3,5, trimethyladamantane, as prepared in Example 2, is treated with nitric acid followed by sulfuric acid at 0 0C. The reaction is stirred over night at 0 0C. The reaction mixture is poured onto 100 ml_ formamide (at 0 0C) in a round bottom flask which is equipped with a drying tube. The reaction is stirred at 0 0C for 30 min and then at room temperature for 90 min. Dichloromethane and water are then added. The organic phase is removed and washed with water and a 2 % NaHCO3-solution, dried over Na2SO4 and concentrated in vacuo. The resulting oil is purified via column chromatography to yield the title compound as a solid. Example 6

Preparation of 1-amino-3,5-dimethyladamantane

[0068] 1-formamido-3,5-dimethyladamantane, as prepared in Example 5, is hydrolyzed by addition of a 37% hydrochloric acid solution. The reaction mixture is heated to reflux for about 3 h, and the reaction mixture is then cooled to 5 0C to yield crude 1-amino-3,5- dimethyladamantane hydrochloride which is filtered and washed with water followed by ethyl acetate. The crude 1-amino-3,5-dimethyladamantane hydrochloride is then reprecipitated to yield the title compound.

Example 7

Relationship between content of the 1-amino-3,5, 7-trimethyladamantane (TMM) impurity in memantine and the 1 ,3,5-thmethyladamantane impurity in 1,3- dimethyladamantane

[0069] Memantine is synthesized according to Examples 5-6 starting from 1 ,3- Dimethyladamantane (1 ,3-DMA) spiked with different levels of the alkyl adamantane impurity 1,3,5-trimethyladamantane (TMA). The level of the corresponding aminoalkyl adamantane impurity 1-amino-3,5,7-trimethyladamantane (TMM) in the final memantine product is determined. The results (shown in Table 3) demonstrate that the amount of the 1-amino-3,5,7-trimethyladamantane (TMM) impurity in the memantine final product is dependent on the amount of 1 ,3,5-trimethyladamantane (TMA) impurity present in the 1,3-dimethyladamantane starting material.

Table 3

 

* * * * *

 

…………………………

http://www.google.com/patents/WO2006122238A1?cl=en

Memantine has the chemical name 1-amino-3,5-dimethyl adamantane (hereinafter referred to by the officially adopted name “memantine”), and can be represented by the structural Formula 1.

 

Formula I

Memantine is an orally active NMDA (N-methyl-D-aspartate) receptor antagonist which works by blocking the NMDA receptors in the brain. It blocks the excessive activity of glutamate, but still allows the normal activation of these receptors that occurs when the brain forms a memory. Therefore it improves the brain functioning in Alzheimer’s disease, and may also block the glutamate activity that could cause further damage to the brain cells.

Memantine hydrochloride is commercially available in the market in products sold under the trademark NAMENDA. It is available for oral administration as capsule shaped film-coated tablets containing 5 mg and 10 mg of memantine hydrochloride. U.S. Patent No. 3,391 ,142 discloses memantine and its related compounds, and their pharmaceutically acceptable salts. This patent also describes a process for the preparation of memantine as depicted in Scheme 1.

International Application Publication No. WO 2005/062724 A2 describes an alternate process for the preparation of memantine as depicted in Scheme 2, and U.S. Patent No. 5,061 ,703 discloses a process for the preparation of derivatives of memantine.

 

Scheme 2

A process with a reduced number of stages, and which does not require isolation of unstable or hazardous intermediates, will be helpful. Also a process which is easily scalable and is industrially feasible will be helpful.

 

PREPARATION OF 1-BROMO-3.5-DIMETHYL ADAMANTANE (FORMULA III)

8.0 liters of bromine was taken into a reactor and 5.1 kg of 1 ,3-dimethyl adamantane was added into the reactor slowly at 28° C in 2.5 hours. The reaction mass was maintained at 28° C for 24 hours. Reaction completion was checked using a gas chromatographic technique. After the reaction was completed, the bromine was distilled off from the reaction mass at a temperature of below 40° C. After the completion of distillation, 13.4 kg of the title compound in the form of a residue was recovered from the reactor.

Purity by GC: 98.35%,

1 ,3-dimethyl adamantane: 0.53%.

1-hydroxy-3,5-di methyl adamantane: 0.66%.

EXAMPLE 2

PREPARATION OF 1-N-FORMYL-3,5-DIMETHYL ADAMANTANE (FORMULA Vl)

64 liters of formamide was taken into a reactor and 2.55 kg of the 1-bromo- 3,5-dimethyl adamantane of Formula III obtained above was added to it. The reaction mass was heated to a temperature of 157° C and maintained for 14 hours. Reaction completion was checked using gas chromatography. After the reaction is completed, the reaction mass was cooled to 28° C. The reaction mass was then further cooled to 4° C and maintained for 4.25 hours. 37.5 liters of chilled water was added to the reaction mass slowly below 5° C. Then 37.5 liters of dichloromethane was added to the reaction mass. The temperature of the reaction mass was raised to 25° C. The reaction mass was filtered over a celite bed and the bed was washed with 12.5 liters of dichloromethane. The filtrate was taken into another reactor and stirred at 25° C for 10 minutes. The layers were separated and the aqueous layer was extracted with 15 liters of dichloromethane in 2 equal lots. The combined dichloromethane layer was washed with 51 liters of 10% sodium bicarbonate solution in 2 equal lots. The dichloromethane layer was dried over sodium sulphate and distilled under vacuum at a temperature of 40° C to yield 2.3 kg of the title compound in the form of a residue.

Purity by GC: 76.4 %,

1 ,3-dimethyl adamantane: 0.11 %, 1-hydroxy-3,5-dimethyl adamantane: 21.28%.

EXAMPLE 3

PREPARATION OF MEMANTINE HYDROCHLORIDE (FORMULA VIII): 21 liters of 36% aqueous hydrochloric acid was taken into a reactor and 2.1 kg of 1-N-formyl-3,5-dimethyl adamantane of Formula Vl obtained above was added to it. The reaction mass was heated to a temperature of 104° C and maintained for 6.5 hours. Reaction completion was checked using gas chromatographic technique. After the reaction was completed, the reaction mass was cooled to 4° C and maintained for 3 hours. The reaction mass was filtered in a centrifuge and the filtered solid was washed with 2.1 liters of chilled water. The wet cake was taken into another reactor and 8.5 liters of acetone was added to it. The reaction mass was cooled to 4° C and maintained for 3.5 hours. The reaction mass was then filtered and the filtered cake was washed with 2.1 liters of chilled acetone (chilled to a temperature of 5° C). The wet compound was dried at 73° C for 7 hours to yield 1.05 kg of the title compound. The dried compound was then milled in a micronizer (Manufacturer: Microtech Engineering company, Model: M- 50).

Purity by GC: 99.9%, 1-hydroxy-3,5-dimethyl adamantane: Less than 0.004%,

1-bromo-3,5-dimethyl adamantane: 0.01 %, 1-formamido-3,5-dimethyl adamantane: 0.03%. Residual Solvents: methanol = 231 ppm, dichloromethane = 249 ppm, cyclohexane = 43 ppm, toluene = 122 ppm. Particle size distribution: Before milling: Di0 = 3.2 μm; D50 = 18.4 μm; D90

= 96.6 μm. After milling: D10 = 1.7 μm; D50 = 9.6 μm; Dg0 = 48.3 μm.

Bulk Density: Before milling: Before tapping: 0.20 g/ml ; After tapping: 0.38 g/ml. After milling: Before tapping: 0.20 g/ml; After tapping: 0.39 g/ml. EXAMPLE 4

PREPARATION OF I-CHLORO-S.δ-DIMETHYL ADAMANTANE (FORMULA VII) 15 g of 1-hydroxy-3,5-dimethyl adamantane was taken into a round bottom flask and 300 ml of 36% aqueous hydrochloric acid was added to it. The reaction mass was stirred at 28° C for 21 hours. The reaction mass was kept for layer separation. The upper layer was separated to yield 13.0 g of the title compound in the form of crude. Purity by GC: 99.88%.

EXAMPLE 5

PREPARATION OF 1-N-FORMYL-3.5-DIMETHYL ADAMANTANE (FORMULA Vl)

10 g of 1-chloro-3,5-dimethyl adamantane of Formula VII prepared above was taken into a round bottom flask and 250 ml of formamide was added to it. The reaction mass was heated to 152° C and maintained at that temperature for 10 hours. The reaction mass was then cooled to 10 ° C, and 150 ml of water chilled to a temperature of 5° C was added to it slowly. Then 150 ml of dichloromethane was added to it and the temperature of the reaction mass was brought up to 28° C. The reaction mass was filtered through a celite bed and the celite bed was washed with 50 ml of dichloromethane. The filtrate was transferred into a separating funnel and the organic layer was separated. The aqueous layer was extracted with 150 ml of dichloromethane in two equal lots. The combined organic layer was washed with 200 ml of 10% sodium bicarbonate solution in two equal lots. The organic layer was dried over sodium sulphate and distilled under vacuum at 38° C to yield 9.6 g of the title compound. Purity by GC: 77.35%. EXAMPLE 6

PREPARATION OF 1-AMINO-3.5-DIMETHYL ADAMANTANE HYDROCHLORIDE (FORMULA VIII) 9.0 g of 1-N-formyl-3,5-dimethyl adamantane of Formula Vl and 90 ml of

36% aqueous hydrochloric acid were taken into a round bottom flask and heated to 102° C. The reaction mass was maintained at 102° C for 6 hours. The reaction mass was then allowed to cool to 2° C and maintained for 2 hours. The reaction mass was then filtered and the solid was washed with 20 ml of water chilled to a temperature of 5° C. The wet compound was taken into another round bottom flask and 54 ml of acetone was added to it. The reaction mass was stirred at 28° C for one hour, and then the reaction mass was cooled to 2° C. The reaction mass was maintained at 2° C for 2 hours. The reaction mass was then filtered and the solid was washed with 18 ml of acetone. The solid was suction dried under vacuum of 400 mm Hg and then dried in a vacuum oven at a temperature of 60° C and vacuum of 400 mm Hg for 6 hours to yield 5.0 g of the title compound. Purity by GC: 99.59%

EXAMPLE 7

PREPARATION OF 1-N-FORMYL-3.5-DIMETHYL ADAMANTANE (FORMULA VI)

13 liters of bromine was taken into a reactor and 8.3 kg of 1,3-dimethyl adamantane was added to it at 30° C. The reaction mass was maintained at 30° C for 24 hours. Reaction completion was checked using a gas chromatographic technique. 200 liters of formamide was taken in another reactor and the reaction mass from the previous reactor was added to it. The previous reactor was rinsed with 8 liters of formamide and added to the reaction mass. The temperature of the reaction mass was raised to 155° C. The reaction mass was maintained at 155° C for 8 hours. Reaction completion was checked using gas chromatography. After the reaction was completed, the reaction mass was cooled to 4° C and maintained for 1.5 hours. 125 liters of chilled water was added to the reaction mass at 4° C. 125 liters of dichloromethane was added to the reaction mass and the temperature was raised to 25° C. The reaction mass was then filtered over a celite bed and the bed was washed with 42 liters of dichloromethane. The filtrate was allowed to settle and the organic layer was separated. The aqueous layer was extracted with 124.5 liters of dichloromethane in two equal lots. The combined dichloromethane layer was washed with 166 liters of 10% aqueous solution of sodium bicarbonate in two equal lots. The dichloromethane layer was dried over sodium sulfate and distilled atmospherically to dryness at 40° C to yield 18.2 kg of the title compound.

Purity by GC: 96.29% 1 ,3-dimethyl adamantane: less than 0.004%.

1-hydroxy-3,5-dimethyl adamantane: 2.81 %.

1-bromo-3,5-dimethyl adamantane: 0.05%.

EXAMPLE 8

PREPARATION OF MEMANTINE HYDROCHLORIDE (FORMULA VIII)

24 liters of water was taken into a reactor and 24 liters of 36% aqueous hydrochloric acid was added to it. 10 kg of 1-N-formyl-3,5-dimethyl adamantane of Formula Vl was added to the reaction mass. The reaction mass was heated to a temperature of 102° C. The reaction mass was maintained at 102° C for 24 hours. Reaction completion was checked using gas chromatographic technique. After the reaction was completed the reaction mass was cooled to 5° C. The reaction mass was maintained at 5° C for 2 hours and 30 minutes and then s olids were separated using a centrifuge (Manufacturer: Nima Engineering Pvt. Ltd. Model: 14″ x 7″ – LAD CANT). The solid was washed with 10 liters of chilled water. The wet solid was then taken into another reactor and 20 liters of isopropanol was added to it. The reaction mass was stirred at 28° C for 45 minutes. Then the reaction mass was cooled to 5° C and maintained for 2.5 hours. The reaction mass was then filtered and the filtered solid was washed with 10 liters of chilled isopropanol. The wet cake was dried in an oven at 92° C for 11 hours to yield 4.6 kg of the title compound.

Purity by GC: 99.98%

1-chloro-3,5-dimethyl adamantane: less than 0.005%. 1-hydroxy-3,5-dimethyl adamantane: 0.003%.

1-N-formyl-3,5-dimethyl adamantane: 0.01%.

Residual Solvents: methanol = 33 ppm, dichloromethane = 14 ppm, acetone= 2 ppm, isopropanol = 383 ppm. Fig. 2 shows the X-ray powder diffraction pattern for the product, obtained using Cu Ka- 1 radiation (1.541 A wavelength).

EXAMPLE 9

Gas Chromatography method for memantine hydrochloride and impurities.

Chromatographic conditions:

Column: Agilent Ultra 2, or equivalent (crosslinked 5% phenylmethylsiloxane).

Length: 50 meters.

ID: 0.32 mm. Film thickness: 0.52 microns.

Column Temperature: Initial temperature: 50° C, Hold time-1: 0 minutes, Heating rate-1 : 5° C; Final temperature: 145° C, Hold time-2: 0 minutes, Heating rate-2:

10° C; Final temperature: 250° C, Final hold time: 20 minutes, Injection port temperature: 220° C, Detector temperature: 300° C. Carrier gas: Helium

Flow rate: 4.0 ml/minute

Injection mode (Split): 1 : 50

Injection volume: 1 μl.

Solvent: Hexane.

PEAK LOCATIONS:

Gas Chromatography method for residual organic solvents.

Chromatographic Conditions:

Column: Alltech AT-624 capillary, or equivalent. Length: 30 meters.

ID: 0.53 mm.

Film thickness: 3.0 μm of 6% cyanopropylphenyl-94% methylpolysiloxane.

Injector temperature: 140° C.

Detector temperature: 260° C. Mode of injection [split]: 1 :5

Carrier gas: Helium

Flow rate: 4.0 ml/minute.

Sample: 1 μl.

Diluent: N,N-dimethylacetamide. Temperature: column temperature is programmed according to the following steps: it is held at 40° C for 8 minutes then increased to 165° C at a rate of 10° C per minute and held at 165° C for 5 minutes. Again increased to 250° C at a rate of 35° C and held at 250° C for 20 minutes.

 

 

…………………………..

WO2008062472A2 * Oct 22, 2007 May 29, 2008 Cadila Healthcare Ltd Process for the preparation of memantine
WO2009010806A1 * Jul 18, 2008 Jan 22, 2009 Generics Uk Ltd Assay methods for memantine
WO2010015415A1 * Aug 7, 2009 Feb 11, 2010 Merz Pharma Gmbh & Co. Kgaa Process for manufacturing adamantane derivatives with high yield
WO2010069555A1 Dec 16, 2009 Jun 24, 2010 Merz Pharma Gmbh & Co. Kgaa Method for producing memantine
WO2010083996A1 * Jan 20, 2010 Jul 29, 2010 Merz Pharma Gmbh & Co. Kgaa A process for preparing memantine
EP2555616A1 * Apr 8, 2010 Feb 13, 2013 Hetero Research Foundation Process for the preparation of memantine hydrochloride

 

 

 

WO2006122238A1 * May 11, 2006 Nov 16, 2006 Mukunda Reddy Jambula Process for preparing memantine
WO2007101536A1 * Feb 20, 2007 Sep 13, 2007 Univ Giessen Justus Liebig Method for producing 1-formamido-3,5-dimethyladamantane
WO2007126886A1 * Mar 27, 2007 Nov 8, 2007 Teva Pharm Fine Chemicals Srl Process for preparing memantine hydrochloride substantially free of impurities
EP1908748A1 * Oct 5, 2006 Apr 9, 2008 Krka Process for the preparation of memantine and its hydrochloric acid salt form

References

  1. Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ; Memantine Study Group. (2003) Memantine in moderater-to-severe Alzheimer’s disease. New Engl. J. Med. 348(14) 1333-41
  2. Aarsland, D; Ballard, C; Walker, Z; Bostrom, F; Alves, G; Kossakowski, K; Leroi, I; Pozo-Rodriguez, F; Minthon, L; Londos, E (July 2009). “Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial.”. Lancet neurology 8 (7): 613–8. doi:10.1016/S1474-4422(09)70146-2. PMID 19520613.
  3. Johansson, C; Ballard, C; Hansson, O; Palmqvist, S; Minthon, L; Aarsland, D; Londos, E (February 2011). “Efficacy of memantine in PDD and DLB: an extension study including washout and open-label treatment.”. International journal of geriatric psychiatry 26 (2): 206–13. doi:10.1002/gps.2516. PMID 20665553.
  4. Schneider, LS; Dagerman, KS, Higgins, JP, McShane, R (August 2011). “Lack of evidence for the efficacy of memantine in mild Alzheimer disease.”. Archives of neurology 68 (8): 991–8. doi:10.1001/archneurol.2011.69. PMID 21482915.
  5. Mount C, Downton C (July 2006). “Alzheimer disease: progress or profit?”. Nat Med. 12 (7): 780–4. doi:10.1038/nm0706-780. PMID 16829947.
  6. NICE technology appraisal January 18, 2011 Azheimer’s disease – donepezil, galantamine, rivastigmine and memantine (review): final appraisal determination
  7. Rossi S, editor. Australian Medicines Handbook 2006. Adelaide: Australian Medicines Handbook; 2006.
  8. Areosa SA, Sherriff F, McShane R (2005). “Memantine for dementia”. In Areosa Sastre, Almudena. Cochrane Database Syst Rev (3): CD003154. doi:10.1002/14651858.CD003154.pub4. PMID 16034889.
  9. Joint Formulary Committee (2004). British National Formulary (47th ed.). London: BMA and the Royal Pharmaceutical Society of Great Britain. ISBN 0-85369-584-9.
  10. Villoslada P, Arrondo G, Sepulcre J, Alegre M, Artieda J (December 2008). “Memantine induces reversible neurologic impairment in patients with MS”. Neurology 72 (19): 1630–3. doi:10.1212/01.wnl.0000342388.73185.80. PMID 19092106.
  11. Green AJ (February 2009). “Understanding pseudo. The symptoms are real, the cause is unclear”. Neurology 72 (19): 1626–7. doi:10.1212/01.wnl.0000345879.39454.68. PMID 19246422.
  12. Bechara J. Saab, Ruxandra M. Luca, Wing B. Yuen, Adam M. P. Saab, John C. Roder “Memantine Affects Cognitive Flexibility in the Morris Water Maze”, Journal of Alzheimer’s Disease Volume 27 Issue 3 (December 2011).
  13. Cacabelos R, Takeda M, Winblad B (January 1999). “The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimer’s disease”. Int J Geriatr Psychiatry 14 (1): 3–47. doi:10.1002/(SICI)1099-1166(199901)14:1<3::AID-GPS897>3.0.CO;2-7. PMID 10029935.
  14. Kornhuber J, Bormann J, Retz W, Hübers M, Riederer P (1989). “Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex”. Eur.J.Pharmacol 166: 589–590. doi:10.1016/0014-2999(89)90384-1. PMID 2680528.
  15. Chen HSV, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, Lipton SA (1 November 1992). “Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity”. J. Neurosci. 12 (11): 4427–36. PMID 1432103.
  16. Chen HSV, Lipton SA (15 February 1997). “Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism”. J. Physiol. (Lond.) 499 (Pt 1): 27–46. PMC 1159335. PMID 9061638.
  17. Rogawski, MA; Wenk GL (2003). “The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease”. CNS Drug Rev 9 (3): 275–308. doi:10.1111/j.1527-3458.2003.tb00254.x. PMID 14530799.
  18. Robinson, DM; Keating GM (2006). “Memantine: a review of its use in Alzheimer’s disease”. Drugs 66 (11): 1515–34. doi:10.2165/00003495-200666110-00015. PMID 16906789.
  19. Xia P, Chen HSV, Zhang D, Lipton SA (2010). “Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses”. J. Neurosci 30 (33): 11246–11250. doi:10.1523/JNEUROSCI.2488-10.2010. PMC 2932667. PMID 20720132.
  20. Kornhuber J, Weller M (1997). “Psychotogenicity and NMDA receptor antagonism: implications for neuroprotective pharmacotherapy”. Biol. Psychiatry 41 (2): 135–144. doi:10.1016/S0006-3223(96)00047-9. PMID 9018383.
  21. Rogawski, MA (2000). “Low affinity channel blocking (uncompetitive) NMDA receptor antagonists as therapeutic agents—toward an understanding of their favorable tolerability”. Amino Acids 19 (1): 133–49. doi:10.1007/s007260070042. PMID 11026482.
  22. Parsons CG, Stöffler A, Danysz W (November 2007). “Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system — too little activation is bad, too much is even worse”. Neuropharmacology 53 (6): 699–723. doi:10.1016/j.neuropharm.2007.07.013. PMID 17904591.
  23. Lipton SA (February 2006). “Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond”. Nature Reviews Drug Discovery 5 (2): 160–70. doi:10.1038/nrd1958. PMID 16424917.
  24. Chen HS, Lipton SA (June 2006). “The chemical biology of clinically tolerated NMDA receptor antagonists”. J Neurochem. 97 (6): 1611–26. doi:10.1111/j.1471-4159.2006.03991.x. PMID 16805772.
  25. Lipton SA (October 2007). “Pathologically activated therapeutics for neuroprotection”. Nature Reviews Neuroscience 8 (10): 803–8. doi:10.1038/nrn2229. PMID 17882256.
  26. Rammes G, Rupprecht R, Ferrari U, Zieglgänsberger W, Parsons CG (June 2001). “The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner”. Neurosci Lett. 306 (1–2): 81–4. doi:10.1016/S0304-3940(01)01872-9. PMID 11403963.
  27. Buisson B, Bertrand D (1 March 1998). “Open-channel blockers at the human alpha4beta2 neuronal nicotinic acetylcholine receptor”. Mol Pharmacol. 53 (3): 555–63. PMID 9495824.
  28. Aracava Y, Pereira EF, Maelicke A, Albuquerque EX (March 2005). “Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons”. J Pharmacol Exp Ther. 312 (3): 1195–205. doi:10.1124/jpet.104.077172. PMID 15522999.
  29. Gotti C, Clementi F (December 2004). “Neuronal nicotinic receptors: from structure to pathology”. Prog Neurobiol. 74 (6): 363–96. doi:10.1016/j.pneurobio.2004.09.006. PMID 15649582.
  30. Seeman P, Caruso C, Lasaga M (February 2008). “Memantine agonist action at dopamine D2High receptors”. Synapse 62 (2): 149–53. doi:10.1002/syn.20472. PMID 18000814.
  31. http://www.psycheducation.org/depression/meds/memantine.htm
  32. Open-Label Pilot Study of Namenda in Adult Subjects With ADHD and ADHD NOS [1]
  33. Dan Ziegler. “New drugs to prevent or treat diabetic polyneuropathy” (pdf). Retrieved 2008-01-07.[dead link]
  34. Schifitto G, Navia BA, Yiannoutsos CT, et al. (September 2007). “Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study”. AIDS 21 (14): 1877–86. doi:10.1097/QAD.0b013e32813384e8. PMID 17721095.
  35. Corbett J (September 2007). “Memantine/Gabapentin for the treatment of congenital nystagmus”. Curr Neurol Neurosci Rep 7 (5): 395–6. doi:10.1007/s11910-007-0061-z. PMID 17764629.
  36. Aman, Michael (Interviewee) (2010-07-29). Drug Used in Alzheimer’s Tested In Kids With Autism. Ohio: Ohio State University Medical Center.
  37. Borghol, Amne; Kirkwood A, Hawawini F (May 2010). “Memantine for the Treatment of Migraine”. US Pharm 35 (5): 28–35.
  38. Wang, R.; Zhang, D. (2005). “Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model”. European Journal of Neuroscience 22 (9): 2376–2380. doi:10.1111/j.1460-9568.2005.04431.x. PMID 16262676. edit
  39. Costa, ACS; Boada R, Hutaff-Lee C, Schrader A, Weitzenkamp D, Benke TA, Goldson EJ (July 17, 2012). “Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial”. Translational Psychiatry 2 (e141). doi:10.1038/tp.2012.66.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6-4-1981
Salts of dihalo-2-quinoxaline carboxylic acids, their preparation and pharmaceutical formulations containing them.
2-25-1981
Salts of dihalo-3,4-dihydro-3-oxo-2-quinoxaline carboxylic acids and hindered amines
10-25-1978
Drugs or medicines for influencing the central nervous system
12-16-2011
NOVEL THERAPEUTIC COMPOUNDS
12-16-2011
PROCESS FOR THE PREPARATION OF 1-BROMO-3,5-DIMETHYL ADAMANTANE
11-18-2011
PROCESS FOR PREPARING MEMANTINE
11-2-2011
CARNITINE CONJUGATES OF ADAMANTANAMINES DERIVATIVES AS DUAL PRODRUGS FOR VARIOUS USES
10-28-2011
PROCESS FOR MANUFACTURING ADAMANTANE DERVATIVES WITH HIGH YIELD
9-30-2011
Immediate release formulations of 1-aminocyclohexane compounds, memantine and neramexane
8-19-2011
Compositions, Methods, and Kits for Treating Influenza Viral Infections
7-13-2011
Carnitine Conjugates of Adamantanamines and Neramexane Derivatives as Dual Prodrugs for Various Uses
5-6-2011
SALTS OF MEMANTINE AND COX-INHIBITORS AND THEIR CRYSTAL FORM IN THE TREATMENT OF PAIN
5-4-2011
FLUORO-CONTAINING DERIVATIVES OF HYDROGENATED PYRIDO[4,3-B]INDOLES WITH NEUROPROTECTIVE AND COGNITION ENHANCING PROPERTIES, PROCESS FOR PREPARING, AND USE

Further reading

  • Lipton SA (2005). “The molecular basis of memantine action in Alzheimer’s disease and other neurologic disorders: low-affinity, uncompetitive antagonism”. Current Alzheimer research 2 (2): 155–65. doi:10.2174/1567205053585846. PMID 15974913.

External links

High Cholesterol: An Obstacle to Pregnancy


thumbnail image: High Cholesterol: An Obstacle to Pregnancy

High Cholesterol: An Obstacle to Pregnancy
Elevated concentrations of cholesterol in the blood circulation are associated to a reduced fecundity
Read more

http://www.chemistryviews.org/details/news/6210791/High_Cholesterol_An_Obstacle_to_Pregnancy.html

A New Way to Treat Diabetes?


thumbnail image: A New Way to Treat Diabetes?
Type-2 diabetes is a severe metabolic disease caused by the loss of the cells producing the hormone insulin. Since this molecule controls the up-take of glucose from the circulation, diabetic patients accumulate pathological levels of sugar in their blood.

A New Way to Treat Diabetes?
A novel synthetic macrocycle inhibiting insulin-degrading enzyme shows potent anti-diabetic effects
Read more

http://www.chemistryviews.org/details/news/6210821/A_New_Way_to_Treat_Diabetes.html

 

 


Lyranara.me's avatarLyra Nara Blog

βMδVL production

(A) Total biosynthetic pathway for the production of βMδVL. (B) A semisynthetic route to produce βMδVL from mevalonate. (C) Conversion of βMδVL to an elastomeric triblock polymer that can be repeatedly stretched to 18 times its original length without breaking. Copyright © PNAS, doi:10.1073/pnas.1404596111

The advantages of sustainable, biodegradable, carbon-neutral and bioderived renewable polymers – that is, synthetic polymers based on biomolecules produced by living organisms – are reflected in the extent of the research recently conducted into their development. However, such bioderived (or biobased) polymers currently account for a very small percentage of the plastics and elastomers market now dominated by oil-based polymers. (An elastomer, such as rubber, is a polymer that is viscoelastic – that is, both viscous and elastic – with weak intermolecular forces.) To achieve market growth, synthetic polymers have to compete strongly not only in performance, but in large-scale production costs as well –…

View original post 936 more words

Researchers find ASC specks released by cells eaten by other immune cells leads to multiplying inflammation


Lyranara.me's avatarLyra Nara Blog

Microscopy of BMDMs. Credit: Nature Immunology (2014) doi:10.1038/ni.2913

Two teams of researchers, one working in Spain, the other in Germany have independently discovered a connection between ASC specks released by macrophages during cell death and ingestion by other macrophages that can lead to multiplying inflammation. Both teams have published their findings in the journalNature Immunology.

Inflammation in the body can be a good thing, helping to heal, but in many cases, it can be a bad thing, causing harm rather than good. Pneumonia, for example, is one prominent example of inflammation gone awry. Another instance where it occurs is in some autoimmune diseases, where the body fights itself, quite often using inflammation as a tool. The two teams in Europe have now found one of the mechanisms responsible for multiplying inflammation, which is where inflammation spreads beyond a localized area, seemingly, without a good reason.

ASC specks are molecular assemblages…

View original post 276 more words

Cell stress inflames the gut: New insights into chronic bowel inflammation


Lyranara.me's avatarLyra Nara Blog

Cell stress inflames the gut

This is a cross section of an injury in the large intestine with the intestinal epithelium shown in red. The healing process is characterized by rapid cell division in the wound region (green areas). Where there is a high concentration of the CHOP protein, the epithelium is slower to heal (region with red outline). Credit: N. Waldschmitt / TUM

Inflammatory bowel disease (IBD) is a common condition in western industrialized countries. What triggers it, however, is not yet fully understood. Nutrition researchers at Technische Universität München (TUM) have now identified a new step in the pathogenesis. They used a mouse model to show that a protein in the cells of the intestinal mucosa is one of the root causes of the disease.

Over 3.5 million people in Europe and the US suffer from Crohn’s disease or ulcerative colitis – the two most common forms of IBD. Chronic bowel inflammation is…

View original post 367 more words

Discovery of Imigliptin, a Novel Selective DPP-4 Inhibitor for the Treatment of Type 2 Diabetes


Abstract Image
 Figure imgf000003_0001
Imigliptin
CAS OF FREE BASE      1314944-07-4
C21 H24 N6 O
Benzonitrile, 2-​[[7-​[(3R)​-​3-​amino-​1-​piperidinyl]​-​2,​3-​dihydro-​3,​5-​dimethyl-​2-​oxo-​1H-​imidazo[4,​5-​b]​pyridin-​1-​yl]​methyl]​-
Sihuan Pharmaceutical
Imigliptin dihydrochloride is an orally-available dipeptidyl peptidase IV (CD26; DPP-IV; DP-IV) inhibitor in phase I clinical trials at Sihuan Pharmaceutical for the treatment of type 2 diabetes.
………………………………………………………………

http://www.google.com/patents/EP2524917A1?cl=en

 

(R)-2-[[7-(3-aminopiperidin-1-yl)-3,5-dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl]methyl]benzonitrile AS TFA SALT

1314944-08-5  CAS
C21 H24 N6 O . C2 H F3 O2
Benzonitrile, 2-​[[7-​[(3R)​-​3-​amino-​1-​piperidinyl]​-​2,​3-​dihydro-​3,​5-​dimethyl-​2-​oxo-​1H-​imidazo[4,​5-​b]​pyridin-​1-​yl]​methyl]​-​, 2,​2,​2-​trifluoroacetate (1:1)

………………………………………………………………………….

LEAD compd 1 as above ……….cas ………1314943-88-8
  • C19 H19 N5 O2
  • Benzonitrile, 2-​[[7-​[(3R)​-​3-​amino-​1-​piperidinyl]​-​2-​oxooxazolo[5,​4-​b]​pyridin-​1(2H)​-​yl]​methyl]​-

………………………………………

SEE  POLYMORPHS

EP2730575A1, WO2013007167A1

CN 102863440

http://www.google.com/patents/CN102863440A?cl=en

Dipeptidyl peptidase-IV (DPP-IV) inhibitors are a new generation of oral treatment of type 2 diabetes by enhancing the role of incretin activity, a non-insulin therapy. With conventional medicine for treating diabetes compared, DPP-IV inhibitors have not weight gain and edema and other adverse reactions. [0003] The compound shown in formula ⑴ (R) -2 – [[7 – (3 – amino-piperidine-I-yl) -3,5 – dimethyl-2 – oxo-2 ,3 – dihydro- -IH-imidazo [4,5-b] pyridin-I-yl] methyl] benzonitrile (referred to as the specification of compound A, in the patent application CN201010291056. 9 already described) is a DPP-IV inhibitor compounds , the DPP-IV has a strong inhibitory effect and high selectivity.

V

[0004] formula ⑴

Figure CN102863440AD00031

[0005] In the crystalline drug development research is very important, compound crystal form, will result in its stability, solubility and other properties are different. Therefore, the inventors of the compound or its salt polymorph A lot of research carried out, whereby it was confirmed, and the invention of the compound A crystalline salt.

3, Invention

[0006] The object of the present invention is to solve the above problems and to provide better stability, better maneuverability, good bioavailability and solubility of the compound A or a salt thereof and method for preparing the crystalline form.

[0007] The present invention provides formula (I), the compound A dihydrochloride salt polymorph I: using Cu-K α radiation, to angle 2 Θ (°) represents an X-ray powder diffraction at 8. 7 ± 0. 2 °, 19.4 ± 0.2 °, 23. 5 ± 0. 2 °, 27. 2 ± 0. 2 ° at a characteristic peaks.

Butterfly NC N

[0008] formula ⑴

Figure CN102863440AD00032

[0009] A compound of the dihydrochloride salt polymorph I, with Cu-Ka radiation, to angle 2 Θ (°) represents an X-ray powder diffraction peaks in addition to the features described above, it also at 12. 5 ± 0. 2 °, 22. 5 ± 0. 2 °, 25. 5 ± 0.2 ° at a characteristic peaks.

[0010] A compound of the dihydrochloride salt polymorph I, with Cu-κα exposed to radiation angle 2 Θ (°) represents an X-ray powder diffraction peaks in addition to the features described above, it also at 11.7 ± 0.2 °, 14.6 ± 0.2 °,

26. O ± 0.2 ° at a characteristic peak.

[0011] The present invention also provides the compound A dihydrochloride Preparation of polymorph I.

[0012] Compound A was dissolved in an organic solvent, and temperature, was added dropwise a stoichiometric ratio of hydrochloric acid, after the addition was complete stirring, filtered and dried to give the dihydrochloride salt of Compound A crystalline form I.

……………………………………………….

http://www.google.com/patents/EP2524917A1?cl=en

0r

WO 2011085643

  • Diabetes mellitus is a systemic chronic metabolic disease caused by a blood glucose level higher than normal level due to loss of blood glucose control. It is basically classified into four categories, including: type I (insulin-dependent) and type II (non-insulin-dependent), the other type and gestational diabetes. Type I and type II diabetes are primary diabetes, which are the two most common forms caused by the interaction of genetic and environmental factors. The cause of diabetes is very complicated, but in the final analysis, is due to absolute or relative insulin deficiency, or insulin resistance. It is characterized by the metabolic disorder of carbohydrate, protein, fat, electrolytes and water caused by absolute or relative insulin deficiency and the reduced sensitivity of target cells to insulin.
  • In recent years, because of the improvement of living level, changes in the diet structure, the increasingly intense pace of life and lifestyle of less exercise and many other factors, the global incidence of diabetes is rapidly increasing, so that diabetes has become the third chronic disease which has a serious threat to human health next to tumor and cardiovascular diseases. Presently, the number of the patients suffering from diabetes has exceeded 120 million in the world, and the number in our country is the second largest in the world. According to statistics, up to 40 million people have been diagnosed as diabetes in China, and the number of the patients is increasing at a rate of 1 million per year. Among them, patients having type I and type II diabetes accounted for 10% and 90% respectively. Diabetes has become the increasingly concerned public health issue.
  • The main drugs currently used for the treatment of type I diabetes are insulin preparations and their substitutes; for the treatment of type II diabetes, the main drugs are oral hypoglycemic agents, generally divided into sulfonylureas, biguanides, traditional Chinese medicine preparations, other hypoglycemic agents, and auxiliary medication. Although these drugs have good effects, they can not maintain long-term efficacy in reducing the high blood glucose, and can not effectively alleviate the condition against the cause of diabetes. Many of the anti-diabetic drugs can well control the blood glucose at the beginning, but their efficacy can not be maintained when the treatment using such drugs are continuously used. It is one of the main reasons why combination therapies or drugs in different classes are used. However, the existing anti-diabetic drugs is lack of long-term efficacy mainly because their mechanism of action is to increase the sensitivity of target tissues to insulin action or improve insulin-producing activity of pancreas, but these drugs have no targeted effect to the reduced function of the pancreatic β cell, which is the fundamental cause of diabetes.
  • Dipeptidyl peptidase-IV (DPP-IV) is widely present in the body, and is a cell surface protein involved in a variety of biological functions. It can degrade many active enzymes in vivo, such as glucagon like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), neuropeptide, substance P, and chemokines and the like. The deficiency of GLP-1 and GIP is the main cause resulting in type II diabetes (i.e., non-insulin-dependent diabetes). DPP-IV inhibitor is a new generation of anti-diabetic drug. It protects the activity of GLP-1, GIP and the like, stimulates the secretion of insulin, lowers blood glucose level by inhibiting the activity of DPP-IV, and does not cause hypoglycemia, weight gain, edema and other side effects. Its effect for lowering blood glucose level stops when a normal blood glucose level has been reached, and hypoglycemia will not occur. It can be used for a long term, and can repair the function of β-cells.
  • Sitagliptin is the first marketed DPP-IV inhibitor. It rapidly became a “blockbuster” drug after marketed in 2006 by Merck. The FDA approved the saxagliptin developed by AstraZeneca and Bristol-Myers Squibb on July 31, 2009. SYR-322 developed by Takeda has an activity and selectivity better than that of sitagliptin and saxagliptin, and is currently in the phase of pre-registration. In addition, there are three drugs in clinical phase III: BI-1356 (linagliptin) developed by Boehringer Ingelheim, PF-734200 (gosogliptin) developed by Pfizer Inc, and PHX1149 (dutogliptin) developed by Phenomix Inc. Nine drugs are in the clinical phase II, and seven drugs are in clinical phase I.

  • However, the limited varieties of drugs can not satisfy the clinical requirements. Accordingly, there is an urgent need for development of many DPP-IV inhibitor drugs to satisfy the clinical use.
      Example 17 The preparation of (R)-2-[[7-(3-aminopiperidin-1-yl)-3,5-dimethyl-2-oxo-2,3-dihydro-1
        -imidazo[4,5-b]pyridin-1-yl]methyl]benzonitrile (Compound 17) trifluoroacetate

(1)2,4-dichloro-6-methyl-3-nitropyridine

      • 6-methyl-3-nitropyridin-2,4-diol (1.7 g, 10 mmol) was dissolved in 10 mL POCl3, heated to 95°C, and stirred for 1.5 h. The excess POCl3 was removed through centrifugation. 100 mL ice water was carefully added. The reaction solution was extracted with ethyl acetate (80 mL×3). The organic phase was combined, washed with saturated brine, dried with anhydrous Na2SO4 and spinned to dryness to afford 1.773 g yellow powder with a yield of 85.7 %.

(2) (R)-1-(2-chloro-3-nitro-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate

      • [0216]
        The specific operation referred to the step (1) described in Example 1 for details. 0.96 g 2,4-dichloro-6-methyl-3-nitropyridin (4.64 mmol), and 0.933 g R-tert-butylpiperidin-3-yl-carbamate (4.66 mmol) were charged to afford 1.1 g titled product with a yield of 63.9 %.

(3) (R)-1-(2-methylamino-3-nitro-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate

      • The specific operation referred to the step (2) described in Example 1 for details, 1.1 g (R)-1-(2-chloro-3-nitro-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate (2.97 mmol), and 5 mL 27 % solution of methylamine in alcohol were charged to afford 1.0 g titled product with a yield of 92.1 %.

(4) (R)-1-(2-methylamino-3-amino-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate

      • The specific operation referred to the step (3) described in Example 1 for details. 1.0 g (R)-1-(2-methylamino-3-nitro-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate (2.74 mmol), and 0.1 g 10% Pd-C were charged to afford 0.873 g titled product with a yield of 95 %.

(5)(R)-1-(3,5-dimethyl-2-oxo-2,3-dihydro-1

H

        -imidazo[4,5-b]pyridin-7-yl)piperidin-3-yl tert-butyl carbamate

      • The specific operation referred to the step (4) described in Example 1 for details. 873 mg (R)-1-(2-methytamino-3-amino-6-methylpyridin-4-yl)piperidin-3-yl tert-butyl carbamate (2.60 mmol), 849 mg triphosgene (2.86 mmol), and 1.39 mL triethylamine (10.4 mmol) were charged to afford 0.813 g titled product with a yield of 86.5 %.

(6)(R)-1-[1-(2-cyanobenzyl)-3,5-dimethyl-2-oxo-2,3-dihydro-1

H

        -imidazo[4,5-b] pyridin-7-yl]piperidin-3-yl tert-butyl carbamate

      • The specific operation referred to the step (5) described in Example 1 for details.813 mg (R)-1-(3,5-dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-7-yl)piperidin-3-yl tert-butyl carbamate (2.25 mmol), 441 mg 2-(bromomethyl)benzonitrile (2.25 mmol), and 621 mg potassium carbonate (4.50 mmol) were charged to afford 0.757 g titled product with a yield of 70.5%.

(7)(R)-2-[[7-(3-aminopiperidin-1-yl)-3,5-dimethyl-2-oxo-2,3-dibydro-1-imidazo [4,5-b]pyridin-1-yl]methyl]benzonitrile trifluoroacetate

    • The specific operation referred to the step (6) described in Example 1 for details. 750 mg (R)-1-[1-(2-cyanobenzyl)-3,5-dimethyl-2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin -7-yl]piperidin-3-yl tert-butyl carbamate (1.57 mmol), and 8.5 mL trifluoroacetic acid were charged to afford 0.680 g titled product with a yield of 88.3%.
      Molecular formula: C21H24N6O Molecular weight: 376.45 Mass spectrum (M+H): 377.2
      1H-NMR(D2O, 400 MHz): δ 7.64 (d, 1H), 7.42 (t, 1H), 7.29 (d, 1H), 6.93(d, 1H), 6.76(s, 1H), 5.39(d, 1H), 5.25(d, 1H), 3.27(s, 3H), 3.04(m, 1H), 2.90(m, 2H), 2.80-2.60 (m, 2H), 2.48 (m, 1H), 2.32 (s, 3H), 1.90 (m, 1H), 1.54 (m, 1H), 1.32 (m, 1H).

…………………….

PAPER

We report our discovery of a novel series of potent and selective dipeptidyl peptidase IV (DPP-4) inhibitors. Starting from a lead identified by scaffold-hopping approach, our discovery and development efforts were focused on exploring structure–activity relationships, optimizing pharmacokinetic profile, improving in vitro and in vivo efficacy, and evaluating safety profile. The selected candidate, Imigliptin, is now undergoing clinical trial.
Discovery of Imigliptin, a Novel Selective DPP-4 Inhibitor for the Treatment of Type 2 Diabetes

Department of Project Management, Medicinal Chemistry, Process, Pharmacology, Drug Metabolism and Pharmacokenetics, Toxicology, XuanZhu Pharma, 2518 Tianchen Street, Jinan, Shandong, The People’s Republic of China
School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, The People’s Republic of China
ACS Med. Chem. Lett., Article ASAP
DOI: 10.1021/ml5001905

http://pubs.acs.org/doi/abs/10.1021/ml5001905

synthesis………http://pubs.acs.org/doi/suppl/10.1021/ml5001905/suppl_file/ml5001905_si_001.pdf

data for LEAD compd 1

Abstract Image

mono-TFA solvate (160mg, 71%).

1H NMR (d-DMSO + D2O, 600 MHz):
δ
8.01 (d, 1 H), 7.89 (d, 1 H), 7.69 (t, 1 H),
7.53 (t, 1 H), 7.40 (d, 1 H), 7.13 (d, 1 H),
5.41 (d, 1 H), 5.30 (d, 1 H), 3.25 (d, 1 H), 3.05
(m, 1 H), 2.93 (d, 1 H), 2.77 (m, 1 H),
2.65 (m, 1H), 1.95 (m, 1 H), 1.66 (m, 1 H),
1.46-1.26 (m, 2 H).
Molecular Formula C19H19N5O2:(M+H) 350.2
compd 27
mono-TFA solvate (680 mg, 88%).1H NMR (D2O, 400 MHz):δ7.64 (d, 1 H), 7.42 (t, 1 H), 7.29 (d, 1 H), 6.93(d, 1 H),

6.76 (s, 1 H), 5.39 (d, 1 H), 5.25 (d, 1 H), 3.27(s, 3 H), 3.04 (m, 1 H), 2.90 (m, 2 H),
2.80-2.60 (m, 2 H), 2.48 (m, 1 H), 2.32 (s, 3 H), 1.90 (m, 1 H), 1.54 (m, 1 H), 1.32 (m,1 H).
Molecular Formula C21H24N6O: (M+H) 377.2.
……………………………………………………………………………………….

Start of the first 4 volunteers in Imigliptin Dihydrochloride Phase I clinical trial

2013-10-18 16:31:08  Copyfrom: Sihuan Pharmaceutical Holdings Group Ltd.

Sihuan R&D clinical research centre (based in Beijing) announced that four healthy volunteers (human subjects) were administrated Imigliptin Dihydrochloride at first dosage of 5mg this morning around 8:00 am on 18 Oct 2013, and they all are in good conditions without any observed adverse effects so far.This is the first category 1.1 innovative drug independently developed by Sihuan Group which has now officially entered into clinical trials; that is from laboratory research into human studies. The preclinical studies of Imigliptin Dihydrochloride, a novel DPP-4 inhibitor treating type II diabetes, demonstrate excellent in vitro and in vivo activities and selectivities. In animal studies, it can protect pancreatic β–cells in long-term treatment. Pharmacokinetic studies of Imigliptin Dihydrochloride show attractive profile of good oral bioavailability, fast absorption and onset, and longer half-life compatible with the once daily dosing. We anticipate the above mentioned preclinical profiles be confirmed in our ongoing clinical trials.
………………………..

 Sitagliptin (sitagliptin) is the first one listed on the DPP-IV inhibitor, in 2006 after the listing quickly became a blockbuster for Merck. July 31, 2009, FDA has approved AstraZeneca and Bristol-Myers Squibb developed saxagliptin (saxagliptin) listed. Takeda (Taketa)’s SYR-322 activity and selectivity are superior to sitagliptin and saxagliptin, is currently in pre-registration. In addition, there are three stages of drug is in phase III: Bo Mingge Yan Gehan’s BI-1356 (Iinagliptin), Pfizer’s PF-734200 (gosogliptin), phenomix company PHX 1149 (dutogliptin) [0007]

In phase II drug has nine, in phase I of seven.

Figure CN102127072AD00091

[0008] However, the limited varieties of drugs, can not meet the clinical needs, the urgent need to develop more of the DPP-IV inhibitor drugs to meet the clinical medication.

 

 

Example 17 (R)-2-ΓΓ7-(3 ~ amino-piperidin-yl) -3, 5_ dimethyl _2_ oxo, 3_ dihydro-IH-blind half and P “4,5 Pyridine-b1-i-a] benzonitrile Jiamou 1 (Compound 17) The system of the

[0451]

Figure CN102127072AD00533

[0452] (1) 2,4 – dichloro-6 – methyl-nitropyridine _3_

[0453]

Figure CN102127072AD00534

[0454] A mixture of 6 – methyl-3 – nitropyridine 2,4 – diol (1. Lg, IOmmol) dissolved in IOmL POCl3, heated to 95 ° C, stirred for 1.5 hours, rotating to excess POCl3 , ice water was added carefully IOOmL, extracted with ethyl acetate (80mLX3), the combined organic phases washed with saturated brine, dried over anhydrous Na2SO4, rotary done 1. 773g yellow powder, yield 85.7%.

[0455] (2) (R)-I-(2 – chloro-nitro _6_ _3_ _4_ picoline) piperidin-_3_ t-butyl carbamate

[0456]

Figure CN102127072AD00541

[0457] Specific operation in Reference Example 1 (1), cast _ 2,4 dichloro-6 – methyl-_3_ nitropyridine 0. 96g (4. 64mmol), R-tert-butyl piperidin-_3_ yl – carbamate 0. 933g (4. 66mmol), to give the product 1. Ig, yield 63.9%.

[0458] (3) (R)-I-(2 – methylamino-nitro _6_ _3_ _4_ picoline) piperidin-_3_ t-butyl carbamate

[0459]

Figure CN102127072AD00542

[0460] Specific operation in Reference Example 1 (2), cast (R) -1 – (2 – chloro-nitro _6_ picoline _3_ _4_ yl)-piperidin-3 – tert-butyl imino ester 1. Ig (2. 97mmol), 27% methylamine alcohol solution 5mL, to give the product 1. Og, yield 92.1%.

[0461] (4) (R)-I-(2 – methyl amino -3 – diamino-6 – methylpyridine _4_ yl) piperidin-_3_ t-butyl carbamate

[0462]

Figure CN102127072AD00543

[0463] Specific operation in Reference Example 1 (3), cast (R)-l_ (2 – methylamino-methyl-4 _3_ nitro _6_ – yl) piperidin-3 – tert- butyl carbamate 1.0g (2. 74mmol), 10% Pd-C 0. lg, to give the product 0. 873g, 95% yield.

[0464] (5) (R)-I-(3,5 – dimethyl-2 – oxo-2 ,3 – dihydro-IH-imidazo [4,5 _b] pyridin _7_ yl)

Piperidin-3 – t-butyl carbamate

[0465]

Figure CN102127072AD00544

[0466] Specific operation in Reference Example 1 (4), cast ((R)-l_ (2 – methylamino-4 _3_ methyl amino _6_ – yl) piperidin-3 – yl t-butyl carbamate 873mg (2. 60mmol), triphosgene 849mg (2. 86mmol), triethylamine 1. 39mL (10. 4mmol), to give the product 0. 813g, yield 86.5% 0

[0467] (6) (R)-l-[l_ (2 – cyano-benzyl) -3,5 _ dimethyl-2 – oxo-2 ,3 – dihydro-IH-imidazo [4, 5 -b] pyridin-7 – yl] piperidin-3 – t-butyl carbamate

[0468]

Figure CN102127072AD00551

[0469] Specific operation in Reference Example 1 (5), cast (R)-I-(3,5 – dimethyl-2 – oxo-2 ,3 – dihydro-IH-imidazo [4, 5-b] pyridin-7 – yl) piperidin-3 – t-butyl carbamate 813mg (2. 25mmol), 2_ (bromomethyl) benzonitrile 441mg (2. 25mmol), potassium carbonate 621mg (4. 50mmol), to give the product 0. 757g, yield 70.5%.

[0470] (7) (R) -2 – [[7 – (3 – amino-piperidin-1 – yl) -3,5 – dimethyl-2 – oxo-2 ,3 – dihydro-IH- imidazo [4,5-b] pyridin-1 – yl] methyl] benzonitrile

[0471]

Figure CN102127072AD00552

[0472] Specific operation in Reference Example 1 (6), cast (R)-l-[l_ (2 – cyano-benzyl) -3,5-dimethyl-2-_ – oxo – two H-IH-imidazo [4,5-b] pyridin-7 – yl] piperidin-3 – t-butyl carbamate 750mg (l. 57mmol), trifluoroacetic acid 8. 5mL, 0 to give the product . 680g, yield 88.3%.

[0473] MF = C21H24N6O MW: 376 * 45 MS (M + H): 377. 2

[0474] 1H-NMR (D2OdOOMHz): δ 1. 32 (1Η, m), 1. 54 (1H, m), 1. 90 (1H, m), 2. 32 (3H, s), 2. 48 (1H, m), 2. 80-2. 60 (m, 2H), 2. 90 (2H, m), 3. 04 (1H, m), 3. 27 (3H, s), 5. 25 ( 1H, d), 5. 39 (1H, d), 6. 76 (1H, s), 6. 93 (1H, d), 7. 29 (1H, d), 7. 42 (1H, t), 7. 64 (1H, d) ·

WO2004050658A1 * Dec 3, 2003 Jun 17, 2004 Boehringer Ingelheim Pharma Novel substituted imidazo-pyridinones and imidazo-pyridazeiones, the production and use thereof as medicaments
WO2009099594A1 * Feb 2, 2009 Aug 13, 2009 Luke W Ashcraft Certain chemical entities, compositions and methods
WO2011085643A1 * Jan 17, 2011 Jul 21, 2011 Kbp Biomedical Co., Ltd. Fused pyridine derivatives
CN101228164A * May 11, 2006 Jul 23, 2008 布里斯托尔-迈尔斯·斯奎布公司 Pyrrolopyridine-based inhibitors of dipeptidyl peptidase IV and methods